Optimization Modulo Theories An Introduction

Roberto Sebastiani

Dept. of Computer Science and Engineering, DISI University of Trento, Italy

roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba

- International SAT/SMT/AR School, Lisbon, PT, July 3-7 ${ }^{\text {th }}, 2019$ -

Outline

(1) Motivations
(2) Optimization Modulo Theories with Linear-Arithmetic Objectives
(3) OMT with Multiple and Combined Objectives

4 Relevant Subcases: OMT+PB \& MaxSMT
(5) Status of OMT

6 Current and Future Research Directions
(7) Appendix

- Inline OMT schema
- OMT for Bit-vector and Floating-point theories
- Imptoving OMT+PB by sorting networks
- The MaxRES MaxSMT Procedure
- Extended SMT-LIB language
- Pareto Optimization (hints)

Outline

(1) Motivations

(2) Optimization Modulo Theories with Linear-Arithmetic Objectives

3 OMT with Multiple and Combined Objectives
a Relevant Subcases: OMT + PB \& MaxSMT
(5) Status of OMT

6 Current and Future Research Directions
(7) Appendix

- Inline OMT schema
- OMT for Bit-vector and Floating-point theories
- Imptoving OMT+PB by sorting networks
- The MaxRES MaxSMT Procedure
- Extended SMT-LIB language
- Pareto Optimization (hints)

Satisfiability Modulo Theories $\operatorname{SMT}(\mathcal{T})$

$\operatorname{SMT}(\mathcal{T})$: the problem of deciding the satisfiability of a (typically) ground first-order formula wrt some background theory \mathcal{T}.

- \mathcal{T} can be a combination of theories $\bigcup_{i} \mathcal{T}_{i}$
- Theories of Interest:
- Linear arithmetic over the rationals $(\mathcal{L R} \mathcal{A})$ $\left(T_{\delta} \rightarrow\left(s_{1}=s_{0}+3.4 \cdot t-3.4 \cdot t_{0}\right)\right) \wedge\left(\neg T_{\delta} \rightarrow\left(s_{1}=s_{0}\right)\right)$
- Linear arithmetic over the integers $(\mathcal{L I} \mathcal{A})$

$$
\left(x:=x_{l}+2^{16} x_{n}\right) \wedge(x \geq 0) \wedge\left(x \leq 2^{16}-1\right)
$$

- Arrays ($\mathcal{A R}$)
$(i=j) \vee \operatorname{read}(\operatorname{write}(a, i, e), j)=\operatorname{read}(a, j)$
- Bit vectors ($\mathcal{B V}$)

$$
x_{[16]}[15: 0]=\left(y_{[16]}[15: 8]:: z_{[16]}[7: 0]\right) \ll w_{[8]}[3: 0]
$$

- Non-linear arithmetic ($\mathcal{N} \mathcal{L A}$)

$$
\left((c=a \cdot b) \wedge\left(a_{1}=a-1\right) \wedge\left(b_{1}=a+1\right)\right) \rightarrow\left(c=a_{1} \cdot b_{1}+1\right)
$$

- ...
- "Lazy" Approach: SMT solver = CDCL SAT solver $+\mathcal{T}$-solver(s)

Need for Satisfiability Modulo Theories (SMT)

SMT solvers widely used as backend engines in formal verification and many other applications

- SW verification
- verification of Timed and Hybrid Systems
- verification of RTL Circuit designs \& of microcode
- static analysis of SW programs
- test-case generation
- program synthesis
- scheduling
- planning with resources
- compiler optimization
- ...

Need for Optimization Modulo Theories (SMT)

Many SMT-encodable problems require optimum solutions wrt. some objective function. E.g.:

- SW verification
- formal verification of parametric systems
- optimization of physical layout of circuit designs
- scheduling and temporal reasoning
- displacement of tools (e.g. strip-packing problem)
- planning with resources and retrofit planning
- radio link frequency assignment
- machine learning on hybrid domains
- goal modeling in requirement engineering

Ex.: FV of parametric systems

A (parametric version of a) timed system from [Alur, CAV-99] [8]:

Decision Problem: check safety under fixed choices of the constants (e.g, the delay after which the controller orders the gate to lower the $\operatorname{bar})(M \vDash \mathbf{G} \neg(i n \wedge u p))$

- BMC encodable into a $\operatorname{SMT}(\mathcal{L R} \mathcal{A})$ problem (sat. \Longrightarrow unsafe)

Ex.: FV of parametric systems

A (parametric version of a) timed system from [Alur, CAV-99] [8]:

Optimization Problem: find the minimum "unsafe" delay D after which the controller orders the gate to lower the bar, which doesn't guarantee safety ($M \not \vDash \mathbf{G} \neg$ (in $\wedge u p)$).
\Longrightarrow Set the delay D strictly smaller

- BMC encodable into a $\mathrm{OMT}(\mathcal{L R} \mathcal{A})$ problem (min. D s.t. satisf.)

Ex.: Formal Verification of Real-Time Systems

Model Checking: $M \models f$?

Bounded Model Checking (BMC) looks for an execution path of M of (increasing) length k

- satisfying the temporal property $\neg f$ (i.e. $M \models_{k} E \neg f$)

BMC is encoded into $\operatorname{SMT}(\mathcal{T})($ e.g. $\mathcal{T}=\mathcal{L R} \mathcal{A} \cup \mathcal{A R} \cup \ldots$):

- if φ_{k} is satisfiable, then $M \not \vDash f$

$$
\begin{array}{llll}
& D U M P^{1} & \rightarrow & \left(A^{1}=\operatorname{write}\left(A^{0}, i^{1}, v_{i}^{1}\right)\right) \\
\wedge & \neg D U M P^{1} & \rightarrow & \left(A^{1}=A^{0}\right) \\
\wedge & D U M P^{1} & \rightarrow & \left(t^{1}-t^{0}=0\right) \\
\wedge & \cdots & & \\
\wedge & W A I T^{1} & \rightarrow & \left(t^{1}-t^{0}>0\right) \\
\wedge & \ldots & & \\
\wedge & D U M P^{N} & \rightarrow & \ldots
\end{array}
$$

Ex.: Formal Verification of Real-Time Systems

Model Checking: $M \models f$?

Bounded Model Checking (BMC) looks for an execution path of M of (increasing) length k

- satisfying the temporal property $\neg f$ (i.e. $M \models_{k} E \neg f$)
- minimizing the total elapsed time: cost $=\min \left(t^{N}-t^{0}\right)$

BMC is encoded into $\operatorname{SMT}(\mathcal{T})($ e.g. $\mathcal{T}=\mathcal{L R} \mathcal{A} \cup \mathcal{A R} \cup \ldots$):

- if φ_{k} is satisfiable, then $M \not \vDash f$

$$
\begin{array}{llll}
& D U M P^{1} & \rightarrow & \left(A^{1}=\operatorname{write}\left(A^{0}, i^{1}, v_{i}^{1}\right)\right) \\
\wedge & \neg D U M P^{1} & \rightarrow & \left(A^{1}=A^{0}\right) \\
\wedge & D U M P^{1} & \rightarrow & \left(t^{1}-t^{0}=0\right) \\
\wedge & \cdots & & \\
\wedge & W A I T^{1} & \rightarrow & \left(t^{1}-t^{0}>0\right) \\
\wedge & \cdots & & \\
\wedge & D U M P^{N} & \rightarrow & \cdots
\end{array}
$$

Ex.: Planning with Resources [62]

- SAT-based planning augmented with numerical constraints
- Straightforward to encode into into $\operatorname{SMT}(\mathcal{L} \mathcal{R} \mathcal{A})$
- Goal: find a plan minimizing some resource consumption (time, money, gasoline, ...)

Example (sketch) [62]

(Deliver)	$\wedge / /$ goal	
(MaxLoad)	$\wedge / /$ load constraint	
(MaxFuel)	$\wedge / /$ fuel constraint	
(Move \rightarrow MinFuel $)$	$\wedge / /$ move requires fuel	
(Move \rightarrow Deliver	$\wedge / /$ move implies delivery	
(GoodTrip \rightarrow Deliver $)$	$\wedge / /$ a good trip requires	
$($ GoodTrip \rightarrow AllLoaded $)$	$\wedge / /$ a full delivery	
$($ MaxLoad $\rightarrow($ load $\leq 30))$	$\wedge / /$ load limit	
(MaxFuel $\rightarrow($ fuel $\leq 15))$	$\wedge / /$ fuel limit	
(MinFuel $\rightarrow($ fuel $\geq 7+0.5$ load $))$	$\wedge / /$ fuel constraint	
$($ AllLoaded $\rightarrow($ load $=45))$		

Ex.: (LGDP/MILP) Strip-packing \& Carpet-cutting

 [29, 51, 53]

Strip-packing: Minimize the length L of a strip of width W while fitting N rectangles (no overlap, no rotation) [29]. Carpet-cutting: w. rotation.

$$
\begin{aligned}
& \varphi \stackrel{\text { def }}{=}(\operatorname{cost}=L) \wedge \bigwedge_{i \in N}\left(L \geq x_{i}+L_{i}\right) \\
& \wedge \bigwedge_{i, j \in N, i<j}\left(\left(x_{i}+L_{i} \leq x_{j}\right) \vee\left(x_{j}+L_{j} \leq x_{i}\right)\right. \\
&\left.\vee\left(y_{i}-H_{i} \geq y_{j}\right) \vee\left(y_{j}-H_{j} \geq y_{i}\right)\right) \\
& \wedge \bigwedge_{i \in N}\left(x_{i} \leq \mathrm{ub}-L_{i}\right) \wedge \bigwedge_{i \in N}\left(x_{i} \geq 0\right) \\
& \wedge \bigwedge_{i \in N}\left(H_{i} \leq y_{i}\right) \wedge \bigwedge_{i \in N}\left(W \geq y_{i}\right) \wedge \bigwedge_{i \in N}\left(y_{i} \geq 0\right)
\end{aligned}
$$

Ex.: (LGDP/MILP) Zero-Wait Jobshop Scheduling [29, 51, 53]

Given a set I of jobs which must be scheduled sequentially on a set J of consecutive stages with zero-wait transfer between them, minimize the makespan M [47].

$$
\begin{aligned}
& \varphi \stackrel{\text { def }}{=}(\operatorname{cost}=M) \wedge \bigwedge_{i \in I}\left(M \geq s_{i}+\sum_{j \in J_{i}} t_{i j}\right) \wedge \bigwedge_{i \in I}\left(s_{i} \geq 0\right) \\
& \wedge \bigwedge_{j \in C_{i k}, i, k \in I, i<k}\left(\left(s_{i}+\sum_{m \in J_{i}, m \leq j} t_{i m} \leq s_{k}+\sum_{m \in J_{k}, m<j} t_{k m}\right)\right. \\
&\left.\vee\left(s_{k}+\sum_{m \in J_{k}, m \leq j} t_{k m} \leq s_{i}+\sum_{m \in J_{i}, m<j} t_{i m}\right)\right)
\end{aligned}
$$

Outline

(1) Motivations

(2) Optimization Modulo Theories with Linear-Arithmetic Objectives
(3) OMT with Multiple and Combined Objectives
4. Relevant Subcases: OMT+PB \& MaxSMT
(5) Status of OMT
6) Current and Future Research Directions
(7) Appendix

- Inline OMT schema
- OMT for Bit-vector and Floating-point theories
- Imptoving OMT+PB by sorting networks
- The MaxRES MaxSMT Procedure
- Extended SMT-LIB language
- Pareto Optimization (hints)

Optimization Modulo Theories: General Case

Ingredients

- a SMT formula φ in some background theory $\mathcal{T}=\mathcal{T}_{\underline{\varrho}} \cup \bigcup_{i} \mathcal{T}_{i}$
- $\bigcup_{i} \mathcal{T}_{i}$ may be empty
- \mathcal{T}_{\preceq} has a predicate \preceq representing a total order
- a \mathcal{T}_{\preceq}-variable/term "cost" occurring in φ

Optimization Modulo $\mathcal{T}_{\preceq} \cup \bigcup_{i} \mathcal{T}_{i}\left(\operatorname{OMT}\left(\mathcal{T}_{\preceq} \cup \bigcup_{i} \mathcal{T}_{i}\right)\right)$

The problem of finding a model \mathcal{M} for φ whose value of cost is minimum according to \preceq.

- maximization dual

Optimization Modulo Theories with $\mathcal{L I} \mathcal{R} \mathcal{A}$ costs

Ingredients

- an SMT formula φ on $\mathcal{L I R} \mathcal{A} \cup \mathcal{T}$
- $\mathcal{L I R} \mathcal{A}$ can be $\mathcal{L R A}, \mathcal{L I} \mathcal{A}$ or a combination of both
- $\mathcal{T} \stackrel{\text { def }}{=} \bigcup_{i} \mathcal{T}_{i}$, possibly empty
- $\mathcal{L I R A}$ and \mathcal{T}_{i} disjoint Nelson-Oppen theories
- a $\mathcal{L I} \mathcal{R} \mathcal{A}$ variable [term] "cost" occurring in φ
- (optionally) two constant numbers lb (lower bound) and ub (upper bound) s.t. $\mathrm{lb} \leq$ cost $<\mathrm{ub}$ (lb, ub may be $\mp \infty$)

Optimization Modulo Theories with $\mathcal{L I R} \mathcal{A}$ costs $(O M T(\mathcal{L I R} \mathcal{A} \cup \mathcal{T}))$
Find a model for φ whose value of cost is minimum.

- maximization dual

Optimization Modulo Theories with $\mathcal{L R} \mathcal{A}$ costs

Ingredients

- an SMT formula φ on $\mathcal{L} \mathcal{R} \mathcal{A} \cup \mathcal{T}$
-
- $\mathcal{T} \stackrel{\text { def }}{=} \bigcup_{i} \mathcal{T}_{i}$, possibly empty
- $\mathcal{L R A}$ and \mathcal{T}_{i} disjoint Nelson-Oppen theories
- a $\mathcal{L R} \mathcal{A}$ variable [term] "cost" occurring in φ
- (optionally) two constant numbers lb (lower bound) and ub (upper bound) s.t. $\mathrm{lb} \leq \operatorname{cost}<\mathrm{ub}$ (lb, ub may be $\mp \infty$)

Optimization Modulo Theories with $\mathcal{L R} \mathcal{A}$ costs $(\operatorname{OMT}(\mathcal{L R} \mathcal{A} \cup \mathcal{T}))$

Find a model for φ whose value of cost is minimum.

- maximization dual

We first restrict to the case $\mathcal{L I} \mathcal{R} \mathcal{A}=\mathcal{L} \mathcal{R} \mathcal{A}$ and $\bigcup_{i} \mathcal{T}_{i}=\{ \}$ ($\mathrm{OMT}(\mathcal{L} \mathcal{R} \mathcal{A}))$.

Solving $\operatorname{OMT}(\mathcal{L R A})[52,53]$

General idea

Combine standard SMT and LP minimization techniques.
Offline Schema

- Minimizer: based on the Simplex $\mathcal{L R} \mathcal{A}$-solver by [25]
- Handles strict inequalities
- Search Strategies:
- Linear-Search strategy
- Mixed Linear/Binary strategy

A toy example (linear search)

[w. pure-literal filt. \Longrightarrow partial assignments]

- $\operatorname{OMT}(\mathcal{L R} \mathcal{A})$ problem:

$$
\begin{aligned}
\varphi \stackrel{\text { def }}{=} & \left(\neg A_{1} \vee(2 x+y \geq-2)\right) \\
\wedge & \left(A_{1} \vee(x+y \geq 3)\right) \\
\wedge & \left(\neg A_{2} \vee(4 x-y \geq-4)\right) \\
\wedge & \left(A_{2} \vee(2 x-y \geq-6)\right) \\
\wedge & (\operatorname{cost}<-0.2) \\
\wedge & (\operatorname{cost}<-1.0) \\
& \wedge \\
\text { cost } \stackrel{\text { def }}{=} & x
\end{aligned}
$$

A toy example (linear search)

[w. pure-literal filt. \Longrightarrow partial assignments]

- $\operatorname{OMT}(\mathcal{L R} \mathcal{A})$ problem:

$$
\begin{aligned}
\varphi \stackrel{\text { def }}{=} & \left(\neg A_{1} \vee(2 x+y \geq-2)\right) \\
& \wedge\left(A_{1} \vee(x+y \geq 3)\right) \\
& \wedge\left(\neg A_{2} \vee(4 x-y \geq-4)\right) \\
& \wedge \\
& \left(A_{2} \vee(2 x-y \geq-6)\right) \\
& (\operatorname{cost}<-0.2) \\
& (\operatorname{cost}<-1.0) \\
\text { cost } & \stackrel{\text { def }}{=} \quad x \\
\boldsymbol{\mu}= & \left.\begin{array}{l}
A_{1}, \neg A_{1}, A_{2}, \neg A_{2}, \\
(4 x-y \geq-4), \\
(x+y \geq 3), \\
(2 x+y \geq-2), \\
(2 x-y \geq-6) \\
(\operatorname{cost}<-0.2) \\
(\operatorname{cost}<-1.0) \\
(\operatorname{cost}<-2.0)
\end{array}\right\}
\end{aligned}
$$

A toy example (linear search)

[w. pure-literal filt. \Longrightarrow partial assignments]

- $\operatorname{OMT}(\mathcal{L R} \mathcal{A})$ problem:

$$
\begin{aligned}
\varphi & \stackrel{\text { def }}{=} \\
& \left(\neg A_{1} \vee(2 x+y \geq-2)\right) \\
\wedge & \left(A_{1} \vee(x+y \geq 3)\right) \\
\wedge & \left(\neg A_{2} \vee(4 x-y \geq-4)\right) \\
\wedge & \left(A_{2} \vee(2 x-y \geq-6)\right) \\
\wedge & (\text { cost }<-0.2) \\
& \wedge \\
& (\text { cost }<-1.0) \\
& (\text { cost }<-2.0)
\end{aligned}
$$

$\operatorname{cost} \stackrel{\text { def }}{=} x$
$\boldsymbol{-} \mu=\left\{\begin{array}{l}A_{1}, \neg A_{1}, A_{2}, \neg A_{2}, \\ (4 x-y \geq-4), \\ (x+y \geq 3), \\ (2 x+y \geq-2), \\ (2 x-y \geq-6) \\ (\operatorname{cost}<-0.2) \\ (\cos t<-1.0) \\ (\text { cost }<-2.0)\end{array}\right\}$

A toy example (linear search)

[w. pure-literal filt. \Longrightarrow partial assignments]

- $\operatorname{OMT}(\mathcal{L R} \mathcal{A})$ problem:

$$
\begin{aligned}
\varphi & \stackrel{\text { def }}{=} \\
\wedge & \left(\neg A_{1} \vee(2 x+y \geq-2)\right) \\
\wedge & \left(A_{1} \vee(x+y \geq 3)\right) \\
\wedge & \left(\neg A_{2} \vee(4 x-y \geq-4)\right) \\
\wedge & \left(A_{2} \vee(2 x-y \geq-6)\right) \\
\wedge & (\operatorname{cost}<-0.2) \\
\wedge & (\operatorname{cost}<-1.0) \\
& \wedge \\
\text { cost } \stackrel{\text { def }}{=} & x
\end{aligned}
$$

$-\mu=\left\{\begin{array}{l}A_{1}, \neg A_{1}, A_{2}, \neg A_{2}, \\ (4 x-y \geq-4), \\ (x+y \geq 3), \\ (2 x+y \geq-2), \\ (2 x-y \geq-6) \\ (\operatorname{cost}<-0.2) \\ (\operatorname{cost}<-1.0) \\ (\text { cost }<-2.0)\end{array}\right\}$
\Longrightarrow SAT, $\min =-2.0$

A toy example (linear search)

[w. pure-literal filt. \Longrightarrow partial assignments]

- $\operatorname{OMT}(\mathcal{L R} \mathcal{A})$ problem:

$$
\begin{aligned}
\varphi \stackrel{\text { def }}{=} & \left(\neg A_{1} \vee(2 x+y \geq-2)\right) \\
\wedge & \left(A_{1} \vee(x+y \geq 3)\right) \\
\wedge & \left(\neg A_{2} \vee(4 x-y \geq-4)\right) \\
\wedge & \left(A_{2} \vee(2 x-y \geq-6)\right) \\
\wedge & (\operatorname{cost}<-0.2) \\
\wedge & (\operatorname{cost}<-1.0) \\
& \wedge \\
\operatorname{cost} & (\operatorname{cost}<-2.0) \\
= & x
\end{aligned}
$$

$\boldsymbol{-} \mu=\left\{\begin{array}{l}A_{1}, \neg A_{1}, A_{2}, \neg A_{2}, \\ (4 x-y \geq-4), \\ (x+y \geq 3), \\ (2 x+y \geq-2), \\ (2 x-y \geq-6) \\ (\operatorname{cost}<-0.2) \\ (\operatorname{cost}<-1.0) \\ (\operatorname{cost}<-2.0)\end{array}\right\}$
\Longrightarrow UNSAT, $\min =-2.0$

Offline Schema: Mixed Linear/Binary-Search Strategy

Input: $\langle\varphi, \operatorname{cost}, \mathrm{lb}, \mathrm{ub}\rangle / / \mathrm{lb}$ can be $-\infty$, ub can be $+\infty$
$\mathrm{I} \leftarrow \mathrm{lb} ; \mathrm{u} \leftarrow \mathrm{ub} ; \mathcal{M} \leftarrow \emptyset ; \varphi \leftarrow \varphi \cup\{\neg($ cost $<\mathrm{lb})$, (cost $<\mathrm{ub})\}$; while $(I<u)$ do

