Optimization Modulo Theories
An Introduction

Roberto Sebastiani

Dept. of Computer Science and Engineering, DISI
University of Trento, Italy
roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba

— International SAT/SMT/AR School, Lisbon, PT, July 3-7#, 2019 —

roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba

Outline

0 Motivations

e Optimization Modulo Theories with Linear-Arithmetic Objectives
© OMT with Multiple and Combined Objectives

e Relevant Subcases: OMT+PB & MaxSMT

e Status of OMT

e Current and Future Research Directions

e Appendix

Inline OMT schema

OMT for Bit-vector and Floating-point theories
Imptoving OMT+PB by sorting networks

The MaxRES MaxSMT Procedure

Extended SMT-LIB language

Pareto Optimization (hints)

Outline

@ Motivations

Q Optimization Modulo Theories with Linear-Arithmetic Objectives
© OMT with Multiple and Combined Objectives

Q Relevant Subcases: OMT+PB & MaxSMT

Q Status of OMT

Q Current and Future Research Directions

o Appendix

Inline OMT schema

OMT for Bit-vector and Floating-point theories
Imptoving OMT+PB by sorting networks

The MaxRES MaxSMT Procedure

Extended SMT-LIB language

Pareto Optimization (hints)

®© ©6 6 6 06 0

n}
o)
it
it
it

DA

Satisfiability Modulo Theories SMT(T)

SMT(T): the problem of deciding the satisfiability of a (typically)
ground first-order formula wrt some background theory 7.

@ 7 can be a combination of theories | J; 7;

@ Theories of Interest:
o Linear arithmetic over the rationals (LR.A)
(T§ — (51 =S +34-t—34- fo)) N (—‘Tg — (51 = So))
e Linear arithmetic over the integers (£LZ.A)
(x =x+2"%x)A(x >0)A(x <2 —1)
e Arrays (AR)
(i =J) V read(write(a, i, e),j) = read(a,)
e Bit vectors (BY)
X[16][15 . 0] = (y[16][15 : 8] i Z[16][7 . 0]) << W[g][3 . 0]
o Non-linear arithmetic (M £.A)
((c=a-b)n(as=a—-1)A(bi=a+1))—(c=ai-b+1)
O ooo

@ “Lazy” Approach: SMT solver = CDCL SAT solver + 7 -solver(s)

V.

Need for Satisfiability Modulo Theories (SMT)

SMT solvers widely used as backend engines in formal verification
and many other applications

SW verification

verification of Timed and Hybrid Systems
verification of RTL Circuit designs & of microcode
static analysis of SW programs

test-case generation

program synthesis

scheduling

planning with resources

compiler optimization

Need for Optimization Modulo Theories (SMT)

Many SMT-encodable problems require optimum solutions wrt. some
objective function. E.qg.:

@ SW verification

o formal verification of parametric systems

@ optimization of physical layout of circuit designs
@ scheduling and temporal reasoning

@ displacement of tools (e.g. strip-packing problem)
@ planning with resources and retrofit planning

@ radio link frequency assignment

@ machine learning on hybrid domains

@ goal modeling in requirement engineering

° ..

Ex.:

FV of parametric systems

timed system from [Alur, CAV-99] [8]:

TN approach YT ™ 7N lower . t _
—= S = = 1y } ~(
) e=0 e< 0/ N oy==0 =1 /
exit z>2,in y>1,up down
53 \ / Sy ‘ / Tt N\ y:=0 ‘/ t.,,\
\ <57 out \J < ‘V \J <2 raise N 2 -/
TRAIN GATE
/ o exn z:=0 : /uﬂ —approach, z : 70,u ~
\es1/ S 4—\7_<1/
raise 7 z=1,lower
CONTROLLER

Decision Problem: check safety under fixed choices of the constants
(e.g, the delay after which the controller orders the gate to lower the

bar)

(M = G—(in A up))

@ BMC encodable into a SMT(LR.A) problem (sat. = unsafe)

Ex.: FV of parametric systems

A (parametric version of a) timed system from [Alur, CAV-99] [8]:

N /"_0 ™ approach ./ s1N g /71'\\‘ lower _~ b \\
\‘;,T/,/ =0 KT < ‘)/ \\,,E// y:=0 \/ <1/
exit [J‘ >2,in y>1 up ‘ ljdown

s3 s N Tl N w=0 TN
3/ out \J < ‘V \J <2 aise N /
TRAIN GATE
/ exit, z :== 0 pproach, z 1= (TN
u 2 \f—/ b{ 1
\z<t/ Ml le<p)
raise T z =D, lower
CONTROLLER

Optimization Problem: find the minimum “unsafe” delay D after which
the controller orders the gate to lower the bar, which doesn’t
guarantee safety (M [~ G—(in A up)).

—> Set the delay D strictly smaller

@ BMC encodable into a OMT(LR.A) problem (min. D s.t. satisf.)

Ex.: Formal Verification of Real-Time Systems

Model Checking: M = f?

Bounded Model Checking (BMC) looks for an execution path of M of
(increasing) length k

@ satisfying the temporal property —f (i.e. M =, E—f)

BMC is encoded into SMT(7) (e.9. T = LRAUARU...):
@ if ¢y is satisfiable, then M (= f

DUMP' — (A" = write(A°,i',v}))

~DUMP' — (A" =A%)

DUMP' — (t'—1°=0)

WAIT! - (t'=1©>0)

>>>> > > >

DUMPN —

Ex.: Formal Verification of Real-Time Systems

Model Checking: M = f?
Bounded Model Checking (BMC) looks for an execution path of M of
(increasing) length k

@ satisfying the temporal property —f (i.e. M =, E—f)

@ minimizing the total elapsed time: cost = min(tV — 19)

BMC is encoded into SMT(7) (e.9. T = LRAUARU...):
@ if ¢y is satisfiable, then M (= f

DUMP' — (A" = write(A°,i', v}))

~DUMP' — (A" =A%)

DUMP' — (t'—1=0)

WAIT! - (t'=1>0)

>>>> > > >

DUMPN —

Ex.: Planning with Resources [62]

@ SAT-based planning augmented with numerical constraints
@ Straightforward to encode into into SMT(LR.A)

@ Goal: find a plan minimizing some resource consumption (time,
money, gasoline, ...)

Example (sketch) [62]

Deliver)
MaxLoad)
MaxFuel)

Move — MinFuel)
Move — Deliver)

(// goal
(

(

%

(GoodTrip — Deliver)

(

(

(

(

(

// load constraint

// fuel constraint

// move requires fuel

// move implies delivery
// a good trip requires
// a full delivery

// load limit

GoodTrip — AllLoaded)
MaxLoad — (load < 30))
MaxFuel — (fuel < 15)) // fuel limit
MinFuel — (fuel > 7 + 0.5load)) // fuel constraint
AllLoaded — (load = 45)) //

> > > >>>> > > >

Ex.: (LGDP/MILP) Strip-packing & Carpet-cutting
[29, 51, 53]

Strip-packing: Minimize the length L of a strip of width W while fitting
N rectangles (no overlap, no rotation) [29]. Carpet-cutting: w.
rotatLofn.
¢ = (cost=L)AN\jen(L> X+ L))
A Nijen,icj <(Xi +Li < x) V(X + L < xi)
Vi~ HiZ)V (v~ Hy =)
A Nien(Xi <ub = L) A Njen(X = 0)
A Nien(Hi < ¥i) A Nien(W = i) A Nien(yi = 0)

Ex.: (LGDP/MILP) Zero-Wait Jobshop Scheduling
[29, 51, 53]

siege 1 [N N
sege2 | 1 ENEII

seges | IIH B

Given a set / of jobs which must be scheduled sequentially on a set J
of consecutive stages with zero-wait transfer between them, minimize
the makespan M [47].

def
¢ = (cost=M)ANig) (M= i+ 3 jcy tj) A Nie/(Si = 0)
N Necyikeli<k <(Si + 2 med,me;j fim < Sk + X me gy m<j thm)

v (Sk + ZmeJk,mgj fkm < Sj + ZmeJ,»,m<j tim))

Outline

e Optimization Modulo Theories with Linear-Arithmetic Objectives

Optimization Modulo Theories: General Case

Ingredients
@ a SMT formula ¢ in some background theory 7 = 7= U J; T;

e J; 7i may be empty
@ 7= has a predicate < representing a total order

@ a 7<-variable/term “cost” occurring in ¢

Optimization Modulo 7< U |J; 7; (OMT(7= U U; 77))

The problem of finding a model M for ¢ whose value of cost is
minimum according to <.

@ maximization dual

Optimization Modulo Theories with LZR.A costs

Ingredients

@ an SMT formula ¢ on LIRAUT
e LTRA canbe LRA, LTA or a combination of both
o TE U; T, possibly empty
e LTRA and 7; disjoint Nelson-Oppen theories

@ a LIRA variable [term] “cost” occurring in ¢

@ (optionally) two constant numbers Ib (lower bound) and ub
(upper bound) s.t. Ib < cost < ub (Ib, ub may be Fo0)

Optimization Modulo Theories with LZR.A costs (OMT(LZRAUT))
Find a model for ¢ whose value of cost is minimum.
@ maximization dual

Optimization Modulo Theories with LR .A costs

Ingredients
@ an SMT formula ¢ on LRAU T

"]
o TE U; T, possibly empty
e LR.A and 7; disjoint Nelson-Oppen theories

@ a LRA variable [term] “cost” occurring in ¢

@ (optionally) two constant numbers Ib (lower bound) and ub
(upper bound) s.t. Ib < cost < ub (Ib, ub may be Fo0)

Optimization Modulo Theories with LR.A costs (OMT(LRA U T))
Find a model for ¢ whose value of cost is minimum.
@ maximization dual

We first restrict to the case LIRA = LRA and |J; 7; = {}
(OMT(LRA)).

Solving OMT(LR.A) [52, 53]

General idea
Combine standard SMT and LP minimization techniques.

Offline Schema
@ Minimizer: based on the Simplex LR.A-solver by [25]
e Handles strict inequalities
@ Search Strategies:

e Linear-Search strategy
e Mixed Linear/Binary strategy

A toy example (linear search)

[w. pure-literal filt. = partial assignments]
@ OMT(LR.A) problem:

= (-AV(2x+y>-2)

AN (AV(x+y>3)

AN (RAV (4x —y > —4))

AN (AV(@x—y>-6))

A toy example (linear search)

[w. pure-literal filt. = partial assignments]
@ OMT(LR.A) problem:
gef (ﬁA1 vV)
V(x+y=>3)

(
(v (4x—y > ~4)
(AV

> > > |

costE x
, DA, Az,

(4X_y2 _4)7
(x+y=3),

= SAT, min = —0.2

A toy example (linear search)

[w. pure-literal filt. = partial assignments]

@ OMT(LR.A) problem:
def (ﬁA1 \Y

V(x+y=3))

def
cost= x
(x+y >3),

(2x —y > -6)
(cost < —0.2)

= SAT, min=—1.0

A

A)
A (AV(2x -y = -6))
A (cost < —0.2)

) _'A17) _'A27

k]

I

)

A toy example (linear search)

[w. pure-literal filt. = partial assignments]

@ OMT(LR.A) problem:

e® AV Exty>-2)

A (ALY)

A (HAV)
A (Av(@x—y>-6))
A (cost < —0.2)

A (cost < —1.0)

cost= x
A1))) _'A27

k]

2x +y > -2),

(

(2x —y > -6)
(cost < —0.2)
(cost < —1.0)

T ‘ /I\
(cost < —0.2)
(cost< —-1.0) +

I
I
I
I
I
I
I
I
I
|
|
|
I
I
I
I
I
:
def :
I
I
I
I
I
I
I
I
I
I
|
|
|
I
I
I
I
I
I

= SAT, min=-20 L ______.

