
Optimization Modulo Theories
An Introduction

Roberto Sebastiani

Dept. of Computer Science and Engineering, DISI
University of Trento, Italy

roberto.sebastiani@unitn.it

http://disi.unitn.it/rseba

– International SAT/SMT/AR School, Lisbon, PT, July 3-7th, 2019 –

roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba

Outline

1 Motivations

2 Optimization Modulo Theories with Linear-Arithmetic Objectives

3 OMT with Multiple and Combined Objectives

4 Relevant Subcases: OMT+PB & MaxSMT

5 Status of OMT

6 Current and Future Research Directions

7 Appendix
Inline OMT schema
OMT for Bit-vector and Floating-point theories
Imptoving OMT+PB by sorting networks
The MaxRES MaxSMT Procedure
Extended SMT-LIB language
Pareto Optimization (hints)

Outline

1 Motivations

2 Optimization Modulo Theories with Linear-Arithmetic Objectives

3 OMT with Multiple and Combined Objectives

4 Relevant Subcases: OMT+PB & MaxSMT

5 Status of OMT

6 Current and Future Research Directions

7 Appendix
Inline OMT schema
OMT for Bit-vector and Floating-point theories
Imptoving OMT+PB by sorting networks
The MaxRES MaxSMT Procedure
Extended SMT-LIB language
Pareto Optimization (hints)

Satisfiability Modulo Theories SMT(T)

SMT(T): the problem of deciding the satisfiability of a (typically)
ground first-order formula wrt some background theory T .

T can be a combination of theories
⋃

i Ti

Theories of Interest:
Linear arithmetic over the rationals (LRA)
(Tδ → (s1 = s0 + 3.4 · t − 3.4 · t0)) ∧ (¬Tδ → (s1 = s0))

Linear arithmetic over the integers (LIA)
(x := xl + 216xh) ∧ (x ≥ 0) ∧ (x ≤ 216 − 1)

Arrays (AR)
(i = j) ∨ read(write(a, i, e), j) = read(a, j)
Bit vectors (BV)
x[16][15 : 0] = (y[16][15 : 8] :: z[16][7 : 0]) << w[8][3 : 0]

Non-linear arithmetic (NLA)
((c = a · b) ∧ (a1 = a− 1) ∧ (b1 = a + 1))→ (c = a1 · b1 + 1)

...

“Lazy” Approach: SMT solver = CDCL SAT solver + T -solver(s)

Need for Satisfiability Modulo Theories (SMT)

SMT solvers widely used as backend engines in formal verification
and many other applications

SW verification
verification of Timed and Hybrid Systems
verification of RTL Circuit designs & of microcode
static analysis of SW programs
test-case generation
program synthesis
scheduling
planning with resources
compiler optimization
...

Need for Optimization Modulo Theories (SMT)

Many SMT-encodable problems require optimum solutions wrt. some
objective function. E.g.:

SW verification
formal verification of parametric systems
optimization of physical layout of circuit designs
scheduling and temporal reasoning
displacement of tools (e.g. strip-packing problem)
planning with resources and retrofit planning
radio link frequency assignment
machine learning on hybrid domains
goal modeling in requirement engineering
...

Ex.: FV of parametric systems

A (parametric version of a) timed system from [Alur, CAV-99] [8]:

Decision Problem: check safety under fixed choices of the constants
(e.g, the delay after which the controller orders the gate to lower the
bar) (M |= G¬(in ∧ up))

BMC encodable into a SMT(LRA) problem (sat. =⇒ unsafe)

Ex.: FV of parametric systems

A (parametric version of a) timed system from [Alur, CAV-99] [8]:

Optimization Problem: find the minimum “unsafe” delay D after which
the controller orders the gate to lower the bar, which doesn’t
guarantee safety (M 6|= G¬(in ∧ up)).
=⇒ Set the delay D strictly smaller

BMC encodable into a OMT(LRA) problem (min. D s.t. satisf.)

Ex.: Formal Verification of Real-Time Systems

Model Checking: M |= f?

Bounded Model Checking (BMC) looks for an execution path of M of
(increasing) length k

satisfying the temporal property ¬f (i.e. M |=k E¬f)
minimizing the total elapsed time: cost = min(tN − t0)

BMC is encoded into SMT(T) (e.g. T = LRA ∪AR ∪ . . .):
if ϕk is satisfiable, then M 6|= f

DUMP1 → (A1 = write(A0, i1, v1
i))

∧ ¬DUMP1 → (A1 = A0)

∧ DUMP1 → (t1 − t0 = 0)
∧ . . .

∧ WAIT 1 → (t1 − t0 > 0)
∧ . . .

∧ DUMPN → . . .
∧ . . .

Ex.: Formal Verification of Real-Time Systems

Model Checking: M |= f?

Bounded Model Checking (BMC) looks for an execution path of M of
(increasing) length k

satisfying the temporal property ¬f (i.e. M |=k E¬f)
minimizing the total elapsed time: cost = min(tN − t0)

BMC is encoded into SMT(T) (e.g. T = LRA ∪AR ∪ . . .):
if ϕk is satisfiable, then M 6|= f

DUMP1 → (A1 = write(A0, i1, v1
i))

∧ ¬DUMP1 → (A1 = A0)

∧ DUMP1 → (t1 − t0 = 0)
∧ . . .

∧ WAIT 1 → (t1 − t0 > 0)
∧ . . .

∧ DUMPN → . . .
∧ . . .

Ex.: Planning with Resources [62]

SAT-based planning augmented with numerical constraints
Straightforward to encode into into SMT(LRA)

Goal: find a plan minimizing some resource consumption (time,
money, gasoline, ...)

Example (sketch) [62]

(Deliver) ∧ // goal
(MaxLoad) ∧ // load constraint
(MaxFuel) ∧ // fuel constraint
(Move→ MinFuel) ∧ // move requires fuel
(Move→ Deliver) ∧ // move implies delivery
(GoodTrip → Deliver) ∧ // a good trip requires
(GoodTrip → AllLoaded) ∧ // a full delivery
(MaxLoad → (load ≤ 30)) ∧ // load limit
(MaxFuel → (fuel ≤ 15)) ∧ // fuel limit
(MinFuel → (fuel ≥ 7 + 0.5load)) ∧ // fuel constraint
(AllLoaded → (load = 45)) //

Ex.: (LGDP/MILP) Strip-packing & Carpet-cutting
[29, 51, 53]

W

L

Strip-packing: Minimize the length L of a strip of width W while fitting
N rectangles (no overlap, no rotation) [29]. Carpet-cutting: w.
rotation.
ϕ

def
= (cost = L) ∧

∧
i∈N(L ≥ xi + Li)

∧
∧

i,j∈N,i<j

(
(xi + Li ≤ xj) ∨ (xj + Lj ≤ xi)

∨(yi − Hi ≥ yj) ∨ (yj − Hj ≥ yi)
)

∧
∧

i∈N(xi ≤ ub− Li) ∧
∧

i∈N(xi ≥ 0)
∧

∧
i∈N(Hi ≤ yi) ∧

∧
i∈N(W ≥ yi) ∧

∧
i∈N(yi ≥ 0)

Ex.: (LGDP/MILP) Zero-Wait Jobshop Scheduling
[29, 51, 53]

stage 3

stage 1

stage 2

Given a set I of jobs which must be scheduled sequentially on a set J
of consecutive stages with zero-wait transfer between them, minimize
the makespan M [47].

ϕ
def
= (cost = M) ∧

∧
i∈I(M ≥ si +

∑
j∈Ji

tij) ∧
∧

i∈I(si ≥ 0)

∧
∧

j∈Cik ,i,k∈I,i<k

(
(si +

∑
m∈Ji ,m≤j tim ≤ sk +

∑
m∈Jk ,m<j tkm)

∨ (sk +
∑

m∈Jk ,m≤j tkm ≤ si +
∑

m∈Ji ,m<j tim)
)

Outline

1 Motivations

2 Optimization Modulo Theories with Linear-Arithmetic Objectives

3 OMT with Multiple and Combined Objectives

4 Relevant Subcases: OMT+PB & MaxSMT

5 Status of OMT

6 Current and Future Research Directions

7 Appendix
Inline OMT schema
OMT for Bit-vector and Floating-point theories
Imptoving OMT+PB by sorting networks
The MaxRES MaxSMT Procedure
Extended SMT-LIB language
Pareto Optimization (hints)

Optimization Modulo Theories: General Case

Ingredients

a SMT formula ϕ in some background theory T = T� ∪
⋃

i Ti⋃
i Ti may be empty
T� has a predicate � representing a total order

a T�-variable/term “cost” occurring in ϕ

Optimization Modulo T� ∪
⋃

i Ti (OMT(T� ∪
⋃

i Ti))

The problem of finding a modelM for ϕ whose value of cost is
minimum according to �.

maximization dual

Optimization Modulo Theories with LIRA costs

Ingredients

an SMT formula ϕ on LIRA ∪ T
LIRA can be LRA, LIA or a combination of both
T def

=
⋃

i Ti , possibly empty
LIRA and Ti disjoint Nelson-Oppen theories

a LIRA variable [term] “cost” occurring in ϕ
(optionally) two constant numbers lb (lower bound) and ub
(upper bound) s.t. lb ≤ cost < ub (lb, ub may be ∓∞)

Optimization Modulo Theories with LIRA costs (OMT(LIRA ∪ T))

Find a model for ϕ whose value of cost is minimum.
maximization dual

We first restrict to the case LIRA = LRA and
⋃

i Ti = {}
(OMT(LRA)).

Optimization Modulo Theories with LRA costs

Ingredients

an SMT formula ϕ on LRA ∪ T
LIRA can be LRA, LIA or a combination of both
T def

=
⋃

i Ti , possibly empty
LRA and Ti disjoint Nelson-Oppen theories

a LRA variable [term] “cost” occurring in ϕ
(optionally) two constant numbers lb (lower bound) and ub
(upper bound) s.t. lb ≤ cost < ub (lb, ub may be ∓∞)

Optimization Modulo Theories with LRA costs (OMT(LRA ∪ T))

Find a model for ϕ whose value of cost is minimum.
maximization dual

We first restrict to the case LIRA = LRA and
⋃

i Ti = {}
(OMT(LRA)).

Solving OMT(LRA) [52, 53]

General idea
Combine standard SMT and LP minimization techniques.

Offline Schema
Minimizer: based on the Simplex LRA-solver by [25]

Handles strict inequalities
Search Strategies:

Linear-Search strategy
Mixed Linear/Binary strategy

A toy example (linear search)

[w. pure-literal filt. =⇒ partial assignments]

OMT(LRA) problem:
ϕ

def
= (¬A1 ∨ (2x + y ≥ −2))
∧ (A1 ∨ (x + y ≥ 3))
∧ (¬A2 ∨ (4x − y ≥ −4))
∧ (A2 ∨ (2x − y ≥ −6))
∧ (cost < −0.2)
∧ (cost < −1.0)
∧ (cost < −2.0)

cost def
= x

µ =

A1,¬A1, A2,¬A2,
(4x − y ≥ −4),
(x + y ≥ 3),
(2x + y ≥ −2),
(2x − y ≥ −6)
(cost < −0.2)
(cost < −1.0)
(cost < −2.0)

(4x − y ≥ −4)

(x + y ≥ 3)

(2x − y ≥ −6)

(2x + y ≥ −2)

(cost < −2.0)
(cost < −1.0)

(cost < −0.2)

y

x

A toy example (linear search)

[w. pure-literal filt. =⇒ partial assignments]

OMT(LRA) problem:
ϕ

def
= (¬A1 ∨ (2x + y ≥ −2))
∧ (A1 ∨ (x + y ≥ 3))
∧ (¬A2 ∨ (4x − y ≥ −4))
∧ (A2 ∨ (2x − y ≥ −6))
∧ (cost < −0.2)
∧ (cost < −1.0)
∧ (cost < −2.0)

cost def
= x

µ =

A1,¬A1, A2,¬A2,
(4x − y ≥ −4),
(x + y ≥ 3),
(2x + y ≥ −2),
(2x − y ≥ −6)
(cost < −0.2)
(cost < −1.0)
(cost < −2.0)

=⇒ SAT, min = −0.2

(4x − y ≥ −4)

(x + y ≥ 3)

(2x − y ≥ −6)

(2x + y ≥ −2)

(cost < −2.0)
(cost < −1.0)

(cost < −0.2)

y

x

A toy example (linear search)

[w. pure-literal filt. =⇒ partial assignments]

OMT(LRA) problem:
ϕ

def
= (¬A1 ∨ (2x + y ≥ −2))
∧ (A1 ∨ (x + y ≥ 3))
∧ (¬A2 ∨ (4x − y ≥ −4))
∧ (A2 ∨ (2x − y ≥ −6))
∧ (cost < −0.2)
∧ (cost < −1.0)
∧ (cost < −2.0)

cost def
= x

µ =

A1,¬A1, A2,¬A2,
(4x − y ≥ −4),
(x + y ≥ 3),
(2x + y ≥ −2),
(2x − y ≥ −6)
(cost < −0.2)
(cost < −1.0)
(cost < −2.0)

=⇒ SAT, min = −1.0

(4x − y ≥ −4)

(x + y ≥ 3)