Offline Schema: Mixed Linear/Binary-Search Strategy

Input: $\langle\varphi$, cost, lb, lb $\rangle / / \mathrm{lb}$ can be $-\infty$, ib can be $+\infty$
$\mathrm{I} \leftarrow \mathrm{lb} ; \mathrm{u} \leftarrow \mathrm{ub} ; \mathcal{M} \leftarrow \emptyset ; \varphi \leftarrow \varphi \cup\{\neg($ cost $<\mathrm{lb})$, (cost $<\mathrm{ub})\}$;
while $(I<u)$ do
if (BinSearchMode()) then // Binary-search Mode
else // Linear-search Mode
L

Offline Schema: Mixed Linear/Binary-Search Strategy

Input: $\langle\varphi$, cost, lb, lb $\rangle / / \mathrm{lb}$ can be $-\infty$, ib can be $+\infty$
$\mathrm{I} \leftarrow \mathrm{lb} ; \mathrm{u} \leftarrow \mathrm{ub} ; \mathcal{M} \leftarrow \emptyset ; \varphi \leftarrow \varphi \cup\{\neg($ cost $<\mathrm{lb})$, (cost $<\mathrm{ub})\}$;
while $(I<u)$ do
if (BinSearchMode()) then // Binary-search Mode
else // Linear-search Mode \langle res, $\mu\rangle \leftarrow$ SMT.IncrementalSolve(φ);

Offline Schema: Mixed Linear/Binary-Search Strategy

Input: $\langle\varphi$, cost, lb, ub $\rangle / / \mathrm{lb}$ can be $-\infty$, ub can be $+\infty$
$\mathrm{I} \leftarrow \mathrm{lb} ; \mathrm{u} \leftarrow \mathrm{ub} ; \mathcal{M} \leftarrow \emptyset ; \varphi \leftarrow \varphi \cup\{\neg($ cost $<\mathrm{lb})$, (cost $<\mathrm{ub})\}$;
while $(I<u)$ do
if (BinSearchMode()) then // Binary-search Mode
else // Linear-search Mode \langle res, $\mu\rangle \leftarrow$ SMT.IncrementalSolve(φ);
if (res = SAT) then $\langle\mathcal{M}, \mathbf{u}\rangle \leftarrow \mathcal{L} \mathcal{R} \mathcal{A}$-Solver.Minimize(cost, μ); $\varphi \leftarrow \varphi \cup\{($ cost $<\mathrm{u})\} ;$
else $\{r e s=$ UNSAT $\}$

Offline Schema: Mixed Linear/Binary-Search Strategy

Input: $\langle\varphi$, cost, lb, ub $\rangle / / \mathrm{lb}$ can be $-\infty$, ub can be $+\infty$
$\mathrm{I} \leftarrow \mathrm{lb} ; \mathrm{u} \leftarrow \mathrm{ub} ; \mathcal{M} \leftarrow \emptyset ; \varphi \leftarrow \varphi \cup\{\neg($ cost $<\mathrm{lb})$, (cost $<\mathrm{ub})\}$;
while $(I<u)$ do
if (BinSearchMode()) then // Binary-search Mode
else // Linear-search Mode \langle res, $\mu\rangle \leftarrow$ SMT.IncrementalSolve (φ);
if (res = SAT) then
else $\{r e s=$ UNSAT $\}$
$I \leftarrow u ;$
return $\langle\mathcal{M}, \mathrm{u}\rangle$

Offline Schema: Mixed Linear/Binary-Search Strategy

Input: $\langle\varphi$, cost, lb, ub $\rangle / / \mathrm{lb}$ can be $-\infty$, ub can be $+\infty$
$\mathrm{I} \leftarrow \mathrm{lb} ; \mathrm{u} \leftarrow \mathrm{ub} ; \mathcal{M} \leftarrow \emptyset ; \varphi \leftarrow \varphi \cup\{\neg(\operatorname{cost}<\mathrm{lb})$, (cost $<\mathrm{ub})\}$;
while $(I<u)$ do
if (BinSearchMode()) then // Binary-search Mode pivot \leftarrow ComputePivot(I, u);
$\varphi \leftarrow \varphi \cup\{($ cost < pivot $)\} ;$
\langle res, $\mu\rangle \leftarrow$ SMT.IncrementalSolve(φ);
else // Linear-search Mode
L

Offline Schema: Mixed Linear/Binary-Search Strategy

Input: $\langle\varphi$, cost, lb, ub $\rangle / / \mathrm{lb}$ can be $-\infty$, ub can be $+\infty$
$\mathrm{I} \leftarrow \mathrm{lb} ; \mathrm{u} \leftarrow \mathrm{ub} ; \mathcal{M} \leftarrow \emptyset ; \varphi \leftarrow \varphi \cup\{\neg($ cost $<\mathrm{lb})$, (cost $<\mathrm{ub})\}$;
while $(I<u)$ do
if (BinSearchMode()) then // Binary-search Mode pivot \leftarrow ComputePivot(I, u);
$\varphi \leftarrow \varphi \cup\{$ (cost < pivot) $\}$;
\langle res, $\mu\rangle \leftarrow$ SMT.IncrementalSolve(φ);
else // Linear-search Mode
L
if (res = SAT) then
$\langle\mathcal{M}, \mathbf{u}\rangle \leftarrow \mathcal{L} \mathcal{R} \mathcal{A}$-Solver.Minimize(cost, μ);
$\varphi \leftarrow \varphi \cup\{(\operatorname{cost}<\mathrm{u})\} ;$
else $\{r e s=$ UNSAT $\}$

Offline Schema: Mixed Linear/Binary-Search Strategy

Input: $\langle\varphi$, cost, $\mathrm{lb}, \mathrm{ub}\rangle / / \mathrm{lb}$ can be $-\infty$, ub can be $+\infty$
$\mathrm{I} \leftarrow \mathrm{lb} ; \mathrm{u} \leftarrow \mathrm{ub} ; \mathcal{M} \leftarrow \emptyset ; \varphi \leftarrow \varphi \cup\{\neg(\operatorname{cost}<\mathrm{lb}),(\operatorname{cost}<\mathrm{ub})\} ;$
while ($1<u$) do
if (BinSearchMode()) then // Binary-search Mode pivot \leftarrow ComputePivot(I, u);
$\varphi \leftarrow \varphi \cup\{($ cost $<$ pivot $)\} ;$
\langle res, $\mu\rangle \leftarrow$ SMT.IncrementalSolve (φ);
else // Linear-search Mode

if (res = SAT) then
P
else $\{$ res $=$ UNSAT $\}$
if $((\operatorname{cost}<$ pivot $) \notin \operatorname{SMT}$.ExtractUnsatCore $(\varphi))$ then
$\mathrm{I} \leftarrow \mathrm{u} ;$
else
$\operatorname{return}\langle\mathcal{M}, \mathrm{u}\rangle$

Offline Schema: Mixed Linear/Binary-Search Strategy

Input: $\langle\varphi$, cost, lb, ub $\rangle / / \mathrm{lb}$ can be $-\infty$, ub can be $+\infty$
$\mathrm{I} \leftarrow \mathrm{lb} ; \mathrm{u} \leftarrow \mathrm{ub} ; \mathcal{M} \leftarrow \emptyset ; \varphi \leftarrow \varphi \cup\{\neg($ cost $<\mathrm{lb})$, (cost $<\mathrm{ub})\}$;
while $(1<u)$ do
if (BinSearchMode()) then // Binary-search Mode pivot \leftarrow ComputePivot(I, u);
$\varphi \leftarrow \varphi \cup\{$ (cost < pivot) $\}$;
\langle res, $\mu\rangle \leftarrow$ SMT.IncrementalSolve(φ);
else // Linear-search Mode
L
if $($ res $=S A T)$ then

else $\{$ res $=$ UNSAT $\}$
if $(($ cost $<$ pivot $) \notin$ SMT.ExtractUnsatCore $(\varphi))$ then
else
$1 \leftarrow$ pivot;
$\varphi \leftarrow(\varphi \backslash\{($ cost $<$ pivot $)) \cup\{\neg($ cost $<$ pivot $)\}\} ;$

The Minimizer

Minimizer embedded within the Simplex-based $\mathcal{L R} \mathcal{A}$-solver by [25]

- Minimization by standard Simplex techniques

Strict Inequalities

Temporally treated as non-strict inequalities:

- if minimum cost min lays only on non-strict inequalities, \min is a solution
- otherwise, for some $\delta>0$ there exists a solution for every cost $c \in]$ min, $\min +\delta]$
If \min is a non-strict minimum, then ($\operatorname{cost} \leq \min$) is added to φ.

Binary vs. Linear search

Beware of Zeno: pure binary search can cause infinite partitioning

- E.g. if no solution in $[-1,0[$, then
$[-1,0[,[-1 / 2,0[,[-1 / 4,0[,[-1 / 8,0[, \ldots$
- SMT solver may find a conflict set $\eta \cup$ (cost $<$ pivot $)$ even if $\varphi \backslash\{($ cost $<$ pivot $)\}$ is $\mathcal{L R A}$-inconsistent
- Binary search: typically smaller number of range-restriction steps
- Linear search: average smaller cost of each range-restriction steps (unsatisfiable calls typically much harder than sat. ones)

Binary vs. Linear search

Beware of Zeno: pure binary search can cause infinite partitioning

- E.g. if no solution in $[-1,0[$, then $[-1,0[,[-1 / 2,0[,[-1 / 4,0[,[-1 / 8,0[, \ldots$
- SMT solver may find a conflict set $\eta \cup$ (cost $<$ pivot $)$ even if $\varphi \backslash\{$ (cost $<$ pivot $)\}$ is $\mathcal{L R} \mathcal{A}$-inconsistent
- Solution: Binary-search interleaved with linear-search (Mixed Linear/Binary Search Strategy)
- Binary search: typically smaller number of range-restriction steps
- Linear search: average smaller cost of each range-restriction steps (unsatisfiable calls typically much harder than sat. ones)

Binary vs. Linear search

Beware of Zeno: pure binary search can cause infinite partitioning

- E.g. if no solution in $[-1,0[$, then $[-1,0[,[-1 / 2,0[,[-1 / 4,0[,[-1 / 8,0[, \ldots$
- SMT solver may find a conflict set $\eta \cup$ (cost $<$ pivot $)$ even if $\varphi \backslash\{$ (cost $<$ pivot $)\}$ is $\mathcal{L R} \mathcal{A}$-inconsistent
- Solution: Binary-search interleaved with linear-search (Mixed Linear/Binary Search Strategy)

Note: Binary search not "obviously faster" than linear search

- Binary search: typically smaller number of range-restriction steps
- Linear search: average smaller cost of each range-restriction steps (unsatisfiable calls typically much harder than sat. ones)

Termination \& Correctness

Termination

The linear search procedure terminates:

- Finite number of satisfiable truth assignments μ_{i}
- No truth assignment μ_{i} generated twice
- guaranteed by computing the minimum cost m_{i} of μ_{i} and learning (cost $<\mathrm{m}_{i}$)
\Longrightarrow also the mixed linear/binary search procedure terminates

Correctness

The procedure returns the minimum cost

- Explores the whole space of satisfiable truth assignments
- For every satisfiable truth assignment, Minimize finds the minimum cost

Some Enhancements $[52,53,16]$

- After invoking the minimizer and learning (cost $<\mathrm{m}_{i}$)
- Invoke $\mathcal{L R} \mathcal{A}$-solver.solve $\left(\mu_{i} \wedge\left(\right.\right.$ cost $\left.\left.<\mathrm{m}_{i}\right)\right) \Rightarrow$ conflict set η_{i} and learn also $\neg \eta_{i}$
- Binary mode: learn also (cost < pivot $_{i}$) to reuse previously learned clauses in the form \neg (cost $<$ pivot $\left._{i}\right) \vee C$
- Tightening of conflicts on binary search [52, 53, 16])
- when $\varphi \wedge$ (cost < pivot ${ }_{i}$) fails, look for tighter conflict $\neg\left(\operatorname{cost}<M_{i}\right)$ s.t. $M_{i}>$ pivot $_{i}$
- Adaptive Mixed Linear/Binary-Search Strategy: BinSearchMode() chooses according to $\frac{\Delta u b}{\Delta \# c o n f l i c t s}$

From $\operatorname{OMT}(\mathcal{L R} \mathcal{A})$ to $\operatorname{OMT}(\mathcal{L R} \mathcal{A} \cup \mathcal{T})$

$\operatorname{OMT}(\mathcal{L R} \mathcal{A})$ procedure extended for handling $\mathcal{L R} \mathcal{A} \cup \mathcal{T}$-formulas φ :
For free if SMT solver handles $\mathcal{L R \mathcal { A }} \cup \mathcal{T}$-solving by Delayed Theory Combination [18] or Model-based Combination [23], splitting negated interface equalities $\neg\left(x_{i}=x_{j}\right)$ into $\left(\left(x_{i}<x_{j}\right) \vee\left(x_{i}>x_{j}\right)\right)$:

- Truth assignments $\mu^{\prime} \stackrel{\text { det }}{=} \mu_{\mathcal{L R A}} \cup \mu_{\text {eid }} \cup \mu_{\mathcal{T}}$ s.t. $\mu^{\prime} \models \varphi$
- $\mu_{\text {eid }}$ is a set containing interface equalities $\left(x_{i}=x_{j}\right)$, disequalities $\neg\left(x_{i}=x_{j}\right)$ and one inequality in $\left\{\left(x_{i}<x_{j}\right),\left(x_{i}>x_{j}\right)\right\}$ for every disequality in $\mu_{\text {eid }}$
- $\mathcal{L} \mathcal{R} \mathcal{A}$-solver.solve invoked on $\mu_{\mathcal{L R} \mathcal{A}}^{\prime}$
- $\mu_{\mathcal{L R} \mathcal{A}}^{\prime} \stackrel{\text { def }}{=} \mu_{\mathcal{L R} \mathcal{A}} \cup \mu_{e i}$ obtained from $\mu_{\text {eid }}$ by dropping disequalities

From $\operatorname{OMT}(\mathcal{L R} \mathcal{A})$ to $\operatorname{OMT}(\mathcal{L R} \mathcal{A} \cup \mathcal{T})$

$\operatorname{OMT}(\mathcal{L R} \mathcal{A})$ procedure extended for handling $\mathcal{L R} \mathcal{A} \cup \mathcal{T}$-formulas φ :
For free if SMT solver handles $\mathcal{L R \mathcal { A }} \cup \mathcal{T}$-solving by Delayed Theory Combination [18] or Model-based Combination [23], splitting negated interface equalities $\neg\left(x_{i}=x_{j}\right)$ into $\left(\left(x_{i}<x_{j}\right) \vee\left(x_{i}>x_{j}\right)\right)$:

- Truth assignments $\mu^{\prime} \stackrel{\text { def }}{=} \mu_{\mathcal{L R A}} \cup \mu_{\text {eid }} \cup \mu_{\mathcal{T}}$ s.t. $\mu^{\prime} \models \varphi$
- $\mu_{\text {eid }}$ is a set containing interface equalities $\left(x_{i}=x_{j}\right)$, disequalities $\neg\left(x_{i}=x_{j}\right)$ and one inequality in $\left\{\left(x_{i}<x_{j}\right),\left(x_{i}>x_{j}\right)\right\}$ for every disequality in $\mu_{\text {eid }}$
- $\mathcal{L} \mathcal{R} \mathcal{A}$-solver.solve invoked on $\mu_{\mathcal{L R} \mathcal{A}}^{\prime}$
- $\mu_{\mathcal{L R} \mathcal{A}}^{\prime} \stackrel{\text { def }}{=} \mu_{\mathcal{L R} \mathcal{A}} \cup \mu_{e i}$ obtained from $\mu_{\text {eid }}$ by dropping disequalities $\Rightarrow \mathcal{L} \mathcal{R} \mathcal{A}$-solver.minimize invoked on $\left\langle\right.$ cost, $\left.\mu_{\mathcal{L R A}}^{\prime}\right\rangle$

From $\operatorname{OMT}(\mathcal{L R} \mathcal{A} \cup \mathcal{T})$ to $\operatorname{OMT}(\mathcal{L I} \mathcal{R} \mathcal{A} \cup \mathcal{T})[55,16]$

- $\operatorname{OMT}(\mathcal{L R} \mathcal{A} \cup \mathcal{T})$ procedures extended to $\mathcal{L I} \mathcal{A}$ and mixed $\mathcal{L R} \mathcal{A} / \mathcal{L} \mathcal{I} \mathcal{A}$ costs $[16,55]$
- $\mathcal{L} \mathcal{R} \mathcal{A} / \mathcal{L I} \mathcal{A}$-solvers enhanced with ILP minimization techniques (branch \& bound, cutting planes, backjumping, ...)
- Note: with $\mathcal{L I} \mathcal{A}$
- ILP minimization often expensive
- no "Zeno" problem for binary search
- in principle, if problem is lower-bounded, the ILP minimizer is not necessary
- tradeoff between LP, (in)complete ILP minimization, binary search and Boolean Search [16, 55]

Truncated Branch and Bound

Observations:

- branch \& bound can be expensive in degenerate cases
- optimality not truly necessary

Idea:

always stop B\&B after first iteration, even if cost value is not guaranteed to be optimal.
Trade-off:

- less expensive minimization procedure on Integers
- risk of CDCL generating same μ multiple times

Outline

(1) Motivations

(2) Optimization Modulo Theories with Linear-Arithmetic Objectives

3 OMT with Multiple and Combined Objectives
(4) Relevant Subcases: OMT+PB \& MaxSMT
(5) Status of OMT
6. Current and Future Research Directions
(7) Appendix

- Inline OMT schema
- OMT for Bit-vector and Floating-point theories
- Imptoving OMT+PB by sorting networks
- The MaxRES MaxSMT Procedure
- Extended SMT-LIB language
- Pareto Optimization (hints)

Incremental OMT [15, 55, 54]

Call OMT incrementally

- e.g., in BMC with parametric systems [53]

Intuition

In OMT, all learned clauses are either \mathcal{T}-lemmas, or derive from \mathcal{T}-lemmas and the original formulas, or are in the form (cost < min) \Longrightarrow exploit incrementality of SMT solvers, in two alternative ways:
(i) drop the (cost < min) from one OMT call to the other
(ii) assert fresh variable S at each OMT call, and learn $\neg S \vee($ cost $<m i n)$ instead of (cost $<$ min)
\Longrightarrow can reuse learned clauses from OMT call to the other, (included these in the form \neg (cost $<$ min $\left._{\text {old }}\right) \vee C$ as soon as min $_{\text {cur }} \leq$ min $_{\text {old }}$.)

OMT with Independent Objectives (Boxed OMT)

 [38, 55]
The problem: $\left\langle\varphi,\left\{\operatorname{cost}_{1}, \ldots, \operatorname{cost}_{k}\right\}\right\rangle[38]$

Given $\langle\varphi, \mathcal{C}\rangle$ s.t.:

- φ is the input formula
- $\mathcal{C} \stackrel{\text { def }}{=}\left\{\operatorname{cost}_{1}, \ldots, \operatorname{cost}_{k}\right\}$ is a set of $\mathcal{L I R} \mathcal{A}$-terms on variables in φ, $\langle\varphi, \mathcal{C}\rangle$ is the problem of finding a set of independent $\mathcal{L I} \mathcal{R} \mathcal{A}$-models $\mathcal{M}_{1}, \ldots, \mathcal{M}_{k}$ s.t. s.t. each \mathcal{M}_{i} makes cost $_{i}$ minimum.

Notes

- derives from SW verification problems [38]
- equivalent to k independent problems $\left\langle\varphi, \operatorname{cost}_{1}\right\rangle, \ldots,\left\langle\varphi, \operatorname{cost}_{k}\right\rangle$
- intuition: share search effort for the different objectives
- generalizes to $\mathrm{OMT}(\mathcal{L I R} \mathcal{A} \cup \mathcal{T})$ straightforwardly

OMT with Multiple Objectives [38, 16, 55]

Solution

- Intuition: when a \mathcal{T}-consistent satisfying assignment μ is found,
foreach cost_{i}

$$
\min _{\mathrm{i}}:=\min \left\{\min _{\mathrm{i}}, \mathcal{T} \text { solver.minimize }\left(\mu, \operatorname{cost}_{\mathrm{i}}\right)\right\} ;
$$

learn $\bigvee_{i}\left(\operatorname{cost}_{\mathrm{i}}<\min _{\mathrm{i}}\right) ; \quad / /\left(\operatorname{cost}_{\mathrm{i}}<-\infty\right) \equiv \perp$
proceed until UNSAT;

- Notice:
- for each μ, guaranteed improvement of at least one $\min _{i}$
- in practice, for each μ, multiple cost $_{i}$ minima are improved
- Implemented improvements:
(a) drop previous clauses $\bigvee_{i}\left(\operatorname{cost}_{i}<\min _{i}\right)$
(b) (cost $_{i}<\min _{i}$) pushed in μ first: if \mathcal{T}-inconsistent, skip minimization
(c) learn $\neg\left(\operatorname{cost}_{i}<\min _{i}\right) \vee\left(\operatorname{cost}_{i}<\min _{i}^{\text {old }}\right)$, s.t. minin $_{i}^{\text {old }}$ previous $\min _{i}$ \Longrightarrow reuse previously-learned clauses like $\neg\left(\operatorname{cost}_{i}<\right.$ minin $\left._{i}^{\text {old }}\right) \vee C$

Boxed OMT: Example $[38,55]$

$$
\begin{aligned}
& 1 \underbrace{}_{0} \\
& \begin{aligned}
\varphi & =(1 \leq y) \wedge(y \leq 3) \wedge(((1 \leq x) \wedge(x \leq 3)) \vee(x \geq 4)) \\
& \wedge\left(\operatorname{cost}_{1}=-y\right) \wedge\left(\operatorname{cost}_{2}=-x-y\right)
\end{aligned} \\
& \mu_{1}=\{(1 \leq y),(y \leq 3),(1 \leq x),(x \leq 3)\} \Longrightarrow \text { SAT } \Longrightarrow[-3,-6] \\
& \Longrightarrow \text { learn }\left\{\left(\operatorname{cost}_{1}<-3\right) \vee\left(\operatorname{cost}_{2}<-6\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \Longrightarrow \text { UNSAT }
\end{aligned}
$$

OMT with Lexicographic Combination of Objectives [16]

The problem

Find one optimal model \mathcal{M} minimizing costs $\stackrel{\text { def }}{=} \operatorname{cost}_{1}, \operatorname{cost}_{2}, \ldots, \operatorname{cost}_{k}$ lexicographically.