A toy example (linear search)

[w. pure-literal filt. = partial assignments]
@ OMT(LR.A) problem:

def (V)

v)

v)

(
(
(AV)
(
(

cost < —0.2)
cost < —1.0)
cost < —2.0)

X

>>>>> >

Q
o
@
@
18

T ‘ /\
(cost < —0.2) (cast < —0.2)
(cost < —1.0) (cost<—1.0) 1
(cost < —2.0) (cost < —2.0)

— UNSAT,min=—-2.0 (o _____:

Offline Schema: Mixed Linear/Binary-Search Strategy

Input: (p, cost, Ib, ub) // Ib can be —oco, ub can be +oco
|+ Ib;u < ub; M <+ 0; ¢ < ¢ U {=(cost < Ib), (cost < ub)};
while (I < u) do

—h
,_

0 Uo

Offline Schema: Mixed Linear/Binary-Search Strategy

Input: (p, cost, Ib, ub) // Ib can be —oco, ub can be +oco

| < Ib; u < ub; M <+ 0; ¢ + p U {=(cost < Ib), (cost < ub)};
while (I < u) do

if (BinSearchMode()) then // Binary-search Mode

else // Linear-search Mode

L

Offline Schema: Mixed Linear/Binary-Search Strategy

Input: (p, cost, Ib, ub) // Ib can be —oco, ub can be +oco

|+ Ib;u < ub; M <+ 0; ¢ < ¢ U {=(cost < Ib), (cost < ub)};
while (I < u) do

if (BinSearchMode()) then // Binary-search Mode

else // Linear-search Mode
| (res, u) < SMT.IncrementalSolve(y);

Offline Schema: Mixed Linear/Binary-Search Strategy

Input: (p, cost, Ib, ub) // Ib can be —oco, ub can be +oco

|+ Ib;u < ub; M <+ 0; ¢ < ¢ U {=(cost < Ib), (cost < ub)};
while (I < u) do

if (BinSearchMode()) then // Binary-search Mode

else // Linear-search Mode
| (res, u) < SMT.IncrementalSolve(y);

if (res = sAT) then
(M, u) + LR.A-Solver.Minimize(cost, u);
@+ @U{(cost < u)};

Ise {res = UNSAT}

(1]

i Uit Ui

Offline Schema: Mixed Linear/Binary-Search Strategy

Input: (p, cost, Ib, ub) // Ib can be —oco, ub can be +oco

| < Ib; u < ub; M <+ 0; ¢ + p U {=(cost < Ib), (cost < ub)};
while (I < u) do

if (BinSearchMode()) then // Binary-search Mode

else // Linear-search Mode
| (res, u) < SMT.IncrementalSolve(y);

if (res = sAT) then

(1]

Ise {res = UNSAT}

| < u;

E== .
return(M, u) ; it = U

[u N}

Offline Schema: Mixed Linear/Binary-Search Strategy

Input: (p, cost, Ib, ub) // Ib can be —oco, ub can be +oco
|+ Ib;u < ub; M <+ 0; ¢ < ¢ U {=(cost < Ib), (cost < ub)};
while (I < u) do
if (BinSearchMode()) then // Binary-search Mode
pivot <— ComputePivot(l, u);
¢ < p U {(cost < pivot)};
(res, u) + SMT.IncrementalSolve(y);
else // Linear-search Mode

L

C
i pivot; Uj

Offline Schema: Mixed Linear/Binary-Search Strategy

Input: (p, cost, Ib, ub) // Ib can be —oco, ub can be +oco
|+ Ib;u < ub; M <+ 0; ¢ < ¢ U {=(cost < Ib), (cost < ub)};
while (I < u) do
if (BinSearchMode()) then // Binary-search Mode
pivot <— ComputePivot(l, u);
¢ < p U {(cost < pivot)};
(res, u) + SMT.IncrementalSolve(y);
else // Linear-search Mode

L

if (res = sAT) then
(M, u) + LR.A-Solver.Minimize(cost, u);
@+ @U{(cost < u)};

Ise {res = UNSAT}

(1]

i Uj;1 pivot; uj

Offline Schema: Mixed Linear/Binary-Search Strategy

Input: (p, cost, Ib, ub) // Ib can be —oco, ub can be +oco
|+ Ib;u < ub; M <+ 0; ¢ < ¢ U {=(cost < Ib), (cost < ub)};
while (I < u) do
if (BinSearchMode()) then // Binary-search Mode
pivot <— ComputePivot(l, u);
¢ < p U {(cost < pivot)};
(res, u) + SMT.IncrementalSolve(y);
else // Linear-search Mode

L

if (res = sAT) then

(1]

Ise {res = UNSAT}
if ((cost < pivot) ¢ SMT.ExtractUnsatCore(y)) then

| < u;

else

L k] r r
El

T
return(M, u) i pivot; i1 = uj

Offline Schema: Mixed Linear/Binary-Search Strategy

Input: (p, cost, Ib, ub) // Ib can be —oco, ub can be +oco
|+ Ib;u < ub; M <+ 0; ¢ < ¢ U {=(cost < Ib), (cost < ub)};
while (I < u) do
if (BinSearchMode()) then // Binary-search Mode
pivot <— ComputePivot(l, u);
¢ < p U {(cost < pivot)};
(res, u) + SMT.IncrementalSolve(y);
else // Linear-search Mode

L

if (res = sAT) then

(1]

Ise {res = UNSAT}
if ((cost < pivot) ¢ SMT.ExtractUnsatCore(y)) then

else

| + pivot;
L ¢ < (¢ \ {(cost < pivot)) U {—(cost < pivot)}};

L E

C
i pivot; Uj

2
)
I

The Minimizer

Minimizer embedded within the Simplex-based LR.A-solver by [25]
@ Minimization by standard Simplex techniques

Strict Inequalities
Temporally treated as non-strict inequalities:
@ if minimum cost min lays only on non-strict inequalities, min is a
solution
@ otherwise, for some ¢ > 0 there exists a solution for every cost
¢ €]min, min + 4]

If min is a non-strict minimum, then (cost < min) is added to .

Binary vs. Linear search

Beware of Zeno: pure binary search can cause infinite partitioning

| r [
d

r r
C

0

|~ m

C
1
1 -1 _

EE
ol— M

7

o

@ E.g. if no solution in [—1, 0], then
[-1,0[,[-1/2,0[,[-1/4,0[,[-1/8,0],...

@ SMT solver may find a conflict set n U (cost < pivot) even if
¢\ {(cost < pivot)} is LR.A-inconsistent

Binary vs. Linear search

Beware of Zeno: pure binary search can cause infinite partitioning

| r [
d

r r
C

0

|~ m

C
1
1 -1 _

EE
ol— M

7

o

@ E.g. if no solution in [—1, 0], then
[-1,0[,[-1/2,0[,[-1/4,0[,[-1/8,0],...

@ SMT solver may find a conflict set n U (cost < pivot) even if
¢\ {(cost < pivot)} is LR.A-inconsistent

@ Solution: Binary-search interleaved with linear-search
(Mixed Linear/Binary Search Strategy)

Binary vs. Linear search

Beware of Zeno: pure binary search can cause infinite partitioning

| r [
d

r r
C

0

|~ m

C
1
1 -1 _

EE
ol— M

7

o

@ E.g. if no solution in [—1, 0], then
[-1,0[,[-1/2,0[,[-1/4,0[,[-1/8,0[,...

@ SMT solver may find a conflict set n U (cost < pivot) even if
¢\ {(cost < pivot)} is LR.A-inconsistent

@ Solution: Binary-search interleaved with linear-search
(Mixed Linear/Binary Search Strategy)

Note: Binary search not “obviously faster” than linear search

@ Binary search: typically smaller number of range-restriction steps

@ Linear search: average smaller cost of each range-restriction
steps (unsatisfiable calls typically much harder than sat. ones)

Termination & Correctness

Termination
The linear search procedure terminates:
@ Finite number of satisfiable truth assignments ;

@ No truth assignment ; generated twice

e guaranteed by computing the minimum cost m; of x; and
learning (cost < m;)

— also the mixed linear/binary search procedure terminates

Correctness
The procedure returns the minimum cost
@ Explores the whole space of satisfiable truth assignments

@ For every satisfiable truth assignment, Minimize finds the
minimum cost

Some Enhancements [52, 53, 16]

@ After invoking the minimizer and learning (cost < m;)
e Invoke LR .A-solver.solve(u; A (cost < m;)) = conflict set n;
and learn also —;
e Binary mode: learn also (cost < pivot;) to reuse previously
learned clauses in the form —(cost < pivot;) vV C
@ Tightening of conflicts on binary search [52, 53, 16])
e when ¢ A (cost < pivot;) fails, look for tighter conflict
—(cost < M;) s.t. M; > pivot;
@ Adaptive Mixed Linear/Binary-Search Strategy:

BinSearchMode() chooses according to W‘fmm

From OMT(LR.A) to OMT(LRAUT)

OMT(LR.A) procedure extended for handling LR.A U T-formulas ¢:

For free if SMT solver handles LR.A U T-solving by Delayed Theory
Combination [18] or Model-based Combination [23], splitting negated
interface equalities —(x; = x;) into ((x; < X;) V (X; > X})):

@ Truth assignments 1/ £ prra U pieig U pr St 1/ = ¢

® Lieig is @ set containing interface equalities (x; = x;), disequalities
—(x; = x;) and one inequality in {(x; < X;), (x; > x;)} for every
disequality in pejg

@ LR.A-solver.solve invoked on p/q5 4

® Urpa gl rera U uei Obtained from ey by dropping disequalities

From OMT(LR.A) to OMT(LRAUT)

OMT(LR.A) procedure extended for handling LR.A U T-formulas ¢:

For free if SMT solver handles LR.A U T-solving by Delayed Theory
Combination [18] or Model-based Combination [23], splitting negated
interface equalities —(x; = x;) into ((x; < X;) V (X; > X})):

@ Truth assignments 1/ £ prra U pieig U pr St 1/ = ¢

® Lieig is @ set containing interface equalities (x; = x;), disequalities
—(x; = x;) and one inequality in {(x; < X;), (x; > x;)} for every
disequality in pejg

@ LR.A-solver.solve invoked on p/q5 4

® Urpa gl rera U uei Obtained from ey by dropping disequalities

= LRA-solver.minimize invoked on (cost, (/-5 1)

From OMT(LRAU T) to OMT(LZIRAUT) [55, 16]

@ OMT(LR.AU T) procedures extended to LZ.A and mixed
LRAILTA costs [16, 55]

@ LRA/LTA-solvers enhanced with ILP minimization techniques
(branch & bound, cutting planes, backjumping, ...)

@ Note: with £LZ A

@ ILP minimization often expensive

@ no “Zeno” problem for binary search

@ in principle, if problem is lower-bounded, the ILP minimizer is not
necessary

@ tradeoff between LP, (in)complete ILP minimization, binary
search and Boolean Search [16, 55]

Truncated Branch and Bound

Observations:
@ branch & bound can be expensive in degenerate cases

@ optimality not truly necessary

Idea:
always stop B&B after first iteration, even if cost value is not

guaranteed to be optimal.

Trade-off:
@ less expensive minimization procedure on Integers
@ risk of CDCL generating same p multiple times

Outline

© OMT with Multiple and Combined Objectives

Incremental OMT [15, 55, 54]

Call OMT incrementally
@ e.g., in BMC with parametric systems [53]

Intuition

In OMT, all learned clauses are either T-lemmas, or derive from
T-lemmas and the original formulas , or are in the form (cost < min)
— exploit incrementality of SMT solvers, in two alternative ways:

(i) drop the (cost < min) from one OMT call to the other

(i) assert fresh variable S at each OMT call, and learn
~S V (cost < min) instead of (cost < min)
— can reuse learned clauses from OMT call to the other,
(included these in the form —(cost < minyy) v C as soon as
MiNgyr < MiNgyg.)

OMT with Independent Objectives (Boxed OMT)
[38, 55]

The problem: (p, {costy, ..., costx}) [38]
Given (¢,C) s.t.:

@ ¢ is the input formula

@ C = {costy, ...,cost,} is a set of LIR.A-terms on variables in ¢,

(p,C) is the problem of finding a set of independent LZR.A-models
My, ..., Mg s.t. s.t. each M; makes cost; minimum.