(2x − y ≥ −6)

(2x + y ≥ −2)

(cost < −2.0)

(cost < −1.0)(cost < −0.2)

y

x

A toy example (linear search)

[w. pure-literal filt. =⇒ partial assignments]

OMT(LRA) problem:
ϕ

def
= (¬A1 ∨ (2x + y ≥ −2))
∧ (A1 ∨ (x + y ≥ 3))
∧ (¬A2 ∨ (4x − y ≥ −4))
∧ (A2 ∨ (2x − y ≥ −6))
∧ (cost < −0.2)
∧ (cost < −1.0)
∧ (cost < −2.0)

cost def
= x

µ =

A1,¬A1, A2,¬A2,
(4x − y ≥ −4),
(x + y ≥ 3),
(2x + y ≥ −2),
(2x − y ≥ −6)
(cost < −0.2)
(cost < −1.0)
(cost < −2.0)

=⇒ SAT, min = −2.0

(4x − y ≥ −4)

(x + y ≥ 3)

(2x − y ≥ −6)

(2x + y ≥ −2)

(cost < −2.0)
(cost < −1.0)

(cost < −0.2)

y

x

A toy example (linear search)

[w. pure-literal filt. =⇒ partial assignments]

OMT(LRA) problem:
ϕ

def
= (¬A1 ∨ (2x + y ≥ −2))
∧ (A1 ∨ (x + y ≥ 3))
∧ (¬A2 ∨ (4x − y ≥ −4))
∧ (A2 ∨ (2x − y ≥ −6))
∧ (cost < −0.2)
∧ (cost < −1.0)
∧ (cost < −2.0)

cost def
= x

µ =

A1,¬A1, A2,¬A2,
(4x − y ≥ −4),
(x + y ≥ 3),
(2x + y ≥ −2),
(2x − y ≥ −6)
(cost < −0.2)
(cost < −1.0)
(cost < −2.0)

=⇒ UNSAT,min = −2.0

(4x − y ≥ −4)

(x + y ≥ 3)

(2x − y ≥ −6)

(2x + y ≥ −2)

(cost < −2.0)
(cost < −1.0)

(cost < −0.2)

y

x

Offline Schema: Mixed Linear/Binary-Search Strategy
Input: 〈ϕ, cost, lb, ub〉 // lb can be −∞, ub can be +∞
l← lb; u← ub;M← ∅; ϕ← ϕ ∪ {¬(cost < lb), (cost < ub)};
while (l < u) do

if (BinSearchMode()) then // Binary-search Mode
pivot← ComputePivot(l, u);
ϕ← ϕ ∪ {(cost < pivot)};
〈res, µ〉 ← SMT.IncrementalSolve(ϕ);

else // Linear-search Mode
〈res, µ〉 ← SMT.IncrementalSolve(ϕ);

if (res = SAT) then
〈M, u〉 ← LRA-Solver.Minimize(cost, µ);
ϕ← ϕ ∪ {(cost < u)};

else {res = UNSAT}
if ((cost < pivot) 6∈ SMT.ExtractUnsatCore(ϕ)) then

l← u;

else
l← pivot;
ϕ← (ϕ \ {(cost < pivot)) ∪ {¬(cost < pivot)}};

return〈M, u〉 u0l0

Offline Schema: Mixed Linear/Binary-Search Strategy
Input: 〈ϕ, cost, lb, ub〉 // lb can be −∞, ub can be +∞
l← lb; u← ub;M← ∅; ϕ← ϕ ∪ {¬(cost < lb), (cost < ub)};
while (l < u) do

if (BinSearchMode()) then // Binary-search Mode
pivot← ComputePivot(l, u);
ϕ← ϕ ∪ {(cost < pivot)};
〈res, µ〉 ← SMT.IncrementalSolve(ϕ);

else // Linear-search Mode
〈res, µ〉 ← SMT.IncrementalSolve(ϕ);

if (res = SAT) then
〈M, u〉 ← LRA-Solver.Minimize(cost, µ);
ϕ← ϕ ∪ {(cost < u)};

else {res = UNSAT}
if ((cost < pivot) 6∈ SMT.ExtractUnsatCore(ϕ)) then

l← u;

else
l← pivot;
ϕ← (ϕ \ {(cost < pivot)) ∪ {¬(cost < pivot)}};

return〈M, u〉 uili

Offline Schema: Mixed Linear/Binary-Search Strategy
Input: 〈ϕ, cost, lb, ub〉 // lb can be −∞, ub can be +∞
l← lb; u← ub;M← ∅; ϕ← ϕ ∪ {¬(cost < lb), (cost < ub)};
while (l < u) do

if (BinSearchMode()) then // Binary-search Mode
pivot← ComputePivot(l, u);
ϕ← ϕ ∪ {(cost < pivot)};
〈res, µ〉 ← SMT.IncrementalSolve(ϕ);

else // Linear-search Mode
〈res, µ〉 ← SMT.IncrementalSolve(ϕ);

if (res = SAT) then
〈M, u〉 ← LRA-Solver.Minimize(cost, µ);
ϕ← ϕ ∪ {(cost < u)};

else {res = UNSAT}
if ((cost < pivot) 6∈ SMT.ExtractUnsatCore(ϕ)) then

l← u;

else
l← pivot;
ϕ← (ϕ \ {(cost < pivot)) ∪ {¬(cost < pivot)}};

return〈M, u〉 uili

Offline Schema: Mixed Linear/Binary-Search Strategy
Input: 〈ϕ, cost, lb, ub〉 // lb can be −∞, ub can be +∞
l← lb; u← ub;M← ∅; ϕ← ϕ ∪ {¬(cost < lb), (cost < ub)};
while (l < u) do

if (BinSearchMode()) then // Binary-search Mode
pivot← ComputePivot(l, u);
ϕ← ϕ ∪ {(cost < pivot)};
〈res, µ〉 ← SMT.IncrementalSolve(ϕ);

else // Linear-search Mode
〈res, µ〉 ← SMT.IncrementalSolve(ϕ);

if (res = SAT) then
〈M, u〉 ← LRA-Solver.Minimize(cost, µ);
ϕ← ϕ ∪ {(cost < u)};

else {res = UNSAT}
if ((cost < pivot) 6∈ SMT.ExtractUnsatCore(ϕ)) then

l← u;

else
l← pivot;
ϕ← (ϕ \ {(cost < pivot)) ∪ {¬(cost < pivot)}};

return〈M, u〉 ui+1 uili

Offline Schema: Mixed Linear/Binary-Search Strategy
Input: 〈ϕ, cost, lb, ub〉 // lb can be −∞, ub can be +∞
l← lb; u← ub;M← ∅; ϕ← ϕ ∪ {¬(cost < lb), (cost < ub)};
while (l < u) do

if (BinSearchMode()) then // Binary-search Mode
pivot← ComputePivot(l, u);
ϕ← ϕ ∪ {(cost < pivot)};
〈res, µ〉 ← SMT.IncrementalSolve(ϕ);

else // Linear-search Mode
〈res, µ〉 ← SMT.IncrementalSolve(ϕ);

if (res = SAT) then
〈M, u〉 ← LRA-Solver.Minimize(cost, µ);
ϕ← ϕ ∪ {(cost < u)};

else {res = UNSAT}
if ((cost < pivot) 6∈ SMT.ExtractUnsatCore(ϕ)) then

l← u;

else
l← pivot;
ϕ← (ϕ \ {(cost < pivot)) ∪ {¬(cost < pivot)}};

return〈M, u〉 li+1 =li ui

Offline Schema: Mixed Linear/Binary-Search Strategy
Input: 〈ϕ, cost, lb, ub〉 // lb can be −∞, ub can be +∞
l← lb; u← ub;M← ∅; ϕ← ϕ ∪ {¬(cost < lb), (cost < ub)};
while (l < u) do

if (BinSearchMode()) then // Binary-search Mode
pivot← ComputePivot(l, u);
ϕ← ϕ ∪ {(cost < pivot)};
〈res, µ〉 ← SMT.IncrementalSolve(ϕ);

else // Linear-search Mode
〈res, µ〉 ← SMT.IncrementalSolve(ϕ);

if (res = SAT) then
〈M, u〉 ← LRA-Solver.Minimize(cost, µ);
ϕ← ϕ ∪ {(cost < u)};

else {res = UNSAT}
if ((cost < pivot) 6∈ SMT.ExtractUnsatCore(ϕ)) then

l← u;

else
l← pivot;
ϕ← (ϕ \ {(cost < pivot)) ∪ {¬(cost < pivot)}};

return〈M, u〉 pivoti uili

Offline Schema: Mixed Linear/Binary-Search Strategy
Input: 〈ϕ, cost, lb, ub〉 // lb can be −∞, ub can be +∞
l← lb; u← ub;M← ∅; ϕ← ϕ ∪ {¬(cost < lb), (cost < ub)};
while (l < u) do

if (BinSearchMode()) then // Binary-search Mode
pivot← ComputePivot(l, u);
ϕ← ϕ ∪ {(cost < pivot)};
〈res, µ〉 ← SMT.IncrementalSolve(ϕ);

else // Linear-search Mode
〈res, µ〉 ← SMT.IncrementalSolve(ϕ);

if (res = SAT) then
〈M, u〉 ← LRA-Solver.Minimize(cost, µ);
ϕ← ϕ ∪ {(cost < u)};

else {res = UNSAT}
if ((cost < pivot) 6∈ SMT.ExtractUnsatCore(ϕ)) then

l← u;

else
l← pivot;
ϕ← (ϕ \ {(cost < pivot)) ∪ {¬(cost < pivot)}};

return〈M, u〉 ui+1 pivoti uili

Offline Schema: Mixed Linear/Binary-Search Strategy
Input: 〈ϕ, cost, lb, ub〉 // lb can be −∞, ub can be +∞
l← lb; u← ub;M← ∅; ϕ← ϕ ∪ {¬(cost < lb), (cost < ub)};
while (l < u) do

if (BinSearchMode()) then // Binary-search Mode
pivot← ComputePivot(l, u);
ϕ← ϕ ∪ {(cost < pivot)};
〈res, µ〉 ← SMT.IncrementalSolve(ϕ);

else // Linear-search Mode
〈res, µ〉 ← SMT.IncrementalSolve(ϕ);

if (res = SAT) then
〈M, u〉 ← LRA-Solver.Minimize(cost, µ);
ϕ← ϕ ∪ {(cost < u)};

else {res = UNSAT}
if ((cost < pivot) 6∈ SMT.ExtractUnsatCore(ϕ)) then

l← u;

else
l← pivot;
ϕ← (ϕ \ {(cost < pivot)) ∪ {¬(cost < pivot)}};

return〈M, u〉 li+1 =pivoti uili

Offline Schema: Mixed Linear/Binary-Search Strategy
Input: 〈ϕ, cost, lb, ub〉 // lb can be −∞, ub can be +∞
l← lb; u← ub;M← ∅; ϕ← ϕ ∪ {¬(cost < lb), (cost < ub)};
while (l < u) do

if (BinSearchMode()) then // Binary-search Mode
pivot← ComputePivot(l, u);
ϕ← ϕ ∪ {(cost < pivot)};
〈res, µ〉 ← SMT.IncrementalSolve(ϕ);

else // Linear-search Mode
〈res, µ〉 ← SMT.IncrementalSolve(ϕ);

if (res = SAT) then
〈M, u〉 ← LRA-Solver.Minimize(cost, µ);
ϕ← ϕ ∪ {(cost < u)};

else {res = UNSAT}
if ((cost < pivot) 6∈ SMT.ExtractUnsatCore(ϕ)) then

l← u;

else
l← pivot;
ϕ← (ϕ \ {(cost < pivot)) ∪ {¬(cost < pivot)}};

return〈M, u〉 pivoti uili

The Minimizer

Minimizer embedded within the Simplex-based LRA-solver by [25]
Minimization by standard Simplex techniques

Strict Inequalities
Temporally treated as non-strict inequalities:

if minimum cost min lays only on non-strict inequalities, min is a
solution
otherwise, for some δ > 0 there exists a solution for every cost
c ∈]min,min + δ]

If min is a non-strict minimum, then (cost ≤ min) is added to ϕ.

Binary vs. Linear search

Beware of Zeno: pure binary search can cause infinite partitioning

− 1
16−1

4 −1
8−1 0−1

2

E.g. if no solution in [−1,0[, then
[−1,0[, [−1/2,0[, [−1/4,0[, [−1/8,0[, . . .

SMT solver may find a conflict set η ∪ (cost < pivot) even if
ϕ \ {(cost < pivot)} is LRA-inconsistent
Solution: Binary-search interleaved with linear-search
(Mixed Linear/Binary Search Strategy)

Note: Binary search not “obviously faster” than linear search
Binary search: typically smaller number of range-restriction steps
Linear search: average smaller cost of each range-restriction
steps (unsatisfiable calls typically much harder than sat. ones)

Binary vs. Linear search

Beware of Zeno: pure binary search can cause infinite partitioning

− 1
16−1

4 −1
8−1 0−1

2

E.g. if no solution in [−1,0[, then
[−1,0[, [−1/2,0[, [−1/4,0[, [−1/8,0[, . . .