Solution

- Intuition:
$\left\{\right.$ minimize cost $\left._{1}\right\}$
when UNSAT
$\left\{\right.$ substitute unit clause $\left(\right.$ cost $_{1}<$ min $\left._{1}\right)$ with $\left(\operatorname{cost}_{1}=\right.$ min $\left.\left._{1}\right)\right\}$
\{minimize cost $\left._{2}\right\}$

OMT with Other forms of Objective Combination

OMT with Min-Max [Max-Min] optimization
Given $\left\langle\varphi,\left\{\operatorname{cost}_{1}, \ldots, \operatorname{cost}_{k}\right\}\right\rangle$, find a solution which minimizes the maximum value among $\left\{\operatorname{cost}_{1}, \ldots\right.$, cost $\left._{k}\right\}$. (Max-Min dual.)

- Frequent in some applications (e.g. [53, 59])
\Longrightarrow encode into $\mathrm{OMT}(\mathcal{L I} \mathcal{R} \mathcal{A} \cup \mathcal{T})$ problem $\left\{\varphi \wedge \bigwedge_{i}\left(\operatorname{cost}_{i} \leq \operatorname{cost}\right), \operatorname{cost}\right\}$ s.t. cost fresh.

OMT with linear combinations of costs
Given $\left\langle\varphi,\left\{\operatorname{cost}_{1}, \ldots, \operatorname{cost}_{k}\right\}\right\rangle$ and a set of weights $\left\{w_{1}, \ldots, w_{k}\right\}$, find a solution which minimizes $\sum_{i} w_{i} \cdot$ cost $_{i}$.
\Longrightarrow encode into $\operatorname{OMT}(\mathcal{L I} \mathcal{R} \mathcal{A} \cup \mathcal{T})$ problem $\left\{\varphi \wedge\left(\operatorname{cost}=\sum_{i} w_{i} \cdot \operatorname{cost}_{i}\right)\right.$, cost $\}$ s.t. cost fresh.

These objectives can be composed with other $\operatorname{OMT}(\mathcal{L I R} \mathcal{A})$ objectives.

Outline

(1) Motivations

(2)Optimization Modulo Theories with Linear-Arithmetic Objectives
(3) OMT with Multiple and Combined Objectives
4. Relevant Subcases: OMT+PB \& MaxSMT
5. Status of OMT

6 Current and Future Research Directions
(7) Appendix

- Inline OMT schema
- OMT for Bit-vector and Floating-point theories
- Imptoving OMT+PB by sorting networks
- The MaxRES MaxSMT Procedure
- Extended SMT-LIB language
- Pareto Optimization (hints)

OMT $(\mathcal{L R} \mathcal{A} \cup \mathcal{T})$ vs. SMT with PB costs (\& MaxSMT)

 SMT + PB costs (\& MaxSMT) can be encoded into OMT $(\mathcal{L R} \mathcal{A} \cup \mathcal{T})$:\[

\]

but not vice versa!

assignment

- OMT (LIR $\mathcal{A} \cup \mathcal{T})$ finds the \mathcal{T}-satisfiable assignment whose
minimum cost is minimum
\qquad

OMT $(\mathcal{L R} \mathcal{A} \cup \mathcal{T})$ vs. SMT with PB costs (\& MaxSMT)

SMT + PB costs (\& MaxSMT) can be encoded into OMT $(\mathcal{L R} \mathcal{A} \cup \mathcal{T})$:

```
\(\operatorname{minimize} \quad \sum_{j} w_{j} \cdot A_{j} / /\left(\sum_{j} \operatorname{ite}\left(A_{j}, w_{j}, 0\right)\right)\)
s.t.
minimize \(\quad \sum_{j} x_{j}\)
s.t.
\(\varphi \wedge \bigwedge_{j}\left(A_{j} \rightarrow\left(x_{j}=w_{j}\right)\right) \wedge\left(\neg A_{j} \rightarrow\left(x_{j}=0\right)\right)\)
\(\wedge \bigwedge_{j}\left(\left(x_{j} \geq 0\right) \wedge\left(x_{j} \leq w_{j}\right)\right)\)
```

but not vice versa!

- SMT + PB costs finds the minimum-cost \mathcal{T}-satisfiable assignment
\Longrightarrow search for minimum is purely Boolean
- OMT $(\mathcal{L I} \mathcal{R} \mathcal{A} \cup \mathcal{T})$ finds the \mathcal{T}-satisfiable assignment whose minimum cost is minimum
\Longrightarrow search for minimum involves two dimensions: Boolean and arithmetical

Remark: range constraints " $\left(x_{j} \geq 0\right) \wedge\left(x_{j} \leq w_{j}\right)$ "
$O M T+P B: \quad \sum_{j} w_{j} \cdot A_{j}, w_{i}>0 / /\left(\sum_{j} \operatorname{ite}\left(A_{j}, w_{j}, 0\right)\right)$

$$
\begin{array}{cc}
& \Downarrow \\
& \sum_{j} x_{j}, x_{j} \text { fresh } \\
\text { s.t. } \quad & \ldots \wedge \wedge_{j}\left(A_{j} \rightarrow\left(x_{j}=w_{j}\right)\right) \wedge\left(\neg A_{j} \rightarrow\left(x_{j}=0\right)\right) \\
& \wedge\left(x_{j} \geq 0\right) \wedge\left(x_{j} \leq w_{j}\right)
\end{array}
$$

Range constraints " $\left(x_{j} \geq 0\right) \wedge\left(x_{j} \leq w_{j}\right)$ " logically redundant, but essential for efficiency:

- Without range constraints, the SMT solver can detect the violation of a bound only after all A_{i} 's are assigned :
- With range constraints, the SMT solver detects the violation as soon as the assigned A_{i} 's violate a bound
\Longrightarrow drastic pruning of the search
\square with sorting networks [56]

Remark: range constraints " $\left(x_{j} \geq 0\right) \wedge\left(x_{j} \leq w_{j}\right)$ "

$$
\begin{aligned}
O M T+P B: & \sum_{j} w_{j} \cdot A_{j}, w_{i}>0 / /\left(\sum_{j} \text { ite }\left(A_{j}, w_{j}, 0\right)\right) \\
& \Downarrow \\
& \sum_{j} x_{j}, x_{j} \text { fresh } \\
\text { s.t. } & \ldots \wedge \wedge_{j}\left(A_{j} \rightarrow\left(x_{j}=w_{j}\right)\right) \wedge\left(\neg A_{j} \rightarrow\left(x_{j}=0\right)\right) \\
& \wedge\left(x_{j} \geq 0\right) \wedge\left(x_{j} \leq w_{j}\right)
\end{aligned}
$$

Range constraints " $\left(x_{j} \geq 0\right) \wedge\left(x_{j} \leq w_{j}\right)$ " logically redundant, but essential for efficiency:

- Without range constraints, the SMT solver can detect the violation of a bound only after all A_{i} 's are assigned :
Ex: $w_{1}=4, w_{2}=7, \sum_{i=1} x_{i}<10, A_{1}=A_{2}=\mathrm{T}, A_{i}=* \forall i>2$.
- With range constraints, the SMT solver detects the violation as
soon as the assigned A_{i} 's violate a bound
\Longrightarrow drastic pruning of the search

Remark: range constraints " $\left(x_{j} \geq 0\right) \wedge\left(x_{j} \leq w_{j}\right)$ "

$$
\begin{aligned}
\text { OMT + PB: } & \sum_{j} w_{j} \cdot A_{j}, w_{i}>0 / /\left(\sum_{j} i \operatorname{te}\left(A_{j}, w_{j}, 0\right)\right) \\
& \Downarrow \Downarrow \\
& \sum_{j} x_{j}, x_{j} \text { fresh } \\
\text { s.t. } & \ldots \wedge \wedge_{j}\left(A_{j} \rightarrow\left(x_{j}=w_{j}\right)\right) \wedge\left(\neg A_{j} \rightarrow\left(x_{j}=0\right)\right) \\
& \wedge\left(x_{j} \geq 0\right) \wedge\left(x_{j} \leq w_{j}\right)
\end{aligned}
$$

Range constraints " $\left(x_{j} \geq 0\right) \wedge\left(x_{j} \leq w_{j}\right)$ " logically redundant, but essential for efficiency:

- Without range constraints, the SMT solver can detect the violation of a bound only after all A_{i} 's are assigned :
Ex: $w_{1}=4, w_{2}=7, \sum_{i=1} x_{i}<10, A_{1}=A_{2}=\mathrm{T}, A_{i}=* \forall i>2$.
- With range constraints, the SMT solver detects the violation as soon as the assigned A_{i} 's violate a bound
\Longrightarrow drastic pruning of the search

Remark: range constraints " $\left(x_{j} \geq 0\right) \wedge\left(x_{j} \leq w_{j}\right)$ "

$$
\begin{aligned}
\text { OMT + PB: } & \sum_{j} w_{j} \cdot A_{j}, w_{i}>0 / /\left(\sum_{j} i \operatorname{te}\left(A_{j}, w_{j}, 0\right)\right) \\
& \Downarrow \Downarrow \\
& \sum_{j} x_{j}, x_{j} \text { fresh } \\
\text { s.t. } & \ldots \wedge \wedge_{j}\left(A_{j} \rightarrow\left(x_{j}=w_{j}\right)\right) \wedge\left(\neg A_{j} \rightarrow\left(x_{j}=0\right)\right) \\
& \wedge\left(x_{j} \geq 0\right) \wedge\left(x_{j} \leq w_{j}\right)
\end{aligned}
$$

Range constraints " $\left(x_{j} \geq 0\right) \wedge\left(x_{j} \leq w_{j}\right)$ " logically redundant, but essential for efficiency:

- Without range constraints, the SMT solver can detect the violation of a bound only after all A_{i} 's are assigned : Ex: $w_{1}=4, w_{2}=7, \sum_{i=1} x_{i}<10, A_{1}=A_{2}=\mathrm{T}, A_{i}=* \forall i>2$.
- With range constraints, the SMT solver detects the violation as soon as the assigned A_{i} 's violate a bound
\Longrightarrow drastic pruning of the search
Further improvement: Enhance encoding of PB constraints/MaxSMT with sorting networks [56]

SMT/OMT with Pseudo-Boolean Costraints \& Costs:

Alternative Solution: conversion into $\operatorname{SMT}(\mathcal{T})$

- SAT + PB can be efficiently encoded into SAT [26]
\Longrightarrow encode $\operatorname{SMT}(\mathcal{T})+\mathrm{PB}$ into $\operatorname{SMT}(\mathcal{T})$
- similar idea implemented in $[16,15]$ for cardinality constraints
- develop a "modulo theory" version of your favourite PB-solver
- afaik, no implementation available
- \mathcal{C} is an ad-hoc "theory of costs"
- a specialized very-fast theory-solver for C added
- very fast \& aggressive search pruning and theory-propagation

SMT/OMT with Pseudo-Boolean Costraints \& Costs:

Alternative Solution: conversion into $\operatorname{SMT}(\mathcal{T})$

- SAT + PB can be efficiently encoded into SAT [26]
\Longrightarrow encode $\operatorname{SMT}(\mathcal{T})+\mathrm{PB}$ into $\operatorname{SMT}(\mathcal{T})$
- similar idea implemented in $[16,15]$ for cardinality constraints

Alternative Solution: Leverage SAT+PB

- develop a "modulo theory" version of your favourite PB-solver
- afaik, no implementation available
- \mathcal{C} is an ad-hoc "theory of costs"
- a specialized very-fast theory-solver for C added
- very fast \& aggressive search pruning and theory-propagation

SMT/OMT with Pseudo-Boolean Costraints \& Costs:

Alternative Solution: conversion into $\operatorname{SMT}(\mathcal{T})$

- SAT + PB can be efficiently encoded into SAT [26]
\Longrightarrow encode $\operatorname{SMT}(\mathcal{T})+\mathrm{PB}$ into $\operatorname{SMT}(\mathcal{T})$
- similar idea implemented in $[16,15]$ for cardinality constraints

Alternative Solution: Leverage SAT+PB

- develop a "modulo theory" version of your favourite PB-solver
- afaik, no implementation available

Alternative Solution: $\operatorname{SMT}(\mathcal{T} \cup \mathcal{C})$ [20]

- \mathcal{C} is an ad-hoc "theory of costs"
- a specialized very-fast theory-solver for \mathcal{C} added
- very fast \& aggressive search pruning and theory-propagation

A "Theory of cost" \mathcal{C}

A "theory of costs" \mathcal{C}

- M variables cost ${ }^{i}$
- predicate "bound cost" $B C\left(\operatorname{cost}^{i}, k\right)\left(" \operatorname{cost}^{i} \leq k\right.$ ")
- predicate "incur cost" $I C\left(\operatorname{cost}^{i}, j, c_{j}^{i}\right)$ ("the j th addend of cost^{i} is $c_{j}^{i}{ }^{\prime \prime}$)
- "cost $t^{i}=\sum_{j=1}^{N^{i}} \mathrm{c}_{j}^{i} \cdot A_{j}^{i}, \quad$ s.t. $\operatorname{cost}^{i} \in\left(I^{i}, u^{i}\right] "$ encoded as:
$\neg B C\left(\operatorname{cost}^{i}, I^{i}\right) \wedge B C\left(\operatorname{cost}^{i}, u^{i}\right) \wedge \bigwedge_{j=1}^{N^{i}}\left(A_{j}^{i} \leftrightarrow I C\left(\operatorname{cost}{ }^{i}, j, c_{j}^{i}\right)\right)$

\mathcal{C}-solver

for each i, \mathcal{C}-solver mantains the current values of the incurred costs cost ${ }^{i} \stackrel{\text { def }}{=} \sum_{I C\left(\operatorname{cost} t^{i}, j, c_{j}^{j}\right) \leftarrow T} C_{j}^{i}$, the total cost of all unassigned IC's $\Delta \operatorname{cost}^{t} \stackrel{\text { def }}{=} \sum_{\left\{I C\left(\text { cost }^{i}, j, c_{j}^{j}\right)\right.}$ unassigned $\} c_{j}^{i}$, and of the range $\left.] / b_{i}, u b^{i}\right]$ 1. $B C\left(\operatorname{cost}^{i}, c\right) \leftarrow T / \perp \Longrightarrow$ update $\left.] / b_{i}, u b^{i}\right]$
2. IC $\left(\operatorname{cost}^{i}, j, \mathrm{c}_{j}^{i}\right) \leftarrow T \Longrightarrow \operatorname{cost}^{i} \leftarrow \operatorname{cost}^{i}+\mathrm{c}_{j}^{i}$ $I C\left(\cos t^{i}, j, \mathrm{c}_{j}^{i}\right) \leftarrow \perp \Longrightarrow \Delta{\cos t^{i}}_{\leftarrow \Delta \cos t^{i}-\mathrm{c}_{j}^{i}, ~}$
3. cost $^{i}>u b^{i} \Longrightarrow$ conflict
4. $\operatorname{cost}^{i}+\Delta \operatorname{cost}^{i} \leq I b^{i} \Longrightarrow$ conflict
5. $I C\left(\operatorname{cost}^{i}, j, \mathrm{c}_{j}^{i}\right) \leftarrow \top$ causes $3 . \Longrightarrow$ propagate $\neg I C\left(\operatorname{cost}^{i}, j, \mathrm{c}_{j}^{i}\right)$
6. $I C\left(\operatorname{cost}^{i}, j, \mathrm{c}_{j}^{i}\right) \leftarrow \perp$ causes $4 . \Longrightarrow$ propagate $I C\left(\cos ^{i}, j, \mathrm{c}_{j}^{i}\right)$

\mathcal{C}-solver

for each i, \mathcal{C}-solver mantains the current values of the incurred costs $\operatorname{cost}^{i} \stackrel{\text { def }}{=} \sum_{I C}\left(\operatorname{cost} t^{i}, j, c_{j}^{i}\right) \leftarrow T C_{j}^{i}$, the total cost of all unassigned IC's $\Delta \operatorname{cost}^{t} \stackrel{\text { def }}{=} \sum_{\left\{I C\left(\text { cost }^{i}, j, c_{j}^{j}\right)\right.}$ unassigned $\} c_{j}^{i}$, and of the range $\left.] / b_{i}, u b^{i}\right]$ 1. $B C\left(\operatorname{cost}^{i}, c\right) \leftarrow T / \perp \Longrightarrow$ update $\left.] / b_{i}, u b^{i}\right]$
2. $I C\left(\operatorname{cost}^{i}, j, \mathrm{c}_{j}^{i}\right) \leftarrow T \Longrightarrow \operatorname{cost}^{i} \leftarrow \operatorname{cost}^{i}+\mathrm{c}_{j}^{i}$ $I C\left(\operatorname{cost}^{i}, j, \mathrm{c}_{j}^{i}\right) \leftarrow \perp \Longrightarrow \Delta \operatorname{cost}^{i} \leftarrow \Delta \operatorname{cost}^{i}-\mathrm{c}_{j}^{i}$
3. cost $^{i}>u b^{i} \Longrightarrow$ conflict
4. $\operatorname{cost}^{i}+\Delta \operatorname{cost}^{i} \leq I b^{i} \Longrightarrow$ conflict
5. $I C\left(\operatorname{cost}^{i}, j, \mathrm{c}_{j}^{i}\right) \leftarrow \top$ causes $3 . \Longrightarrow$ propagate $\neg I C\left(\operatorname{cost}^{i}, j, \mathrm{c}_{j}^{i}\right)$
6. $I C\left(\operatorname{cost}^{i}, j, \mathrm{c}_{j}^{i}\right) \leftarrow \perp$ causes $4 . \Longrightarrow$ propagate $I C\left(\cos ^{i}, j, \mathrm{c}_{j}^{i}\right)$

- very fast:
- add one constraint \& solve: 1 sum +1 comparison
- theory propagation: linear in the number of propagated literals

MaxSAT Modulo Theories (MaxSMT) I

[Partial Weighted] MaxSMT: The problem
Input: $\varphi_{h}^{\mathcal{T}}, \varphi_{S}^{\mathcal{T}}$: resp. sets of hard and (weighted) soft \mathcal{T}-clauses;
Output: a maximum-weight set of soft \mathcal{T}-clauses $\psi_{s}^{\mathcal{T}}$ s.t.

$$
\psi_{s}^{\mathcal{T}} \subseteq \varphi_{s}^{\mathcal{T}} \text { and } \varphi_{h}^{\mathcal{T}} \cup \psi_{s}^{\mathcal{T}} \text { is } \mathcal{T} \text {-satisfiable }
$$

$\operatorname{MaxSMT}\left\langle\varphi_{h}^{\mathcal{T}}, \varphi_{s}^{\mathcal{T}}\right\rangle$ encodable into SMT with PB costs $\left\langle\varphi^{\mathcal{T}^{\prime}}\right.$, cost \rangle

MaxSAT Modulo Theories (MaxSMT) I

[Partial Weighted] MaxSMT: The problem
Input: $\varphi_{h}^{\mathcal{T}}, \varphi_{s}^{\mathcal{T}}$: resp. sets of hard and (weighted) soft \mathcal{T}-clauses;
Output: a maximum-weight set of soft \mathcal{T}-clauses $\psi_{s}^{\mathcal{T}}$ s.t. $\psi_{s}^{\mathcal{T}} \subseteq \varphi_{s}^{\mathcal{T}}$ and $\varphi_{h}^{\mathcal{T}} \cup \psi_{s}^{\mathcal{T}}$ is \mathcal{T}-satisfiable

MaxSMT vs. SMT with PB cost functions
$\operatorname{MaxSMT}\left\langle\varphi_{h}^{\mathcal{T}}, \varphi_{s}^{\mathcal{T}}\right\rangle$ encodable into SMT with PB costs $\left\langle\varphi^{\mathcal{T}^{\prime}}\right.$, cost \rangle :

$$
\varphi^{\mathcal{T}^{\prime}} \stackrel{\text { def }}{=} \varphi_{h}^{\mathcal{T}} \cup \bigcup_{C_{j}^{\mathcal{T}} \in \varphi_{s}^{\mathcal{T}}}\left\{\left(A_{j} \vee C_{j}^{\mathcal{T}}\right)\right\} ; \quad \operatorname{cost} \stackrel{\text { def }}{=} \sum_{C_{j}^{\mathcal{T}} \in \varphi_{s}^{\mathcal{T}}} w_{j} \cdot A_{j}
$$

SMT with PB costs $\left\langle\varphi^{\mathcal{T}^{\prime}}\right.$, cost $\left.\stackrel{\text { def }}{=} \sum_{j} w_{j} \cdot A_{j}\right\rangle$ encodable into MaxSMT:

$$
\varphi_{h}^{\mathcal{T}} \stackrel{\text { def }}{=} \varphi^{\mathcal{T}^{\prime}} ; \varphi_{s}^{\mathcal{T}} \stackrel{\text { def }}{=} \bigcup_{j}\{\underbrace{\left(\neg A_{j}\right)}_{w_{j}}\}
$$

MaxSAT Modulo Theories (MaxSMT) II

Solution: encode into $\operatorname{OMT}(\mathcal{L R A})$ [44, 52, 53]

- can be composed with other objective functions

```
Alternative Solution: Leverage MaxSAT
e develop a "modulo theory" version of your favourite MaxSAT
solver
- a few implementations available [4, 5, 15]
```

A "Modular" Approach to MaxSMT [21]

- Idea: Combine an SMT and a MaxSAT solver:
MaxSMT = MaxSAT + SMT

MaxSAT Modulo Theories (MaxSMT) II

Solution: encode into OMT($\mathcal{L R A}$) [44, 52, 53]