Notes
@ derives from SW verification problems [38]
@ equivalent to k independent problems (p, costy), ..., (¢, costy)
@ intuition: share search effort for the different objectives
@ generalizes to OMT(LZR.A U T) straightforwardly

OMT with Multiple Objectives [38, 16, 55]

Solution

@ Intuition: when a T-consistent satisfying assignment 4 is found,
foreach cost;
min; (= min{minhTsolver.minimize(u,COS’[i)};
learn \/,(cost; <min;); // (cost; < —o0) =1
proceed until UNSAT;
@ Notice:

e for each u, guaranteed improvement of at least one min;
@ in practice, for each p, multiple cost; minima are improved
@ Implemented improvements:
(a) drop previous clauses \/;(cost; < min;)
(b) (cost; < min;) pushed in u first: if T-inconsistent, skip
minimization
(c) learn —(cost; < min;) v (cost; < min®®), s.t. min®d previous min;
= reuse previously-learned clauses like —(cost; < min®d@) v C

Boxed OMT: Example [38, 55]

Acost N
AN N
3 \/%1 \/\Lz
. cost
1 NS
o 3 4
o = (1<NAFSHA(TS)A(K<B)V (x> 4)
A (costy = —y) A (cost, = —x — y)
po = {(1<y),(y<3),(1 <x),(x<3)} = SAT = [-3, 6]

= learn {(cost; < —3) V (cost, < —6)}

pe = {(1<y),(y <3),(x>4)} = SAT — [-3, —]]
= learn {(cost; < —3)}
=—> UNSAT

OMT with Lexicographic Combination of Objectives
[16]

The problem

Find one optimal model M minimizing costs o costq, costo, ..., costy
lexicographically.

Solution
@ Intuition:
{minimize cost; }
when UNSAT

{substitute unit clause (costy < miny) with (costy = miny)}
{minimize costy}

OMT with Other forms of Objective Combination

OMT with Min-Max [Max-Min] optimization
Given (p, {costy, ..., costx }), find a solution which minimizes the
maximum value among {costy, ..., costx }. (Max-Min dual.)

@ Frequent in some applications (e.g. [53, 59])

— encode into OMT(LZR.AU T) problem
{¢ A \;(cost; < cost), cost} s.t. cost fresh.

OMT with linear combinations of costs
Given (p, {costy, ..., cost,}) and a set of weights {wj, ..., wk}, find a
solution which minimizes), w; - cost;.

—> encode into OMT(LZR.AU T) problem
{¢ A (cost =), w; - cost;), cost} s.t. cost fresh.

These objectives can be composed with other OMT(LZR.A)
objectives.

Outline

e Relevant Subcases: OMT+PB & MaxSMT

OMT(LRAUT) vs. SMT with PB costs (& MaxSMT)
SMT + PB costs (& MaxSMT) can be encoded into OMT(LRAU T):

minimize 2w Ai //(3) ite(Aj, wj, 0))

st. 0
4

minimize %

st @ N4 = (5= W) A (<A = (= 0))

AN((X = 0) A (X < w)))

but not vice versa!

OMT(LRAUT) vs. SMT with PB costs (& MaxSMT)
SMT + PB costs (& MaxSMT) can be encoded into OMT(LRAU T):

minimize 2w Ai //(3) ite(Aj, wj, 0))

st. 0
4

minimize %

st @ N4 = (5= W) A (<A = (= 0))

AN((X = 0) A (x; < wj))

but not vice versa!

@ SMT + PB costs finds the minimum-cost 7 -satisfiable
assignment
— search for minimum is purely Boolean

@ OMT(LZRAU T) finds the T-satisfiable assignment whose
minimum cost is minimum
— search for minimum involves two dimensions: Boolean and
arithmetical

Remark: range constraints “(x; > 0) A (x; < w;)”

OMT +PB: Y, w- A, w;>0 //(3;ite(A;, w},0))
U
>_j X, X fresh
s.t. A /\j(Aj — (X = w))) A (RA; = (x; = 0))
A = 0) A (x; < w))
Range constraints “(x; > 0) A (x; < w;)” logically redundant, but
essential for efficiency:

Remark: range constraints “(x; > 0) A (x; < w;)”

OMT +PB: > ;w;- A, w;>0 //(3;ite(Aj, w;,0))
U
>_j X, X fresh
st. AN = (X =w)) A (RA = (x5 =0))
A(X; > 0) A (X < w)
Range constraints “(x; > 0) A (x; < w;)” logically redundant, but
essential for efficiency:

@ Without range constraints, the SMT solver can detect the
violation of a bound only after all A;’s are assigned :
Ex: wqy =4, wo =7, Z,-:1X,'< 10, Ai =A=T,A =xVi>2.

Remark: range constraints “(x; > 0) A (x; < w;)”

OMT +PB: > ;w;- A, w;>0 //(3;ite(Aj, w;,0))
U
>_j X, X fresh
s.t. A /\j(Aj — (X =w)) A (-A; — (x; =0))
A = 0) A (x; < w))
Range constraints “(x; > 0) A (x; < w;)” logically redundant, but
essential for efficiency:

@ Without range constraints, the SMT solver can detect the
violation of a bound only after all A;’s are assigned :
Ex: wqy =4, wo =7, Z,-:1X,'< 10, A=A =T,A =xVi>2.
@ With range constraints, the SMT solver detects the violation as
soon as the assigned A;’s violate a bound
= drastic pruning of the search

Remark: range constraints “(x; > 0) A (x; < w;)”

OMT +PB: > ;w;- A, w;>0 //(3;ite(Aj, w;,0))
U
>_j X, X fresh
s.t. A /\j(Aj — (X =w)) A (-A; — (x; =0))
A = 0) A (x; < w))
Range constraints “(x; > 0) A (x; < w;)” logically redundant, but
essential for efficiency:

@ Without range constraints, the SMT solver can detect the
violation of a bound only after all A;’s are assigned :
Ex: wqy =4, wo =7, Z,-:1X,'< 10, A=A =T,A =xVi>2.
@ With range constraints, the SMT solver detects the violation as
soon as the assigned A;’s violate a bound
= drastic pruning of the search

Further improvement: Enhance encoding of PB constraints/MaxSMT
with sorting networks [56]

SMT/OMT with Pseudo-Boolean Costraints & Costs:

Alternative Solution: conversion into SMT(7)
@ SAT + PB can be efficiently encoded into SAT [26]
— encode SMT(T) + PB into SMT(T)
@ similar idea implemented in [16, 15] for cardinality constraints

SMT/OMT with Pseudo-Boolean Costraints & Costs:

Alternative Solution: conversion into SMT(7)
@ SAT + PB can be efficiently encoded into SAT [26]
— encode SMT(T) + PB into SMT(T)
@ similar idea implemented in [16, 15] for cardinality constraints

Alternative Solution: Leverage SAT+PB
@ develop a “modulo theory” version of your favourite PB-solver
@ afaik, no implementation available

SMT/OMT with Pseudo-Boolean Costraints & Costs:

Alternative Solution: conversion into SMT(T)
@ SAT + PB can be efficiently encoded into SAT [26]
— encode SMT(T) + PB into SMT(T)
@ similar idea implemented in [16, 15] for cardinality constraints

Alternative Solution: Leverage SAT+PB
@ develop a “modulo theory” version of your favourite PB-solver
@ afaik, no implementation available

Alternative Solution: SMT(7 U C) [20]

@ C is an ad-hoc “theory of costs”
@ a specialized very-fast theory-solver for C added
e very fast & aggressive search pruning and theory-propagation

A “Theory of cost” C

A “theory of costs” C
@ M variables cost’
@ predicate “bound cost” BC(cost', k) (“cost’ < k)
@ predicate “incur cost” /C(cost’, j,c/’f) (“the jth addend of cost' is

in
Cj)
“ [Ni [[[[/19
@ “cost' =37 ¢cj-Aj, s.t.cost' € (I'.U]
encoded as:

—~BC(cost', I') A BC(cost', u') A /\/'-\’:i1(A/’1 < IC(cost',j, c}))

C-solver

for each i, C-solver mantains the current values of the incurred costs

cost' = 210 (costl o))+ T c;, the total cost of all unassigned IC's

Acost €3, I0(costhj.cl) unassigned) ¢/, and of the range]b;, ub'|

1. BC(cost', ¢) «+ T /1 = update]lb;, ub']

2. IC(cost',j,¢f) +— T = cost' + cost' +c]
IC(cost',], ¢j) < L = Acost' + Acost' — ¢;

cost' > ub' = conflict

cost' + Acost’ < Ib' = conflict

IC(cost',j,c}) T causes 3. = propagate —/C(cost’,], c})

IC(cost', j,c]) + L causes 4. —> propagate /C(cost',j,c})

RO S

C-solver

for each i, C-solver mantains the current values of the incurred costs

cost' = 210 (costl o))+ T c;, the total cost of all unassigned IC's

Acost €3, I0(costhj.cl) unassigned) ¢/, and of the range]b;, ub'|

1. BC(cost', ¢) «+ T /1 = update]lb;, ub']

2. IC(cost',j,¢f) +— T = cost' + cost' +c]
IC(cost',], ¢j) < L = Acost' + Acost' — ¢;

cost' > ub' = conflict

cost' + Acost’ < Ib' = conflict

IC(cost',j,c}) T causes 3. = propagate —/C(cost’,], c})

IC(cost', j,c]) + L causes 4. —> propagate /C(cost',j,c})

RO S

@ very fast:

@ add one constraint & solve: 1 sum + 1 comparison
e theory propagation: linear in the number of propagated literals

MaxSAT Modulo Theories (MaxSMT) |

[Partial Weighted] MaxSMT: The problem
Input: 7, I : resp. sets of hard and (weighted) soft
T-clauses;

Output: a maximum-weight set of soft 7-clauses 1] s.t.
Yl C ol and o] Uy is T-satisfiable

MaxSAT Modulo Theories (MaxSMT) |

[Partial Weighted] MaxSMT: The problem
Input:], pZ: resp. sets of hard and (weighted) soft
T-clauses;

Output: a maximum-weight set of soft 7-clauses 1] s.t.
Yl C ol and o] Uy is T-satisfiable

MaxSMT vs. SMT with PB cost functions
MaxSMT (], »I') encodable into SMT with PB costs (¢7", cost):

" Zplu Ucrepr 1(A;V C7)}: cost= 2cTeol Wi A
SMT with PB costs (o7, cost £ >_j W - Aj) encodable into MaxSMT:

def U def
oh ST ol SUACAY
M

Y

MaxSAT Modulo Theories (MaxSMT) I

Solution: encode into OMT(LR.A) [44, 52, 53]
@ can be composed with other objective functions

MaxSAT Modulo Theories (MaxSMT) Il

Solution: encode into OMT(LR.A) [44, 52, 53]
@ can be composed with other objective functions

Alternative Solution: Leverage MaxSAT

@ develop a “modulo theory” version of your favourite MaxSAT
solver

@ a few implementations available [4, 5, 15]

MaxSAT Modulo Theories (MaxSMT) Il

Solution: encode into OMT(LR.A) [44, 52, 53]
@ can be composed with other objective functions

Alternative Solution: Leverage MaxSAT

@ develop a “modulo theory” version of your favourite MaxSAT
solver

@ a few implementations available [4, 5, 15]

A “Modular” Approach to MaxSMT [21]

@ |Idea: Combine an SMT and a MaxSAT solver:
MaxSMT = MaxSAT + SMT

A Modular Approach for MaxSMT (], 1) [21]

Input: 7, oI // sets of hard and (weighted) soft 7-clauses
(0F, B) « T2B (o}, #1));
©7 « 0; // current set of T-lemmas
Yl «+ ¢l // current approximation of the result
while (SMT.Solve(y] Uy UOT) = UNSAT) do
07 «+ 67 U SMT.GetTLemmas(); ©8 « 728 (07);
L ¥e + MaxSAT(pf UGB, f); vl « B2T (¢5);

return + ;

Based on the cyclic interaction of an SMT and a MaxSAT solver:

A Modular Approach for MaxSMT (], 1) [21]