SMT solver may find a conflict set η ∪ (cost < pivot) even if
ϕ \ {(cost < pivot)} is LRA-inconsistent
Solution: Binary-search interleaved with linear-search
(Mixed Linear/Binary Search Strategy)

Note: Binary search not “obviously faster” than linear search
Binary search: typically smaller number of range-restriction steps
Linear search: average smaller cost of each range-restriction
steps (unsatisfiable calls typically much harder than sat. ones)

Binary vs. Linear search

Beware of Zeno: pure binary search can cause infinite partitioning

− 1
16−1

4 −1
8−1 0−1

2

E.g. if no solution in [−1,0[, then
[−1,0[, [−1/2,0[, [−1/4,0[, [−1/8,0[, . . .

SMT solver may find a conflict set η ∪ (cost < pivot) even if
ϕ \ {(cost < pivot)} is LRA-inconsistent
Solution: Binary-search interleaved with linear-search
(Mixed Linear/Binary Search Strategy)

Note: Binary search not “obviously faster” than linear search
Binary search: typically smaller number of range-restriction steps
Linear search: average smaller cost of each range-restriction
steps (unsatisfiable calls typically much harder than sat. ones)

Termination & Correctness

Termination
The linear search procedure terminates:

Finite number of satisfiable truth assignments µi

No truth assignment µi generated twice
guaranteed by computing the minimum cost mi of µi and
learning (cost < mi)

=⇒ also the mixed linear/binary search procedure terminates

Correctness
The procedure returns the minimum cost

Explores the whole space of satisfiable truth assignments
For every satisfiable truth assignment, Minimize finds the
minimum cost

Some Enhancements [52, 53, 16]

After invoking the minimizer and learning (cost < mi)

Invoke LRA-solver.solve(µi ∧ (cost < mi))⇒ conflict set ηi
and learn also ¬ηi
Binary mode: learn also (cost < pivoti) to reuse previously
learned clauses in the form ¬(cost < pivoti) ∨ C

Tightening of conflicts on binary search [52, 53, 16])
when ϕ ∧ (cost < pivoti) fails, look for tighter conflict
¬(cost < Mi) s.t. Mi > pivoti

Adaptive Mixed Linear/Binary-Search Strategy:
BinSearchMode() chooses according to ∆ub

∆#conflicts

From OMT(LRA) to OMT(LRA ∪ T)

OMT(LRA) procedure extended for handling LRA ∪ T -formulas ϕ:

For free if SMT solver handles LRA ∪ T -solving by Delayed Theory
Combination [18] or Model-based Combination [23], splitting negated
interface equalities ¬(xi = xj) into ((xi < xj) ∨ (xi > xj)):

Truth assignments µ′ def
= µLRA ∪ µeid ∪ µT s.t. µ′ |= ϕ

µeid is a set containing interface equalities (xi = xj), disequalities
¬(xi = xj) and one inequality in {(xi < xj), (xi > xj)} for every
disequality in µeid

LRA-solver.solve invoked on µ′LRA
µ′LRA

def
= µLRA ∪ µei obtained from µeid by dropping disequalities

⇒ LRA-solver.minimize invoked on 〈cost, µ′LRA〉

From OMT(LRA) to OMT(LRA ∪ T)

OMT(LRA) procedure extended for handling LRA ∪ T -formulas ϕ:

For free if SMT solver handles LRA ∪ T -solving by Delayed Theory
Combination [18] or Model-based Combination [23], splitting negated
interface equalities ¬(xi = xj) into ((xi < xj) ∨ (xi > xj)):

Truth assignments µ′ def
= µLRA ∪ µeid ∪ µT s.t. µ′ |= ϕ

µeid is a set containing interface equalities (xi = xj), disequalities
¬(xi = xj) and one inequality in {(xi < xj), (xi > xj)} for every
disequality in µeid

LRA-solver.solve invoked on µ′LRA
µ′LRA

def
= µLRA ∪ µei obtained from µeid by dropping disequalities

⇒ LRA-solver.minimize invoked on 〈cost, µ′LRA〉

From OMT(LRA ∪ T) to OMT(LIRA ∪ T) [55, 16]

OMT(LRA ∪ T) procedures extended to LIA and mixed
LRA/LIA costs [16, 55]
LRA/LIA-solvers enhanced with ILP minimization techniques
(branch & bound, cutting planes, backjumping, ...)
Note: with LIA

ILP minimization often expensive
no “Zeno” problem for binary search
in principle, if problem is lower-bounded, the ILP minimizer is not
necessary

tradeoff between LP, (in)complete ILP minimization, binary
search and Boolean Search [16, 55]

Truncated Branch and Bound

Observations:
branch & bound can be expensive in degenerate cases
optimality not truly necessary

Idea:
always stop B&B after first iteration, even if cost value is not
guaranteed to be optimal.

Trade-off:
less expensive minimization procedure on Integers
risk of CDCL generating same µ multiple times

Outline

1 Motivations

2 Optimization Modulo Theories with Linear-Arithmetic Objectives

3 OMT with Multiple and Combined Objectives

4 Relevant Subcases: OMT+PB & MaxSMT

5 Status of OMT

6 Current and Future Research Directions

7 Appendix
Inline OMT schema
OMT for Bit-vector and Floating-point theories
Imptoving OMT+PB by sorting networks
The MaxRES MaxSMT Procedure
Extended SMT-LIB language
Pareto Optimization (hints)

Incremental OMT [15, 55, 54]

Call OMT incrementally
e.g., in BMC with parametric systems [53]

Intuition
In OMT, all learned clauses are either T -lemmas, or derive from
T -lemmas and the original formulas , or are in the form (cost < min)
=⇒ exploit incrementality of SMT solvers, in two alternative ways:

(i) drop the (cost < min) from one OMT call to the other
(ii) assert fresh variable S at each OMT call, and learn
¬S ∨ (cost < min) instead of (cost < min)

=⇒ can reuse learned clauses from OMT call to the other,
(included these in the form ¬(cost < minold) ∨ C as soon as
mincur ≤ minold .)

OMT with Independent Objectives (Boxed OMT)
[38, 55]

The problem: 〈ϕ, {cost1, ..., costk}〉 [38]

Given 〈ϕ, C〉 s.t.:
ϕ is the input formula

C def
= {cost1, ..., costk} is a set of LIRA-terms on variables in ϕ,

〈ϕ, C〉 is the problem of finding a set of independent LIRA-models
M1, ...,Mk s.t. s.t. eachMi makes costi minimum.

Notes
derives from SW verification problems [38]
equivalent to k independent problems 〈ϕ, cost1〉, ..., 〈ϕ, costk 〉
intuition: share search effort for the different objectives
generalizes to OMT(LIRA ∪ T) straightforwardly

OMT with Multiple Objectives [38, 16, 55]

Solution
Intuition: when a T -consistent satisfying assignment µ is found,
foreach costi

mini := min{mini, T solver.minimize(µ, costi)};
learn

∨
i(costi < mini); // (costi < −∞) ≡ ⊥

proceed until UNSAT;
Notice:

for each µ, guaranteed improvement of at least one mini
in practice, for each µ, multiple costi minima are improved

Implemented improvements:
(a) drop previous clauses

∨
i (costi < mini)

(b) (costi < mini) pushed in µ first: if T -inconsistent, skip
minimization

(c) learn ¬(costi < mini) ∨ (costi < minold
i), s.t. minold

i previous mini
=⇒ reuse previously-learned clauses like ¬(costi < minold

i) ∨ C

Boxed OMT: Example [38, 55]

1 3 40

1

3

cost1

cost2

ϕ = (1 ≤ y) ∧ (y ≤ 3) ∧ (((1 ≤ x) ∧ (x ≤ 3)) ∨ (x ≥ 4))
∧ (cost1 = −y) ∧ (cost2 = −x − y)

µ1 = {(1 ≤ y), (y ≤ 3), (1 ≤ x), (x ≤ 3)} =⇒ SAT =⇒ [−3,−6]

=⇒ learn {(cost1 < −3) ∨ (cost2 < −6)}

µ2 = {(1 ≤ y), (y ≤ 3), (x ≥ 4)} =⇒ SAT =⇒ [−3,−∞]
=⇒ learn {(cost1 < −3)}
=⇒ UNSAT

µ2µ1

OMT with Lexicographic Combination of Objectives
[16]

The problem

Find one optimal modelM minimizing costs def
= cost1, cost2, ..., costk

lexicographically.

Solution
Intuition:
{minimize cost1}
when UNSAT

{substitute unit clause (cost1 < min1) with (cost1 = min1)}
{minimize cost2}
...

OMT with Other forms of Objective Combination

OMT with Min-Max [Max-Min] optimization

Given 〈ϕ, {cost1, ..., costk}〉, find a solution which minimizes the
maximum value among {cost1, ..., costk}. (Max-Min dual.)

Frequent in some applications (e.g. [53, 59])
=⇒ encode into OMT(LIRA ∪ T) problem

{ϕ ∧
∧

i(costi ≤ cost), cost} s.t. cost fresh.

OMT with linear combinations of costs
Given 〈ϕ, {cost1, ..., costk}〉 and a set of weights {w1, ...,wk}, find a
solution which minimizes

∑
i wi · costi .

=⇒ encode into OMT(LIRA ∪ T) problem
{ϕ ∧ (cost =

∑
i wi · costi), cost} s.t. cost fresh.

These objectives can be composed with other OMT(LIRA)
objectives.

Outline

1 Motivations

2 Optimization Modulo Theories with Linear-Arithmetic Objectives

3 OMT with Multiple and Combined Objectives

4 Relevant Subcases: OMT+PB & MaxSMT

5 Status of OMT

6 Current and Future Research Directions

7 Appendix
Inline OMT schema
OMT for Bit-vector and Floating-point theories
Imptoving OMT+PB by sorting networks
The MaxRES MaxSMT Procedure
Extended SMT-LIB language
Pareto Optimization (hints)

OMT(LRA ∪ T) vs. SMT with PB costs (& MaxSMT)

SMT + PB costs (& MaxSMT) can be encoded into OMT(LRA ∪ T):

minimize
∑

j wj · Aj //(
∑

j ite(Aj ,wj ,0))

s.t. ϕ
⇓

minimize
∑

j xj

s.t. ϕ ∧
∧

j(Aj → (xj = wj)) ∧ (¬Aj → (xj = 0))

∧
∧

j((xj ≥ 0) ∧ (xj ≤ wj))

but not vice versa!

SMT + PB costs finds the minimum-cost T -satisfiable
assignment
=⇒ search for minimum is purely Boolean
OMT(LIRA ∪ T) finds the T -satisfiable assignment whose
minimum cost is minimum
=⇒ search for minimum involves two dimensions: Boolean and
arithmetical

OMT(LRA ∪ T) vs. SMT with PB costs (& MaxSMT)

SMT + PB costs (& MaxSMT) can be encoded into OMT(LRA ∪ T):

minimize
∑

j wj · Aj //(
∑

j ite(Aj ,wj ,0))

s.t. ϕ
⇓

minimize
∑

j xj

s.t. ϕ ∧
∧

j(Aj → (xj = wj)) ∧ (¬Aj → (xj = 0))

∧
∧

j((xj ≥ 0) ∧ (xj ≤ wj))

but not vice versa!

SMT + PB costs finds the minimum-cost T -satisfiable
assignment
=⇒ search for minimum is purely Boolean
OMT(LIRA ∪ T) finds the T -satisfiable assignment whose
minimum cost is minimum
=⇒ search for minimum involves two dimensions: Boolean and
arithmetical

Remark: range constraints “(xj ≥ 0) ∧ (xj ≤ wj)”

OMT + PB :
∑

j wj · Aj , wi > 0 //(
∑

j ite(Aj ,wj ,0))

⇓∑
j xj , xj fresh

s.t. ... ∧
∧

j(Aj → (xj = wj)) ∧ (¬Aj → (xj = 0))

∧(xj ≥ 0) ∧ (xj ≤ wj)

Range constraints “(xj ≥ 0) ∧ (xj ≤ wj)” logically redundant, but
essential for efficiency:

Without range constraints, the SMT solver can detect the
violation of a bound only after all Ai ’s are assigned :
Ex: w1 = 4, w2 = 7,

∑
i=1 xi < 10, A1 = A2 = >, Ai = ∗ ∀i > 2.

With range constraints, the SMT solver detects the violation as
soon as the assigned Ai ’s violate a bound
=⇒ drastic pruning of the search

Further improvement: Enhance encoding of PB constraints/MaxSMT
with sorting networks [56]

Remark: range constraints “(xj ≥ 0) ∧ (xj ≤ wj)”

OMT + PB :
∑

j wj · Aj , wi > 0 //(
∑

j ite(Aj ,wj ,0))

⇓∑
j xj , xj fresh

s.t. ... ∧
∧

j(Aj → (xj = wj)) ∧ (¬Aj → (xj = 0))

∧(xj ≥ 0) ∧ (xj ≤ wj)

Range constraints “(xj ≥ 0) ∧ (xj ≤ wj)” logically redundant, but
essential for efficiency:

Without range constraints, the SMT solver can detect the
violation of a bound only after all Ai ’s are assigned :
Ex: w1 = 4, w2 = 7,

∑
i=1 xi < 10, A1 = A2 = >, Ai = ∗ ∀i > 2.