- can be composed with other objective functions

Alternative Solution: Leverage MaxSAT

- develop a "modulo theory" version of your favourite MaxSAT solver
- a few implementations available $[4,5,15]$

MaxSAT Modulo Theories (MaxSMT) II

Solution: encode into $\operatorname{OMT}(\mathcal{L R A})$ [44, 52, 53]

- can be composed with other objective functions

Alternative Solution: Leverage MaxSAT

- develop a "modulo theory" version of your favourite MaxSAT solver
- a few implementations available [4, 5, 15]

A "Modular" Approach to MaxSMT [21]

- Idea: Combine an SMT and a MaxSAT solver: MaxSMT = MaxSAT + SMT

A Modular Approach for $\operatorname{MaxSMT}\left(\varphi_{h}^{\mathcal{T}}, \varphi_{s}^{\mathcal{T}}\right)$ [21]

Input: $\varphi_{h}^{\mathcal{T}}, \varphi_{s}^{\mathcal{T}} / /$ sets of hard and (weighted) soft \mathcal{T}-clauses
$\left\langle\varphi_{h}^{\mathcal{B}}, \varphi_{s}^{\mathcal{B}}\right\rangle \leftarrow \mathcal{T} 2 \mathcal{B}\left(\left\langle\varphi_{h}^{\mathcal{T}}, \varphi_{s}^{\mathcal{T}}\right\rangle\right) ;$
$\Theta^{\mathcal{T}} \leftarrow \emptyset$; // current set of \mathcal{T}-lemmas
$\psi_{s}^{\mathcal{T}} \leftarrow \varphi_{s}^{\mathcal{T}}$; // current approximation of the result while (SMT.Solve $\left(\varphi_{h}^{\mathcal{T}} \cup \psi_{s}^{\mathcal{T}} \cup \Theta^{\mathcal{T}}\right)=$ UNSAT) do $\Theta^{\mathcal{T}} \leftarrow \Theta^{\mathcal{T}} \cup$ SMT.GetTLemmas(); $\Theta^{\mathcal{B}} \leftarrow \mathcal{T} 2 \mathcal{B}\left(\Theta^{\mathcal{T}}\right)$; $\psi_{s}^{\mathcal{B}} \leftarrow \operatorname{MaxSAT}\left(\varphi_{h}^{\mathcal{B}} \cup \Theta^{\mathcal{B}}, \varphi_{s}^{\mathcal{B}}\right) ; \psi_{s}^{\mathcal{T}} \leftarrow \mathcal{B} 2 \mathcal{T}\left(\psi_{s}^{\mathcal{B}}\right) ;$
return $\psi_{s}^{\mathcal{T}}$;

Based on the cyclic interaction of an SMT and a MaxSAT solver:

- MaxSAT used to extract minimum-cost clause sets

A Modular Approach for $\operatorname{MaxSMT}\left(\varphi_{h}^{\mathcal{T}}, \varphi_{s}^{\mathcal{T}}\right)$ [21]

Input: $\varphi_{h}^{\mathcal{T}}, \varphi_{s}^{\mathcal{T}} / /$ sets of hard and (weighted) soft \mathcal{T}-clauses
$\left\langle\varphi_{h}^{\mathcal{B}}, \varphi_{s}^{\mathcal{B}}\right\rangle \leftarrow \mathcal{T} 2 \mathcal{B}\left(\left\langle\varphi_{h}^{\mathcal{T}}, \varphi_{s}^{\mathcal{T}}\right\rangle\right) ;$
$\Theta^{\mathcal{T}} \leftarrow \emptyset$; // current set of \mathcal{T}-lemmas
$\psi_{s}^{\mathcal{T}} \leftarrow \varphi_{s}^{\mathcal{T}}$; // current approximation of the result
while (SMT.Solve $\left(\varphi_{h}^{\mathcal{T}} \cup \psi_{s}^{\mathcal{T}} \cup \Theta^{\mathcal{T}}\right)=$ UNSAT) do
$\Theta^{\mathcal{T}} \leftarrow \Theta^{\mathcal{T}} \cup$ SMT.GetTLemmas(); $\Theta^{\mathcal{B}} \leftarrow \mathcal{T} 2 \mathcal{B}\left(\Theta^{\mathcal{T}}\right) ;$
$\psi_{s}^{\mathcal{B}} \leftarrow \operatorname{MaxSAT}\left(\varphi_{h}^{\mathcal{B}} \cup \Theta^{\mathcal{B}}, \varphi_{s}^{\mathcal{B}}\right) ; \psi_{s}^{\mathcal{T}} \leftarrow \mathcal{B} 2 \mathcal{T}\left(\psi_{s}^{\mathcal{B}}\right) ;$
return $\psi_{s}^{\mathcal{T}}$;

Based on the cyclic interaction of an SMT and a MaxSAT solver:

- SMT.Solve used as a generator of sets of \mathcal{T}-lemmas $\Theta_{0}^{\mathcal{T}}, \Theta_{1}^{\mathcal{T}}, \ldots$
\Longrightarrow provide the information to rule-out \mathcal{T}-inconsistent solutions

A Modular Approach for $\operatorname{MaxSMT}\left(\varphi_{h}^{\mathcal{T}}, \varphi_{s}^{\mathcal{T}}\right)$ [21]

Input: $\varphi_{h}^{\mathcal{T}}, \varphi_{s}^{\mathcal{T}} / /$ sets of hard and (weighted) soft \mathcal{T}-clauses
$\left\langle\varphi_{h}^{\mathcal{B}}, \varphi_{s}^{\mathcal{B}}\right\rangle \leftarrow \mathcal{T} 2 \mathcal{B}\left(\left\langle\varphi_{h}^{\mathcal{T}}, \varphi_{s}^{\mathcal{T}}\right\rangle\right) ;$
$\Theta^{\top} \leftarrow \emptyset$; // current set of \mathcal{T}-lemmas
$\psi_{s}^{\mathcal{T}} \leftarrow \varphi_{s}^{\mathcal{T}}$; // current approximation of the result
while (SMT.Solve $\left(\varphi_{h}^{\mathcal{T}} \cup \psi_{s}^{\mathcal{T}} \cup \Theta^{\mathcal{T}}\right)=$ UNSAT) do
$\Theta^{\mathcal{T}} \leftarrow \Theta^{\mathcal{T}} \cup$ SMT.GetTLemmas(); $\Theta^{\mathcal{B}} \leftarrow \mathcal{T} 2 \mathcal{B}\left(\Theta^{\mathcal{T}}\right)$; $\psi_{s}^{\mathcal{B}} \leftarrow \operatorname{MaxSAT}\left(\varphi_{h}^{\mathcal{B}} \cup \Theta^{\mathcal{B}}, \varphi_{s}^{\mathcal{B}}\right) ; \psi_{s}^{\mathcal{T}} \leftarrow \mathcal{B} 2 \mathcal{T}\left(\psi_{s}^{\mathcal{B}}\right) ;$
return $\psi_{s}^{\mathcal{T}}$;

Based on the cyclic interaction of an SMT and a MaxSAT solver:

- MaxSAT used to extract minimum-cost clause sets $\psi_{s, 0}^{\mathcal{B}}, \psi_{s, 1}^{\mathcal{B}}, \ldots$
- works on Boolean abstractions $\varphi_{h}^{\mathcal{B}}, \varphi_{s}^{\mathcal{B}}$ plus the \mathcal{T}-lemmas $\Theta_{i}^{\mathcal{B}}$

A toy example I

$$
\begin{aligned}
& \varphi_{h}^{\mathcal{T}} \stackrel{\text { def }}{=} \emptyset \\
& \varphi_{s}^{\mathcal{T}} \stackrel{\text { def }}{=}\left\{\begin{array}{ll}
C_{0}:((x \leq 0)) & {[4]} \\
C_{1}:((x \leq 1)) & {[3]} \\
C_{2}:((x \geq 2)) & {[2]} \\
C_{3}:((x \geq 3)) & {[6]}
\end{array}\right\} \quad \varphi_{h}^{\mathcal{B}} \stackrel{\text { def }}{=} \emptyset \\
& \\
&
\end{aligned}
$$

Notice that the set of all (minimal) \mathcal{T}-lemmas on the \mathcal{T}-atoms of $\varphi_{h}^{\mathcal{T}} \cup \varphi_{s}^{\mathcal{T}}$ is:
$\Theta_{*}^{\mathcal{T}}=\left\{\begin{array}{cl}\theta_{1}: & (\neg(x \leq 0) \vee(x \leq 1)) \\ \theta_{2}: & (\neg(x \geq 3) \vee(x \geq 2)) \\ \theta_{3}: & (\neg(x \leq 0) \vee \neg(x \geq 2)) \\ \theta_{4}: & (\neg(x \leq 0) \vee \neg(x \geq 3)) \\ \theta_{5}: & (\neg(x \leq 1) \vee \neg(x \geq 2)) \\ \theta_{6}: & (\neg(x \leq 1) \vee \neg(x \geq 3))\end{array}\right\} \quad \Theta_{*}^{\mathcal{B}}=\left\{\begin{array}{l}\left(\neg A_{0} \vee A_{1}\right) \\ \left(\neg A_{3} \vee A_{2}\right) \\ \left(\neg A_{0} \vee \neg A_{2}\right) \\ \left(\neg A_{0} \vee \neg A_{3}\right) \\ \left(\neg A_{1} \vee \neg A_{2}\right) \\ \left(\neg A_{1} \vee \neg A_{3}\right)\end{array}\right\}$

An "unlucky" possible execution of the algorithm is:

i	Θ_{i}^{\top}	$\psi_{s, i}^{\top}$	Weight $\left(\psi_{s, i}^{\top}\right)$	$\operatorname{SMT}\left(\varphi_{h}^{\top} \cup \psi_{s, i}^{\top} \cup \Theta_{i}^{\top}\right)$
0	$\}$	$\left\{C_{0}, C_{1}, C_{2}, C_{3}\right\}$	UNSAT	
1	$\left\{\theta_{4}\right\}$	$\left\{, C_{1}, C_{2}, C_{3}\right\}$	11	UNSAT
2	$\left\{\theta_{4}, \theta_{6}\right\}$	$\left\{C_{0}, C_{1}, C_{2},{ }_{2}\right\}$	9	UNSAT
3	$\left\{\theta_{4}, \theta_{6}, \theta_{3}\right\}$	$\left\{r, C_{2}, C_{3}\right\}$	8	SAT

A toy example I

$$
\begin{aligned}
& \varphi_{h}^{\mathcal{T}} \stackrel{\text { def }}{=} \emptyset \\
& \varphi_{s}^{\mathcal{T}} \stackrel{\text { def }}{=}\left\{\begin{array}{ll}
C_{0}:((x \leq 0)) & {[4]} \\
C_{1}:((x \leq 1)) & {[3]} \\
C_{2}:((x \geq 2)) & {[2]} \\
C_{3}:((x \geq 3)) & {[6]}
\end{array}\right\} \quad \varphi_{h}^{\mathcal{B}} \stackrel{\text { def }}{=} \emptyset \\
& \\
&
\end{aligned}
$$

Notice that the set of all (minimal) \mathcal{T}-lemmas on the \mathcal{T}-atoms of $\varphi_{h}^{\mathcal{T}} \cup \varphi_{s}^{\mathcal{T}}$ is:

$$
\Theta_{*}^{\mathcal{T}}=\left\{\begin{array}{c:c}
\theta_{1}:(\neg(x \leq 0) \vee(x \leq 1)) \\
\theta_{2}:(\neg(x \geq 3) \vee(x \geq 2)) \\
\theta_{3}:(\neg(x \leq 0) \vee \neg(x \geq 2)) \\
\theta_{4}:(\neg(x \leq 0) \vee \neg(x \geq 3)) \\
\theta_{5}:(\neg(x \leq 1) \vee \neg(x \geq 2)) \\
\theta_{6}:(\neg(x \leq 1) \vee \neg(x \geq 3))
\end{array}\right\} \quad \Theta_{*}^{\mathcal{B}} \quad=\left\{\begin{array}{c}
\left(\neg A_{0} \vee A_{1}\right) \\
\left(\neg A_{3} \vee A_{2}\right) \\
\left(\neg A_{0} \vee \neg A_{2}\right) \\
\left(\neg A_{0} \vee \neg A_{3}\right) \\
\left(\neg A_{1} \vee \neg A_{2}\right) \\
\left(\neg A_{1} \vee \neg A_{3}\right)
\end{array}\right\}
$$

An "unlucky" possible execution of the algorithm is:

A toy example I

$$
\begin{aligned}
& \varphi_{h}^{\mathcal{T}} \stackrel{\text { def }}{=} \emptyset \\
& \varphi_{s}^{\mathcal{T}} \stackrel{\text { def }}{=}\left\{\begin{array}{ll}
C_{0}:((x \leq 0)) & {[4]} \\
C_{1}:((x \leq 1)) & {[3]} \\
C_{2}:((x \geq 2)) & {[2]} \\
C_{3}:((x \geq 3)) & {[6]}
\end{array}\right\} \quad \varphi_{h}^{\mathcal{B}} \stackrel{\text { def }}{=} \emptyset \\
& \\
&
\end{aligned}
$$

Notice that the set of all (minimal) \mathcal{T}-lemmas on the \mathcal{T}-atoms of $\varphi_{h}^{\mathcal{T}} \cup \varphi_{s}^{\mathcal{T}}$ is:

An "unlucky" possible execution of the algorithm is:

i	$\Theta_{i}^{\mathcal{T}}$	$\psi_{s, i}^{\mathcal{T}}$	$\operatorname{Weight}\left(\psi_{s, i}^{\mathcal{T}}\right)$	$\operatorname{SMT}\left(\varphi_{h}^{\mathcal{T}} \cup \psi_{s, i}^{\mathcal{T}} \cup \Theta_{i}^{\mathcal{T}}\right)$
0	$\}$	$\left\{C_{0}, C_{1}, C_{2}, C_{3}\right\}$	UNSAT	
1	$\left\{\theta_{4}\right\}$	$\left\{, C_{1}, C_{2}, C_{3}\right\}$	11	UNSAT
2	$\left\{\theta_{4}, \theta_{6}\right\}$	$\left\{C_{0}, C_{1}, C_{2},{ }_{2}\right\}$	9	UNSAT
3	$\left\{\theta_{4}, \theta_{6}, \theta_{3}\right\}$	$\left\{, \quad C_{2}, C_{3}\right\}$	8	SAT

A toy example I

$$
\begin{aligned}
& \varphi_{h}^{\mathcal{T}} \stackrel{\text { def }}{=} \emptyset \\
& \varphi_{s}^{\mathcal{T}} \stackrel{\text { def }}{=}\left\{\begin{array}{ll}
C_{0}:((x \leq 0)) & {[4]} \\
C_{1}:((x \leq 1)) & {[3]} \\
C_{2}:((x \geq 2)) & {[2]} \\
C_{3}:((x \geq 3)) & {[6]}
\end{array}\right\} \quad \varphi_{h}^{\mathcal{B}} \stackrel{\text { def }}{=} \emptyset \\
& \\
&
\end{aligned}
$$

Notice that the set of all (minimal) \mathcal{T}-lemmas on the \mathcal{T}-atoms of $\varphi_{h}^{\mathcal{T}} \cup \varphi_{s}^{\mathcal{T}}$ is:

An "unlucky" possible execution of the algorithm is:

i	$\Theta_{i}^{\mathcal{T}}$	$\psi_{s, i}^{\mathcal{T}}$	$\operatorname{Weight}\left(\psi_{s, i}^{\mathcal{T}}\right)$	$\operatorname{SMT}\left(\varphi_{h}^{\mathcal{T}} \cup \psi_{s, i}^{\mathcal{T}} \cup \Theta_{i}^{\mathcal{T}}\right)$
0	$\}$	$\left\{C_{0}, C_{1}, C_{2}, C_{3}\right\}$	UNSAT	
1	$\left\{\theta_{4}\right\}$	$\left\{, C_{1}, C_{2}, C_{3}\right\}$	11	UNSAT
2	$\left\{\theta_{4}, \theta_{6}\right\}$	$\left\{C_{0}, C_{1}, C_{2},{ }_{2}\right\}$	9	UNSAT
3	$\left\{\theta_{4}, \theta_{6}, \theta_{3}\right\}$	$\left\{, \quad C_{2}, C_{3}\right\}$	8	SAT

A toy example I

$$
\begin{aligned}
& \varphi_{h}^{\mathcal{T}} \stackrel{\text { def }}{=} \emptyset \\
& \varphi_{s}^{\mathcal{T}} \stackrel{\text { def }}{=}\left\{\begin{array}{ll}
C_{0}:((x \leq 0)) & {[4]} \\
C_{1}:((x \leq 1)) & {[3]} \\
C_{2}:((x \geq 2)) & {[2]} \\
C_{3}:((x \geq 3)) & {[6]}
\end{array}\right\} \quad \varphi_{h}^{\mathcal{B}} \stackrel{\text { def }}{=} \emptyset \\
& \\
& \\
&
\end{aligned}
$$

Notice that the set of all (minimal) \mathcal{T}-lemmas on the \mathcal{T}-atoms of $\varphi_{h}^{\top} \cup \varphi_{s}^{\top}$ is:
$\Theta_{*}^{\top}=\left\{\begin{array}{cc}\theta_{1}: & (\neg(x \leq 0) \vee(x \leq 1)) \\ \theta_{2}: & (\neg(x \geq 3) \vee(x \geq 2)) \\ \theta_{3}: & (\neg(x \leq 0) \vee \neg(x \geq 2)) \\ \theta_{4}: & (\neg(x \leq 0) \vee \neg(x \geq 3)) \\ \theta_{5}: & (\neg(x \leq 1) \vee \neg(x \geq 2)) \\ \theta_{6}: & (\neg(x \leq 1) \vee \neg(x \geq 3))\end{array}\right\} \quad \Theta_{*}^{B}=\left\{\begin{array}{l}\left(\neg A_{0} \vee A_{1}\right) \\ \left(\neg A_{3} \vee A_{2}\right) \\ \left(\neg A_{0} \vee \neg A_{2}\right) \\ \left(\neg A_{0} \vee \neg A_{3}\right) \\ \left(\neg A_{1} \vee \neg A_{2}\right) \\ \left(\neg A_{1} \vee \neg A_{3}\right)\end{array}\right\}$

An "unlucky" possible execution of the algorithm is:

i	Θ_{i}^{\top}	$\psi_{s, i}^{\mathcal{T}}$	Weight $\left(\psi_{s, i}^{\mathcal{T}}\right)$	$\operatorname{SMT}\left(\varphi_{h}^{\tau} \cup \psi_{s, i}^{\mathcal{T}} \cup \Theta_{i}^{\mathcal{T}}\right)$
0	$\}$	$\left\{C_{0}, C_{1}, C_{2}, C_{3}\right\}$	15	UNSAT
1	$\left\{\theta_{4}\right\}$	$\left\{, C_{1}, C_{2}, C_{3}\right\}$	11	UNSAT
2	$\left\{\theta_{4}, \theta_{6}\right\}$	$\left\{C_{0}, C_{1}, C_{2}, C_{3}\right\}$	9	UNSAT
3	$\left\{\theta_{4}, \theta_{6}, \theta_{3}\right\}$	$\left\{, C_{2}, C_{3}\right\}$	8	SAT

A toy example I

$$
\begin{aligned}
& \varphi_{h}^{\mathcal{T}} \stackrel{\text { def }}{=} \emptyset \\
& \varphi_{s}^{\mathcal{T}} \stackrel{\text { def }}{=}\left\{\begin{array}{ll}
C_{0}:((x \leq 0)) & {[4]} \\
C_{1}:((x \leq 1)) & {[3]} \\
C_{2}:((x \geq 2)) & {[2]} \\
C_{3}:((x \geq 3)) & \varphi_{h}^{\mathcal{B}} \stackrel{\text { def }}{=}
\end{array}\right) \quad \varphi_{s}^{\mathcal{B}} \stackrel{\text { def }}{=}\left\{\begin{array}{lll}
\left(A_{0}\right) & {[4]} \\
\left(A_{1}\right) & {[3]} \\
\left(A_{2}\right) & {[2]} \\
\left(A_{3}\right) & {[6]}
\end{array}\right\}
\end{aligned}
$$

Notice that the set of all (minimal) \mathcal{T}-lemmas on the \mathcal{T}-atoms of $\varphi_{h}^{\top} \cup \varphi_{s}^{\top}$ is:

An "unlucky" possible execution of the algorithm is:

i	Θ_{i}^{\top}	$\psi_{s, i}^{\top}$	Weight $\left(\psi_{s, i}^{\mathcal{T}}\right)$	$\operatorname{SMT}\left(\varphi_{h}^{\tau} \cup \psi_{s, i}^{\tau} \cup \Theta_{i}^{\top}\right)$
0	$\}$	$\left\{C_{0}, C_{1}, C_{2}, C_{3}\right\}$	15	UNSAT
1	$\left\{\theta_{4}\right\}$	$\left\{, C_{1}, C_{2}, C_{3}\right\}$	11	UNSAT
2	$\left\{\theta_{4}, \theta_{6}\right\}$	$\left\{C_{0}, C_{1}, C_{2}, C_{3}\right\}$	9	UNSAT
3	$\left\{\theta_{4}, \theta_{6}, \theta_{3}\right\}$	$\left\{, C_{2}, C_{3}\right\}$	8	SAT

A toy example I

$$
\begin{aligned}
& \varphi_{h}^{\tau} \stackrel{\text { def }}{=} \emptyset \quad \varphi_{h}^{\mathcal{B}} \stackrel{\text { def }}{=} \emptyset \\
& \varphi_{s}^{\mathcal{T}} \stackrel{\text { def }}{=}\left\{\begin{array}{ll}
C_{0}:((x \leq 0)) & {[4]} \\
C_{1}:((x \leq 1)) & {[3]} \\
C_{2}:((x \geq 2)) & {[2]} \\
C_{3}:((x \geq 3)) & {[6]}
\end{array}\right\} \quad \varphi_{s}^{\mathcal{B}} \stackrel{\text { def }}{=}\left\{\begin{array}{ll}
\left(A_{0}\right) & {[4]} \\
\left(A_{1}\right) & {[3]} \\
\left(A_{2}\right) & {[2]} \\
\left(A_{3}\right) & {[6]}
\end{array}\right\}
\end{aligned}
$$