Input: 7, oI // sets of hard and (weighted) soft 7-clauses
(0F, B) < T2B ({0}, 01));
©7 « (; // current set of T-lemmas
Yl «+ ¢l // current approximation of the result
while (SMT.Solve(y/ Uy UOT) = UNSAT) do
L o7 «0oTu SMT.GetTLemmas() 08 « 128 (97);
PB «— MaxSAT (o8 U OB, pB); vl « B2T (v5);

return + ;

Based on the cyclic interaction of an SMT and a MaxSAT solver:
@ SMT.Solve used as a generator of sets of 7-lemmas @07, @T,
— provide the information to rule-out 7-inconsistent solutions

A Modular Approach for MaxSMT (], 1) [21]

Input: 7, oI // sets of hard and (weighted) soft 7-clauses
(08, ¥8) + T2B ({of , o))
©7 « 0; // current set of T-lemmas
vl «+ ¢l // current approximation of the result
while (SMT.Solve(y/ Uy UOT) = UNSAT) do
07 «+ 67 U SMT.GetTLemmas(); ©8 « 728 (07);
L YB « MaxSAT (o8 U OB, pB); vl « B2T (y5);

return + ;

Based on the cyclic interaction of an SMT and a MaxSAT solver:

@ MaxSAT used to extract minimum-cost clause sets ¢5,, V5, ...
e works on Boolean abstractions ¢,% plus the T-lemmas ©%

A toy example |

T def
Ph =

0
Co .
7 det Ci:
Ps = Co:

Cs:

(x<o
((x <1
(x>2
(x>3

) |
) |
) |
) |

4]
3]
2]
6]

|

A toy example |

Q

e

o £ 0 oh = 0
Co: ((x<0)) [4] Ao) [4]
o7 & Ci: ((x<1)) [3] o8 A1) (3]
s C: ((x=2) [2] ° (A2) 2]
Cs: ((x=3)) [6] (As) [6]
Notice that the set of all (minimal) 7-lemmas on the T-atoms of] U ¢! is:
01: (~(x<0)Vv(x<1)) (—Ao V Ar)
6: (~(x>3)V(x>2) (~As V Ay)
or _) 0 (F(x<0)v-(x>2)) o5 _) (~Agv-hy)
i 02 (=(x <0) V(x> 3)) o (—Ao V —As3)
Os: (—(x <1)V~(x=2)) (mA1V —Az)
Bs: (~(x <1)V=(x>3) (~A; V —As)

A toy example |

of £ 0 b
Co: (x<0)) [4] (Ao) [4]
T def Ci: (x<1) [3] B def (A1) [3]
T VG (xz2) (T) (A&) 2
Cs: ((x>3) [6] (As) [6]

An "unlucky" possible execution of the algorithm is:

i|e] | ¥, | Weight(vd,) | SMT (5 Uvg;UOT)

ol {} {Co, C1, Cz, C3} 15

A toy example |

ol g ok £
Co: (x<0)) [4] (Ao) [4]
7 oat) Ci: ((x<1) [3] s s | (A) [3]
T Y G ((xz2) 2 (T) (A) [
Cs: ((x>3)) [6] (As) [6]
0s: (—(x <0)V (x> 3)) (=Ay V —As3)

An "unlucky" possible execution of the algorithm is:

i|e] | ¥, | Weight(vd,) | SMT (5 Uvg;UOT)

0 {} {Co, C1, Cz, C3} 15 UNSAT
{04}

A toy example |

of £ 0 b
7 o) Ci:((x<1) [3] s o) (A) [3]
T Y G ((x=2) (T) (A) [
Cs: ((x>3)) [6] (As) [6]
0s: (~(x <0)V~(x>3)) (—Ao V —As)

An "unlucky" possible execution of the algorithm is:

i|e] | ¥, | Weight(vd,) | SMT (5 Uvg;UOT)

0 {} {Co, C1, Cz, C3} 15 UNSAT
1| {04} { ,C1,C, G} 11

A toy example |

of £ 0 b
7 o) Ci:((x<1) [3] s o) (A) [3]
T Y G ((x=2) (T) (A) [
Cs: ((x>3)) [6] (As) [6]
0s: (~(x <0)V~(x>3)) (—Ao V —As)
b6 : (~(x <1)V—(x>3)) (A1 V —As)

An "unlucky" possible execution of the algorithm is:

i|ef | 3 | Weight(vd,) | SMT(of UvZ;ueT)
0 {} {Co, C1, Cz, C3} 15 UNSAT
1| {04} { .,Ci,C,Cs} 11 UNSAT

{04,065}

A toy example |

ol E 0 o Z 0

Co: ((x<0)) [4] (Ao) [4]

o7 & Ci: ((x<1)) [3] o5 (A1) [3]

° Co: (x=2) [2] ° (A2) [2]
04 : (‘\(X < O) \Y ‘!(X > 3)) (ﬁAo Vv ﬁAg)
06 : (—(x <1)Vv~=(x>3)) (=A1 vV -A3)

An "unlucky" possible execution of the algorithm is:

i|ef | 3 | Weight(vd,) | SMT(of UvZ;ueT)
0 {} {Co, Gy, Co, G5} 15 UNSAT
1| {0a} { ,Ci,C, G5} 11 UNSAT

2 | {64, 06} {Co,Ci,Co, } 9

A toy example |

of £ 0 of =0

Co: ((x<0)) [4] (Ao) [4]

;e) Ci:((x<1) [s s) (A) 3]

T) G ((x=2) [(A) [2]
03 : (—\(X < 0) V —\(X > 2)) (—|A0 \Vi —|A2)
04 : (‘\(X < O) \Y ‘!(X > 3)) (ﬁAo Vv ﬁAg)
05 (~(x <1)V=(x>3)) (—A; V —As)

An "unlucky" possible execution of the algorithm is:

i|ef | i | Weight(vd,) | SMT(of UvZ;ueT)
0 {} {Co, Cy, Gz, C3} 15 UNSAT
1] {04} { ,C,C, G5} 11 UNSAT
2 | {04,606} {Co,Cy,Co, } 9 UNSAT

{947 967 93}

A toy example |

o £ 0 of £ 0
def def
S Yz @[) (A 1@
i (x> 9) [6] (A) 6]
By ((x < 0)V (x> 2)) (=Ao V —A2)
6s - (~(x < 0)V (x> 3)) (=Ao V —As)
06 (—(x <1)V—(x>3)) (=A; v —As)

An "unlucky" possible execution of the algorithm is:

i|ef | 3 | Weight(vd,) | SMT(of UvZ;ueT)
0 {} {Co,C1,CQ,Cg} 15 UNSAT
1| {64} { ,Ci,Cs,C3} 11 UNSAT
2 {94,66} {Co,C1,Cg, } 9 UNSAT
3 {94796793} {) aCQaC3} 8

A toy example |

o £ 0 of £ 0
def def
S Yz @[) (A 1@
i (x> 9) [6] (A) 6]
By ((x < 0)V (x> 2)) (=Ao V —A2)
6s - (~(x < 0)V (x> 3)) (=Ao V —As)
06 (—(x <1)V—(x>3)) (=A; v —As)

An "unlucky" possible execution of the algorithm is:

i|e] | ¥, | Weight(vd,) | SMT (5 Uvg;UOT)

{} {Co,C1,CQ,Cg} 15 UNSAT
{64} { ,Ci,Cs,C3} 11 UNSAT
{Co,Cy,Co, } 9 UNSAT
{94795793} { , 5 Co, C3} 8 SAT

wWwnNh = O
—~

>

Ny

>

(=)

—

A toy example

def
T:®

Co .
7 def Ci:
‘Ps - 02 .

A toy example

of £ oF ¥
Co: ((x<0)) [4]

7o) Gt ((x<1)) [3] 5 e

v Co: (x>2) [2] [7*
Cs: ((x>3)) [6]

—_———

(A0) [4]
(A1) [3]
(A2) [2]

(4s) [6]

Notice that the set of all (minimal) 7-lemmas on the T-atoms of] U o] is:

01: (~(x<0)V(x<1))
0>: (=(x>3)V(x>2)
or _) ((x<ovopzz) | g
* O4 : (ﬁ(X < 0) \Y ﬁ(X > 3)) *
Os: (=(x <1)Vv-(x>2)
Os: (—(x <1)Vv-—(x>3))

(ﬁAo V A4)
(—\A;; Vv Az)
(—|A0 V —|A2)
(ﬁAo \Y ﬁAg)
(—\A1 Vv —\Ag)
(—|A1 \Y —|A3)

A toy example

of 0 of =0
Co: ((x<0)) [4] (Ao) [4]

or ot) O (<) Bl L s e) (A) [3)

° Co: ((x=2) [2] ° (A2) [2]
Cs: ((x=3)) [6] (As) [6]

A "lucky" possible execution of the algorithm is:
i|ef | %, | Weight(vg,) | SMT (¢4 Ut U6])
15 ‘

0 ‘ {} ‘ {00701702703}

A toy example

of 0 of =0
Co: ((x<0)) [4] (Ao) [4]
o7 Ci: ((x<1)) [3] o5 (A1) [3]
° Co: ((x=2) [2] ° (A2) [2]
Cs: ((x=>3)) [6] (As) [6]
01 : (ﬁ(XSO)\/(XS‘I)) (ﬁAoVA1)
O (-(x>3)V(x>2)) (mAs V A2)
05 : (—(x <1)Vv~=(x>2)) (mA1 V —A2)
A "lucky" possible execution of the algorithm is:
i|ef | %, | Weight(vg,) | SMT (¢4 Ut U6])
0 {} {Co, Gy, Co, C3} 15 ‘ UNSAT

{01) 027 65}

A toy example

@hT d:ef @ B def

0
A2 NaiwepE (| F T {

(A2) [2]
Cs: ((x=>3)) [6] (As) [6]
01 : (ﬁ(XSO)\/(XS‘I)) (ﬁAoVA1)
02 (~(x>3)V(x>2)) (~As V Ay)
05 : (—(x <1)V=(x>2) (=4 V —As)

A "lucky" possible execution of the algorithm is:

i|ef | vd; | Weight(d,) | SMT(ef Uvl;ueT)
01 {} {Co, Cy, C2, C3} 15 UNSAT
1 {01702765} { ’ 762703} 8

A toy example

of £ b
def def
S Yz @[) (A 1@
G (x>9) [6] (A) [6]
01 : (ﬁ(XSO)\/(XS‘I)) (ﬁAoVA1)
B2: (—(x>3)V(x >2)) (=As V As)
b5 (~(x < 1)V (x> 2)) (=Ar v —Ay)

A "lucky" possible execution of the algorithm is:

i|ef | % | Weight(yd)) | SMT (o] Upd;uO])
0 {} {Co, C1, Cz, Cs} 15 UNSAT
1 {01,02,05} | { , ,C Cs} 8 SAT

Outline

@ Motivations

Q Optimization Modulo Theories with Linear-Arithmetic Objectives
© OMT with Multiple and Combined Objectives

0 Relevant Subcases: OMT+PB & MaxSMT

e Status of OMT

Q Current and Future Research Directions

o Appendix

Inline OMT schema

OMT for Bit-vector and Floating-point theories
Imptoving OMT+PB by sorting networks

The MaxRES MaxSMT Procedure

Extended SMT-LIB language

Pareto Optimization (hints)

®© ©6 6 6 06 0

n}
o)
it
it
it

DA

OMT(LZR.A U T) captures lots of interesting problems

Sets of LIRA
Boolean formulas| consiraints SMT(LIRA) SMT(LIRAU; T))

DECISION
(Satisfiability)

OPTIMIZATION
with PB cost function
and constraints

OPTIMIZATION
with linear
cost function

OMT(LZR.A U T) captures lots of interesting problems

s| Sets of LIRA

Boolean formula: :
constraints

SMT(LZRA) | SMT(LZRA U, 7))

DECISION
(Satisfiability) SMT(T)

OPTIMIZATION
with PB cost function
and constraints

OPTIMIZATION
with linear
cost function

OMT(LZR.A U T) captures lots of interesting problems

Sets of LIRA
Boolean formulas| consiraints SMT(LIRA) SMT(LIRAU; T))