With range constraints, the SMT solver detects the violation as
soon as the assigned Ai ’s violate a bound
=⇒ drastic pruning of the search

Further improvement: Enhance encoding of PB constraints/MaxSMT
with sorting networks [56]

Remark: range constraints “(xj ≥ 0) ∧ (xj ≤ wj)”

OMT + PB :
∑

j wj · Aj , wi > 0 //(
∑

j ite(Aj ,wj ,0))

⇓∑
j xj , xj fresh

s.t. ... ∧
∧

j(Aj → (xj = wj)) ∧ (¬Aj → (xj = 0))

∧(xj ≥ 0) ∧ (xj ≤ wj)

Range constraints “(xj ≥ 0) ∧ (xj ≤ wj)” logically redundant, but
essential for efficiency:

Without range constraints, the SMT solver can detect the
violation of a bound only after all Ai ’s are assigned :
Ex: w1 = 4, w2 = 7,

∑
i=1 xi < 10, A1 = A2 = >, Ai = ∗ ∀i > 2.

With range constraints, the SMT solver detects the violation as
soon as the assigned Ai ’s violate a bound
=⇒ drastic pruning of the search

Further improvement: Enhance encoding of PB constraints/MaxSMT
with sorting networks [56]

Remark: range constraints “(xj ≥ 0) ∧ (xj ≤ wj)”

OMT + PB :
∑

j wj · Aj , wi > 0 //(
∑

j ite(Aj ,wj ,0))

⇓∑
j xj , xj fresh

s.t. ... ∧
∧

j(Aj → (xj = wj)) ∧ (¬Aj → (xj = 0))

∧(xj ≥ 0) ∧ (xj ≤ wj)

Range constraints “(xj ≥ 0) ∧ (xj ≤ wj)” logically redundant, but
essential for efficiency:

Without range constraints, the SMT solver can detect the
violation of a bound only after all Ai ’s are assigned :
Ex: w1 = 4, w2 = 7,

∑
i=1 xi < 10, A1 = A2 = >, Ai = ∗ ∀i > 2.

With range constraints, the SMT solver detects the violation as
soon as the assigned Ai ’s violate a bound
=⇒ drastic pruning of the search

Further improvement: Enhance encoding of PB constraints/MaxSMT
with sorting networks [56]

SMT/OMT with Pseudo-Boolean Costraints & Costs:

Alternative Solution: conversion into SMT(T)
SAT + PB can be efficiently encoded into SAT [26]

=⇒ encode SMT(T) + PB into SMT(T)
similar idea implemented in [16, 15] for cardinality constraints

Alternative Solution: Leverage SAT+PB

develop a “modulo theory” version of your favourite PB-solver
afaik, no implementation available

Alternative Solution: SMT(T ∪ C) [20]
C is an ad-hoc “theory of costs”
a specialized very-fast theory-solver for C added

very fast & aggressive search pruning and theory-propagation

SMT/OMT with Pseudo-Boolean Costraints & Costs:

Alternative Solution: conversion into SMT(T)
SAT + PB can be efficiently encoded into SAT [26]

=⇒ encode SMT(T) + PB into SMT(T)
similar idea implemented in [16, 15] for cardinality constraints

Alternative Solution: Leverage SAT+PB

develop a “modulo theory” version of your favourite PB-solver
afaik, no implementation available

Alternative Solution: SMT(T ∪ C) [20]
C is an ad-hoc “theory of costs”
a specialized very-fast theory-solver for C added

very fast & aggressive search pruning and theory-propagation

SMT/OMT with Pseudo-Boolean Costraints & Costs:

Alternative Solution: conversion into SMT(T)
SAT + PB can be efficiently encoded into SAT [26]

=⇒ encode SMT(T) + PB into SMT(T)
similar idea implemented in [16, 15] for cardinality constraints

Alternative Solution: Leverage SAT+PB

develop a “modulo theory” version of your favourite PB-solver
afaik, no implementation available

Alternative Solution: SMT(T ∪ C) [20]
C is an ad-hoc “theory of costs”
a specialized very-fast theory-solver for C added

very fast & aggressive search pruning and theory-propagation

A “Theory of cost” C

A “theory of costs” C
M variables cost i

predicate “bound cost” BC(cost i , k) (“cost i ≤ k ”)
predicate “incur cost” IC(cost i , j , ci

j) (“the j th addend of cost i is
ci

j ”)

“cost i =
∑N i

j=1 ci
j · Ai

j , s.t . cost i ∈ (l i ,ui]”
encoded as:
¬BC(cost i , l i) ∧ BC(cost i ,ui) ∧

∧N i

j=1(Ai
j ↔ IC(cost i , j , ci

j))

C-solver

for each i , C-solver mantains the current values of the incurred costs
cost i def

=
∑

IC(cost i ,j,ci
j)←>

ci
j , the total cost of all unassigned IC’s

∆cost i def
=
∑
{IC(cost i ,j,ci

j) unassigned} ci
j , and of the range]lbi ,ubi]

1. BC(cost i , c)← >/⊥ =⇒ update]lbi ,ubi]

2. IC(cost i , j , ci
j)← > =⇒ cost i ← cost i + ci

j
IC(cost i , j , ci

j)← ⊥ =⇒ ∆cost i ← ∆cost i − ci
j

3. cost i > ubi =⇒ conflict
4. cost i + ∆cost i ≤ lbi =⇒ conflict
5. IC(cost i , j , ci

j)← > causes 3. =⇒ propagate ¬IC(cost i , j , ci
j)

6. IC(cost i , j , ci
j)← ⊥ causes 4. =⇒ propagate IC(cost i , j , ci

j)

very fast:
add one constraint & solve: 1 sum + 1 comparison
theory propagation: linear in the number of propagated literals

C-solver

for each i , C-solver mantains the current values of the incurred costs
cost i def

=
∑

IC(cost i ,j,ci
j)←>

ci
j , the total cost of all unassigned IC’s

∆cost i def
=
∑
{IC(cost i ,j,ci

j) unassigned} ci
j , and of the range]lbi ,ubi]

1. BC(cost i , c)← >/⊥ =⇒ update]lbi ,ubi]

2. IC(cost i , j , ci
j)← > =⇒ cost i ← cost i + ci

j
IC(cost i , j , ci

j)← ⊥ =⇒ ∆cost i ← ∆cost i − ci
j

3. cost i > ubi =⇒ conflict
4. cost i + ∆cost i ≤ lbi =⇒ conflict
5. IC(cost i , j , ci

j)← > causes 3. =⇒ propagate ¬IC(cost i , j , ci
j)

6. IC(cost i , j , ci
j)← ⊥ causes 4. =⇒ propagate IC(cost i , j , ci

j)

very fast:
add one constraint & solve: 1 sum + 1 comparison
theory propagation: linear in the number of propagated literals

MaxSAT Modulo Theories (MaxSMT) I

[Partial Weighted] MaxSMT: The problem

Input: ϕTh , ϕTs : resp. sets of hard and (weighted) soft
T -clauses;

Output: a maximum-weight set of soft T -clauses ψTs s.t.
ψTs ⊆ ϕTs and ϕTh ∪ ψTs is T -satisfiable

MaxSMT vs. SMT with PB cost functions

MaxSMT 〈ϕTh , ϕTs 〉 encodable into SMT with PB costs 〈ϕT ′ , cost〉:

ϕT
′ def

= ϕTh ∪
⋃

CTj ∈ϕ
T
s
{(Aj ∨ CTj)}; cost def

=
∑

CTj ∈ϕ
T
s

wj · Aj ,

SMT with PB costs 〈ϕT ′ , cost def
=
∑

j wj · Aj〉 encodable into MaxSMT:

ϕTh
def
= ϕT

′
; ϕTs

def
=
⋃

j{(¬Aj)︸ ︷︷ ︸
wj

};

MaxSAT Modulo Theories (MaxSMT) I

[Partial Weighted] MaxSMT: The problem

Input: ϕTh , ϕTs : resp. sets of hard and (weighted) soft
T -clauses;

Output: a maximum-weight set of soft T -clauses ψTs s.t.
ψTs ⊆ ϕTs and ϕTh ∪ ψTs is T -satisfiable

MaxSMT vs. SMT with PB cost functions

MaxSMT 〈ϕTh , ϕTs 〉 encodable into SMT with PB costs 〈ϕT ′ , cost〉:

ϕT
′ def

= ϕTh ∪
⋃

CTj ∈ϕ
T
s
{(Aj ∨ CTj)}; cost def

=
∑

CTj ∈ϕ
T
s

wj · Aj ,

SMT with PB costs 〈ϕT ′ , cost def
=
∑

j wj · Aj〉 encodable into MaxSMT:

ϕTh
def
= ϕT

′
; ϕTs

def
=
⋃

j{(¬Aj)︸ ︷︷ ︸
wj

};

MaxSAT Modulo Theories (MaxSMT) II

Solution: encode into OMT(LRA) [44, 52, 53]

can be composed with other objective functions

Alternative Solution: Leverage MaxSAT

develop a “modulo theory” version of your favourite MaxSAT
solver
a few implementations available [4, 5, 15]

A “Modular” Approach to MaxSMT [21]
Idea: Combine an SMT and a MaxSAT solver:
MaxSMT = MaxSAT + SMT

MaxSAT Modulo Theories (MaxSMT) II

Solution: encode into OMT(LRA) [44, 52, 53]

can be composed with other objective functions

Alternative Solution: Leverage MaxSAT

develop a “modulo theory” version of your favourite MaxSAT
solver
a few implementations available [4, 5, 15]

A “Modular” Approach to MaxSMT [21]
Idea: Combine an SMT and a MaxSAT solver:
MaxSMT = MaxSAT + SMT

MaxSAT Modulo Theories (MaxSMT) II

Solution: encode into OMT(LRA) [44, 52, 53]

can be composed with other objective functions

Alternative Solution: Leverage MaxSAT

develop a “modulo theory” version of your favourite MaxSAT
solver
a few implementations available [4, 5, 15]

A “Modular” Approach to MaxSMT [21]
Idea: Combine an SMT and a MaxSAT solver:
MaxSMT = MaxSAT + SMT

A Modular Approach for MaxSMT(ϕTh , ϕ
T
s) [21]

Input: ϕTh , ϕ
T
s // sets of hard and (weighted) soft T -clauses

〈ϕBh , ϕBs 〉 ← T 2B (〈ϕTh , ϕTs 〉);
ΘT ← ∅; // current set of T -lemmas
ψTs ← ϕTs ; // current approximation of the result
while (SMT.Solve(ϕTh ∪ ψTs ∪ΘT) = UNSAT) do

ΘT ← ΘT ∪ SMT.GetTLemmas(); ΘB ← T 2B (ΘT);
ψBs ← MaxSAT(ϕBh ∪ΘB, ϕBs); ψTs ← B2T (ψBs);

return ψTs ;

Based on the cyclic interaction of an SMT and a MaxSAT solver:
SMT.Solve used as a generator of sets of T -lemmas ΘT0 ,Θ

T
1 , ...

=⇒ provide the information to rule-out T -inconsistent solutions
MaxSAT used to extract minimum-cost clause sets ψBs,0, ψ

B
s,1, ...

works on Boolean abstractions ϕBh ,ϕBs plus the T -lemmas ΘBi

A Modular Approach for MaxSMT(ϕTh , ϕ
T
s) [21]

Input: ϕTh , ϕ
T
s // sets of hard and (weighted) soft T -clauses

〈ϕBh , ϕBs 〉 ← T 2B (〈ϕTh , ϕTs 〉);
ΘT ← ∅; // current set of T -lemmas
ψTs ← ϕTs ; // current approximation of the result
while (SMT.Solve(ϕTh ∪ ψTs ∪ΘT) = UNSAT) do

ΘT ← ΘT ∪ SMT.GetTLemmas(); ΘB ← T 2B (ΘT);
ψBs ← MaxSAT(ϕBh ∪ΘB, ϕBs); ψTs ← B2T (ψBs);

return ψTs ;

Based on the cyclic interaction of an SMT and a MaxSAT solver:
SMT.Solve used as a generator of sets of T -lemmas ΘT0 ,Θ

T
1 , ...

=⇒ provide the information to rule-out T -inconsistent solutions
MaxSAT used to extract minimum-cost clause sets ψBs,0, ψ

B
s,1, ...

works on Boolean abstractions ϕBh ,ϕBs plus the T -lemmas ΘBi

A Modular Approach for MaxSMT(ϕTh , ϕ
T
s) [21]

Input: ϕTh , ϕ
T
s // sets of hard and (weighted) soft T -clauses

〈ϕBh , ϕBs 〉 ← T 2B (〈ϕTh , ϕTs 〉);
ΘT ← ∅; // current set of T -lemmas
ψTs ← ϕTs ; // current approximation of the result
while (SMT.Solve(ϕTh ∪ ψTs ∪ΘT) = UNSAT) do

ΘT ← ΘT ∪ SMT.GetTLemmas(); ΘB ← T 2B (ΘT);
ψBs ← MaxSAT(ϕBh ∪ΘB, ϕBs); ψTs ← B2T (ψBs);

return ψTs ;

Based on the cyclic interaction of an SMT and a MaxSAT solver:
SMT.Solve used as a generator of sets of T -lemmas ΘT0 ,Θ

T
1 , ...