Notice that the set of all (minimal) \mathcal{T}-lemmas on the \mathcal{T}-atoms of $\varphi_{h}^{\mathcal{T}} \cup \varphi_{s}^{\mathcal{T}}$ is:
$\Theta_{*}^{\mathcal{T}}=\left\{\begin{array}{cc}\theta_{1}: & (\neg(x \leq 0) \vee(x \leq 1)) \\ \theta_{2}: & (\neg(x \geq 3) \vee(x \geq 2)) \\ \theta_{3}: & (\neg(x \leq 0) \vee \neg(x \geq 2)) \\ \theta_{4}: & (\neg(x \leq 0) \vee \neg(x \geq 3)) \\ \theta_{5}: & (\neg(x \leq 1) \vee \neg(x \geq 2)) \\ \theta_{6}: & (\neg(x \leq 1) \vee \neg(x \geq 3))\end{array}\right\} \quad \Theta_{*}^{\mathcal{B}}=\left\{\begin{array}{l}\left(\neg A_{0} \vee A_{1}\right) \\ \left(\neg A_{3} \vee A_{2}\right) \\ \left(\neg A_{0} \vee \neg A_{2}\right) \\ \left(\neg A_{0} \vee \neg A_{3}\right) \\ \left(\neg A_{1} \vee \neg A_{2}\right) \\ \left(\neg A_{1} \vee \neg A_{3}\right)\end{array}\right\}$

An "unlucky" possible execution of the algorithm is:

i	$\Theta_{i}^{\mathcal{T}}$	$\psi_{s, i}^{\mathcal{T}}$	$\operatorname{Weight}\left(\psi_{s, i}^{\mathcal{T}}\right)$	$\operatorname{SMT}\left(\varphi_{h}^{\mathcal{T}} \cup \psi_{s, i}^{\mathcal{T}} \cup \Theta_{i}^{\mathcal{T}}\right)$
0	$\}$	$\left\{C_{0}, C_{1}, C_{2}, C_{3}\right\}$	UNSAT	
1	$\left\{\theta_{4}\right\}$	$\left\{, C_{1}, C_{2}, C_{3}\right\}$	11	UNSAT
2	$\left\{\theta_{4}, \theta_{6}\right\}$	$\left\{C_{0}, C_{1}, C_{2}, r_{2}\right\}$	9	UNSAT
3	$\left\{\theta_{4}, \theta_{6}, \theta_{3}\right\}$	$\left\{, \quad C_{2}, C_{3}\right\}$	8	SAT

A toy example I

$$
\begin{aligned}
& \varphi_{h}^{\tau} \stackrel{\text { def }}{=} \emptyset \quad \varphi_{h}^{\mathcal{B}} \stackrel{\text { def }}{=} \emptyset \\
& \varphi_{s}^{\mathcal{T}} \stackrel{\text { def }}{=}\left\{\begin{array}{ll}
C_{0}:((x \leq 0)) & {[4]} \\
C_{1}:((x \leq 1)) & {[3]} \\
C_{2}:((x \geq 2)) & {[2]} \\
C_{3}:((x \geq 3)) & {[6]}
\end{array}\right\} \quad \varphi_{s}^{\mathcal{B}} \stackrel{\text { def }}{=}\left\{\begin{array}{ll}
\left(A_{0}\right) & {[4]} \\
\left(A_{1}\right) & {[3]} \\
\left(A_{2}\right) & {[2]} \\
\left(A_{3}\right) & {[6]}
\end{array}\right\}
\end{aligned}
$$

Notice that the set of all (minimal) \mathcal{T}-lemmas on the \mathcal{T}-atoms of $\varphi_{h}^{\mathcal{T}} \cup \varphi_{s}^{\mathcal{T}}$ is:
$\Theta_{*}^{\mathcal{T}}=\left\{\begin{array}{cc}\theta_{1}: & (\neg(x \leq 0) \vee(x \leq 1)) \\ \theta_{2}: & (\neg(x \geq 3) \vee(x \geq 2)) \\ \theta_{3}: & (\neg(x \leq 0) \vee \neg(x \geq 2)) \\ \theta_{4}: & (\neg(x \leq 0) \vee \neg(x \geq 3)) \\ \theta_{5}: & (\neg(x \leq 1) \vee \neg(x \geq 2)) \\ \theta_{6}: & (\neg(x \leq 1) \vee \neg(x \geq 3))\end{array}\right\} \quad \Theta_{*}^{\mathcal{B}}=\left\{\begin{array}{l}\left(\neg A_{0} \vee A_{1}\right) \\ \left(\neg A_{3} \vee A_{2}\right) \\ \left(\neg A_{0} \vee \neg A_{2}\right) \\ \left(\neg A_{0} \vee \neg A_{3}\right) \\ \left(\neg A_{1} \vee \neg A_{2}\right) \\ \left(\neg A_{1} \vee \neg A_{3}\right)\end{array}\right\}$

An "unlucky" possible execution of the algorithm is:

i	$\Theta_{i}^{\mathcal{T}}$	$\psi_{s, i}^{\mathcal{T}}$	$\operatorname{Weight}\left(\psi_{s, i}^{\mathcal{T}}\right)$	$\operatorname{SMT}\left(\varphi_{h}^{\mathcal{T}} \cup \psi_{s, i}^{\mathcal{T}} \cup \Theta_{i}^{\mathcal{T}}\right)$
0	$\}$	$\left\{C_{0}, C_{1}, C_{2}, C_{3}\right\}$	UNSAT	
1	$\left\{\theta_{4}\right\}$	$\left\{, C_{1}, C_{2}, C_{3}\right\}$	11	UNSAT
2	$\left\{\theta_{4}, \theta_{6}\right\}$	$\left\{C_{0}, C_{1}, C_{2},{ }_{2}\right\}$	9	UNSAT
3	$\left\{\theta_{4}, \theta_{6}, \theta_{3}\right\}$	$\left\{, C_{2}, C_{3}\right\}$	8	SAT

A toy example I

$$
\begin{aligned}
& \varphi_{h}^{\mathcal{T}} \stackrel{\text { def }}{=} \emptyset \\
& \varphi_{s}^{\mathcal{T}} \stackrel{\text { def }}{=}\left\{\begin{array}{ll}
C_{0}:((x \leq 0)) & {[4]} \\
C_{1}:((x \leq 1)) & {[3]} \\
C_{2}:((x \geq 2)) & {[2]} \\
C_{3}:((x \geq 3)) & {[6]}
\end{array}\right\} \quad \varphi_{h}^{\mathcal{B}} \stackrel{\text { def }}{=} \emptyset \\
& \varphi_{s}^{\mathcal{B}} \stackrel{\text { def }}{=}\left\{\begin{array}{lll}
\left(A_{0}\right) & {[4]} \\
\left(A_{1}\right) & {[3]} \\
\left(A_{2}\right) & {[2]} \\
\left(A_{3}\right) & {[6]}
\end{array}\right\}
\end{aligned}
$$

Notice that the set of all (minimal) \mathcal{T}-lemmas on the \mathcal{T}-atoms of $\varphi_{h}^{\mathcal{T}} \cup \varphi_{s}^{\mathcal{T}}$ is:
$\Theta_{*}^{\mathcal{T}}=\left\{\begin{array}{cc}\theta_{1}: & (\neg(x \leq 0) \vee(x \leq 1)) \\ \theta_{2}: & (\neg(x \geq 3) \vee(x \geq 2)) \\ \theta_{3}: & (\neg(x \leq 0) \vee \neg(x \geq 2)) \\ \theta_{4}: & (\neg(x \leq 0) \vee \neg(x \geq 3)) \\ \theta_{5}: & (\neg(x \leq 1) \vee \neg(x \geq 2)) \\ \theta_{6}: & (\neg(x \leq 1) \vee \neg(x \geq 3))\end{array}\right\} \quad \Theta_{*}^{\mathcal{B}} \quad=\left\{\begin{array}{l}\left(\neg A_{0} \vee A_{1}\right) \\ \left(\neg A_{3} \vee A_{2}\right) \\ \left(\neg A_{0} \vee \neg A_{2}\right) \\ \left(\neg A_{0} \vee \neg A_{3}\right) \\ \left(\neg A_{1} \vee \neg A_{2}\right) \\ \left(\neg A_{1} \vee \neg A_{3}\right)\end{array}\right\}$

An "unlucky" possible execution of the algorithm is:

i	$\Theta_{i}^{\mathcal{T}}$	$\left.\psi_{s, i}^{\mathcal{T}}, C_{1}, C_{2}, C_{3}\right\}$	$\operatorname{Weight}\left(\psi_{s, i}^{\mathcal{T}}\right)$	$\operatorname{SMT}\left(\varphi_{h}^{\mathcal{T}} \cup \psi_{s, i}^{\mathcal{T}} \cup \Theta_{i}^{\mathcal{T}}\right)$
0	$\}$	$\left\{C_{0}\right.$,	UNSAT	
1	$\left\{\theta_{4}\right\}$	$\left\{, C_{1}, C_{2}, C_{3}\right\}$	11	UNSAT
2	$\left\{\theta_{4}, \theta_{6}\right\}$	$\left\{C_{0}, C_{1}, C_{2},{ }_{2}\right\}$	9	UNSAT
3	$\left\{\theta_{4}, \theta_{6}, \theta_{3}\right\}$	$\left\{, \quad, C_{2}, C_{3}\right\}$	8	SAT

A toy example I

$$
\begin{aligned}
& \varphi_{h}^{\mathcal{T}} \stackrel{\text { def }}{=} \emptyset \\
& \varphi_{s}^{\mathcal{T}} \stackrel{\text { def }}{=}\left\{\begin{array}{ll}
C_{0}:((x \leq 0)) & {[4]} \\
C_{1}:((x \leq 1)) & {[3]} \\
C_{2}:((x \geq 2)) & {[2]} \\
C_{3}:((x \geq 3)) & {[6]}
\end{array}\right\} \quad \varphi_{h}^{\mathcal{B}} \stackrel{\text { def }}{=} \emptyset \\
& \varphi_{s}^{\mathcal{B}} \stackrel{\text { def }}{=}\left\{\begin{array}{lll}
\left(A_{0}\right) & {[4]} \\
\left(A_{1}\right) & {[3]} \\
\left(A_{2}\right) & {[2]} \\
\left(A_{3}\right) & {[6]}
\end{array}\right\}
\end{aligned}
$$

Notice that the set of all (minimal) \mathcal{T}-lemmas on the \mathcal{T}-atoms of $\varphi_{h}^{\mathcal{T}} \cup \varphi_{s}^{\mathcal{T}}$ is:
$\Theta_{*}^{\mathcal{T}}=\left\{\begin{array}{cc}\theta_{1}: & (\neg(x \leq 0) \vee(x \leq 1)) \\ \theta_{2}: & (\neg(x \geq 3) \vee(x \geq 2)) \\ \theta_{3}: & (\neg(x \leq 0) \vee \neg(x \geq 2)) \\ \theta_{4}: & (\neg(x \leq 0) \vee \neg(x \geq 3)) \\ \theta_{5}: & (\neg(x \leq 1) \vee \neg(x \geq 2)) \\ \theta_{6}: & (\neg(x \leq 1) \vee \neg(x \geq 3))\end{array}\right\} \quad \Theta_{*}^{\mathcal{B}} \quad=\left\{\begin{array}{l}\left(\neg A_{0} \vee A_{1}\right) \\ \left(\neg A_{3} \vee A_{2}\right) \\ \left(\neg A_{0} \vee \neg A_{2}\right) \\ \left(\neg A_{0} \vee \neg A_{3}\right) \\ \left(\neg A_{1} \vee \neg A_{2}\right) \\ \left(\neg A_{1} \vee \neg A_{3}\right)\end{array}\right\}$

An "unlucky" possible execution of the algorithm is:

i	Θ_{i}^{τ}	$\psi_{s, i}^{\mathcal{T}}$	Weight $\left(\psi_{s, i}^{\mathcal{T}}\right)$	$\operatorname{SMT}\left(\varphi_{h}^{\tau} \cup \psi_{s, i}^{\mathcal{T}} \cup \Theta_{i}^{\mathcal{T}}\right)$
0	$\}$	$\left\{C_{0}, C_{1}, C_{2}, C_{3}\right\}$	15	UNSAT
1	$\left\{\theta_{4}\right\}$	$\left\{, C_{1}, C_{2}, C_{3}\right\}$	11	UNSAT
2	$\left\{\theta_{4}, \theta_{6}\right\}$	$\left\{C_{0}, C_{1}, C_{2}, C_{3}\right\}$	9	UNSAT
3	$\left\{\theta_{4}, \theta_{6}, \theta_{3}\right\}$	$\left\{, C_{2}, C_{3}\right\}$	8	SAT

A toy example II

$$
\begin{aligned}
& \varphi_{h}^{\mathcal{T}} \stackrel{\text { def }}{=} \emptyset \\
& \varphi_{s}^{\mathcal{T}} \stackrel{\text { def }}{=}\left\{\begin{array}{ll}
C_{0}:((x \leq 0)) & {[4]} \\
C_{1}:((x \leq 1)) & {[3]} \\
C_{2}:((x \geq 2)) & {[2]} \\
C_{3}:((x \geq 3)) & \varphi_{h}^{\mathcal{B}} \stackrel{\text { def }}{=}
\end{array}\right) \quad \varphi_{s}^{\mathcal{B}} \stackrel{\text { def }}{=}\left\{\begin{array}{ll}
\left(A_{0}\right) & {[4]} \\
\left(A_{1}\right) & {[3]} \\
\left(A_{2}\right) & {[2]} \\
\left(A_{3}\right) & {[6]}
\end{array}\right\}
\end{aligned}
$$

Notice that the set of all (minimal) \mathcal{T}-lemmas on the \mathcal{T}-atoms of $\varphi_{h}^{\mathcal{T}} \cup \varphi_{s}^{\mathcal{T}}$ is:
$\Theta_{*}^{\mathcal{T}}=\left\{\begin{array}{ll}\theta_{1}: & (\neg(x \leq 0) \vee(x \leq 1)) \\ \theta_{2}: & (\neg(x \geq 3) \vee(x \geq 2)) \\ \theta_{3}: & (\neg(x \leq 0) \vee \neg(x \geq 2)) \\ \theta_{4}:(\neg(x \leq 0) \vee \neg(x \geq 3)) \\ \theta_{5}:(\neg(x \leq 1) \vee \neg(x \geq 2)) \\ \theta_{6}:(\neg(x \leq 1) \vee \neg(x \geq 3))\end{array}\right\} \quad \Theta_{*}^{\mathcal{B}}=\left\{\begin{array}{l}\left(\neg A_{0} \vee A_{1}\right) \\ \left(\neg A_{3} \vee A_{2}\right) \\ \left(\neg A_{0} \vee \neg A_{2}\right) \\ \left(\neg A_{0} \vee \neg A_{3}\right) \\ \left(\neg A_{1} \vee \neg A_{2}\right) \\ \left(\neg A_{1} \vee \neg A_{3}\right)\end{array}\right\}$

A "lucky" possible execution of the algorithm is:

i	$\Theta_{i}^{\mathcal{T}}$	$\psi_{s, i}^{\mathcal{T}}$	$\operatorname{Weight}\left(\psi_{s, i}^{\mathcal{T}}\right)$	$\operatorname{SMT}\left(\varphi_{h}^{\mathcal{T}} \cup \psi_{s, i}^{\mathcal{T}} \cup \Theta_{i}^{\mathcal{T}}\right)$
0	$\}$	$\left\{C_{0}, C_{1}, C_{2}, C_{3}\right\}$	UNSAT	
1	$\left\{\theta_{1}, \theta_{2}, \theta_{5}\right\}$	$\left\{r, \quad C_{2}, C_{3}\right\}$	8	SAT

A toy example II

$$
\begin{aligned}
\varphi_{h}^{\mathcal{T}} & \stackrel{\text { def }}{=} \emptyset \\
\varphi_{s}^{\mathcal{T}} & \stackrel{\text { def }}{=}\left\{\begin{array}{ll}
C_{0}:((x \leq 0)) & {[4]} \\
C_{1}:((x \leq 1)) & {[3]} \\
C_{2}:((x \geq 2)) & {[2]} \\
C_{3}:((x \geq 3)) & {[6]}
\end{array}\right\} \quad \varphi_{h}^{\mathcal{B}} \stackrel{\text { def }}{=} \emptyset \\
\varphi_{s}^{\mathcal{B}} & \stackrel{\text { def }}{=}\left\{\begin{array}{lll}
\left(A_{0}\right) & {[4]} \\
\left(A_{1}\right) & {[3]} \\
\left(A_{2}\right) & {[2]} \\
\left(A_{3}\right) & {[6]}
\end{array}\right\}
\end{aligned}
$$

Notice that the set of all (minimal) \mathcal{T}-lemmas on the \mathcal{T}-atoms of $\varphi_{h}^{\mathcal{T}} \cup \varphi_{s}^{\mathcal{T}}$ is:

$$
\Theta_{*}^{\mathcal{T}}=\left\{\begin{aligned}
\theta_{1}: & (\neg(x \leq 0) \vee(x \leq 1)) \\
\theta_{2}: & (\neg(x \geq 3) \vee(x \geq 2)) \\
\theta_{3}: & (\neg(x \leq 0) \vee \neg(x \geq 2)) \\
\theta_{4}: & (\neg(x \leq 0) \vee \neg(x \geq 3)) \\
\theta_{5}: & (\neg(x \leq 1) \vee \neg(x \geq 2)) \\
\theta_{6}: & (\neg(x \leq 1) \vee \neg(x \geq 3))
\end{aligned}\right\} \quad \Theta_{*}^{\mathcal{B}} \quad=\left\{\begin{array}{l}
\left(\neg A_{0} \vee A_{1}\right) \\
\left(\neg A_{3} \vee A_{2}\right) \\
\left(\neg A_{0} \vee \neg A_{2}\right) \\
\left(\neg A_{0} \vee \neg A_{3}\right) \\
\left(\neg A_{1} \vee \neg A_{2}\right) \\
\left(\neg A_{1} \vee \neg A_{3}\right)
\end{array}\right\}
$$

A "lucky" possible execution of the algorithm is:

A toy example II

$$
\begin{aligned}
\varphi_{h}^{\mathcal{T}} \stackrel{\text { def }}{=} \emptyset \\
\varphi_{s}^{\mathcal{T}} \stackrel{\text { def }}{=}\left\{\begin{array}{lll}
C_{0}:((x \leq 0)) & {[4]} \\
C_{1}:((x \leq 1)) & {[3]} \\
C_{2}:((x \geq 2)) & {[2]} \\
C_{3}:((x \geq 3)) & {[6]}
\end{array}\right\} \quad \varphi_{h}^{\mathcal{B}} \stackrel{\text { def }}{=} \emptyset \stackrel{\text { def }}{=}\left\{\begin{array}{lll}
\left(A_{0}\right) & {[4]} \\
\left(A_{1}\right) & {[3]} \\
\left(A_{2}\right) & {[2]} \\
\left(A_{3}\right) & {[6]}
\end{array}\right\}
\end{aligned}
$$

Notice that the set of all (minimal) \mathcal{T}-lemmas on the \mathcal{T}-atoms of $\varphi_{h}^{\mathcal{T}} \cup \varphi_{s}^{\mathcal{T}}$ is:

A "lucky" possible execution of the algorithm is:

i	$\Theta_{i}^{\mathcal{T}}$	$\psi_{s, i}^{\mathcal{T}}$	$\operatorname{Weight}\left(\psi_{s, i}^{\mathcal{T}}\right)$	$\operatorname{SMT}\left(\varphi_{h}^{\mathcal{T}} \cup \psi_{s, i}^{\mathcal{T}} \cup \Theta_{i}^{\mathcal{T}}\right)$
0	$\}$	$\left\{\boldsymbol{C}_{0}, \boldsymbol{C}_{1}, \boldsymbol{C}_{2}, \boldsymbol{C}_{3}\right\}$	UNSAT	
1	$\left\{\theta_{1}, \theta_{2}, \theta_{5}\right\}$	$\left\{, \quad C_{2}, C_{3}\right\}$	8	SAT

A toy example II

$$
\begin{aligned}
& \varphi_{h}^{\mathcal{T}} \stackrel{\text { def }}{=} \emptyset \\
& \varphi_{s}^{\mathcal{T}} \stackrel{\text { def }}{=}\left\{\begin{array}{ll}
C_{0}:((x \leq 0)) & {[4]} \\
C_{1}:((x \leq 1)) & {[3]} \\
C_{2}:((x \geq 2)) & {[2]} \\
C_{3}:((x \geq 3)) & {[6]}
\end{array}\right\} \quad \varphi_{h}^{\mathcal{B}} \stackrel{\text { def }}{=} \emptyset \\
& \varphi_{s}^{\mathcal{B}} \stackrel{\text { def }}{=}\left\{\begin{array}{lll}
\left(A_{0}\right) & {[4]} \\
\left(A_{1}\right) & {[3]} \\
\left(A_{2}\right) & {[2]} \\
\left(A_{3}\right) & {[6]}
\end{array}\right\}
\end{aligned}
$$