DECISION
(Satisfiability)

OPTIMIZATION
with PB cost function
and constraints

OPTIMIZATION
with linear
cost function

OMT(LZR.A U T) captures lots of interesting problems

Sets of LIRA
constraints

Boolean formula SMT(LIRA) SMT(LIRAU; T))

DECISION
(Satisfiability)

OPTIMIZATION MaxSMT and
with PB cost function SMT(T) with

and constraints PB cost funct

OPTIMIZATION
with linear
cost function

OMT(LZR.A U T) captures lots of interesting problems

Boolean formulag S¢15 of LTRA SMT(LTRA) | SMT(LZRAUU,T))
constraints
DECISION Lp
(Satisfiability)
OPTIMIZATION

with PB cost function
and constraints

OPTIMIZATION
with linear
cost function

OMT(LZR.A U T) captures lots of interesting problems

Sets of LIRA

Boolean formula: :
constraints

SMT(LZRA) | SMT(LZRA U, 7))

DECISION ILP, MILP.
DP, LGDP

(Satisfiability)

OPTIMIZATION
with PB cost function
and constraints

OPTIMIZATION
with linear
cost function

OMT(LZR.A U T) captures lots of interesting problems

Boolean formula:

Sets of LIRA
constraints

DECISION
(Satisfiability)

SMT(LIRA)

SMT(LIRAU;
OPTIMIZATION

with PB cost function
and constraints

OPTIMIZATION
with linear
cost function

OMT(LIRAUT

OMT(LZR.A U T) captures lots of interesting problems

Boolean formulasl S° O LTRA | sum(czra) | SMT(cZRAUY,T)
DECISION
(Satisfiability) LP 'B';’ ll_AéLDPFg
OPTIMIZATION MaxSMT and
with PB cost function SMT(T) with
and constraints PB cost funct.
OPTIMIZATION
with linear
cost function

-

o

(Finite Domain) Constraint Programming

FDCP/MILP

@ Very efficient on (integer) linear
arithmetic / combinatorial
reasoning

@ Very efficient handling of global
constraints (e.g. all-different)

@ Booleans typically represented as
0-1 integers

@ (typically) finite precision
arithmetic

SMT/OMT

@ Very efficient on Boolean
reasoning

@ Supports other theories (Array,
Bit-Vectors, Strings, ...)

@ Incremental

infinite precision arithmetic

@ Other functionalities: all-smt,
proofs, unsat-cores, interpolants,

Some OMT tools

@ BCLT [44, 35]

http://www.cs.upc.edu/~oliveras/bclt-main.html

@ OPTIMATHSAT [52, 53, 55, 54, 57], on top of MATHSAT [22]
http://optimathsat.disi.unitn.it

@ SYMBA [38], on top of Z3 [24]
https://bitbucket.org/arieg/symba/src

@ Z3[16, 15], on top of Z3 [24]
http://z3.codeplex.com

More Recently:

@ HAZEL [40]. = BV, incremental
@ CEGIO [7, 9] = counterexample guided inductive optimization

@ MAXHS-MSAT [27] = MaxSMT with Implicit Hitting Set (IHS)
algorithm

@ PULI[33]. = LZ.A cost functions, (based on linear regression)

http://www.cs.upc.edu/~oliveras/bclt-main.html
http://optimathsat.disi.unitn.it
https://bitbucket.org/arieg/symba/src
http://z3.codeplex.com

OMT Applications (OPTIMATHSAT)

Real-Time Systems. Worst-Case Execution Time (WCET) of programs [28]
= reproduced with OPTIMATHSAT [3]

Requirements Engineering. Constrained Goal Models with resources, preferences and goals
[41, 42, 43].
—> OPTIMATHSAT backend engine of CGM-TooL [1]

Machine Learning. Inference & Learning in Hybrid domains [46, 60].
—> OPTIMATHSAT backend engine of LMT tool [2]

— offline used of OPTIMATHSAT to generate optimal QUBO encodings of Boolean functions

Formal Verification & Model Checking. Synthesis of Barrier Certificates for Hybrid
Dynamical Systems [48]
—> OPTIMATHSAT used as oracle to separate safe/unsafe regions starting from a simulation

Scheduling. Optimal sleep/wake-up scheduling for WSNs [32, 34, 33]

Quantum Annealing. Solving SAT and MaxSAT with D-Wave 2000Q QAs [12, 13] J
—> OPTIMATHSAT used to deal with increasingly denser WSNs [34] J

OMT Applications (Other tools)

Static Analysis.
@ Generation of Invariants and Proving Termination via Constraint-based method [19]
@ Finding Inductive Invariants via Local Policy Iteration [30, 31]

Formal Verification & Model Checking.
@ Computing Loop lterations for Bounded Program Verification [39]

Scheduling and Planning with Resources.
@ Optimal plans for multi-robot systems [36, 37]
@ Task planning for smart factories [14]
@ Optimal Job-Shop Scheduling with OMT [50]
@ Synthesis Communication Schedules for Time Sensitive Networks [45]

Software Security Engineering.
@ Multi-Objective Workflow Satisfiability Problem [11]

Outline

e Current and Future Research Directions

Ongoing Work & Research Directions on OMT

Field still far from maturity, lots of possible research directions:
@ Improve efficiency!
@ OMT on different theories, e.g.:

e Bit vectors ([16, 40])
o NLA(R)

o NLA(Z) ([35])

e Floating point ([61])

@ Exploit alternative SMT schemas (e.g., Model-Construction SMT)

@ Hybrid techniques, integration with techniques in neighbour fields
(MaxSAT, PB, CSP, MILP, CA, ...

@ Extensive empirical comparison wrt. techniques in neighbour
fields
(MaxSAT, PB, CSP, MILP, ...)

@ Bridge SMT/OMT with CSP/COP (Minizinc)

To this extent....

Announcement

PHD POSITION available in Trento on
“Advancing Optimization Modulo Theories”
The call will expire in a couple of months.

Please contact me if interested: roberto.sebastiani@unitn.it.
(Se also flier on the desk.)

©Warner Bros. Inc.

References |

(1]

[2]

[3]

41

5]

[6]

7

8]

19

(0]

CGM-Tool.
www.cgm-tool.eu.

LMT.
http://disi.unitn.it/~teso/lmt/lmt.tgz.

WCET OMT.
https://github.com/PatrickTrentin88/wcet_omt.

Yices.
http://yices.csl.sri.com/.

Z3.
http://research.microsoft.com/en-us/um/redmond/projects/z3/ml/z3.html.

I. Abio, R. Nieuwenhuis, A. Oliveras, and E. Rodriguez-Carbonell.
A Parametric Approach for Smaller and Better Encodings of Cardinality Constraints.
In 19th International Conference on Principles and Practice of Constraint Programming, CP’13, 2013.

H. F. Albuquerque, R. F. Araujo, |. V. de Bessa, L. C. Cordeiro, and E. B. de Lima Filho.
OptCE: A Counterexample-Guided Inductive Optimization Solver.
In SBMF, volume 10623 of Lecture Notes in Computer Science, pages 125—-141. Springer, 2017.

R. Alur.
Timed Automata.
In Proc. CAV'99, pages 8-22, 1999.

R. F. Araujo, H. F. Albuquerque, |. V. de Bessa, L. C. Cordeiro, and J. E. C. Filho.
Counterexample guided inductive optimization based on satisfiability modulo theories.
Sci. Comput. Program., 165:3—-23, 2018.

R. Asin, R. Nieuwenhuis, A. Oliveras, and E. Rodriguez-Carbonell.
Cardinality Networks: a theoretical and empirical study.
Constraints, 16(2):195-221, 2011.

www.cgm-tool.eu
http://disi.unitn.it/~teso/lmt/lmt.tgz
https://github.com/PatrickTrentin88/wcet_omt
http://yices.csl.sri.com/
http://research.microsoft.com/en-us/um/redmond/projects/z3/ml/z3.html

References Il

[11] C. Bertolissi, D. R. dos Santos, and S. Ranise.
Solving Multi-Objective Workflow Satisfiability Problems with Optimization Modulo Theories Techniques.
In SACMAT, pages 117-128. ACM, 2018.

[12] Z.Bian, F. Chudak, W. Macready, A. Roy, R. Sebastiani, and S. Varotti.
Solving SAT and MaxSAT with a Quantum Annealer: Foundations and a Preliminary Report.
In Frontiers of Combining Systems, volume 10483 of LNCS, pages 153—171. Springer, 2017.

[13] Z.Bian, F. A. Chudak, W. G. Macready, A. Roy, R. Sebastiani, and S. Varotti.
Solving SAT and maxsat with a quantum annealer: Foundations, encodings, and preliminary results.
CoRR, abs/1811.02524, 2018.
Under submission for journal publication.

[14] A. Bit-Monnot, F. Leofante, L. Pulina, E. Abraham, and A. Tacchella.
SMarTplan: a Task Planner for Smart Factories.
CoRR, abs/1806.07135, 2018.

[15] N. Bjerner, A. Phan, and L. Fleckenstein.
vz - an optimizing SMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems - 21st International Conference, TACAS 2015, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,
2015. Proceedings, pages 194-199, 2015.

[16] N. Bjorner and A.-D. Phan.
vZ - Maximal Satisfaction with Z3.
In Proc International Symposium on Symbolic Computation in Software Science, Gammart, Tunisia, December 2014.
EasyChair Proceedings in Computing (EPiC).
http:// chair.org/publications/?page=862275542.
[17] N. Bjorner, A.-D. Phan, and L. Fleckenstein.

Z3 - An Optimizing SMT Solver.
In Proc. TACAS, volume 9035 of LNCS. Springer, 2015.

http://www.easychair.org/publications/?page=862275542

References llI

(8]

(9]

[20]

[21]

[22]

[23]

[24]

[25]

M. Bozzano, R. Bruttomesso, A. Cimatti, T. A. Junttila, S. Ranise, P. van Rossum, and R. Sebastiani.
Efficient Theory Combination via Boolean Search.
Information and Computation, 204(10):1493-1525, 2006.

L. Candeago, D. Larraz, A. Oliveras, E. Rodriguez-Carbonell, and A. Rubio.
Speeding up the Constraint-Based Method in Difference Logic.
In SAT, volume 9710 of Lecture Notes in Computer Science, pages 284-301. Springer, 2016.

A. Cimatti, A. Franzén, A. Griggio, R. Sebastiani, and C. Stenico.
Satisfiability modulo the theory of costs: Foundations and applications.
In TACAS, volume 6015 of LNCS, pages 99—113. Springer, 2010.

A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani.
A Modular Approach to MaxSAT Modulo Theories.
In International Conference on Theory and Applications of Satisfiability Testing, SAT, volume 7962 of LNCS, July 2013.

A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani.

The MathSAT 5 SMT Solver.

In Tools and Algorithms for the Construction and Analysis of Systems, TACAS’13., volume 7795 of LNCS, pages 95-109.
Springer, 2013.

L. M. de Moura and N. Bjarner.
Z3: An efficient smt solver.
In TACAS, volume 4963 of LNCS, pages 337-340. Springer, 2008.

L. M. de Moura and N. Bjarner.

Z3: an efficient SMT solver.

In Tools and Algorithms for the Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held
as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March
29-April 6, 2008. Proceedings, pages 337-340, 2008.

B. Dutertre and L. de Moura.
A Fast Linear-Arithmetic Solver for DPLL(T).
In CAV, volume 4144 of LNCS, 2006.

References IV

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

N. Eén and N. Sérensson.
Translating Pseudo-Boolean Constraints into SAT.
JSAT, 2(1-4):1—26, 2006.

K. Fazekas, F. Bacchus, and A. Biere.
Implicit Hitting Set Algorithms for Maximum Satisfiability Modulo Theories.
In IJCAR, volume 10900 of Lecture Notes in Computer Science, pages 134—151. Springer, 2018.

J. Henry, M. Asavoae, D. Monniaux, and C. Maiza.

How to Compute Worst-case Execution Time by Optimization Modulo Theory and a Clever Encoding of Program
Semantics.