=⇒ provide the information to rule-out T -inconsistent solutions
MaxSAT used to extract minimum-cost clause sets ψBs,0, ψ

B
s,1, ...

works on Boolean abstractions ϕBh ,ϕBs plus the T -lemmas ΘBi

A toy example I

ϕTh
def
= ∅ ϕBh

def
= ∅

ϕTs
def
=

C0 : ((x ≤ 0)) [4]
C1 : ((x ≤ 1)) [3]
C2 : ((x ≥ 2)) [2]
C3 : ((x ≥ 3)) [6]

 ϕBs
def
=

(A0) [4]
(A1) [3]
(A2) [2]
(A3) [6]

Notice that the set of all (minimal) T -lemmas on the T -atoms of ϕTh ∪ ϕTs is:

ΘT∗ =

θ1 : (¬(x ≤ 0) ∨ (x ≤ 1))
θ2 : (¬(x ≥ 3) ∨ (x ≥ 2))
θ3 : (¬(x ≤ 0) ∨ ¬(x ≥ 2))
θ4 : (¬(x ≤ 0) ∨ ¬(x ≥ 3))
θ5 : (¬(x ≤ 1) ∨ ¬(x ≥ 2))
θ6 : (¬(x ≤ 1) ∨ ¬(x ≥ 3))

ΘB∗ =

(¬A0 ∨ A1)
(¬A3 ∨ A2)
(¬A0 ∨ ¬A2)
(¬A0 ∨ ¬A3)
(¬A1 ∨ ¬A2)
(¬A1 ∨ ¬A3)

An "unlucky" possible execution of the algorithm is:

i ΘTi ψTs,i Weight(ψTs,i) SMT (ϕTh ∪ ψTs,i ∪ΘTi)

0 {} {C0,C1,C2,C3} 15 UNSAT
1 {θ4} { ,C1,C2,C3} 11 UNSAT
2 {θ4, θ6} {C0,C1,C2, } 9 UNSAT
3 {θ4, θ6, θ3} { , ,C2,C3} 8 SAT

A toy example I

ϕTh
def
= ∅ ϕBh

def
= ∅

ϕTs
def
=

C0 : ((x ≤ 0)) [4]
C1 : ((x ≤ 1)) [3]
C2 : ((x ≥ 2)) [2]
C3 : ((x ≥ 3)) [6]

 ϕBs
def
=

(A0) [4]
(A1) [3]
(A2) [2]
(A3) [6]

Notice that the set of all (minimal) T -lemmas on the T -atoms of ϕTh ∪ ϕTs is:

ΘT∗ =

θ1 : (¬(x ≤ 0) ∨ (x ≤ 1))
θ2 : (¬(x ≥ 3) ∨ (x ≥ 2))
θ3 : (¬(x ≤ 0) ∨ ¬(x ≥ 2))
θ4 : (¬(x ≤ 0) ∨ ¬(x ≥ 3))
θ5 : (¬(x ≤ 1) ∨ ¬(x ≥ 2))
θ6 : (¬(x ≤ 1) ∨ ¬(x ≥ 3))

ΘB∗ =

(¬A0 ∨ A1)
(¬A3 ∨ A2)
(¬A0 ∨ ¬A2)
(¬A0 ∨ ¬A3)
(¬A1 ∨ ¬A2)
(¬A1 ∨ ¬A3)

An "unlucky" possible execution of the algorithm is:

i ΘTi ψTs,i Weight(ψTs,i) SMT (ϕTh ∪ ψTs,i ∪ΘTi)

0 {} {C0,C1,C2,C3} 15 UNSAT
1 {θ4} { ,C1,C2,C3} 11 UNSAT
2 {θ4, θ6} {C0,C1,C2, } 9 UNSAT
3 {θ4, θ6, θ3} { , ,C2,C3} 8 SAT

A toy example I

ϕTh
def
= ∅ ϕBh

def
= ∅

ϕTs
def
=

C0 : ((x ≤ 0)) [4]
C1 : ((x ≤ 1)) [3]
C2 : ((x ≥ 2)) [2]
C3 : ((x ≥ 3)) [6]

 ϕBs
def
=

(A0) [4]
(A1) [3]
(A2) [2]
(A3) [6]

Notice that the set of all (minimal) T -lemmas on the T -atoms of ϕTh ∪ ϕTs is:

ΘT∗ =

θ1 : (¬(x ≤ 0) ∨ (x ≤ 1))
θ2 : (¬(x ≥ 3) ∨ (x ≥ 2))
θ3 : (¬(x ≤ 0) ∨ ¬(x ≥ 2))
θ4 : (¬(x ≤ 0) ∨ ¬(x ≥ 3))
θ5 : (¬(x ≤ 1) ∨ ¬(x ≥ 2))
θ6 : (¬(x ≤ 1) ∨ ¬(x ≥ 3))

ΘB∗ =

(¬A0 ∨ A1)
(¬A3 ∨ A2)
(¬A0 ∨ ¬A2)
(¬A0 ∨ ¬A3)
(¬A1 ∨ ¬A2)
(¬A1 ∨ ¬A3)

An "unlucky" possible execution of the algorithm is:

i ΘTi ψTs,i Weight(ψTs,i) SMT (ϕTh ∪ ψTs,i ∪ΘTi)

0 {} {C0,C1,C2,C3} 15 UNSAT
1 {θ4} { ,C1,C2,C3} 11 UNSAT
2 {θ4, θ6} {C0,C1,C2, } 9 UNSAT
3 {θ4, θ6, θ3} { , ,C2,C3} 8 SAT

A toy example I

ϕTh
def
= ∅ ϕBh

def
= ∅

ϕTs
def
=

C0 : ((x ≤ 0)) [4]
C1 : ((x ≤ 1)) [3]
C2 : ((x ≥ 2)) [2]
C3 : ((x ≥ 3)) [6]

 ϕBs
def
=

(A0) [4]
(A1) [3]
(A2) [2]
(A3) [6]

Notice that the set of all (minimal) T -lemmas on the T -atoms of ϕTh ∪ ϕTs is:

ΘT∗ =

θ1 : (¬(x ≤ 0) ∨ (x ≤ 1))
θ2 : (¬(x ≥ 3) ∨ (x ≥ 2))
θ3 : (¬(x ≤ 0) ∨ ¬(x ≥ 2))
θ4 : (¬(x ≤ 0) ∨ ¬(x ≥ 3))
θ5 : (¬(x ≤ 1) ∨ ¬(x ≥ 2))
θ6 : (¬(x ≤ 1) ∨ ¬(x ≥ 3))

ΘB∗ =

(¬A0 ∨ A1)
(¬A3 ∨ A2)
(¬A0 ∨ ¬A2)
(¬A0 ∨ ¬A3)
(¬A1 ∨ ¬A2)
(¬A1 ∨ ¬A3)

An "unlucky" possible execution of the algorithm is:

i ΘTi ψTs,i Weight(ψTs,i) SMT (ϕTh ∪ ψTs,i ∪ΘTi)

0 {} {C0,C1,C2,C3} 15 UNSAT
1 {θ4} { ,C1,C2,C3} 11 UNSAT
2 {θ4, θ6} {C0,C1,C2, } 9 UNSAT
3 {θ4, θ6, θ3} { , ,C2,C3} 8 SAT

A toy example I

ϕTh
def
= ∅ ϕBh

def
= ∅

ϕTs
def
=

C0 : ((x ≤ 0)) [4]
C1 : ((x ≤ 1)) [3]
C2 : ((x ≥ 2)) [2]
C3 : ((x ≥ 3)) [6]

 ϕBs
def
=

(A0) [4]
(A1) [3]
(A2) [2]
(A3) [6]

Notice that the set of all (minimal) T -lemmas on the T -atoms of ϕTh ∪ ϕTs is:

ΘT∗ =

θ1 : (¬(x ≤ 0) ∨ (x ≤ 1))
θ2 : (¬(x ≥ 3) ∨ (x ≥ 2))
θ3 : (¬(x ≤ 0) ∨ ¬(x ≥ 2))
θ4 : (¬(x ≤ 0) ∨ ¬(x ≥ 3))
θ5 : (¬(x ≤ 1) ∨ ¬(x ≥ 2))
θ6 : (¬(x ≤ 1) ∨ ¬(x ≥ 3))

ΘB∗ =

(¬A0 ∨ A1)
(¬A3 ∨ A2)
(¬A0 ∨ ¬A2)
(¬A0 ∨ ¬A3)
(¬A1 ∨ ¬A2)
(¬A1 ∨ ¬A3)

An "unlucky" possible execution of the algorithm is:

i ΘTi ψTs,i Weight(ψTs,i) SMT (ϕTh ∪ ψTs,i ∪ΘTi)

0 {} {C0,C1,C2,C3} 15 UNSAT
1 {θ4} { ,C1,C2,C3} 11 UNSAT
2 {θ4, θ6} {C0,C1,C2, } 9 UNSAT
3 {θ4, θ6, θ3} { , ,C2,C3} 8 SAT

A toy example I

ϕTh
def
= ∅ ϕBh

def
= ∅

ϕTs
def
=

C0 : ((x ≤ 0)) [4]
C1 : ((x ≤ 1)) [3]
C2 : ((x ≥ 2)) [2]
C3 : ((x ≥ 3)) [6]

 ϕBs
def
=

(A0) [4]
(A1) [3]
(A2) [2]
(A3) [6]

Notice that the set of all (minimal) T -lemmas on the T -atoms of ϕTh ∪ ϕTs is:

ΘT∗ =

θ1 : (¬(x ≤ 0) ∨ (x ≤ 1))
θ2 : (¬(x ≥ 3) ∨ (x ≥ 2))
θ3 : (¬(x ≤ 0) ∨ ¬(x ≥ 2))
θ4 : (¬(x ≤ 0) ∨ ¬(x ≥ 3))
θ5 : (¬(x ≤ 1) ∨ ¬(x ≥ 2))
θ6 : (¬(x ≤ 1) ∨ ¬(x ≥ 3))

ΘB∗ =

(¬A0 ∨ A1)
(¬A3 ∨ A2)
(¬A0 ∨ ¬A2)
(¬A0 ∨ ¬A3)
(¬A1 ∨ ¬A2)
(¬A1 ∨ ¬A3)

An "unlucky" possible execution of the algorithm is:

i ΘTi ψTs,i Weight(ψTs,i) SMT (ϕTh ∪ ψTs,i ∪ΘTi)

0 {} {C0,C1,C2,C3} 15 UNSAT
1 {θ4} { ,C1,C2,C3} 11 UNSAT
2 {θ4, θ6} {C0,C1,C2, } 9 UNSAT
3 {θ4, θ6, θ3} { , ,C2,C3} 8 SAT

A toy example I

ϕTh
def
= ∅ ϕBh

def
= ∅

ϕTs
def
=

C0 : ((x ≤ 0)) [4]
C1 : ((x ≤ 1)) [3]
C2 : ((x ≥ 2)) [2]
C3 : ((x ≥ 3)) [6]

 ϕBs
def
=

(A0) [4]
(A1) [3]
(A2) [2]
(A3) [6]

Notice that the set of all (minimal) T -lemmas on the T -atoms of ϕTh ∪ ϕTs is:

ΘT∗ =

θ1 : (¬(x ≤ 0) ∨ (x ≤ 1))
θ2 : (¬(x ≥ 3) ∨ (x ≥ 2))
θ3 : (¬(x ≤ 0) ∨ ¬(x ≥ 2))
θ4 : (¬(x ≤ 0) ∨ ¬(x ≥ 3))
θ5 : (¬(x ≤ 1) ∨ ¬(x ≥ 2))
θ6 : (¬(x ≤ 1) ∨ ¬(x ≥ 3))

ΘB∗ =

(¬A0 ∨ A1)
(¬A3 ∨ A2)
(¬A0 ∨ ¬A2)
(¬A0 ∨ ¬A3)
(¬A1 ∨ ¬A2)
(¬A1 ∨ ¬A3)

An "unlucky" possible execution of the algorithm is:

i ΘTi ψTs,i Weight(ψTs,i) SMT (ϕTh ∪ ψTs,i ∪ΘTi)

0 {} {C0,C1,C2,C3} 15 UNSAT
1 {θ4} { ,C1,C2,C3} 11 UNSAT
2 {θ4, θ6} {C0,C1,C2, } 9 UNSAT
3 {θ4, θ6, θ3} { , ,C2,C3} 8 SAT

A toy example I

ϕTh
def
= ∅ ϕBh

def
= ∅

ϕTs
def
=

C0 : ((x ≤ 0)) [4]
C1 : ((x ≤ 1)) [3]
C2 : ((x ≥ 2)) [2]
C3 : ((x ≥ 3)) [6]

 ϕBs
def
=

(A0) [4]
(A1) [3]
(A2) [2]
(A3) [6]

Notice that the set of all (minimal) T -lemmas on the T -atoms of ϕTh ∪ ϕTs is:

ΘT∗ =

θ1 : (¬(x ≤ 0) ∨ (x ≤ 1))
θ2 : (¬(x ≥ 3) ∨ (x ≥ 2))
θ3 : (¬(x ≤ 0) ∨ ¬(x ≥ 2))
θ4 : (¬(x ≤ 0) ∨ ¬(x ≥ 3))
θ5 : (¬(x ≤ 1) ∨ ¬(x ≥ 2))
θ6 : (¬(x ≤ 1) ∨ ¬(x ≥ 3))