Notice that the set of all (minimal) \mathcal{T}-lemmas on the \mathcal{T}-atoms of $\varphi_{h}^{\top} \cup \varphi_{s}^{\top}$ is:
$\Theta_{*}^{\top}=\left\{\begin{array}{cc}\theta_{1}: & (\neg(x \leq 0) \vee(x \leq 1)) \\ \theta_{2}: & (\neg(x \geq 3) \vee(x \geq 2)) \\ \theta_{3}: & (\neg(x \leq 0) \vee \neg(x \geq 2)) \\ \theta_{4}: & (\neg(x \leq 0) \vee \neg(x \geq 3))) \\ \theta_{5}: & (\neg(x \leq 1) \vee \neg(x \geq 2)) \\ \theta_{6}: & (\neg(x \leq 1) \vee \neg(x \geq 3))\end{array}\right\} \quad \Theta_{*}^{B}=\left\{\begin{array}{l}\left(\neg A_{0} \vee A_{1}\right) \\ \left(\neg A_{3} \vee A_{2}\right) \\ \left(\neg A_{0} \vee \neg A_{2}\right) \\ \left(\neg A_{0} \vee \neg A_{3}\right) \\ \left(\neg A_{1} \vee \neg A_{2}\right) \\ \left(\neg A_{1} \vee \neg A_{3}\right)\end{array}\right\}$

A "lucky" possible execution of the algorithm is:

i	Θ_{i}^{\top}	$\psi_{s, i}^{\mathcal{T}}$	Weight $\left(\psi_{s, i}^{\mathcal{T}}\right)$	$\operatorname{SMT}\left(\varphi_{h}^{\tau} \cup \psi_{s, i}^{\mathcal{T}} \cup \Theta_{i}^{\mathcal{T}}\right)$
0	$\}$	UNSAT		
1	$\left\{\theta_{1}, \theta_{2}, \theta_{5}\right\}$	$\left\{C_{0}, C_{1}, C_{2}, C_{3}\right\}$	15	SAT

A toy example II

$$
\begin{aligned}
& \varphi_{h}^{\mathcal{T}} \stackrel{\text { def }}{=} \emptyset \\
& \varphi_{s}^{\mathcal{T}} \stackrel{\text { def }}{=}\left\{\begin{array}{ll}
C_{0}:((x \leq 0)) & {[4]} \\
C_{1}:((x \leq 1)) & {[3]} \\
C_{2}:((x \geq 2)) & {[2]} \\
C_{3}:((x \geq 3)) & {[6]}
\end{array}\right\} \quad \varphi_{h}^{\mathcal{B}} \stackrel{\text { def }}{=} \emptyset \\
& \varphi_{s}^{\mathcal{B}} \stackrel{\text { def }}{=}\left\{\begin{array}{lll}
\left(A_{0}\right) & {[4]} \\
\left(A_{1}\right) & {[3]} \\
\left(A_{2}\right) & {[2]} \\
\left(A_{3}\right) & {[6]}
\end{array}\right\}
\end{aligned}
$$

Notice that the set of all (minimal) \mathcal{T}-lemmas on the \mathcal{T}-atoms of $\varphi_{h}^{\top} \cup \varphi_{s}^{\top}$ is:
$\Theta_{*}^{\top}=\left\{\begin{array}{cc}\theta_{1}: & (\neg(x \leq 0) \vee(x \leq 1)) \\ \theta_{2}: & (\neg(x \geq 3) \vee(x \geq 2)) \\ \theta_{3}: & (\neg(x \leq 0) \vee \neg(x \geq 2)) \\ \theta_{4}: & (\neg(x \leq 0) \vee \neg(x \geq 3))) \\ \theta_{5}: & (\neg(x \leq 1) \vee \neg(x \geq 2)) \\ \theta_{6}: & (\neg(x \leq 1) \vee \neg(x \geq 3))\end{array}\right\} \quad \Theta_{*}^{B}=\left\{\begin{array}{l}\left(\neg A_{0} \vee A_{1}\right) \\ \left(\neg A_{3} \vee A_{2}\right) \\ \left(\neg A_{0} \vee \neg A_{2}\right) \\ \left(\neg A_{0} \vee \neg A_{3}\right) \\ \left(\neg A_{1} \vee \neg A_{2}\right) \\ \left(\neg A_{1} \vee \neg A_{3}\right)\end{array}\right\}$

A "lucky" possible execution of the algorithm is:

i	Θ_{i}^{\top}	$\psi_{s, i}^{\mathcal{T}}$	Weight $\left(\psi_{s, i}^{\mathcal{T}}\right)$	$\operatorname{SMT}\left(\varphi_{h}^{\top} \cup \psi_{s, i}^{\mathcal{T}} \cup \Theta_{i}^{\mathcal{T}}\right)$
0	$\}$	$\left\{C_{0}, C_{1}, C_{2}, C_{3}\right\}$	UNSAT	
1	$\left\{\theta_{1}, \theta_{2}, \theta_{5}\right\}$	$\left\{, \quad, C_{2}, C_{3}\right\}$	8	SAT

A toy example II

$$
\begin{aligned}
& \varphi_{h}^{\mathcal{T}} \stackrel{\text { def }}{=} \emptyset \\
& \varphi_{s}^{\mathcal{T}} \stackrel{\text { def }}{=}\left\{\begin{array}{ll}
C_{0}:((x \leq 0)) & {[4]} \\
C_{1}:((x \leq 1)) & {[3]} \\
C_{2}:((x \geq 2)) & {[2]} \\
C_{3}:((x \geq 3)) & {[6]}
\end{array}\right\} \quad \varphi_{h}^{\mathcal{B}} \stackrel{\text { def }}{=} \emptyset \\
& \\
& \\
& \\
&
\end{aligned}
$$

Notice that the set of all (minimal) \mathcal{T}-lemmas on the \mathcal{T}-atoms of $\varphi_{h}^{\mathcal{T}} \cup \varphi_{s}^{\top}$ is:
$\Theta_{*}^{\top}=\left\{\begin{array}{cc}\theta_{1}: & (\neg(x \leq 0) \vee(x \leq 1)) \\ \theta_{2}: & (\neg(x \geq 3) \vee(x \geq 2)) \\ \theta_{3}: & (\neg(x \leq 0) \vee \neg(x \geq 2)) \\ \theta_{4}: & (\neg(x \leq 0) \vee \neg(x \geq 3))) \\ \theta_{5}: & (\neg(x \leq 1) \vee \neg(x \geq 2)) \\ \theta_{6}: & (\neg(x \leq 1) \vee \neg(x \geq 3))\end{array}\right\} \quad \Theta_{*}^{B}=\left\{\begin{array}{l}\left(\neg A_{0} \vee A_{1}\right) \\ \left(\neg A_{3} \vee A_{2}\right) \\ \left(\neg A_{0} \vee \neg A_{2}\right) \\ \left(\neg A_{0} \vee \neg A_{3}\right) \\ \left(\neg A_{1} \vee \neg A_{2}\right) \\ \left(\neg A_{1} \vee \neg A_{3}\right)\end{array}\right\}$

A "lucky" possible execution of the algorithm is:

i	$\Theta_{i}^{\mathcal{T}}$	$\psi_{s, i}^{\mathcal{T}}$	Weight $\left(\psi_{s, i}^{\mathcal{T}}\right)$	$\operatorname{SMT}\left(\varphi_{h}^{\mathcal{T}} \cup \psi_{s, i}^{\mathcal{T}} \cup \Theta_{i}^{\mathcal{T}}\right)$
0	$\}$	UNST		
1	$\left\{\boldsymbol{\theta}_{1}, \theta_{2}, \theta_{5}\right\}$	$\left\{, \quad, C_{1}, C_{2}, C_{3}\right\}$	15	UNSAT
	$\left., \quad, C_{3}\right\}$	8	SAT	

Outline

(1) Motivations
(2) Optimization Modulo Theories with Linear-Arithmetic Objectives
(3) OMT with Multiple and Combined Objectives
(4) Relevant Subcases: OMT+PB \& MaxSMT
(5) Status of OMT
6) Current and Future Research Directions
(7) Appendix

- Inline OMT schema
- OMT for Bit-vector and Floating-point theories
- Imptoving OMT+PB by sorting networks
- The MaxRES MaxSMT Procedure
- Extended SMT-LIB language
- Pareto Optimization (hints)

OMT $(\mathcal{L I R} \mathcal{A} \cup \mathcal{T})$ captures lots of interesting problems

	Boolean formulas	Sets of $\mathcal{L \mathcal { L R A }}$ constraints	$\operatorname{SMT}(\mathcal{L I R \mathcal { A })}$	$\operatorname{SMT}\left(\mathcal{L I R A} \cup \cup_{i} \mathcal{T}\right)$
DECISION (Satisfiability)				
OPTIMIZATION with PB cost function and constraints				
OPTIMIZATION with linear cost function				

OMT $(\mathcal{L I R} \mathcal{A} \cup \mathcal{T})$ captures lots of interesting problems

	Boolean formulas	Sets of $\mathcal{L \mathcal { L R A }}$ constraints	$\operatorname{SMT}(\mathcal{L I R \mathcal { A })}$	$\operatorname{SMT}\left(\mathcal{L I R A} \cup \cup_{i} \mathcal{T}\right)$
DECISION (Satisfiability)				$\operatorname{SMT}(\mathcal{T})$
OPTIMIZATION with PB cost function and constraints				
OPTIMIZATION with linear cost function				

OMT $(\mathcal{L I R} \mathcal{A} \cup \mathcal{T})$ captures lots of interesting problems

	Boolean formulas	Sets of $\mathcal{L \mathcal { L R A }}$ constraints	$\operatorname{SMT}(\mathcal{L I R \mathcal { A })}$	$\operatorname{SMT}\left(\mathcal{L I R A} \cup \cup_{i} \mathcal{T}\right)$
DECISION (Satisfiability)				
OPTIMIZATION with PB cost function and constraints	(Weighted) MaxSAT PB Opt.			
OPTIMIZATION with linear cost function				

OMT $(\mathcal{L I R} \mathcal{A} \cup \mathcal{T})$ captures lots of interesting problems

	Boolean formulas	Sets of $\mathcal{L I R A}$ constraints	$\operatorname{SMT}(\mathcal{L I R \mathcal { A })}$	$\operatorname{SMT}\left(\mathcal{L I R A} \cup \cup_{i} \mathcal{T}\right)$
DECISION (Satisfiability)				
OPTIMIZATION with PB cost function and constraints		MaxSMT and SMT (\mathcal{T}) with PB cost funct.		
OPTIMIZATION with linear cost function				

OMT $(\mathcal{L I R} \mathcal{A} \cup \mathcal{T})$ captures lots of interesting problems

	Boolean formulas	Sets of $\mathcal{L \mathcal { L R A }}$ constraints	$\operatorname{SMT}(\mathcal{L I R \mathcal { A })}$	$\operatorname{SMT}\left(\mathcal{L I R A} \cup \cup_{i} \mathcal{T}\right)$
DECISION (Satisfiability)		LP		
OPTIMIZATION with PB cost function and constraints				
OPTIMIZATION with linear cost function				

OMT $(\mathcal{L I R} \mathcal{A} \cup \mathcal{T})$ captures lots of interesting problems

	Boolean formulas	Sets of $\mathcal{L} \mathcal{I R} \mathcal{A}$ constraints	SMT $(\mathcal{L I R A})$	$\operatorname{SMT}\left(\mathcal{L I R A} \cup \cup_{i} \mathcal{T}\right.$
DECISION (Satisfiability)			ILP, MILP, DP, LGDP	
OPTIMIZATION with PB cost function and constraints				
OPTIMIZATION with linear cost function				

OMT $(\mathcal{L I R} \mathcal{A} \cup \mathcal{T})$ captures lots of interesting problems

OMT $(\mathcal{L I R} \mathcal{A} \cup \mathcal{T})$ captures lots of interesting problems

	Boolean formulas	Sets of $\mathcal{L I R A}$ constraints	SMT $(\mathcal{L I R} \mathcal{A})$	$\operatorname{SMT}\left(\mathcal{L I R A} \cup \cup_{i} \mathcal{T}\right.$
DECISION (Satisfiability)		LP	ILP, MILP, DP, LGDP	$\operatorname{SMT}(\mathcal{T})$
OPTIMIZATION with PB cost function and constraints	Weighted) MaxSAT PB Opt.	MaxSMT and $\operatorname{SMT}(\mathcal{T})$ with PB cost funct.		
OPTIMIZATION with linear cost function		OMT(LIR $\mathcal{A} \cup$		

(Finite Domain) Constraint Programming

FDCP/MILP

- Very efficient on (integer) linear arithmetic / combinatorial reasoning
- Very efficient handling of global constraints (e.g. all-different)
- Booleans typically represented as 0-1 integers
- (typically) finite precision arithmetic

SMT/OMT

- Very efficient on Boolean reasoning
- Supports other theories (Array, Bit-Vectors, Strings, ...)
- Incremental
- infinite precision arithmetic
- Other functionalities: all-smt, proofs, unsat-cores, interpolants,

Some OMT tools

- BCLT $[44,35]$ http://www.cs.upc.edu/~oliveras/bclt-main.html
- OptiMathSAT [52, 53, 55,54, 57], on top of MathSAT [22] http://optimathsat.disi.unitn.it
- Symba [38], on top of Z3 [24] https://bitbucket.org/arieg/symba/src
- Z3 [16, 15], on top of Z3 [24] http://z3.codeplex.com

More Recently:

- HAZEL [40]. $\Longrightarrow \mathcal{B V}$, incremental
- CEGIO $[7,9] \Longrightarrow$ counterexample guided inductive optimization
- MAxHS-MSAT [27] \Longrightarrow MaxSMT with Implicit Hitting Set (IHS) algorithm
- PULI [33]. $\Longrightarrow \mathcal{L I A}$ cost functions, (based on linear regression)

OMT Applications (ОртוМатнSAT)

Real-Time Systems. Worst-Case Execution Time (WCET) of programs [28]
\Longrightarrow reproduced with OptiMATHSAT [3]

Requirements Engineering. Constrained Goal Models with resources, preferences and goals [41, 42, 43].
\Longrightarrow OptiMathSAT backend engine of CGM-TOOL [1]

Machine Learning. Inference \& Learning in Hybrid domains [46, 60].
\Longrightarrow OptiMathSAT backend engine of LMT tool [2]

Quantum Annealing. Solving SAT and MaxSAT with D-Wave 2000Q QAs [12, 13] \Longrightarrow offline used of OPTIMATHSAT to generate optimal QUBO encodings of Boolean functions

Formal Verification \& Model Checking. Synthesis of Barrier Certificates for Hybrid Dynamical Systems [48]
\Longrightarrow OPTIMATHSAT used as oracle to separate safe/unsafe regions starting from a simulation

Scheduling. Optimal sleep/wake-up scheduling for WSNs [32, 34, 33]
\Longrightarrow OPTIMATHSAT used to deal with increasingly denser WSNs [34]

OMT Applications (Other tools)

Static Analysis.

- Generation of Invariants and Proving Termination via Constraint-based method [19]
- Finding Inductive Invariants via Local Policy Iteration [30, 31]

Formal Verification \& Model Checking.

- Computing Loop Iterations for Bounded Program Verification [39]

Scheduling and Planning with Resources.

- Optimal plans for multi-robot systems [36, 37]
- Task planning for smart factories [14]
- Optimal Job-Shop Scheduling with OMT [50]
- Synthesis Communication Schedules for Time Sensitive Networks [45]

Software Security Engineering.

- Multi-Objective Workflow Satisfiability Problem [11]

Outline

o
MotivationsOptimization Modulo Theories with Linear-Arithmetic ObjectivesOMT with Multiple and Combined Objectives
4. Relevant Subcases: OMT+PB \& MaxSMT
(5) Status of OMT

6 Current and Future Research Directions
(7) Appendix

- Inline OMT schema
- OMT for Bit-vector and Floating-point theories
- Imptoving OMT+PB by sorting networks
- The MaxRES MaxSMT Procedure
- Extended SMT-LIB language
- Pareto Optimization (hints)

Ongoing Work \& Research Directions on OMT

Field still far from maturity, lots of possible research directions:

- Improve efficiency!
- OMT on different theories, e.g.:
- Bit vectors ([16, 40])
- $\mathcal{N} \mathcal{L} \mathcal{A}(\mathbb{R})$
- $\mathcal{N} \mathcal{L} \mathcal{A}(\mathbb{Z})$ ([35])
- Floating point ([61])
- Exploit alternative SMT schemas (e.g., Model-Construction SMT)
- Hybrid techniques, integration with techniques in neighbour fields (MaxSAT, PB, CSP, MILP, CA, ...)
- Extensive empirical comparison wrt. techniques in neighbour fields
(MaxSAT, PB, CSP, MILP, ...)
- Bridge SMT/OMT with CSP/COP (Minizinc)

To this extent....

Announcement

PHD POSITION available in Trento on
"Advancing Optimization Modulo Theories"
The call will expire in a couple of months.
Please contact me if interested: roberto.sebastiani@unitn.it. (Se also flier on the desk.)

©Warner Bros. Inc.

References I

[1] CGM-Tool.
www.cgm-tool.eu.
[2] LMT.
http://disi.unitn.it/~teso/lmt/lmt.tgz.
[3] WCET OMT.
https://github.com/PatrickTrentin88/wcet_omt.
[4] Yices.
http://yices.csl.sri.com/.
[5] Z3.
http://research.microsoft.com/en-us/um/redmond/projects/z3/ml/z3.html.
[6] I. Abío, R. Nieuwenhuis, A. Oliveras, and E. Rodríguez-Carbonell.
A Parametric Approach for Smaller and Better Encodings of Cardinality Constraints.
In 19th International Conference on Principles and Practice of Constraint Programming, CP'13, 2013.
[7] H. F. Albuquerque, R. F. Araujo, I. V. de Bessa, L. C. Cordeiro, and E. B. de Lima Filho. OptCE: A Counterexample-Guided Inductive Optimization Solver.
In SBMF, volume 10623 of Lecture Notes in Computer Science, pages 125-141. Springer, 2017.
[8] R. Alur.
Timed Automata.
In Proc. CAV'99, pages 8-22, 1999.
[9] R. F. Araujo, H. F. Albuquerque, I. V. de Bessa, L. C. Cordeiro, and J. E. C. Filho. Counterexample guided inductive optimization based on satisfiability modulo theories.
Sci. Comput. Program., 165:3-23, 2018.
[10] R. Asín, R. Nieuwenhuis, A. Oliveras, and E. Rodríguez-Carbonell.
Cardinality Networks: a theoretical and empirical study.
Constraints, 16(2):195-221, 2011.

References II

[11] C. Bertolissi, D. R. dos Santos, and S. Ranise.
Solving Multi-Objective Workflow Satisfiability Problems with Optimization Modulo Theories Techniques.
In SACMAT, pages 117-128. ACM, 2018.
[12] Z. Bian, F. Chudak, W. Macready, A. Roy, R. Sebastiani, and S. Varotti.
Solving SAT and MaxSAT with a Quantum Annealer: Foundations and a Preliminary Report.
In Frontiers of Combining Systems, volume 10483 of LNCS, pages 153-171. Springer, 2017.
[13] Z. Bian, F. A. Chudak, W. G. Macready, A. Roy, R. Sebastiani, and S. Varotti.
Solving SAT and maxsat with a quantum annealer: Foundations, encodings, and preliminary results.
CoRR, abs/1811.02524, 2018.
Under submission for journal publication.
[14] A. Bit-Monnot, F. Leofante, L. Pulina, E. Ábrahám, and A. Tacchella.
SMarTplan: a Task Planner for Smart Factories.
CoRR, abs/1806.07135, 2018.
[15] N. Bjørner, A. Phan, and L. Fleckenstein. $\nu \mathrm{z}$ - an optimizing SMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems - 21st International Conference, TACAS 2015, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, pages 194-199, 2015.
[16] N. Bjorner and A.-D. Phan. νZ - Maximal Satisfaction with Z3.
In Proc International Symposium on Symbolic Computation in Software Science, Gammart, Tunisia, December 2014. EasyChair Proceedings in Computing (EPiC).
http://www.easychair.org/publications/?page $=862275542$.
[17] N. Bjorner, A.-D. Phan, and L. Fleckenstein.
Z3 - An Optimizing SMT Solver.
In Proc. TACAS, volume 9035 of LNCS. Springer, 2015.

References III

[18] M. Bozzano, R. Bruttomesso, A. Cimatti, T. A. Junttila, S. Ranise, P. van Rossum, and R. Sebastiani. Efficient Theory Combination via Boolean Search.
Information and Computation, 204(10):1493-1525, 2006.
[19] L. Candeago, D. Larraz, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio.
Speeding up the Constraint-Based Method in Difference Logic.
In SAT, volume 9710 of Lecture Notes in Computer Science, pages 284-301. Springer, 2016.
[20] A. Cimatti, A. Franzén, A. Griggio, R. Sebastiani, and C. Stenico.
Satisfiability modulo the theory of costs: Foundations and applications.
In TACAS, volume 6015 of LNCS, pages 99-113. Springer, 2010.
[21] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani.
A Modular Approach to MaxSAT Modulo Theories.
In International Conference on Theory and Applications of Satisfiability Testing, SAT, volume 7962 of LNCS, July 2013.
[22] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani.
The MathSAT 5 SMT Solver.
In Tools and Algorithms for the Construction and Analysis of Systems, TACAS'13., volume 7795 of LNCS, pages 95-109.
Springer, 2013.
[23] L. M. de Moura and N. Bjørner.
Z3: An efficient smt solver.
In TACAS, volume 4963 of LNCS, pages 337-340. Springer, 2008.
[24] L. M. de Moura and N. Bjørner.
Z3: an efficient SMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held
as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March
29-April 6, 2008. Proceedings, pages 337-340, 2008.
[25] B. Dutertre and L. de Moura.
A Fast Linear-Arithmetic Solver for DPLL(T).
In CAV, volume 4144 of LNCS, 2006.