In Proceedings of the 2014 SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded Systems,
LCTES "14, pages 43-52, New York, NY, USA, 2014. ACM.

M. Hifi.
Exact algorithms for the guillotine strip cutting/packing problem.
Computers & OR, 25(11):925-940, 1998.

E. G. Karpenkov, K. Friedberger, and D. Beyer.
JavaSMT: A Unified Interface for SMT Solvers in Java.
In VSTTE, volume 9971 of Lecture Notes in Computer Science, pages 139-148, 2016.

G. E. Karpenkov.
Finding inductive invariants using satisfiability modulo theories and convex optimization.
Theses, Université Grenoble Alpes, Mar. 2017.

G. Kovésznai, C. Bir6, and B. Erdélyi.
Generating Optimal Scheduling for Wireless Sensor Networks by Using Optimization Modulo Theories Solvers.
2017.

G. Kovésznai, C. Biré, and B. Erdélyi.
Puli - a problem-specific omt solver.
EasyChair Preprint no. 371, EasyChair, 2018.

References V

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

G. Kovésznai, B. Erdélyi, and C. Bir6.
Investigations of graph properties in terms of wireless sensor network optimization.
In 2018 IEEE International Conference on Future loT Technologies (Future IoT), pages 1-8, Jan 2018.

D. Larraz, A. Oliveras, E. Rodriguez-Carbonell, and A. Rubio.
Minimal-Model-Guided Approaches to Solving Polynomial Constraints and Extensions.
In SAT, volume 8561 of Lecture Notes in Computer Science, pages 333-350. Springer, 2014.

F. Leofante, E. Abrahém, T. Niemueller, G. Lakemeyer, and A. Tacchella.
On the Synthesis of Guaranteed-Quality Plans for Robot Fleets in Logistics Scenarios via Optimization Modulo Theories.
In 2017 IEEE International Conference on Information Reuse and Integration (IRl), pages 403—410, Aug 2017.

F. Leofante, E. Abraham, T. Niemueller, G. Lakemeyer, and A. Tacchella.
Integrated Synthesis and Execution of Optimal Plans for Multi-Robot Systems in Logistics.
Information Systems Frontiers, pages 1-21, May 2018.

Y. Li, A. Albarghouthi, Z. Kincaid, A. Gurfinkel, and M. Chechik.
Symbolic optimization with smt solvers.
In POPL, pages 607-618, 2014.

T. Liu, S. S. Tyszberowicz, B. Beckert, and M. Taghdiri.
Computing Exact Loop Bounds for Bounded Program Verification.
In SETTA, volume 10606 of Lecture Notes in Computer Science, pages 147—163. Springer, 2017.

A. Nadel and V. Ryvchin.

Bit-Vector Optimization.

In Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2016, volume 9636 of LNCS. Springer,
2016.

C. M. Nguyen, R. Sebastiani, P. Giorgini, and J. Mylopoulos.

Multi-objective reasoning with constrained goal models.

Requirements Engineering, 2016.

In print. Published online 24 December 2016. DOI: http://dx.doi.org/10

http://dx.doi.org/10.1007/s00766-016-0263-5

References VI

[42]

[43]

[44]

[45]

[46]

[47]

[48]

C. M. Nguyen, R. Sebastiani, P. Giorgini, and J. Mylopoulos.
Requirements Evolution and Evolution Requirements with Constrained Goal Models.
In Proceedings of the 37nd International Conference on Conceptual Modeling - ER16, LNCS. Springer, 2016.

C. M. Nguyen, R. Sebastiani, P. Giorgini, and J. Mylopoulos.

Modeling and Reasoning on Requirements Evolution with Constrained Goal Models.

In A. Cimatti and M. Sirjani, editors, Software Engineering and Formal Methods - 15th International Conference, SEFM
2017, Trento, Italy, September 4-8, 2017, Proceedings, volume 10469 of Lecture Notes in Computer Science, pages
70-86. Springer, 2017.

R. Nieuwenhuis and A. Oliveras.
On SAT Modulo Theories and Optimization Problems.
In Proc. Theory and Applications of Satisfiability Testing - SAT 2006, volume 4121 of LNCS. Springer, 2006.

R. S. Oliver, S. S. Craciunas, and W. Steiner.
IEEE 802.1Qbv Gate Control List Synthesis Using Array Theory Encoding.
In 2018 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 13-24, April 2018.

A. Passerini.

Learning Modulo Theories.

In C. Bessiere, L. D. Raedt, L. Kotthoff, S. Nijssen, B. O’Sullivan, and D. Pedreschi, editors, Data Mining and Constraint
Programming - Foundations of a Cross-Disciplinary Approach, volume 10101 of Lecture Notes in Computer Science,
pages 113-146. Springer, 2016.

R. Raman and I. Grossmann.
Modelling and computational techniques for logic based integer programming.
Computers and Chemical Engineering, 18(7):563 — 578, 1994.

S. Ratschan.

Simulation Based Computation of Certificates for Safety of Dynamical Systems.

In A. Abate and G. Geeraerts, editors, Formal Modeling and Analysis of Timed Systems - 15th International Conference,
FORMATS 2017, Berlin, Germany, September 5-7, 2017, Proceedings, volume 10419 of Lecture Notes in Computer
Science, pages 303-317. Springer, 2017.

[m] = =

References VII

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

D. Rayside, H.-C. Estler, and D. Jackson.
The Guided Improvement Algorithm for Exact, General-Purpose, Many-Objective Combinatorial Optimization.
Technical report, Massachusetts Institute of Technology, Cambridge, 07 2009.

S. F. Roselli, K. Bengtsson, and K. Akesson.
SMT Solvers for Job-Shop Scheduling Problems: Models Comparison and Performance Evaluation.
In 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), pages 547-552, Aug 2018.

N. W. Sawaya and I. E. Grossmann.
A cutting plane method for solving linear generalized disjunctive programming problems.
Comput Chem Eng, 29(9):1891-1913, 2005.

R. Sebastiani and S. Tomasi.
Optimization in SMT with LA(Q) Cost Functions.
In IJCAR, volume 7364 of LNAI, pages 484—498. Springer, July 2012.

R. Sebastiani and S. Tomasi.
Optimization Modulo Theories with Linear Rational Costs.
ACM Transactions on Computational Logics, 16(2), March 2015.

R. Sebastiani and P. Trentin.
OptiMathSAT: A Tool for Optimization Modulo Theories.
In Proc. International Conference on Computer-Aided Verification, CAV 2015, volume 9206 of LNCS. Springer, 2015.

R. Sebastiani and P. Trentin.

Pushing the Envelope of Optimization Modulo Theories with Linear-Arithmetic Cost Functions.

In Proc. Int. Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS’15, volume 9035
of LNCS. Springer, 2015.

R. Sebastiani and P. Trentin.

On Optimization Modulo Theories, MaxSMT and Sorting Networks.

In Proc. Int. Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS’17, volume 10205
of LNCS. Springer, 2017.

References VIl

[57] R. Sebastiani and P. Trentin.
OptiMathSAT: A Tool for Optimization Modulo Theories.
Journal of Automated Reasoning, Dec 2018.

[58] C. Sinz.
Towards an Optimal CNF Encoding of Boolean Cardinality Constraints.
In P. van Beek, editor, CP, volume 3709 of LNCS, pages 827-831. Springer, 2005.

[59] S. Teso, R. Sebastiani, and A. Passerini.
Structured Learning Modulo Theories.
Atrtificial Intelligence Journal, 2015.

To appear.

[60] S. Teso, R. Sebastiani, and A. Passerini.
Structured learning modulo theories.
Artif. Intell., 244:166—-187, 2017.

[61] P. Trentin and R. Sebastiani.
Optimization Modulo the Theory of Floating-Point Numbers.
In Proc. Int. Conference on Automated Deduction, CADE 27, LNCS/LNAI. Springer, 2019.
To appear.

[62] S. Wolfman and D. Weld.
The LPSAT Engine & its Application to Resource Planning.
In Proc. IJCAI, 1999.

Outline

@ Motivations

Q Optimization Modulo Theories with Linear-Arithmetic Objectives
© OMT with Multiple and Combined Objectives

Q Relevant Subcases: OMT+PB & MaxSMT

Q Status of OMT

Q Current and Future Research Directions

ﬂ Appendix

Inline OMT schema

OMT for Bit-vector and Floating-point theories
Imptoving OMT+PB by sorting networks

The MaxRES MaxSMT Procedure

Extended SMT-LIB language

Pareto Optimization (hints)

®© ©6 6 6 06 0

n}
o)
it
it
it

DA

Outline

e Appendix
@ Inline OMT schema

Solving OMT(LR.A) [52, 53]

General idea
Combine standard SMT and LP minimization techniques.

Offline Schema
SMT solver and LP minimizer used as blackbox procedures.

— no need to hack the code of the SMT solver

Solving OMT(LR.A) [52, 53]

General idea
Combine standard SMT and LP minimization techniques.

Offline Schema
SMT solver and LP minimizer used as blackbox procedures.

— no need to hack the code of the SMT solver

Inline Schema

Search for minimum integrated inside the CDCL loop of the SMT
solver.

Inline Version: Linear-Search Strategy

Lo

—(cost < Ibg) A (cost < ubg) € ¢

S |
a1

LEe Ibo uBom

@ Search for optimum integrated inside CDCL search schema

Inline Version: Linear-Search Strategy

. ---3 £
nEe b, ub;

@ Search for optimum integrated inside CDCL search schema

Inline Version: Linear-Search Strategy

-1

--— £ ===
LRA-solver.solve(yj 1) = SAT kg Ib; Mi1 by
LR.A-solver.minimize(cost, 1) = M1

@ Search for optimum integrated inside CDCL search schema
@ Minimizer called incrementally (no restarting of LR.A-solver)

Inline Version: Linear-Search Strategy

3

e |
LRA-solver.solve(pi 1) = SAT pl¢ Ib;
LR.A-solver.minimize(cost, 1) = M1

@ Search for optimum integrated inside CDCL search schema
@ Minimizer called incrementally (no restarting of LR.A-solver)
@ Learned clauses drive backjumping up to level 0

Inline Version: Linear-Search Strategy

3

.-4

;17/ = 7j A (cost < mj4)
cost(n';) > mj4

LRA-solver.solve(u.1) = SAT plE ¢ Ib;
LR.A-solver.minimize(cost, 1) = M1

@ Search for optimum integrated inside CDCL search schema
@ Minimizer called incrementally (no restarting of LR.A-solver)
@ Learned clauses drive backjumping up to level 0

@ Intermediate-assignment LR.A-checking (early-pruning) plays
the role of “bounding” in a Branch & Bound fashion

Inline Version: Binary-Search Strategy

—(cost < Ibg) A (cost < uby) € ¢
Lo [[coo
nEe log uby

@ Range-minimization loop embedded within CDCL search
schema

Inline Version: Binary-Search Strategy

e

- cost< pivot;)/
— : .
pE Ib; pivot; ub;

@ Range-minimization loop embedded within CDCL search
schema

@ Level 0: update pivot; and decide (cost < pivot;)

Inline Version: Binary-Search Strategy

B (cost< plvot)/

o P E E

C C | S

mi=e Ib; pivot, ub;

@ Range-minimization loop embedded within CDCL search
schema

@ Level 0: update pivot; and decide (cost < pivot;)

Inline Version: Binary-Search Strategy

_(cost< plvot)
VT e / © A (cost < mjiq)

o P E L | S

LRA-solver.solve(pj 1) = SAT = "L). mlf Livotv GbA
LR A-solver.minimize(cost, y1i1) = Mj,1 ! 1 PIVOG !

@ Range-minimization loop embedded within CDCL search
schema

@ Level 0: update pivot; and decide (cost < pivot;)

Inline Version: Binary-Search Strategy

_(cost< plvot)
VT e / © A (cost < mjiq)

o P E L | S

LRA-solver.solve(pj 1) = SAT = "L). mlf Livotv GbA
LR A-solver.minimize(cost, y1i1) = Mj,1 ! 1 PIVOG !