ΘB∗ =

(¬A0 ∨ A1)
(¬A3 ∨ A2)
(¬A0 ∨ ¬A2)
(¬A0 ∨ ¬A3)
(¬A1 ∨ ¬A2)
(¬A1 ∨ ¬A3)

An "unlucky" possible execution of the algorithm is:

i ΘTi ψTs,i Weight(ψTs,i) SMT (ϕTh ∪ ψTs,i ∪ΘTi)

0 {} {C0,C1,C2,C3} 15 UNSAT
1 {θ4} { ,C1,C2,C3} 11 UNSAT
2 {θ4, θ6} {C0,C1,C2, } 9 UNSAT
3 {θ4, θ6, θ3} { , ,C2,C3} 8 SAT

A toy example I

ϕTh
def
= ∅ ϕBh

def
= ∅

ϕTs
def
=

C0 : ((x ≤ 0)) [4]
C1 : ((x ≤ 1)) [3]
C2 : ((x ≥ 2)) [2]
C3 : ((x ≥ 3)) [6]

 ϕBs
def
=

(A0) [4]
(A1) [3]
(A2) [2]
(A3) [6]

Notice that the set of all (minimal) T -lemmas on the T -atoms of ϕTh ∪ ϕTs is:

ΘT∗ =

θ1 : (¬(x ≤ 0) ∨ (x ≤ 1))
θ2 : (¬(x ≥ 3) ∨ (x ≥ 2))
θ3 : (¬(x ≤ 0) ∨ ¬(x ≥ 2))
θ4 : (¬(x ≤ 0) ∨ ¬(x ≥ 3))
θ5 : (¬(x ≤ 1) ∨ ¬(x ≥ 2))
θ6 : (¬(x ≤ 1) ∨ ¬(x ≥ 3))

ΘB∗ =

(¬A0 ∨ A1)
(¬A3 ∨ A2)
(¬A0 ∨ ¬A2)
(¬A0 ∨ ¬A3)
(¬A1 ∨ ¬A2)
(¬A1 ∨ ¬A3)

An "unlucky" possible execution of the algorithm is:

i ΘTi ψTs,i Weight(ψTs,i) SMT (ϕTh ∪ ψTs,i ∪ΘTi)

0 {} {C0,C1,C2,C3} 15 UNSAT
1 {θ4} { ,C1,C2,C3} 11 UNSAT
2 {θ4, θ6} {C0,C1,C2, } 9 UNSAT
3 {θ4, θ6, θ3} { , ,C2,C3} 8 SAT

A toy example I

ϕTh
def
= ∅ ϕBh

def
= ∅

ϕTs
def
=

C0 : ((x ≤ 0)) [4]
C1 : ((x ≤ 1)) [3]
C2 : ((x ≥ 2)) [2]
C3 : ((x ≥ 3)) [6]

 ϕBs
def
=

(A0) [4]
(A1) [3]
(A2) [2]
(A3) [6]

Notice that the set of all (minimal) T -lemmas on the T -atoms of ϕTh ∪ ϕTs is:

ΘT∗ =

θ1 : (¬(x ≤ 0) ∨ (x ≤ 1))
θ2 : (¬(x ≥ 3) ∨ (x ≥ 2))
θ3 : (¬(x ≤ 0) ∨ ¬(x ≥ 2))
θ4 : (¬(x ≤ 0) ∨ ¬(x ≥ 3))
θ5 : (¬(x ≤ 1) ∨ ¬(x ≥ 2))
θ6 : (¬(x ≤ 1) ∨ ¬(x ≥ 3))

ΘB∗ =

(¬A0 ∨ A1)
(¬A3 ∨ A2)
(¬A0 ∨ ¬A2)
(¬A0 ∨ ¬A3)
(¬A1 ∨ ¬A2)
(¬A1 ∨ ¬A3)

An "unlucky" possible execution of the algorithm is:

i ΘTi ψTs,i Weight(ψTs,i) SMT (ϕTh ∪ ψTs,i ∪ΘTi)

0 {} {C0,C1,C2,C3} 15 UNSAT
1 {θ4} { ,C1,C2,C3} 11 UNSAT
2 {θ4, θ6} {C0,C1,C2, } 9 UNSAT
3 {θ4, θ6, θ3} { , ,C2,C3} 8 SAT

A toy example II

ϕTh
def
= ∅ ϕBh

def
= ∅

ϕTs
def
=

C0 : ((x ≤ 0)) [4]
C1 : ((x ≤ 1)) [3]
C2 : ((x ≥ 2)) [2]
C3 : ((x ≥ 3)) [6]

 ϕBs
def
=

(A0) [4]
(A1) [3]
(A2) [2]
(A3) [6]

Notice that the set of all (minimal) T -lemmas on the T -atoms of ϕTh ∪ ϕTs is:

ΘT∗ =

θ1 : (¬(x ≤ 0) ∨ (x ≤ 1))
θ2 : (¬(x ≥ 3) ∨ (x ≥ 2))
θ3 : (¬(x ≤ 0) ∨ ¬(x ≥ 2))
θ4 : (¬(x ≤ 0) ∨ ¬(x ≥ 3))
θ5 : (¬(x ≤ 1) ∨ ¬(x ≥ 2))
θ6 : (¬(x ≤ 1) ∨ ¬(x ≥ 3))

ΘB∗ =

(¬A0 ∨ A1)
(¬A3 ∨ A2)
(¬A0 ∨ ¬A2)
(¬A0 ∨ ¬A3)
(¬A1 ∨ ¬A2)
(¬A1 ∨ ¬A3)

A "lucky" possible execution of the algorithm is:

i ΘTi ψTs,i Weight(ψTs,i) SMT (ϕTh ∪ ψTs,i ∪ΘTi)

0 {} {C0,C1,C2,C3} 15 UNSAT
1 {θ1, θ2, θ5} { , ,C2,C3} 8 SAT

A toy example II

ϕTh
def
= ∅ ϕBh

def
= ∅

ϕTs
def
=

C0 : ((x ≤ 0)) [4]
C1 : ((x ≤ 1)) [3]
C2 : ((x ≥ 2)) [2]
C3 : ((x ≥ 3)) [6]

 ϕBs
def
=

(A0) [4]
(A1) [3]
(A2) [2]
(A3) [6]

Notice that the set of all (minimal) T -lemmas on the T -atoms of ϕTh ∪ ϕTs is:

ΘT∗ =

θ1 : (¬(x ≤ 0) ∨ (x ≤ 1))
θ2 : (¬(x ≥ 3) ∨ (x ≥ 2))
θ3 : (¬(x ≤ 0) ∨ ¬(x ≥ 2))
θ4 : (¬(x ≤ 0) ∨ ¬(x ≥ 3))
θ5 : (¬(x ≤ 1) ∨ ¬(x ≥ 2))
θ6 : (¬(x ≤ 1) ∨ ¬(x ≥ 3))

ΘB∗ =

(¬A0 ∨ A1)
(¬A3 ∨ A2)
(¬A0 ∨ ¬A2)
(¬A0 ∨ ¬A3)
(¬A1 ∨ ¬A2)
(¬A1 ∨ ¬A3)

A "lucky" possible execution of the algorithm is:

i ΘTi ψTs,i Weight(ψTs,i) SMT (ϕTh ∪ ψTs,i ∪ΘTi)

0 {} {C0,C1,C2,C3} 15 UNSAT
1 {θ1, θ2, θ5} { , ,C2,C3} 8 SAT

A toy example II

ϕTh
def
= ∅ ϕBh

def
= ∅

ϕTs
def
=

C0 : ((x ≤ 0)) [4]
C1 : ((x ≤ 1)) [3]
C2 : ((x ≥ 2)) [2]
C3 : ((x ≥ 3)) [6]

 ϕBs
def
=

(A0) [4]
(A1) [3]
(A2) [2]
(A3) [6]

Notice that the set of all (minimal) T -lemmas on the T -atoms of ϕTh ∪ ϕTs is:

ΘT∗ =

θ1 : (¬(x ≤ 0) ∨ (x ≤ 1))
θ2 : (¬(x ≥ 3) ∨ (x ≥ 2))
θ3 : (¬(x ≤ 0) ∨ ¬(x ≥ 2))
θ4 : (¬(x ≤ 0) ∨ ¬(x ≥ 3))
θ5 : (¬(x ≤ 1) ∨ ¬(x ≥ 2))
θ6 : (¬(x ≤ 1) ∨ ¬(x ≥ 3))

ΘB∗ =

(¬A0 ∨ A1)
(¬A3 ∨ A2)
(¬A0 ∨ ¬A2)
(¬A0 ∨ ¬A3)
(¬A1 ∨ ¬A2)
(¬A1 ∨ ¬A3)

A "lucky" possible execution of the algorithm is:

i ΘTi ψTs,i Weight(ψTs,i) SMT (ϕTh ∪ ψTs,i ∪ΘTi)

0 {} {C0,C1,C2,C3} 15 UNSAT
1 {θ1, θ2, θ5} { , ,C2,C3} 8 SAT

A toy example II

ϕTh
def
= ∅ ϕBh

def
= ∅

ϕTs
def
=

C0 : ((x ≤ 0)) [4]
C1 : ((x ≤ 1)) [3]
C2 : ((x ≥ 2)) [2]
C3 : ((x ≥ 3)) [6]

 ϕBs
def
=

(A0) [4]
(A1) [3]
(A2) [2]
(A3) [6]

Notice that the set of all (minimal) T -lemmas on the T -atoms of ϕTh ∪ ϕTs is:

ΘT∗ =

θ1 : (¬(x ≤ 0) ∨ (x ≤ 1))
θ2 : (¬(x ≥ 3) ∨ (x ≥ 2))
θ3 : (¬(x ≤ 0) ∨ ¬(x ≥ 2))
θ4 : (¬(x ≤ 0) ∨ ¬(x ≥ 3))
θ5 : (¬(x ≤ 1) ∨ ¬(x ≥ 2))
θ6 : (¬(x ≤ 1) ∨ ¬(x ≥ 3))

ΘB∗ =

(¬A0 ∨ A1)
(¬A3 ∨ A2)
(¬A0 ∨ ¬A2)
(¬A0 ∨ ¬A3)
(¬A1 ∨ ¬A2)
(¬A1 ∨ ¬A3)

A "lucky" possible execution of the algorithm is:

i ΘTi ψTs,i Weight(ψTs,i) SMT (ϕTh ∪ ψTs,i ∪ΘTi)

0 {} {C0,C1,C2,C3} 15 UNSAT
1 {θ1, θ2, θ5} { , ,C2,C3} 8 SAT

A toy example II

ϕTh
def
= ∅ ϕBh

def
= ∅

ϕTs
def
=

C0 : ((x ≤ 0)) [4]
C1 : ((x ≤ 1)) [3]
C2 : ((x ≥ 2)) [2]
C3 : ((x ≥ 3)) [6]

 ϕBs
def
=

(A0) [4]
(A1) [3]
(A2) [2]
(A3) [6]

Notice that the set of all (minimal) T -lemmas on the T -atoms of ϕTh ∪ ϕTs is:

ΘT∗ =

θ1 : (¬(x ≤ 0) ∨ (x ≤ 1))
θ2 : (¬(x ≥ 3) ∨ (x ≥ 2))
θ3 : (¬(x ≤ 0) ∨ ¬(x ≥ 2))
θ4 : (¬(x ≤ 0) ∨ ¬(x ≥ 3))
θ5 : (¬(x ≤ 1) ∨ ¬(x ≥ 2))
θ6 : (¬(x ≤ 1) ∨ ¬(x ≥ 3))

ΘB∗ =

(¬A0 ∨ A1)
(¬A3 ∨ A2)
(¬A0 ∨ ¬A2)
(¬A0 ∨ ¬A3)
(¬A1 ∨ ¬A2)
(¬A1 ∨ ¬A3)

A "lucky" possible execution of the algorithm is:

i ΘTi ψTs,i Weight(ψTs,i) SMT (ϕTh ∪ ψTs,i ∪ΘTi)

0 {} {C0,C1,C2,C3} 15 UNSAT
1 {θ1, θ2, θ5} { , ,C2,C3} 8 SAT

A toy example II

ϕTh
def
= ∅ ϕBh

def
= ∅

ϕTs
def
=

C0 : ((x ≤ 0)) [4]
C1 : ((x ≤ 1)) [3]
C2 : ((x ≥ 2)) [2]
C3 : ((x ≥ 3)) [6]

 ϕBs
def
=

(A0) [4]
(A1) [3]
(A2) [2]
(A3) [6]

Notice that the set of all (minimal) T -lemmas on the T -atoms of ϕTh ∪ ϕTs is:

ΘT∗ =

θ1 : (¬(x ≤ 0) ∨ (x ≤ 1))
θ2 : (¬(x ≥ 3) ∨ (x ≥ 2))
θ3 : (¬(x ≤ 0) ∨ ¬(x ≥ 2))
θ4 : (¬(x ≤ 0) ∨ ¬(x ≥ 3))
θ5 : (¬(x ≤ 1) ∨ ¬(x ≥ 2))
θ6 : (¬(x ≤ 1) ∨ ¬(x ≥ 3))