References IV

[26] N. Eén and N. Sörensson.
Translating Pseudo-Boolean Constraints into SAT.
JSAT, 2(1-4):1-26, 2006.
[27] K. Fazekas, F. Bacchus, and A. Biere.
Implicit Hitting Set Algorithms for Maximum Satisfiability Modulo Theories.
In IJCAR, volume 10900 of Lecture Notes in Computer Science, pages 134-151. Springer, 2018.
[28] J. Henry, M. Asavoae, D. Monniaux, and C. Maïza.
How to Compute Worst-case Execution Time by Optimization Modulo Theory and a Clever Encoding of Program Semantics.
In Proceedings of the 2014 SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded Systems,
LCTES '14, pages 43-52, New York, NY, USA, 2014. ACM.
[29] M. Hifi.
Exact algorithms for the guillotine strip cutting/packing problem.
Computers \& OR, 25(11):925-940, 1998.
[30] E. G. Karpenkov, K. Friedberger, and D. Beyer.
JavaSMT: A Unified Interface for SMT Solvers in Java.
In VSTTE, volume 9971 of Lecture Notes in Computer Science, pages 139-148, 2016.
[31] G. E. Karpenkov.
Finding inductive invariants using satisfiability modulo theories and convex optimization.
Theses, Université Grenoble Alpes, Mar. 2017.
[32] G. Kovásznai, C. Biró, and B. Erdélyi.
Generating Optimal Scheduling for Wireless Sensor Networks by Using Optimization Modulo Theories Solvers.
2017.
[33] G. Kovásznai, C. Biró, and B. Erdélyi.
Puli - a problem-specific omt solver.
EasyChair Preprint no. 371, EasyChair, 2018.

References V

[34] G. Kovásznai, B. Erdélyi, and C. Biró.
Investigations of graph properties in terms of wireless sensor network optimization.
In 2018 IEEE International Conference on Future IoT Technologies (Future IoT), pages 1-8, Jan 2018.
[35] D. Larraz, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio.
Minimal-Model-Guided Approaches to Solving Polynomial Constraints and Extensions.
In SAT, volume 8561 of Lecture Notes in Computer Science, pages 333-350. Springer, 2014.
[36] F. Leofante, E. Ábrahám, T. Niemueller, G. Lakemeyer, and A. Tacchella.
On the Synthesis of Guaranteed-Quality Plans for Robot Fleets in Logistics Scenarios via Optimization Modulo Theories.
In 2017 IEEE International Conference on Information Reuse and Integration (IRI), pages 403-410, Aug 2017.
[37] F. Leofante, E. Abraham, T. Niemueller, G. Lakemeyer, and A. Tacchella.
Integrated Synthesis and Execution of Optimal Plans for Multi-Robot Systems in Logistics.
Information Systems Frontiers, pages 1-21, May 2018.
[38] Y. Li, A. Albarghouthi, Z. Kincaid, A. Gurfinkel, and M. Chechik.
Symbolic optimization with smt solvers.
In POPL, pages 607-618, 2014.
[39] T. Liu, S. S. Tyszberowicz, B. Beckert, and M. Taghdiri.
Computing Exact Loop Bounds for Bounded Program Verification.
In SETTA, volume 10606 of Lecture Notes in Computer Science, pages 147-163. Springer, 2017.
[40] A. Nadel and V. Ryvchin.
Bit-Vector Optimization.
In Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2016, volume 9636 of LNCS. Springer, 2016.
[41] C. M. Nguyen, R. Sebastiani, P. Giorgini, and J. Mylopoulos.
Multi-objective reasoning with constrained goal models.
Requirements Engineering, 2016.
In print. Published online 24 December 2016. DOI: http://dx.doi.org/10.1007/s00766-016-0263-5.

References VI

[42] C. M. Nguyen, R. Sebastiani, P. Giorgini, and J. Mylopoulos.
Requirements Evolution and Evolution Requirements with Constrained Goal Models.
In Proceedings of the 37nd International Conference on Conceptual Modeling - ER16, LNCS. Springer, 2016.
[43] C. M. Nguyen, R. Sebastiani, P. Giorgini, and J. Mylopoulos.
Modeling and Reasoning on Requirements Evolution with Constrained Goal Models.
In A. Cimatti and M. Sirjani, editors, Software Engineering and Formal Methods - 15th International Conference, SEFM 2017, Trento, Italy, September 4-8, 2017, Proceedings, volume 10469 of Lecture Notes in Computer Science, pages
70-86. Springer, 2017.
[44] R. Nieuwenhuis and A. Oliveras.
On SAT Modulo Theories and Optimization Problems.
In Proc. Theory and Applications of Satisfiability Testing - SAT 2006, volume 4121 of LNCS. Springer, 2006.
[45] R. S. Oliver, S. S. Craciunas, and W. Steiner.
IEEE 802.1 Qbv Gate Control List Synthesis Using Array Theory Encoding.
In 2018 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 13-24, April 2018.
[46] A. Passerini.

Learning Modulo Theories.

In C. Bessiere, L. D. Raedt, L. Kotthoff, S. Nijssen, B. O'Sullivan, and D. Pedreschi, editors, Data Mining and Constraint Programming - Foundations of a Cross-Disciplinary Approach, volume 10101 of Lecture Notes in Computer Science, pages 113-146. Springer, 2016.
[47] R. Raman and I. Grossmann.
Modelling and computational techniques for logic based integer programming.
Computers and Chemical Engineering, 18(7):563-578, 1994.
[48] S. Ratschan.
Simulation Based Computation of Certificates for Safety of Dynamical Systems.
In A. Abate and G. Geeraerts, editors, Formal Modeling and Analysis of Timed Systems - 15th International Conference,
FORMATS 2017, Berlin, Germany, September 5-7, 2017, Proceedings, volume 10419 of Lecture Notes in Computer
Science, pages 303-317. Springer, 2017.

References VII

[49] D. Rayside, H.-C. Estler, and D. Jackson.
The Guided Improvement Algorithm for Exact, General-Purpose, Many-Objective Combinatorial Optimization.
Technical report, Massachusetts Institute of Technology, Cambridge, 072009.
[50] S. F. Roselli, K. Bengtsson, and K. Åkesson.
SMT Solvers for Job-Shop Scheduling Problems: Models Comparison and Performance Evaluation.
In 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), pages 547-552, Aug 2018.
[51] N. W. Sawaya and I. E. Grossmann.
A cutting plane method for solving linear generalized disjunctive programming problems.
Comput Chem Eng, 29(9):1891-1913, 2005.
[52] R. Sebastiani and S. Tomasi.
Optimization in SMT with LA(Q) Cost Functions.
In IJCAR, volume 7364 of LNAI, pages 484-498. Springer, July 2012.
[53] R. Sebastiani and S. Tomasi.
Optimization Modulo Theories with Linear Rational Costs.
ACM Transactions on Computational Logics, 16(2), March 2015.
[54] R. Sebastiani and P. Trentin.
OptiMathSAT: A Tool for Optimization Modulo Theories.
In Proc. International Conference on Computer-Aided Verification, CAV 2015, volume 9206 of LNCS. Springer, 2015.
[55] R. Sebastiani and P. Trentin.
Pushing the Envelope of Optimization Modulo Theories with Linear-Arithmetic Cost Functions.
In Proc. Int. Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS'15, volume 9035
of LNCS. Springer, 2015.
[56] R. Sebastiani and P. Trentin.
On Optimization Modulo Theories, MaxSMT and Sorting Networks.
In Proc. Int. Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS'17, volume 10205 of LNCS. Springer, 2017.

References VIII

[57] R. Sebastiani and P. Trentin.
OptiMathSAT: A Tool for Optimization Modulo Theories.
Journal of Automated Reasoning, Dec 2018.
[58] C. Sinz.
Towards an Optimal CNF Encoding of Boolean Cardinality Constraints.
In P. van Beek, editor, CP, volume 3709 of LNCS, pages 827-831. Springer, 2005.
[59] S. Teso, R. Sebastiani, and A. Passerini.
Structured Learning Modulo Theories.
Artificial Intelligence Journal, 2015.
To appear.
[60] S. Teso, R. Sebastiani, and A. Passerini.
Structured learning modulo theories.
Artif. Intell., 244:166-187, 2017.
[61] P. Trentin and R. Sebastiani.
Optimization Modulo the Theory of Floating-Point Numbers.
In Proc. Int. Conference on Automated Deduction, CADE 27, LNCS/LNAI. Springer, 2019.
To appear.
[62] S. Wolfman and D. Weld.
The LPSAT Engine \& its Application to Resource Planning.
In Proc. IJCAI, 1999.

Outline

(1) Motivations
(2) Optimization Modulo Theories with Linear-Arithmetic Objectives
(3) OMT with Multiple and Combined Objectives
4. Relevant Subcases: OMT+PB \& MaxSMT
(5) Status of OMT

6 Current and Future Research Directions
(7) Appendix

- Inline OMT schema
- OMT for Bit-vector and Floating-point theories
- Imptoving OMT+PB by sorting networks
- The MaxRES MaxSMT Procedure
- Extended SMT-LIB language
- Pareto Optimization (hints)

Outline

0
Motivations

(2)
Optimization Modulo Theories with Linear-Arithmetic Objectives

(3)
OMT with Multiple and Combined Objectives
(4) Relevant Subcases: OMT + PB \& MaxSMT
(5) Status of OMT
6. Current and Future Research Directions
(7) Appendix

- Inline OMT schema
- OMT for Bit-vector and Floating-point theories
- Imptoving OMT+PB by sorting networks
- The MaxRES MaxSMT Procedure
- Extended SMT-LIB language
- Pareto Optimization (hints)

Solving OMT $(\mathcal{L R A})[52,53]$

General idea
 Combine standard SMT and LP minimization techniques.

Offline Schema
SMT solver and LP minimizer used as blackbox procedures.
\Longrightarrow no need to hack the code of the SMT solver
Inline Schema
Search for minimum integrated inside the CDCL loop of the SMT solver.

Solving OMT $(\mathcal{L R A} \mathcal{A})[52,53]$

General idea

Combine standard SMT and LP minimization techniques.
Offline Schema
SMT solver and LP minimizer used as blackbox procedures.
\Longrightarrow no need to hack the code of the SMT solver

Inline Schema

Search for minimum integrated inside the CDCL loop of the SMT solver.

Inline Version: Linear-Search Strategy

$$
\varphi
$$

- Search for optimum integrated inside CDCL search schema
- Minimizer called incrementally (no restarting of $\mathcal{L} \mathcal{R} \mathcal{A}$-solver)
- Learned clauses drive backjumping up to level 0
- Intermediate-assignment $\mathcal{L} \mathcal{R} \mathcal{A}$-checking (early-pruning) plays the role of "bounding" in a Branch \& Bound fashion

Inline Version: Linear-Search Strategy

- Search for optimum integrated inside CDCL search schema
- Minimizer called incrementally (no restarting of $\mathcal{L} \mathcal{R} \mathcal{A}$-solver)
- Learned clauses drive backjumping up to level 0
- Intermediate-assignment $\mathcal{L R} \mathcal{A}$-checking (early-pruning) plays the role of "bounding" in a Branch \& Bound fashion

Inline Version: Linear-Search Strategy

- Search for optimum integrated inside CDCL search schema
- Minimizer called incrementally (no restarting of $\mathcal{L} \mathcal{R} \mathcal{A}$-solver)
- Learned clauses drive backjumping up to level 0
- Intermediate-assignment $\mathcal{L} \mathcal{R} \mathcal{A}$-checking (early-pruning) plays the role of "bounding" in a Branch \& Bound fashion

Inline Version: Linear-Search Strategy

- Search for optimum integrated inside CDCL search schema
- Minimizer called incrementally (no restarting of $\mathcal{L \mathcal { R } \mathcal { A } \text { -solver) }) ~ (1) ~}$
- Learned clauses drive backjumping up to level 0
- Intermediate-assignment $\mathcal{L} \mathcal{R} \mathcal{A}$-checking (early-pruning) plays the role of "bounding" in a Branch \& Bound fashion

Inline Version: Linear-Search Strategy

- Search for optimum integrated inside CDCL search schema
- Minimizer called incrementally (no restarting of $\mathcal{L \mathcal { R } \mathcal { A } \text { -solver) }) ~ (1) ~}$
- Learned clauses drive backjumping up to level 0
- Intermediate-assignment $\mathcal{L} \mathcal{R} \mathcal{A}$-checking (early-pruning) plays the role of "bounding" in a Branch \& Bound fashion

Inline Version: Binary-Search Strategy

$$
\neg\left(\operatorname{cost}<\mathrm{lb}_{0}\right) \wedge\left(\operatorname{cost}<\mathrm{ub}_{0}\right) \in \varphi
$$

- Range-minimization loop embedded within CDCL search schema
- Level 0: update pivot ${ }_{j}$ and decide (cost $<$ pivot $_{j}$)

Inline Version: Binary-Search Strategy

- Range-minimization loop embedded within CDCL search schema
- Level 0: update pivot $_{j}$ and decide (cost $<$ pivot $_{j}$)

Inline Version: Binary-Search Strategy

- Range-minimization loop embedded within CDCL search schema
- Level 0: update pivot $_{j}$ and decide (cost $<$ pivot $_{j}$)

Inline Version: Binary-Search Strategy

- Range-minimization loop embedded within CDCL search schema
- Level 0: update pivot $_{j}$ and decide (cost $<$ pivot $_{j}$)

Inline Version: Binary-Search Strategy

- Range-minimization loop embedded within CDCL search schema
- Level 0: update pivot $_{j}$ and decide (cost $<$ pivot $_{j}$)

Inline Version: Binary-Search Strategy

- Range-minimization loop embedded within CDCL search schema
- Level 0: update pivot $_{j}$ and decide (cost $<$ pivot $_{j}$)

Inline Version: Binary-Search Strategy

- Range-minimization loop embedded within CDCL search schema
- Level 0: update pivot $_{j}$ and decide (cost $<$ pivot $_{j}$)

Inline Version: Binary-Search Strategy

- Range-minimization loop embedded within CDCL search schema
- Level 0: update pivot $_{j}$ and decide (cost $<$ pivot $_{j}$)

Inline Version: Binary-Search Strategy

- Range-minimization loop embedded within CDCL search schema
- Level 0: update pivot $_{j}$ and decide (cost $<$ pivot $_{j}$)

Outline

(1) Motivations

(2)
Optimization Modulo Theories with Linear-Arithmetic ObjectivesOMT with Multiple and Combined Objectives
4. Relevant Subcases: OMT+PB \& MaxSMT
(5) Status of OMT
6. Current and Future Research Directions
(7) Appendix

- Inline OMT schema
- OMT for Bit-vector and Floating-point theories
- Imptoving OMT+PB by sorting networks
- The MaxRES MaxSMT Procedure
- Extended SMT-LIB language
- Pareto Optimization (hints)

Minimization of an unsigned Bit-Vector

Given a pair $\langle\varphi, \operatorname{cost}\rangle$, where $\operatorname{cost} \stackrel{\text { def }}{=}[\operatorname{cost}[0], \ldots, \operatorname{cost}[n-1]]$ is an unsigned $\mathcal{B} \mathcal{V}$ of n bits:

- Reduction to:
- Lexicographic OMT: $\langle\varphi,\{\operatorname{cost}[0] \neq 0, \ldots, \operatorname{cost}[n-1] \neq 0\}\rangle_{\mathcal{L}}$
- MaxSMT [16, 17]: $\left\langle\varphi, \bigcup_{i=0}^{i=n-1}\langle\operatorname{cost}[i] \neq 0,1\rangle\right\rangle$
- OMT-based Approach: linear-search, binary-search and adaptive-search
- Ad-Hoc Algorithms:
- obv-wa [40]
- each cost[[] transformed into a high-priority decision variable
- the phase-saving of each cost $[$ $]$ initialized to 0
- OBV-bs [40]
- binary search over the bits [cost[0], ..., cost[$n-1]]$
- at most n incremental calls to the underlying SMT solver

Question:

How to deal with other $\mathcal{B V}$ goals?

- signed vs. unsigned
- maximization vs minimization

OMT($\mathcal{B V) ~ - ~ S i g n e d / U n s i g n e d ~} \mathcal{B V}$ [61]

Example: encoding of a 8-bits Bit-Vector

Unsigned:

Signed: (Two's complement)

Attractor attr for cost: when minimizing, it's the smallest $\mathcal{B} \mathcal{V}$-value of the same sort of cost.

- it's the ideal result of the optimization search
- depends on signed/unsigned
[Dual for Maximization]

OMT($\mathcal{B V) ~ - ~ S i g n e d / U n s i g n e d ~} \mathcal{B V}$ [61]

Reduction to unsigned $\mathcal{B V}$ (minimization)

Given an attractor attr for cost, both $\mathcal{B V}$ s of n bits, replace cost with
cost xor $_{n}$ attr
Example: maximization of a signed 8 -bits Bit-Vector

Before: cost

After: cost xor ${ }_{8} \# b 0111111$

00000000 127	Positive
00000001126	
0 1.1111111111	
10000000	Negative
10000001 -2	
1 1 1 1 1 1 0 -127 1 1 1 1 1 1 1 1	
111111111111-128	

Goal: find a model \mathcal{M} of φ for which the value of cost is minimum.

둥	Exponent	Significand

Simplification: $\exists \mathcal{M}$ s.t. $\mathcal{M} \models \varphi$ and $\mathcal{M}($ cost $) \neq$ NAN.
\Longrightarrow replace φ with $\varphi \wedge$ cost \neq NAN

$\mathcal{F P}$ Minimization Approaches

- Reduction to Bit-Vector Optimization:
$--\mathcal{B V}$ and $\mathcal{F P}$ are not Nelson-Oppen disjoint!
\Longrightarrow can only use eager $\mathcal{B V} / \mathcal{F P}$ SMT-solving approach
- OMT-based Approach: linear-search, binary-search and adaptive-search
- Ad-Hoc Algorithms:
- OFP-BS (based on OBV-BS [40])
- binary search over the bits [cost[0], $\ldots, \operatorname{cost}[n-1]]$
- at most n incremental calls to the underlying SMT solver

$\operatorname{OMT}(\mathcal{F P})[61]$

Example: Encoding of a $\mathcal{F P} \mathcal{X i , 5 \rangle}$

Minimization in the

- Positive Domain, go towards

- Negative Domain, go towards

| 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$| NAN |
| :--- |

- unless the exponent is all $\mathbf{1 s}$, then go towards

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline ? ~ & 1 & 1 & 1 & 0 & 0 & 0 \mid \\
\hline
\end{array}
$$

Dynamic Attractor attr τ_{k} for cost: given an assignment τ_{k} to the first k bits of cost, it's the smallest $\mathcal{F P}$-value different from NAN s.t.

$$
\forall_{i=0}^{i=k-1} \operatorname{attr}_{\tau_{k}}[i]=\tau_{k}[i]
$$

- The ideal result of the optimization wrt. current search horizon

OMT $(\mathcal{F P})$ - OFP-BS [61]

Idea: Use attr $_{\tau_{k}}$ as look-ahead.

- if $\left(\mathcal{M}(\operatorname{cost}[k]) \neq \operatorname{attr}_{\tau_{k}}[k]\right)$ then SMT.INCREMENTAL_CHECK $\left(\varphi \wedge \tau_{k} \wedge \operatorname{cost}[k]=\operatorname{attr}_{\tau_{k}}[k]\right) / /$ try improve cost
- UNSAT \Longrightarrow update τ_{k} and attr τ_{k}
- SAT \Longrightarrow update τ_{k} and \mathcal{M}
- otherwise: skip

Disclosure: based on OBV-BS [40].
Example: minimization of a $\mathcal{F} \mathcal{P}_{\langle 3,5\rangle}$

OMT $(\mathcal{F P})$ - OFP-BS [61]

Idea: Use attr $_{\tau_{k}}$ as look-ahead.

- if $\left(\mathcal{M}(\operatorname{cost}[k]) \neq \operatorname{attr}_{\tau_{k}}[k]\right)$ then SMT.INCREMENTAL_CHECK $\left(\varphi \wedge \tau_{k} \wedge \operatorname{cost}[k]=\operatorname{attr}_{\tau_{k}}[k]\right) / /$ try improve cost
- UNSAT \Longrightarrow update τ_{k} and attr $_{\tau_{k}}$
- SAT \Longrightarrow update τ_{k} and \mathcal{M}
- otherwise: skip

Disclosure: based on OBV-BS [40].
Example: minimization of a $\mathcal{F} \mathcal{P}_{\langle 3,5\rangle}$

OMT $(\mathcal{F P})$ - OFP-BS [61]

Idea: Use attr $_{\tau_{k}}$ as look-ahead.

- if $\left(\mathcal{M}(\operatorname{cost}[k]) \neq \operatorname{attr}_{\tau_{k}}[k]\right)$ then SMT.INCREMENTAL_CHECK $\left(\varphi \wedge \tau_{k} \wedge \operatorname{cost}[k]=\operatorname{attr}_{\tau_{k}}[k]\right) / /$ try improve cost
- UNSAT \Longrightarrow update τ_{k} and attr $_{\tau_{k}}$
- SAT \Longrightarrow update τ_{k} and \mathcal{M}
- otherwise: skip

Disclosure: based on OBV-BS [40].
Example: minimization of a $\mathcal{F} \mathcal{P}_{\langle 3,5\rangle}$

OMT $(\mathcal{F P})$ - OFP-BS [61]

Idea: Use attr $_{\tau_{k}}$ as look-ahead.

- if $\left(\mathcal{M}(\operatorname{cost}[k]) \neq \operatorname{attr}_{\tau_{k}}[k]\right)$ then

SMT.INCREMENTAL_CHECK $\left(\varphi \wedge \tau_{k} \wedge \operatorname{cost}[k]=\operatorname{attr}_{\tau_{k}}[k]\right) / /$ try improve cost

- UNSAT \Longrightarrow update τ_{k} and attr τ_{k}
- SAT \Longrightarrow update τ_{k} and \mathcal{M}
- otherwise: skip

Disclosure: based on OBV-BS [40].
Example: minimization of a $\mathcal{F} \mathcal{P}_{\langle 3,5\rangle}$

k	\mathcal{M} (cost)						$\tau_{\text {k }}$					$\operatorname{attr}_{\mathrm{r}_{\mathrm{k}}}$								
0	01	110	11	1	1	31/2							11	1	1		0	0	$-\infty$	
1	01	110	11	1	1	31/2	0						0	0	0	00	0	0	+0	SAT
2	00	00	00	1	0	1/32	0	0					0	0	0	00	0	0	$+0$	\Rightarrow skip
6	0	00	00	1	0	1/32	-		00	00			0	0	0	00	0	0	+0	

$\mathrm{OMT}(\mathcal{F P})$ - OFP-BS [61]

Idea: Use attr $_{\tau_{k}}$ as look-ahead.