@ Range-minimization loop embedded within CDCL search
schema

@ Level 0: update pivot; and decide (cost < pivot;)

Inline Version: Binary-Search Strategy

e
(cost< pivot)

Ve 2 i A (cost < mj.q)
--------- 7 (cost < pivot;)/
. s pE—=— -
LRA-solver.solve(pj 1) = SAT pkE¢ Ib: pivot...m.:.« pivot. ub;
LR.A-solver.minimize(cost, ;1) = Mj.4 i pivot;, ym;;1 pivot; ;

@ Range-minimization loop embedded within CDCL search
schema

@ Level 0: update pivot; and decide (cost < pivot;)

Inline Version: Binary-Search Strategy

e

......{gost< pivot)

conflict

- —f r £---
mi=e Ib; pivot, ub;

@ Range-minimization loop embedded within CDCL search
schema

@ Level 0: update pivot; and decide (cost < pivot;)

Inline Version: Binary-Search Strategy

e
_(cost<pivot;)/
VT ///1 ¢ A =(cost < pivot;)

conflict

- —f [£---
mi=e Ib; pivot, ub;

@ Range-minimization loop embedded within CDCL search
schema

@ Level 0: update pivot; and decide (cost < pivot;)

Inline Version: Binary-Search Strategy

e
_(cost-< pivot;)
/I< ¢ A =(cost < pivot;)

conflict

L L E L o

-Tr C

o= T o
pEp Ib; pivot; pivot; 4 ub;

@ Range-minimization loop embedded within CDCL search
schema

@ Level 0: update pivot; and decide (cost < pivot;)

Outline

e Appendix

@ OMT for Bit-vector and Floating-point theories

OMT(BV)

Minimization of an unsigned Bit-Vector

Given a pair (¢, cost), where cost &f [cost[0], ..., cost[n — 1]] is an unsigned BV of n
bits:

@ Reduction to:

e Lexicographic OMT: (¢, {cost[0] # O,,cost[n — 1] # 0}) .

o MaxSMT [16, 17]: (o, U=~ (cost[i] # 0, 1))
@ OMT-based Approach: linear-search, binary-search and adaptive-search
@ Ad-Hoc Algorithms:

@ OBV-WA [40]

@ each cost[i] transformed into a high-priority decision variable
@ the phase-saving of each cost|[/] initialized to 0

@ OBV-BS [40]

@ binary search over the bits [cost[0], ..., cost[n — 1]]
@ at most n incremental calls to the underlying SMT solver

Question: @ signed vs. unsigned
How to deal with other BV goals? @ maximization vs minimization

OMT(BV) - Signed/Unsigned BY [61]

Example: encoding of a 8-bits Bit-Vector

Unsigned: Signed: (Two’s complement)
012345867 012345867
1111]1]1{1{1] 255 O[] 127
1{1{1{1][1][1{1]0] 254 Ol1[1[{1{1]1[1({0] 126
Positive
1/0[0[0|0|0|0|1]| 129 0/0/0|0]0]0|0]1 1
1/0[0[0|0|0|0|0| 128 it 0/0/0|0|0|0|0|0 0
OHAA] 127 (°s™e A =1
O[1]11111111110] 126 1A {1{1[1{1]0] -2
Negative
0/0/0]0|0|0|0|1 1 1/0/0]0]0|0[0[1]|—127
0lojojojofolojo 0 1/0]/0]0]0]0]0|0]—128

Attractor atir for cost: when minimizing, it's the smallest BV-value of the same sort
of cost.

@ it's the ideal result of the optimization search
@ depends on signed/unsigned
[Dual for Maximization]

OMT(BV) - Signed/Unsigned BY [61]

Reduction to unsigned BV (minimization)
Given an attractor attr for cost, both BVs of n bits, replace cost with

cost xor, attr

Example: maximization of a signed 8-bits Bit-Vector

Before: cost After: cost xorg #b0111111
01234567 01234567
O[] 127 0/0(0]0|0[0[0|0] 127
Ol111111111110] 126 oloJolo]o]olo[1] 126

Positive
0]0/0]0|0|0|0|1 1 O|1]11/1|1/1|0 1
0/0]0[0[0|0|0|0 0 O A1 0
1A -1 1]0{0]0]0]0[0]0] —1
1[1]1]1]1{1[1[0] -2 1]0[0[0[0]0[0[1] -2

Negative
1101010010101 [{—127 TAAAAAA0]—127
1101010]010]0]0]—-128 TAAAAA[ANA[=128

Positive

Negative

OMT(FP) [61]

Goal: find a model M of ¢ for which the value of cost is minimum.

Sign

Exponent Significand

Simplification: IM s.t. M |= ¢ and M(cost) # NAN.
— replace ¢ with ¢ A cost # NAN

FP Minimization Approaches

@ Reduction to Bit-Vector Optimization:

- - BY and FP are not Nelson-Oppen disjoint!
— can only use eager BV/FP SMT-solving approach
@ OMT-based Approach: linear-search, binary-search and adaptive-search
@ Ad-Hoc Algorithms:
@ OFP-BS (based on 0BV-BS [40])

@ binary search over the bits [cost[0], ..., cost[n — 1]]
@ at most n incremental calls to the underlying SMT solver

OMT(FP) [61]

Example: Encoding of a 7P 3 5)

Vizgeb67 Minimization in the
0[1]1]1/0/0/0/0] +oc @ Positive Domain, go towards
o|1[1]|0|1(1|1]1| 3'/2
= Positive o[o[o[o[o[o]o[o] +0
0/0/ojo|ojojO[1] /64 @ Negative Domain, go towards
0/0/0/0]0/0/0]0] +0 M[[ANANAAA] NAN
1]/0|0|0({0[0|0|0|] —O .
1/0[olololo[o[1] —/e4 @ unless the exponent is all 1s,
Negative then go towards
o8 1 S [2[1[1]1]o]o]o]0] +00/—o0
1|1|1/1]|0]|0|0(0] —o0

Dynamic Attractor attr., for cost: given an assignment 7 to the first k bits of cost,
it's the smallest FP-value different from NAN s.t.

V=K attry, 1] = 7l

@ The ideal result of the optimization wrt. current search horizon

OMT(FP) - OFP-BS [61]
Idea: Use attr., as look-ahead.

@ if (M(cost[k]) # attr-, [K]) then
SMT.INCREMENTAL_CHECK(p A 7x A cost[k] = attr,, [k]) // try improve cost

@ UNSAT = update 7 and aftr.,
@ SAT — update 7, and M

@ otherwise: skip

Disclosure: based on oBV-BS [40].

Example: minimization of a 7P 3 5

k M(cost) attr,,
o O[[o[[[a[a] 34 [T [1] | |] ||1|1|1|1|o|o|o|0| —od

OMT(FP) - OFP-BS [61]
Idea: Use attr., as look-ahead.

@ if (M(cost[k]) # attr-, [K]) then
SMT.INCREMENTAL_CHECK(p A 7x A cost[k] = attr,, [k]) // try improve cost

@ UNSAT = update 7 and aftr.,
@ SAT — update 7, and M

@ otherwise: skip

Disclosure: based on oBV-BS [40].

Example: minimization of a 7P 3 5

k M(cost) Tk il
0 ol1T1To[H T4 T4 31/2 1(1{1{1]0]0|0|0 _OO:> UNSAT

OMT(FP) - OFP-BS [61]
Idea: Use attr., as look-ahead.

@ if (M(cost[k]) # attr-, [K]) then
SMT.INCREMENTAL_CHECK(p A 7x A cost[k] = attr,, [k]) // try improve cost

@ UNSAT = update 7 and aftr.,
@ SAT — update 7, and M

@ otherwise: skip

Disclosure: based on oBV-BS [40].

Example: minimization of a 7P 3 5

k M(cost) Tk attr,

0 01101111 31/2 11110000 _OO:>UNSAT
1 [o[i[1[o[1[AA[A] 34 [0 oloJoJoJoJoJoJo] +OL . gar
> |0/0]ojojojo[1]0| '/s2 (0|0 0/0/0|0j0]0j0OjO] +0

OMT(FP) - OFP-BS [61]
Idea: Use attr., as look-ahead.

@ if (M(cost[k]) # attr-, [K]) then
SMT.INCREMENTAL_CHECK(p A 7x A cost[k] = attr,, [k]) // try improve cost

@ UNSAT = update 7 and aftr.,
@ SAT — update 7, and M

@ otherwise: skip

Disclosure: based on oBV-BS [40].

Example: minimization of a 7P 3 5

k M(cost) Tk il
o [O[Jo[A[[1[A] °'/2 1[1]1]1]0]0|0[0] —o9 . nsAT
> |0]0j0j0[0[0[1[0] /32 (0|0 0[0/0]0]0[0J0[0] +0—. skip

e [0]oJoJo[ofo[1][o] /37 [0]o]o]oo]o] [] [o[o[o]o]o]o[ojo] -+0

OMT(FP) - OFP-BS [61]
Idea: Use attr., as look-ahead.

@ if (M(cost[k]) # attr-, [K]) then
SMT.INCREMENTAL_CHECK(p A 7x A cost[k] = attr,, [k]) // try improve cost

@ UNSAT = update 7 and aftr.,
@ SAT — update 7, and M

@ otherwise: skip

Disclosure: based on oBV-BS [40].

Example: minimization of a 7P 3 5

k M(cost) Tk attr,

o 0[1[1]0[1[1]1]1] 3'/3 1[1]1]1]0]0|0[0] —o9 . nsAT
1 [0[1[1]0[1[1]1]1] 3'/7|0 0/0/0]0]0]|0j0|0] +0__ gaT
> |0]0j0j0[0[0[1[0] /32 (0|0 0/0/0j0j0[0[0[0 +0:>skip
6 10/0/0]0]0[0]1]|0| /32 |0]0|0]0]0|O 0]0|0|0]0|0j0|0] +0__. ynsaT
- |0]0jojojojoj1|0] /32 |0]0]0]0]0]O|1 0/0ojojojojo[1]0] /52

OMT(FP) - OFP-BS [61]
Idea: Use attr., as look-ahead.

@ if (M(cost[k]) # attr-, [K]) then
SMT.INCREMENTAL_CHECK(p A 7x A cost[k] = attr,, [k]) // try improve cost

@ UNSAT = update 7 and aftr.,
@ SAT — update 7, and M

@ otherwise: skip

Disclosure: based on oBV-BS [40].

Example: minimization of a 7P 3 5

k M(cost) Tk attr,

o 0[1[1]0[1[1]1]1] 3'/3 1[1]1]1]0]0|0[0] —o9 . nsAT
1 [0[1[1]0[1[1]1]1] 3'/7|0 0/0/0]0]0]|0j0|0] +0__ gaT
> |0]0j0j0[0[0[1[0] /32 (0|0 0/0/0j0j0[0[0[0 +0:>skip
6 10/0/0]0]0[0]1]|0| /32 |0]0|0]0]0|O 0]0|0|0]0|0j0|0] +0__. ynsaT
- |0]0jojojojoj1|0] /32 |0]0]0]0]0]O|1 0/0/0j0j0[0(1{0 1/32:>skip
g (0[o[o[ofofo[1]o[/54 [o]o[o[o[o[o[1]o] [o[o[o[o[o[o[1]0] /53

OMT(FP) - OFP-BS [61]
Idea: Use attr., as look-ahead.

@ if (M(cost[k]) # attr-, [K]) then
SMT.INCREMENTAL_CHECK(p A 7x A cost[k] = attr,, [k]) // try improve cost

@ UNSAT = update 7 and aftr.,
@ SAT — update 7, and M

@ otherwise: skip

Disclosure: based on oBV-BS [40].