ΘB∗ =

(¬A0 ∨ A1)
(¬A3 ∨ A2)
(¬A0 ∨ ¬A2)
(¬A0 ∨ ¬A3)
(¬A1 ∨ ¬A2)
(¬A1 ∨ ¬A3)

A "lucky" possible execution of the algorithm is:

i ΘTi ψTs,i Weight(ψTs,i) SMT (ϕTh ∪ ψTs,i ∪ΘTi)

0 {} {C0,C1,C2,C3} 15 UNSAT
1 {θ1, θ2, θ5} { , ,C2,C3} 8 SAT

Outline

1 Motivations

2 Optimization Modulo Theories with Linear-Arithmetic Objectives

3 OMT with Multiple and Combined Objectives

4 Relevant Subcases: OMT+PB & MaxSMT

5 Status of OMT

6 Current and Future Research Directions

7 Appendix
Inline OMT schema
OMT for Bit-vector and Floating-point theories
Imptoving OMT+PB by sorting networks
The MaxRES MaxSMT Procedure
Extended SMT-LIB language
Pareto Optimization (hints)

OMT(LIRA ∪ T) captures lots of interesting problems

with PB cost function
and constraints

OPTIMIZATION

DECISION
(Satisfiability)

with linear
cost function

OPTIMIZATION

Boolean formulas constraints
Sets of LIRA SMT(LIRA ∪

⋃
i Ti)SMT(LIRA)

OMT(LIRA ∪ T) captures lots of interesting problems

with PB cost function
and constraints

OPTIMIZATION

DECISION
(Satisfiability)

with linear
cost function

OPTIMIZATION

Boolean formulas constraints
Sets of LIRA SMT(LIRA ∪

⋃
i Ti)SMT(LIRA)

SMT(T)

OMT(LIRA ∪ T) captures lots of interesting problems

with PB cost function
and constraints

OPTIMIZATION

DECISION
(Satisfiability)

with linear
cost function

OPTIMIZATION

Boolean formulas

MaxSAT
(Weighted)

PB Opt.

constraints
Sets of LIRA SMT(LIRA ∪

⋃
i Ti)SMT(LIRA)

OMT(LIRA ∪ T) captures lots of interesting problems

with PB cost function
and constraints

OPTIMIZATION

DECISION
(Satisfiability)

with linear
cost function

OPTIMIZATION

Boolean formulas

PB cost funct.

constraints
Sets of LIRA SMT(LIRA ∪

⋃
i Ti)SMT(LIRA)

SMT(T) with
MaxSMT and

OMT(LIRA ∪ T) captures lots of interesting problems

with PB cost function
and constraints

OPTIMIZATION

DECISION
(Satisfiability)

with linear
cost function

OPTIMIZATION

Boolean formulas

LP

constraints
Sets of LIRA SMT(LIRA ∪

⋃
i Ti)SMT(LIRA)

OMT(LIRA ∪ T) captures lots of interesting problems

with PB cost function
and constraints

OPTIMIZATION

DECISION
(Satisfiability)

with linear
cost function

OPTIMIZATION

Boolean formulas

ILP, MILP,

DP, LGDP

constraints
Sets of LIRA SMT(LIRA ∪

⋃
i Ti)SMT(LIRA)

OMT(LIRA ∪ T) captures lots of interesting problems

with PB cost function
and constraints

OPTIMIZATION

DECISION
(Satisfiability)

with linear
cost function

OPTIMIZATION

Boolean formulas constraints
Sets of LIRA SMT(LIRA ∪

⋃
i Ti)SMT(LIRA)

OMT(LIRA ∪ T)

OMT(LIRA ∪ T) captures lots of interesting problems

with PB cost function
and constraints

OPTIMIZATION

DECISION
(Satisfiability)

with linear
cost function

OPTIMIZATION

Boolean formulas

ILP, MILP,

DP, LGDP
LP

PB cost funct.

MaxSAT
(Weighted)

PB Opt.

constraints
Sets of LIRA SMT(LIRA ∪

⋃
i Ti)SMT(LIRA)

OMT(LIRA ∪ T)

SMT(T) with
MaxSMT and

SMT(T)

(Finite Domain) Constraint Programming back

FDCP/MILP

Very efficient on (integer) linear
arithmetic / combinatorial
reasoning

Very efficient handling of global
constraints (e.g. all-different)

Booleans typically represented as
0-1 integers

(typically) finite precision
arithmetic

SMT/OMT

Very efficient on Boolean
reasoning

Supports other theories (Array,
Bit-Vectors, Strings, ...)

Incremental

infinite precision arithmetic

Other functionalities: all-smt,
proofs, unsat-cores, interpolants,
...

Some OMT tools

BCLT [44, 35]
http://www.cs.upc.edu/~oliveras/bclt-main.html

OPTIMATHSAT [52, 53, 55, 54, 57], on top of MATHSAT [22]
http://optimathsat.disi.unitn.it

SYMBA [38], on top of Z3 [24]
https://bitbucket.org/arieg/symba/src

Z3 [16, 15], on top of Z3 [24]
http://z3.codeplex.com

More Recently:

HAZEL [40]. =⇒ BV, incremental
CEGIO [7, 9] =⇒ counterexample guided inductive optimization
MAXHS-MSAT [27] =⇒ MaxSMT with Implicit Hitting Set (IHS)
algorithm
PULI [33]. =⇒ LIA cost functions, (based on linear regression)

http://www.cs.upc.edu/~oliveras/bclt-main.html
http://optimathsat.disi.unitn.it
https://bitbucket.org/arieg/symba/src
http://z3.codeplex.com

OMT Applications (OPTIMATHSAT)

Real-Time Systems. Worst-Case Execution Time (WCET) of programs [28]
=⇒ reproduced with OPTIMATHSAT [3]

Requirements Engineering. Constrained Goal Models with resources, preferences and goals
[41, 42, 43].
=⇒ OPTIMATHSAT backend engine of CGM-TOOL [1]

Machine Learning. Inference & Learning in Hybrid domains [46, 60].
=⇒ OPTIMATHSAT backend engine of LMT tool [2]

Quantum Annealing. Solving SAT and MaxSAT with D-Wave 2000Q QAs [12, 13]
=⇒ offline used of OPTIMATHSAT to generate optimal QUBO encodings of Boolean functions

Formal Verification & Model Checking. Synthesis of Barrier Certificates for Hybrid
Dynamical Systems [48]
=⇒ OPTIMATHSAT used as oracle to separate safe/unsafe regions starting from a simulation

Scheduling. Optimal sleep/wake-up scheduling for WSNs [32, 34, 33]
=⇒ OPTIMATHSAT used to deal with increasingly denser WSNs [34]

OMT Applications (Other tools)

Static Analysis.
Generation of Invariants and Proving Termination via Constraint-based method [19]

Finding Inductive Invariants via Local Policy Iteration [30, 31]

Formal Verification & Model Checking.
Computing Loop Iterations for Bounded Program Verification [39]

Scheduling and Planning with Resources.
Optimal plans for multi-robot systems [36, 37]

Task planning for smart factories [14]

Optimal Job-Shop Scheduling with OMT [50]

Synthesis Communication Schedules for Time Sensitive Networks [45]

Software Security Engineering.
Multi-Objective Workflow Satisfiability Problem [11]

Outline

1 Motivations

2 Optimization Modulo Theories with Linear-Arithmetic Objectives

3 OMT with Multiple and Combined Objectives

4 Relevant Subcases: OMT+PB & MaxSMT

5 Status of OMT

6 Current and Future Research Directions

7 Appendix
Inline OMT schema
OMT for Bit-vector and Floating-point theories
Imptoving OMT+PB by sorting networks
The MaxRES MaxSMT Procedure
Extended SMT-LIB language
Pareto Optimization (hints)

Ongoing Work & Research Directions on OMT

Field still far from maturity, lots of possible research directions:
Improve efficiency!
OMT on different theories, e.g.:

Bit vectors ([16, 40])
NLA(R)
NLA(Z) ([35])
Floating point ([61])

Exploit alternative SMT schemas (e.g., Model-Construction SMT)
Hybrid techniques, integration with techniques in neighbour fields
(MaxSAT, PB, CSP, MILP, CA, ...)
Extensive empirical comparison wrt. techniques in neighbour
fields
(MaxSAT, PB, CSP, MILP, ...)
Bridge SMT/OMT with CSP/COP (Minizinc)

To this extent....

Announcement

PHD POSITION available in Trento on
“Advancing Optimization Modulo Theories”
The call will expire in a couple of months.

Please contact me if interested: roberto.sebastiani@unitn.it.
(Se also flier on the desk.)

©Warner Bros. Inc.

References I

[1] CGM-Tool.
www.cgm-tool.eu.

[2] LMT.
http://disi.unitn.it/~teso/lmt/lmt.tgz.

[3] WCET OMT.
https://github.com/PatrickTrentin88/wcet_omt.

[4] Yices.
http://yices.csl.sri.com/.

[5] Z3.
http://research.microsoft.com/en-us/um/redmond/projects/z3/ml/z3.html.

[6] I. Abío, R. Nieuwenhuis, A. Oliveras, and E. Rodríguez-Carbonell.
A Parametric Approach for Smaller and Better Encodings of Cardinality Constraints.
In 19th International Conference on Principles and Practice of Constraint Programming, CP’13, 2013.

[7] H. F. Albuquerque, R. F. Araujo, I. V. de Bessa, L. C. Cordeiro, and E. B. de Lima Filho.
OptCE: A Counterexample-Guided Inductive Optimization Solver.
In SBMF, volume 10623 of Lecture Notes in Computer Science, pages 125–141. Springer, 2017.

[8] R. Alur.
Timed Automata.
In Proc. CAV’99, pages 8–22, 1999.

[9] R. F. Araujo, H. F. Albuquerque, I. V. de Bessa, L. C. Cordeiro, and J. E. C. Filho.
Counterexample guided inductive optimization based on satisfiability modulo theories.
Sci. Comput. Program., 165:3–23, 2018.

[10] R. Asín, R. Nieuwenhuis, A. Oliveras, and E. Rodríguez-Carbonell.
Cardinality Networks: a theoretical and empirical study.
Constraints, 16(2):195–221, 2011.

www.cgm-tool.eu
http://disi.unitn.it/~teso/lmt/lmt.tgz
https://github.com/PatrickTrentin88/wcet_omt
http://yices.csl.sri.com/
http://research.microsoft.com/en-us/um/redmond/projects/z3/ml/z3.html

References II

[11] C. Bertolissi, D. R. dos Santos, and S. Ranise.
Solving Multi-Objective Workflow Satisfiability Problems with Optimization Modulo Theories Techniques.
In SACMAT, pages 117–128. ACM, 2018.

[12] Z. Bian, F. Chudak, W. Macready, A. Roy, R. Sebastiani, and S. Varotti.
Solving SAT and MaxSAT with a Quantum Annealer: Foundations and a Preliminary Report.
In Frontiers of Combining Systems, volume 10483 of LNCS, pages 153–171. Springer, 2017.

[13] Z. Bian, F. A. Chudak, W. G. Macready, A. Roy, R. Sebastiani, and S. Varotti.
Solving SAT and maxsat with a quantum annealer: Foundations, encodings, and preliminary results.
CoRR, abs/1811.02524, 2018.
Under submission for journal publication.

[14] A. Bit-Monnot, F. Leofante, L. Pulina, E. Ábrahám, and A. Tacchella.
SMarTplan: a Task Planner for Smart Factories.
CoRR, abs/1806.07135, 2018.

[15] N. Bjørner, A. Phan, and L. Fleckenstein.
νz - an optimizing SMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems - 21st International Conference, TACAS 2015, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,
2015. Proceedings, pages 194–199, 2015.

[16] N. Bjorner and A.-D. Phan.
νZ - Maximal Satisfaction with Z3.
In Proc International Symposium on Symbolic Computation in Software Science, Gammart, Tunisia, December 2014.
EasyChair Proceedings in Computing (EPiC).
http://www.easychair.org/publications/?page=862275542.

[17] N. Bjorner, A.-D. Phan, and L. Fleckenstein.
Z3 - An Optimizing SMT Solver.
In Proc. TACAS, volume 9035 of LNCS. Springer, 2015.

http://www.easychair.org/publications/?page=862275542

References III

[18] M. Bozzano, R. Bruttomesso, A. Cimatti, T. A. Junttila, S. Ranise, P. van Rossum, and R. Sebastiani.
Efficient Theory Combination via Boolean Search.
Information and Computation, 204(10):1493–1525, 2006.

[19] L. Candeago, D. Larraz, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio.
Speeding up the Constraint-Based Method in Difference Logic.
In SAT, volume 9710 of Lecture Notes in Computer Science, pages 284–301. Springer, 2016.

[20] A. Cimatti, A. Franzén, A. Griggio, R. Sebastiani, and C. Stenico.
Satisfiability modulo the theory of costs: Foundations and applications.
In TACAS, volume 6015 of LNCS, pages 99–113. Springer, 2010.

[21] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani.
A Modular Approach to MaxSAT Modulo Theories.
In International Conference on Theory and Applications of Satisfiability Testing, SAT, volume 7962 of LNCS, July 2013.