- if $\left(\mathcal{M}(\operatorname{cost}[k]) \neq \operatorname{attr}_{\tau_{k}}[k]\right)$ then

SMT.INCREMENTAL_CHECK $\left(\varphi \wedge \tau_{k} \wedge \operatorname{cost}[k]=\operatorname{attr}_{\tau_{k}}[k]\right) / /$ try improve cost

- UNSAT \Longrightarrow update τ_{k} and attr τ_{k}
- SAT \Longrightarrow update τ_{k} and \mathcal{M}
- otherwise: skip

Disclosure: based on OBV-BS [40].
Example: minimization of a $\mathcal{F} \mathcal{P}_{\langle 3,5\rangle}$

$\mathrm{OMT}(\mathcal{F P})$ - OFP-BS [61]

Idea: Use attr $_{\tau_{k}}$ as look-ahead.

- if $\left(\mathcal{M}(\operatorname{cost}[k]) \neq \operatorname{attr}_{\tau_{k}}[k]\right)$ then

SMT.INCREMENTAL_CHECK $\left(\varphi \wedge \tau_{k} \wedge \operatorname{cost}[k]=\operatorname{attr}_{\tau_{k}}[k]\right) / /$ try improve cost

- UNSAT \Longrightarrow update τ_{k} and $\operatorname{attr} \tau_{k}$
- SAT \Longrightarrow update τ_{k} and \mathcal{M}
- otherwise: skip

Disclosure: based on OBV-BS [40].
Example: minimization of a $\mathcal{F} \mathcal{P}_{\langle 3,5\rangle}$

k	\mathcal{M} (cost)													$\mathrm{attr}_{\mathrm{T}_{\mathrm{k}}}$								
0	01	10	1	1	11		31/2									1	10	000	00	0	$-\infty$	AT
1	01	10	1	1	11		31/2	0							0	0		000	00	0	+0	
2	00	00	0	0	1	0	1/32	0							0	0		000	00	0		\Longrightarrow skip
6	00	00	0	0	10		1/32	0	0	0		0			0	0		0	0		+0	UNSAT
7	00	00	0	0	10	0	1/32	0	0	0	0	0	1			0		001	10	0	1/32	\Longrightarrow skip
	00	00	0	0	10	0	1/32	0	0	0			110			0	0	001		0	1/32	

$\mathrm{OMT}(\mathcal{F P})$ - OFP-BS [61]

Idea: Use attr $_{\tau_{k}}$ as look-ahead.

- if $\left(\mathcal{M}(\operatorname{cost}[k]) \neq \operatorname{attr}_{\tau_{k}}[k]\right)$ then

SMT.INCREMENTAL_CHECK $\left(\varphi \wedge \tau_{k} \wedge \operatorname{cost}[k]=\operatorname{attr}_{\tau_{k}}[k]\right) / /$ try improve cost

- UNSAT \Longrightarrow update τ_{k} and attr τ_{k}
- SAT \Longrightarrow update τ_{k} and \mathcal{M}
- otherwise: skip

Disclosure: based on OBV-BS [40].
Example: minimization of a $\mathcal{F} \mathcal{P}_{\langle 3,5\rangle}$

k	M (cost)												$\operatorname{attr}_{r_{\mathrm{k}}}$							
0	011	10	111	11		31/2								1				00	$-\infty$	
1	01	10	111	11		31/2	0							0	00	0		00	+0	-
2	00	00	00	1		1/32	0	0						0	0	00	00	00	+0	\Longrightarrow skip
6	00	00	00	10		1/32	0	0	0	0	0		0	0	00	010	00	0	+0	\Longrightarrow UNSAT
7	00	00	00	10		1/32	0	0	0	0	0	1		0	0	0	01	10	1/32	\Longrightarrow skip
8	00	00	00	10		1/32	0	0	0	0	0	110		0	0	0	01		1/32	\Longrightarrow en

Outline

(1) Motivations

Optimization Modulo Theories with Linear-Arithmetic ObjectivesOMT with Multiple and Combined Objectives(4) Relevant Subcases: OMT+PB \& MaxSMT
(5) Status of OMT
6) Current and Future Research Directions
(7) Appendix

- Inline OMT schema
- OMT for Bit-vector and Floating-point theories
- Imptoving OMT+PB by sorting networks
- The MaxRES MaxSMT Procedure
- Extended SMT-LIB language
- Pareto Optimization (hints)

Running Example: performance bottleneck

Problem:

- $\langle\varphi, \min (\operatorname{cost})\rangle$, where cost $:=w \cdot \sum_{i=0}^{n-1} A_{i}$, currently $o b j=k \cdot w$
- Optimization Step: learn $\neg(k \cdot w \leq$ cost $)$ and restart/jump to level 0

Example: with $k=2, w=1$ and $n=4$

$$
\mu \vDash \varphi
$$

Running Example: performance bottleneck

Problem:

- $\neg(k \leq$ cost $)$ causes the inconsistency of $\binom{n}{k}$ truth assignments satisfying exactly k variables in A_{0}, \ldots, A_{n-1}

Example: with $k=2, w=1$ and $n=4$

\qquad

Running Example: performance bottleneck

Problem:

- $\neg(k \leq$ cost $)$ causes the inconsistency of $\binom{n}{k}$ truth assignments satisfying exactly k variables in A_{0}, \ldots, A_{n-1}
\Longrightarrow inconsistency is not revealed by Boolean Constraint Propagation

Example: with $k=2, w=1$ and $n=4$

Running Example: performance bottleneck

Problem:

- up to $\binom{n}{k}$ (expensive) calls to the $\mathcal{L} \mathcal{A}$-Solver required

Example: with $k=2, w=1$ and $n=4$

Solution: OMT + sorting networks [56]

Contribution:

Enriched OMT encoding with bidirectional sorting networks [58, 10].

Approach:

Given $\langle\varphi$, cost \rangle, cost :=w $\cdot \sum_{i=0}^{n-1} A_{i}$, and a bi-directional sorting network relation $C\left(A_{0}, \ldots, A_{n-1}, B_{0}, \ldots, B_{n-1}\right)$ s.t.

- $k A_{i}$'s are $\top \Longleftrightarrow$ $\left\{B_{0}, \ldots, B_{k-1}\right\}$ are T,
- $m-k A_{i}$'s are $* \Longleftrightarrow$ $\left\{B_{k}, \ldots, B_{m-1}\right\}$ are $*$,
- $n-m A_{i}$'s are $\perp \Longleftrightarrow$
$\left\{B_{m}, \ldots, B_{n-1}\right\}$ are \perp

then we encode it as $\left\langle\varphi^{\prime}\right.$, cost \rangle, where

$$
\varphi^{\prime}:=\varphi \wedge C\left(A_{0}, \ldots, A_{n-1}, B_{0}, \ldots, B_{n-1}\right) \wedge \bigwedge_{i=0}^{n-1} B_{i} \leftrightarrow((i+1) \cdot w \leq \operatorname{cost}) \wedge \bigwedge_{i=0}^{n-2} B_{i+1} \rightarrow B_{i}
$$

Properties: OMT + sorting networks [56]

Properties:

- if $(k \cdot w \leq \operatorname{cost})=\perp$, then by BCP $\forall i \in[k, n] \cdot B_{i-1}=\perp$

Example: with $k=2, w=1$ and $n=4$

Properties: OMT + sorting networks [56]

Properties:

- if $(k \cdot w \leq \operatorname{cost})=\perp$, then by BCP $\forall i \in[k, n] \cdot B_{i-1}=\perp$
- as soon as $k-1 A_{i}$ are assigned T
\Longrightarrow all others are unit-propagated to \perp
Dual if $(k \cdot w \leq$ cost $)=T$.

Example: with $k=2, w=1$ and $n=4$

Example: OMT with sorting networks

- Optimization Step: learn $\neg(k \cdot w \leq$ cost) and restartjump to level 0

Example: with $k=2, w=1$ and $n=4$

$$
\mu \vDash \varphi
$$

Example: OMT with sorting networks

- Optimization Step: learn $\neg(k \cdot w \leq$ cost) and restart/jump to level 0
- as soon as $k-1 A_{i}$ are assigned T
\Longrightarrow all others are unit-propagated to \perp

Example: with $k=2, w=1$ and $n=4$

Solution: Combine OMT with Sorting Networks

OPTIMATHSAT: sorting networks implemented

- Bi-directional Sequential Counter [58], in $O\left(n^{2}\right)$ but incremental sum of A_{i} 's, unary representation
- Bi-directional Cardinality Network [10, 6], in $O\left(n \log ^{2} n\right)$ based on merge-sort algorithm

Generalization

The same performance issue occurs for $\langle\varphi$, cost \rangle, where

$$
\begin{aligned}
& \operatorname{cost}=\tau_{1}+\ldots+\tau_{m}, \\
& \forall_{j} \in[1, m] .\left(\tau_{j}=w_{j} \cdot \sum_{i=0}^{i=k_{j}} A_{j i}\right) \wedge\left(0 \leq \tau_{j}\right) \wedge\left(\tau_{j} \leq w_{j} \cdot k_{j}\right)
\end{aligned}
$$

Solution:

- use a separate sorting circuit for each term τ_{j}
- add clauses in the form $\left(w_{j} \cdot i \leq \tau_{j}\right) \rightarrow\left(w_{j} \cdot i \leq \operatorname{cost}\right)$

Outline

MotivationsOptimization Modulo Theories with Linear-Arithmetic ObjectivesOMT with Multiple and Combined Objectives4. Relevant Subcases: OMT+PB \& MaxSMT
(5) Status of OMT
6) Current and Future Research Directions
(7) Appendix

- Inline OMT schema
- OMT for Bit-vector and Floating-point theories
- Imptoving OMT+PB by sorting networks
- The MaxRES MaxSMT Procedure
- Extended SMT-LIB language
- Pareto Optimization (hints)

MaxRes: Maximum Resolution [16]

Idea: given a MaxSMT $\left\langle\varphi_{h}, \varphi_{s}\right\rangle$, treat both φ_{h} and φ_{s} as hard clauses.
Analyze conflict τ, where $\tau \stackrel{\text { def }}{=} \tau_{h} \cup \tau_{s}, \tau_{h} \subseteq \varphi_{h}$ and $\tau_{s} \subseteq \varphi_{s}$

- if $\tau_{s}=\emptyset \Longrightarrow$ input problem is unsatisfiable
- else let $w_{\text {min }} \stackrel{\text { def }}{=} \min \left(w_{i} \mid\left\langle C_{i}, w_{i}\right\rangle \in \tau_{s}\right)$ and relax the problem:
- Learn conflict-clause and replace soft-clauses

$$
\begin{aligned}
\varphi_{h} & :=\varphi_{h} \cup \bigvee_{\left\langle C_{i}, w_{i}\right\rangle \in \tau_{s}} \mathcal{} C_{i} \\
\varphi_{s} & :=\varphi_{s} \backslash \tau_{s} \cup \bigcup_{\left\langle C_{i}, w_{i}\right\rangle \in \tau_{s}}\left\langle C_{i}, w_{i}-w_{\text {min }}\right\rangle \text { if } w_{i}-w_{\text {min }}>0
\end{aligned}
$$

- if $\left|\tau_{s}\right|>1 \Longrightarrow$ add compensation clauses

$$
\begin{aligned}
\varphi_{h}:= & \varphi_{h} \cup \bigcup_{\left\langle C_{i}, w_{i}\right\rangle \in \tau_{s}} . B_{i} \rightarrow\left(B_{i-1} \wedge C_{i}\right) \\
& \| B_{0}:=T, \forall_{i>0} \cdot B_{i} \text { is fresh Boolean var } \\
\varphi_{s}:= & \varphi_{s} \cup \bigcup_{\left.\left\langle C_{i}, w_{i}\right\rangle \in\left\{\tau_{s} \backslash \backslash C_{1}, w_{1}\right\rangle\right\}} \cdot\left\langle B_{i-1} \vee C_{i}, w_{\text {min }}\right\rangle
\end{aligned}
$$

No Conflict: optimal solution

Outline

MotivationsOptimization Modulo Theories with Linear-Arithmetic Objectives(3)OMT with Multiple and Combined Objectives
(4) Relevant Subcases: OMT + PB \& MaxSMT
(5) Status of OMT
6. Current and Future Research Directions
(7) Appendix

- Inline OMT schema
- OMT for Bit-vector and Floating-point theories
- Imptoving OMT+PB by sorting networks
- The MaxRES MaxSMT Procedure
- Extended SMT-LIB language
- Pareto Optimization (hints)

Extended SMT-LIBv2 Interface [57]

```
(minimize <term> [:id <string>] [:signed]
    [:lower <const_term>] [:upper <const_term>])
(maximize <term> [:id <string>] [:signed]
    [:lower <const_term>] [:upper <const_term>])
(minmax <term> ... <term> [:id <string>] [:signed]
    [:lower <const_term>] [:upper <const_term>])
(maxmin <term> ... <term> [:id <string>] [:signed]
    [:lower <const_term>] [:upper <const_term>])
(assert-soft <term> [:id <string>] [:weight <const_term>])
(check-sat)
(check-allsat (<const_term> ... <const_term>))
(get-objectives)
(load-objective-model <numeral>)
```


Outline

O
Motivations

(2)
Optimization Modulo Theories with Linear-Arithmetic Objectives

(3)OMT with Multiple and Combined Objectives
(4) Relevant Subcases: OMT + PB \& MaxSMT
(5) Status of OMT
6. Current and Future Research Directions
(7) Appendix

- Inline OMT schema
- OMT for Bit-vector and Floating-point theories
- Imptoving OMT+PB by sorting networks
- The MaxRES MaxSMT Procedure
- Extended SMT-LIB language
- Pareto Optimization (hints)

Pareto OMT

Definitions:

- A model \mathcal{M} Pareto-dominates \mathcal{M}^{\prime} iff

$$
\forall i . \mathcal{M}\left(\operatorname{cost}_{i}\right) \leq \mathcal{M}^{\prime}\left(\operatorname{cost}_{i}\right)
$$

and

$$
\exists j . \mathcal{M}\left(\operatorname{cost}_{j}\right)<\mathcal{M}^{\prime}\left(\operatorname{cost}_{j}\right)
$$

(dual for maximization)

- \mathcal{M} is Pareto-optimal iff it is not Pareto-dominated by any \mathcal{M}^{\prime}.

Example: $\left\langle\varphi,\left\{\operatorname{cost}_{1}, \operatorname{cost}_{2}\right\}\right\rangle_{\mathcal{P}}$

Goal: given a pair $\langle\varphi, \mathcal{O}\rangle_{\mathcal{P}}$, where $\mathcal{O} \stackrel{\text { def }}{=}\left\{\operatorname{cost}_{1}, \ldots, \operatorname{cost}_{N}\right\}$

- find the set of Pareto-optimal models $\left\{\mathcal{M}_{1}, \ldots, \mathcal{M}_{M}\right\}$ (i.e. the Pareto front)

Pareto OMT: Guided Improvement Algorithm (GIA)

Guided Improvement Algorithm [49, 16]

Given a pair $\langle\varphi, \mathcal{O}\rangle_{\mathcal{P}}$, where $\mathcal{O} \stackrel{\text { def }}{=}\left\{\operatorname{cost}_{1}, \ldots, \operatorname{cost}_{N}\right\}$:

- start from random model \mathcal{M} of φ
- loop: look for a model \mathcal{M}^{\prime} of φ that Pareto-dominates \mathcal{M} \Longrightarrow if any, replace \mathcal{M} with \mathcal{M}^{\prime} and keep looking
- block solutions Pareto-dominated by \mathcal{M}
- repeat

Infinite Loop:

- some cost ${ }_{j}$ is unbounded
- some cost ${ }_{j}$ can always be improved by an infinitesimal value (e.g. OMT $(\mathcal{L R} \mathcal{A})$)

Also: \mathcal{T}-minimization procedure not used
\Longrightarrow the same μ may be visited multiple times by CDCL/SAT engine

Pareto OMT: Lexicographic GIA

Observation. If model \mathcal{M} is Lexicographic-optimal for $\left\langle\varphi,\left\{\operatorname{cost}_{1}, \ldots, \operatorname{cost}_{N}\right\}\right\rangle_{\mathcal{L}}$, then \mathcal{M} is also Pareto-optimal for $\left\langle\varphi,\left\{\operatorname{cost}_{1}, \ldots, \operatorname{cost}_{N}\right\}\right\rangle_{\mathcal{P}}$.

Idea:

- Shuffle $\left\{\operatorname{cost}_{1}, \ldots, \operatorname{cost}_{N}\right\}$
\Longrightarrow explore from different directions
- Extract Lexicographic-optimal \mathcal{M}
- Learn

$$
\bigvee_{i=1}^{i=N}\left(\operatorname{cost}_{i}<\mathcal{M}\left[\operatorname{cost}_{i}\right]\right)
$$

to block Pareto-dominated solutions

- repeat

Pareto OMT: Lexicographic GIA

Observation. If model \mathcal{M} is Lexicographic-optimal for $\left\langle\varphi,\left\{\operatorname{cost}_{1}, \ldots, \operatorname{cost}_{N}\right\}\right\rangle_{\mathcal{L}}$, then \mathcal{M} is also Pareto-optimal for $\left\langle\varphi,\left\{\operatorname{cost}_{1}, \ldots, \operatorname{cost}_{N}\right\}\right\rangle_{\mathcal{P}}$.

Idea:

- Shuffle $\left\{\operatorname{cost}_{1}, \ldots, \operatorname{cost}_{N}\right\}$
\Longrightarrow explore from different directions
- Extract Lexicographic-optimal \mathcal{M}
- Learn

$$
\bigvee_{i=1}^{i=N}\left(\operatorname{cost}_{i}<\mathcal{M}\left[\operatorname{cost}_{i}\right]\right)
$$

to block Pareto-dominated solutions

- repeat

Pareto OMT: Lexicographic GIA

Observation. If model \mathcal{M} is Lexicographic-optimal for $\left\langle\varphi,\left\{\operatorname{cost}_{1}, \ldots, \operatorname{cost}_{N}\right\}\right\rangle_{\mathcal{L}}$, then \mathcal{M} is also Pareto-optimal for $\left\langle\varphi,\left\{\operatorname{cost}_{1}, \ldots, \operatorname{cost}_{N}\right\}\right\rangle_{\mathcal{P}}$.

Idea:

- Shuffle $\left\{\operatorname{cost}_{1}, \ldots, \operatorname{cost}_{N}\right\}$
\Longrightarrow explore from different directions
- Extract Lexicographic-optimal \mathcal{M}
- Learn

$$
\bigvee_{i=1}^{i=N}\left(\operatorname{cost}_{i}<\mathcal{M}\left[\operatorname{cost}_{i}\right]\right)
$$

to block Pareto-dominated solutions

- repeat

Pareto OMT: Lexicographic GIA

Observation. If model \mathcal{M} is Lexicographic-optimal for $\left\langle\varphi,\left\{\operatorname{cost}_{1}, \ldots, \cos _{N}\right\}\right\rangle_{\mathcal{L}}$, then \mathcal{M} is also Pareto-optimal for $\left\langle\varphi,\left\{\operatorname{cost}_{1}, \ldots, \operatorname{cost}_{N}\right\}\right\rangle_{\mathcal{P}}$.

Idea:

- Shuffle $\left\{\operatorname{cost}_{1}, \ldots\right.$, cost $\left._{N}\right\}$
\Longrightarrow explore from different directions
- Extract Lexicographic-optimal \mathcal{M}
- Learn

$$
\bigvee_{i=1}^{i=N}\left(\operatorname{cost}_{i}<\mathcal{M}\left[\operatorname{cost}_{i}\right]\right)
$$

to block Pareto-dominated solutions

- repeat

Problem: how to deal with unbounded objectives?

Pareto OMT: dealing with unbounded objectives

-7	-6	-5	-4	-3	-2	-1

1. Sort objectives:

- lower-bounded first
- lower-unbounded last
before Lex. OMT.

Pareto OMT: dealing with unbounded objectives

Pareto OMT: dealing with unbounded objectives

Pareto OMT: dealing with unbounded objectives

1. Sort objectives:

- lower-bounded first
- lower-unbounded last before Lex. OMT.

2. If Lex. OMT unbounded, (temporarily) learn:

$$
\bigwedge_{i=1}^{i=N}\left(\operatorname{cost}_{i} \leq \mathcal{M}\left[\operatorname{cost}_{i}\right]\right)
$$

and try again.

Pareto OMT: dealing with unbounded objectives

1. Sort objectives:

- lower-bounded first
- lower-unbounded last before Lex. OMT.

2. If Lex. OMT unbounded, (temporarily) learn:

$$
\bigwedge_{i=1}^{i=N}\left(\operatorname{cost}_{i} \leq \mathcal{M}\left[\operatorname{cost}_{i}\right]\right)
$$

and try again.

Pareto OMT: dealing with unbounded objectives

1. Sort objectives:

- lower-bounded first
- lower-unbounded last before Lex. OMT.

3. If Lex. OMT still unbounded, give up.

4. If Lex. OMT unbounded, (temporarily) learn:

$$
\bigwedge_{i=1}^{i=N}\left(\operatorname{cost}_{i} \leq \mathcal{M}\left[\operatorname{cost}_{i}\right]\right)
$$

and try again.