Example: minimization of a 7P 3 5

k M(cost) Tk attr,

o 0[1[1]0[1[1]1]1] 3'/3 1[1]1]1]0]0|0[0] —o9 . nsAT
1 [0[1[1]0[1[1]1]1] 3'/7|0 0/0/0]0]0]|0j0|0] +0__ gaT
> |0]0j0j0[0[0[1[0] /32 (0|0 0/0/0j0j0[0[0[0 +0:>skip
6 10/0/0]0]0[0]1]|0| /32 |0]0|0]0]0|O 0]0|0|0]0|0j0|0] +0__. ynsaT
- |0]0jojojojoj1|0] /32 |0]0]0]0]0]O|1 0/0/0j0j0[0(1{0 1/32:>skip
g (0[o[o[o[ofo[1]o[/54 [o[o[o[o[o[o[1]0] [o[o[o[o[o[o[1]0] /3 . eng.

Outline

e Appendix

@ Imptoving OMT+PB by sorting networks

Running Example: performance bottleneck

Problem:
@ (p,min(cost)), where cost := w - """ A;, currently obj = k - w
@ OPTIMIZATION STEP: learn —(k - w < cost) and restart/jump to level 0

Example: withk =2, w=1andn=14

Learned Clauses —(2 < obj)

Running Example: performance bottleneck

Problem:

@ —(k < cost) causes the inconsistency of (;’) truth assignments satisfying
exactly k variables in Ao, ..., An—1

Example: withk =2, w=1andn=14

Learned Clauses —(2 < obj)

Running Example: performance bottleneck

Problem:

@ —(k < cost) causes the inconsistency of (;’) truth assignments satisfying
exactly k variables in Ao, ..., An—1
— inconsistency is not revealed by Boolean Constraint Propagation

Example: withk =2, w=1andn=14

Learned Clauses

LA-Solver

Running Example: performance bottleneck

Problem:
@ upto (}) (expensive) calls to the £.A-Solver required

Example: withk =2, w=1andn=14

Learned Clauses

—(2 < obj)

J

_)\(/“
1

LA-Solver

Solution: OMT + sorting networks [56]

Contribution:
Enriched OMT encoding with bidirectional sorting networks [58, 10].

Approach:

Given (g, cost), cost := w - S.7" A;, and a bi-directional sorting network relation
C(Ao, cao) An_y 9 Bo, ceog Bn,1) s.t.

@ kA'sare T — Ay A B,
{Bo, .., Bk—1} are T, A bi-directional —B }T
@ m— k A's are x <— Az i sorting network B B”:*l
{Bx; ---; Bm—1} are x, . e }*
7 "Bm,—l
@ n—mA/’sare L — Ap_3 C ' B
{Bm,...,Bp—1} are L Ap—o L I
An—17 - Brn—1
then we encode it as (¢, cost), where
n—1 n—2

¢ == AC(Ao,.... An1,Bo, ... Bi1) A \ Bi> ((i+1)-w<cost) A /\ By — By
i=0 i=0

v

Properties: OMT + sorting networks [56]

Properties:

@ if (k-w<cost)=_L1,thenby BCP Vi€ [k,n].Bi_1 =L

Example: withk =2, w=1and n=14

Ag

Ay

Az

As

bi-directional
sorting network

C

“ (1 < obj)
(2 < obj)

(3 < obj)

13 18 I

(4 < obyj)

Properties: OMT + sorting networks [56]

Properties:
@ if (k-w<cost)=_L1,thenby BCP Vi€ [k,n].Bi_1 =L

@ assoonas k — 1 A;are assigned T
— all others are unit-propagated to L

Dual if (k- w < cost) = T.

Example: withk =2, w=1and n=14

5

< .
Ao |5 bi-directional By |« (1 < obj)

A, 1 sorting network LB, | (2 < obj)

A, |8 C - | B2 |« (3 < obj)
As ¢ - | B3 < (4 < obj)

Example: OMT with sorting networks

@ OPTIMIZATION STEP: learn —(k - w < cost) and restart/jump to /evel 0

Example: withk =2, w=1and n=4

Learned Clauses —(2 < obj)

Example: OMT with sorting networks

@ OPTIMIZATION STEP: learn —(k - w < cost) and restart/jump to /evel 0

@ assoonas k — 1 A;are assigned T
— all others are unit-propagated to L

Example: withk =2, w=1and n=4

Learned Clauses (2 < obj)

Solution: Combine OMT with Sorting Networks

OPTIMATHSAT: sorting networks implemented
@ Bi-directional Sequential Counter [58], in O(n?) but incremental
sum of A;’s, unary representation

@ Bi-directional Cardinality Network [10, 6], in O(n /ogzn)
based on merge-sort algorithm

Generalization
The same performance issue occurs for (p, cost), where
cost =71 + ... + Tm,
i=kj
Vielt,ml. (=w-Y Ai) A (0<7)A(r < w-k)
i=0
Solution:
@ use a separate sorting circuit for each term 7;
@ add clauses in the form (w; - i < 77) — (w; - i < cost)

Outline

e Appendix

@ The MaxRES MaxSMT Procedure

MAXRES: Maximum Resolution [16]

Idea: given a MaxSMT (@, ¢s), treat both ¢, and ¢s as hard clauses.
Analyze conflict 7, where 7 &f Th U Ts, Th € p and 7s C ps

@ if 7 = () = input problem is unsatisfiable

@ else let Wy, & min(w; | (Ci, wi) € 7s) and relax the problem:
e Learn conflict-clause and replace soft-clauses

©h (phu\/<ci,wi>67's -C;

s \ 7s UU<C_ wiyrg VO WI = Win) i Wi — Wpip > 0
1Y

Ps
e if | 7s | > 1 = add compensation clauses

oh = pp U U<C,-,w,->€rs -Bi = (Bi—1 A Gj)
/I By == T, Vi>0.Bj is fresh Boolean var

ps = (Bi—1 V Ci, Wnin)

U .
25 U U, mye trerccrmyy
No Conflict: optimal solution

Outline

e Appendix

@ Extended SMT-LIB language

Extended SMT-LIBV2 Interface [57]

(minimize <term> [:id <string>] [:signed]
[:lower <const_term>] [:upper <const_term>])
(maximize <term> [:id <string>] [:signed]
10

[:lower <const_term> :upper <const_term>])

(minmax <term> ... <term> [:id <string>] [:signed]
[:lower <const_term>] [:upper <const_term>])

(maxmin <term> ... <term> [:id <string>] [:signed]
[:lower <const_term>] [:upper <const_term>])

(assert-soft <term> [:1id <string>] [:weight <const_term>])

(check-sat)
(check-allsat (<const_term> ... <const_term>))

(get-objectives)
(load-objective-model <numeral>)

Outline

e Appendix

@ Pareto Optimization (hints)

Pareto OMT

Definitions:
@ A model M Pareto-dominates M’ iff

Vi.M(cost;) < M'(cost;)
and

3j.M(cost;) < M’ (cost;)

(dual for maximization)

@ M is Pareto-optimal iff it is not
Pareto-dominated by any M.

Example: (p, {costy, costz})»
-7 6 -5 -4 -3 -2

Pareto-optimal

Goal: given a pair (p, O)», where O = {costy, ..., costy}
@ find the set of Pareto-optimal models { M, ..., My} (i.e. the Pareto front)

Pareto OMT: Guided Improvement Algorithm (GIA)

Guided Improvement Algorithm [49, 16]

Given a pair {p, O)p, where O &f {costy, ..., costy}:
@ start from random model M of ¢

@ loop: look for a model M’ of ¢ that Pareto-dominates M
— if any, replace M with M’ and keep looking

@ block solutions Pareto-dominated by M
@ repeat

Infinite Loop:
@ some cost; is unbounded
@ some cost; can always be improved by an infinitesimal value (e.g. OMT(LR.A))

Also: 7-minimization procedure not used
— the same © may be visited multiple times by CDCL/SAT engine

Pareto OMT: Lexicographic GIA

Observation. If model M is Lexicographic-optimal for (p, {costs, ..., costy}) -, then
M is also Pareto-optimal for (¢, {costy, ..., costy})p.

Example: (p, {costy,costz})»
Idea: -7 6 -5 -4 -3 -2 -
@ Shuffle {costy, ..., costy}
= explore from different directions

@ Extract Lexicographic-optimal M | Lcogh, cos

@ Learn
i=N
\/ (cost; < Micost])
i=1
to block Pareto-dominated solutions
@ repeat

Pareto OMT: Lexicographic GIA

Observation. If model M is Lexicographic-optimal for (p, {costs, ..., costy}) -, then
M is also Pareto-optimal for (¢, {costy, ..., costy})p.

Example: (p, {costy,costz})»
Idea: -7 6 -5 -4 -3 -2 -
@ Shuffle {costy, ..., costy}
= explore from different directions

@ Extract Lexicographic-optimal M (» Loogt, cos

@ Learn v
¢ =@ A ((cost; < —6)

=0 V(cost, < —1))

\/ (cost; < Micost])
i=1
to block Pareto-dominated solutions
@ repeat

Pareto OMT: Lexicographic GIA

Observation. If model M is Lexicographic-optimal for (p, {costs, ..., costy}) -, then
M is also Pareto-optimal for (¢, {costy, ..., costy})p.

Example: (p, {costy,costz})»
Idea: -7 6 -5 -4 -3 -2 -
@ Shuffle {costy, ..., costy}
= explore from different directions

@ Extract Lexicographic-optimal M (» Loogt, cos
@ Learn v
¢ =@ A ((cost; < —6)

=0 V(cost, < —1))

\/ (cost; < Micost])

i=1

to block Pareto-dominated solutions

@ repeat (¢', {costz, costi }) 2 o

Pareto OMT: Lexicographic GIA

Observation. If model M is Lexicographic-optimal for (p, {costs, ..., costy}) .z, then
M is also Pareto-optimal for (¢, {costy, ..., costy})p.

Example: (p, {costy,costza})»
Idea: -7 -6 -5 -4 -3 -2

@ Shuffle {costy, ..., costy}
= explore from different directions

@ Extract Lexicographic-optimal M
@ Learn

i=N
\/ (cost; < Mcost])

i=1
to block Pareto-dominated solutions
@ repeat

Problem: how to deal with unbounded objectives?)

Pareto OMT: dealing with unbounded objectives

1. Sort objectives:

@ lower-bounded first
@ lower-unbounded last
before Lex. OMT.

Pareto OMT: dealing with unbounded objectives

, {costy, cost
(¢, {costz, costi }) o

1. Sort objectives:

@ lower-bounded first
@ lower-unbounded last
before Lex. OMT.

Pareto OMT: dealing with unbounded objectives

(¢, {costz,costs })c "~

, {costy, cost
(¢, {costz, costi }) o

1. Sort objectives:

@ lower-bounded first
@ lower-unbounded last
before Lex. OMT.

Pareto OMT: dealing with unbounded objectives

(¢, {costa,costs })c "~

, {costa, cost
(¢, {costz, costi }) 2 o

1. Sort objectives:
@ lower-bounded first
@ lower-unbounded last
before Lex. OMT.

2. If Lex. OMT unbounded, (temporarily)
learn:

i=N

/\ (cost; < Micost])

i=1
and try again.

Pareto OMT: dealing with unbounded objectives

(¢, {costa,costs })c "~

p, {costy, cost
(¢, {costz, costi }) £ o

1. Sort objectives:
@ lower-bounded first
@ lower-unbounded last
before Lex. OMT.

2. If Lex. OMT unbounded, (temporarily)
learn:

i=N

/\ (cost; < Micost])

i=1
and try again.

Pareto OMT: dealing with unbounded objectives

(¢, {costa,costs }) e "~

p, {costy, cost
(¢, {costz, costi }) £ o

1. Sort objectives:
@ lower-bounded first
@ lower-unbounded last
before Lex. OMT.

3. If Lex. OMT still unbounded, give up.

2. If Lex. OMT unbounded, (temporarily)
learn:

i=N
/\ (cost; < Micost])
i=1

and try again.

	Motivations
	Optimization Modulo Theories with Linear-Arithmetic Objectives
	OMT with Multiple and Combined Objectives
	Relevant Subcases: OMT+PB & MaxSMT
	Status of OMT
	Current and Future Research Directions
	Appendix
	Inline OMT schema
	OMT for Bit-vector and Floating-point theories
	Imptoving OMT+PB by sorting networks
	The MaxRES MaxSMT Procedure
	Extended SMT-LIB language
	Pareto Optimization (hints)