[22] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani.
The MathSAT 5 SMT Solver.
In Tools and Algorithms for the Construction and Analysis of Systems, TACAS’13., volume 7795 of LNCS, pages 95–109.
Springer, 2013.

[23] L. M. de Moura and N. Bjørner.
Z3: An efficient smt solver.
In TACAS, volume 4963 of LNCS, pages 337–340. Springer, 2008.

[24] L. M. de Moura and N. Bjørner.
Z3: an efficient SMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held
as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March
29-April 6, 2008. Proceedings, pages 337–340, 2008.

[25] B. Dutertre and L. de Moura.
A Fast Linear-Arithmetic Solver for DPLL(T).
In CAV, volume 4144 of LNCS, 2006.

References IV

[26] N. Eén and N. Sörensson.
Translating Pseudo-Boolean Constraints into SAT.
JSAT, 2(1-4):1–26, 2006.

[27] K. Fazekas, F. Bacchus, and A. Biere.
Implicit Hitting Set Algorithms for Maximum Satisfiability Modulo Theories.
In IJCAR, volume 10900 of Lecture Notes in Computer Science, pages 134–151. Springer, 2018.

[28] J. Henry, M. Asavoae, D. Monniaux, and C. Maïza.
How to Compute Worst-case Execution Time by Optimization Modulo Theory and a Clever Encoding of Program
Semantics.
In Proceedings of the 2014 SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded Systems,
LCTES ’14, pages 43–52, New York, NY, USA, 2014. ACM.

[29] M. Hifi.
Exact algorithms for the guillotine strip cutting/packing problem.
Computers & OR, 25(11):925–940, 1998.

[30] E. G. Karpenkov, K. Friedberger, and D. Beyer.
JavaSMT: A Unified Interface for SMT Solvers in Java.
In VSTTE, volume 9971 of Lecture Notes in Computer Science, pages 139–148, 2016.

[31] G. E. Karpenkov.
Finding inductive invariants using satisfiability modulo theories and convex optimization.
Theses, Université Grenoble Alpes, Mar. 2017.

[32] G. Kovásznai, C. Biró, and B. Erdélyi.
Generating Optimal Scheduling for Wireless Sensor Networks by Using Optimization Modulo Theories Solvers.
2017.

[33] G. Kovásznai, C. Biró, and B. Erdélyi.
Puli - a problem-specific omt solver.
EasyChair Preprint no. 371, EasyChair, 2018.

References V

[34] G. Kovásznai, B. Erdélyi, and C. Biró.
Investigations of graph properties in terms of wireless sensor network optimization.
In 2018 IEEE International Conference on Future IoT Technologies (Future IoT), pages 1–8, Jan 2018.

[35] D. Larraz, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio.
Minimal-Model-Guided Approaches to Solving Polynomial Constraints and Extensions.
In SAT, volume 8561 of Lecture Notes in Computer Science, pages 333–350. Springer, 2014.

[36] F. Leofante, E. Ábrahám, T. Niemueller, G. Lakemeyer, and A. Tacchella.
On the Synthesis of Guaranteed-Quality Plans for Robot Fleets in Logistics Scenarios via Optimization Modulo Theories.
In 2017 IEEE International Conference on Information Reuse and Integration (IRI), pages 403–410, Aug 2017.

[37] F. Leofante, E. Abraham, T. Niemueller, G. Lakemeyer, and A. Tacchella.
Integrated Synthesis and Execution of Optimal Plans for Multi-Robot Systems in Logistics.
Information Systems Frontiers, pages 1–21, May 2018.

[38] Y. Li, A. Albarghouthi, Z. Kincaid, A. Gurfinkel, and M. Chechik.
Symbolic optimization with smt solvers.
In POPL, pages 607–618, 2014.

[39] T. Liu, S. S. Tyszberowicz, B. Beckert, and M. Taghdiri.
Computing Exact Loop Bounds for Bounded Program Verification.
In SETTA, volume 10606 of Lecture Notes in Computer Science, pages 147–163. Springer, 2017.

[40] A. Nadel and V. Ryvchin.
Bit-Vector Optimization.
In Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2016, volume 9636 of LNCS. Springer,
2016.

[41] C. M. Nguyen, R. Sebastiani, P. Giorgini, and J. Mylopoulos.
Multi-objective reasoning with constrained goal models.
Requirements Engineering, 2016.
In print. Published online 24 December 2016. DOI: http://dx.doi.org/10.1007/s00766-016-0263-5.

http://dx.doi.org/10.1007/s00766-016-0263-5

References VI

[42] C. M. Nguyen, R. Sebastiani, P. Giorgini, and J. Mylopoulos.
Requirements Evolution and Evolution Requirements with Constrained Goal Models.
In Proceedings of the 37nd International Conference on Conceptual Modeling - ER16, LNCS. Springer, 2016.

[43] C. M. Nguyen, R. Sebastiani, P. Giorgini, and J. Mylopoulos.
Modeling and Reasoning on Requirements Evolution with Constrained Goal Models.
In A. Cimatti and M. Sirjani, editors, Software Engineering and Formal Methods - 15th International Conference, SEFM
2017, Trento, Italy, September 4-8, 2017, Proceedings, volume 10469 of Lecture Notes in Computer Science, pages
70–86. Springer, 2017.

[44] R. Nieuwenhuis and A. Oliveras.
On SAT Modulo Theories and Optimization Problems.
In Proc. Theory and Applications of Satisfiability Testing - SAT 2006, volume 4121 of LNCS. Springer, 2006.

[45] R. S. Oliver, S. S. Craciunas, and W. Steiner.
IEEE 802.1Qbv Gate Control List Synthesis Using Array Theory Encoding.
In 2018 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 13–24, April 2018.

[46] A. Passerini.
Learning Modulo Theories.
In C. Bessiere, L. D. Raedt, L. Kotthoff, S. Nijssen, B. O’Sullivan, and D. Pedreschi, editors, Data Mining and Constraint
Programming - Foundations of a Cross-Disciplinary Approach, volume 10101 of Lecture Notes in Computer Science,
pages 113–146. Springer, 2016.

[47] R. Raman and I. Grossmann.
Modelling and computational techniques for logic based integer programming.
Computers and Chemical Engineering, 18(7):563 – 578, 1994.

[48] S. Ratschan.
Simulation Based Computation of Certificates for Safety of Dynamical Systems.
In A. Abate and G. Geeraerts, editors, Formal Modeling and Analysis of Timed Systems - 15th International Conference,
FORMATS 2017, Berlin, Germany, September 5-7, 2017, Proceedings, volume 10419 of Lecture Notes in Computer
Science, pages 303–317. Springer, 2017.

References VII

[49] D. Rayside, H.-C. Estler, and D. Jackson.
The Guided Improvement Algorithm for Exact, General-Purpose, Many-Objective Combinatorial Optimization.
Technical report, Massachusetts Institute of Technology, Cambridge, 07 2009.

[50] S. F. Roselli, K. Bengtsson, and K. Åkesson.
SMT Solvers for Job-Shop Scheduling Problems: Models Comparison and Performance Evaluation.
In 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), pages 547–552, Aug 2018.

[51] N. W. Sawaya and I. E. Grossmann.
A cutting plane method for solving linear generalized disjunctive programming problems.
Comput Chem Eng, 29(9):1891–1913, 2005.

[52] R. Sebastiani and S. Tomasi.
Optimization in SMT with LA(Q) Cost Functions.
In IJCAR, volume 7364 of LNAI, pages 484–498. Springer, July 2012.

[53] R. Sebastiani and S. Tomasi.
Optimization Modulo Theories with Linear Rational Costs.
ACM Transactions on Computational Logics, 16(2), March 2015.

[54] R. Sebastiani and P. Trentin.
OptiMathSAT: A Tool for Optimization Modulo Theories.
In Proc. International Conference on Computer-Aided Verification, CAV 2015, volume 9206 of LNCS. Springer, 2015.

[55] R. Sebastiani and P. Trentin.
Pushing the Envelope of Optimization Modulo Theories with Linear-Arithmetic Cost Functions.
In Proc. Int. Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS’15, volume 9035
of LNCS. Springer, 2015.

[56] R. Sebastiani and P. Trentin.
On Optimization Modulo Theories, MaxSMT and Sorting Networks.
In Proc. Int. Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS’17, volume 10205
of LNCS. Springer, 2017.

References VIII

[57] R. Sebastiani and P. Trentin.
OptiMathSAT: A Tool for Optimization Modulo Theories.
Journal of Automated Reasoning, Dec 2018.

[58] C. Sinz.
Towards an Optimal CNF Encoding of Boolean Cardinality Constraints.
In P. van Beek, editor, CP, volume 3709 of LNCS, pages 827–831. Springer, 2005.

[59] S. Teso, R. Sebastiani, and A. Passerini.
Structured Learning Modulo Theories.
Artificial Intelligence Journal, 2015.
To appear.

[60] S. Teso, R. Sebastiani, and A. Passerini.
Structured learning modulo theories.
Artif. Intell., 244:166–187, 2017.

[61] P. Trentin and R. Sebastiani.
Optimization Modulo the Theory of Floating-Point Numbers.
In Proc. Int. Conference on Automated Deduction, CADE 27, LNCS/LNAI. Springer, 2019.
To appear.

[62] S. Wolfman and D. Weld.
The LPSAT Engine & its Application to Resource Planning.
In Proc. IJCAI, 1999.

Outline

1 Motivations

2 Optimization Modulo Theories with Linear-Arithmetic Objectives

3 OMT with Multiple and Combined Objectives

4 Relevant Subcases: OMT+PB & MaxSMT

5 Status of OMT

6 Current and Future Research Directions

7 Appendix
Inline OMT schema
OMT for Bit-vector and Floating-point theories
Imptoving OMT+PB by sorting networks
The MaxRES MaxSMT Procedure
Extended SMT-LIB language
Pareto Optimization (hints)

Outline

1 Motivations

2 Optimization Modulo Theories with Linear-Arithmetic Objectives

3 OMT with Multiple and Combined Objectives

4 Relevant Subcases: OMT+PB & MaxSMT

5 Status of OMT

6 Current and Future Research Directions

7 Appendix
Inline OMT schema
OMT for Bit-vector and Floating-point theories
Imptoving OMT+PB by sorting networks
The MaxRES MaxSMT Procedure
Extended SMT-LIB language
Pareto Optimization (hints)

Solving OMT(LRA) [52, 53]

General idea
Combine standard SMT and LP minimization techniques.

Offline Schema
SMT solver and LP minimizer used as blackbox procedures.

=⇒ no need to hack the code of the SMT solver

Inline Schema
Search for minimum integrated inside the CDCL loop of the SMT
solver.

Solving OMT(LRA) [52, 53]

General idea
Combine standard SMT and LP minimization techniques.

Offline Schema
SMT solver and LP minimizer used as blackbox procedures.

=⇒ no need to hack the code of the SMT solver

Inline Schema
Search for minimum integrated inside the CDCL loop of the SMT
solver.

Inline Version: Linear-Search Strategy

¬(cost < lb0) ∧ (cost < ub0) ∈ ϕ

ϕ

µ |= ϕ lb0 ub0

Search for optimum integrated inside CDCL search schema
Minimizer called incrementally (no restarting of LRA-solver)
Learned clauses drive backjumping up to level 0
Intermediate-assignment LRA-checking (early-pruning) plays
the role of “bounding” in a Branch & Bound fashion

Inline Version: Linear-Search Strategy

ϕ

µ |= ϕ lbi ubi

Search for optimum integrated inside CDCL search schema
Minimizer called incrementally (no restarting of LRA-solver)
Learned clauses drive backjumping up to level 0
Intermediate-assignment LRA-checking (early-pruning) plays
the role of “bounding” in a Branch & Bound fashion

Inline Version: Linear-Search Strategy

mi+1

ϕ ∧ (cost < mi+1)

LRA-solver.solve(µi+1)⇒ SAT
LRA-solver.minimize(cost, µi+1)⇒ mi+1

ϕ

µ |= ϕ lbi ubi

Search for optimum integrated inside CDCL search schema
Minimizer called incrementally (no restarting of LRA-solver)
Learned clauses drive backjumping up to level 0
Intermediate-assignment LRA-checking (early-pruning) plays
the role of “bounding” in a Branch & Bound fashion

Inline Version: Linear-Search Strategy

mi+1

ϕ ∧ (cost < mi+1)

LRA-solver.solve(µi+1)⇒ SAT
LRA-solver.minimize(cost, µi+1)⇒ mi+1

ϕ

µ |= ϕ lbi ubi

Search for optimum integrated inside CDCL search schema
Minimizer called incrementally (no restarting of LRA-solver)
Learned clauses drive backjumping up to level 0
Intermediate-assignment LRA-checking (early-pruning) plays
the role of “bounding” in a Branch & Bound fashion

Inline Version: Linear-Search Strategy

mi+1

cost(η′j) ≥ mi+1

ηj
def

= η′j ∧ (cost < mi+1)

ϕ ∧ (cost < mi+1)

LRA-solver.solve(µi+1)⇒ SAT
LRA-solver.minimize(cost, µi+1)⇒ mi+1

ϕ

µ |= ϕ lbi ubi

Search for optimum integrated inside CDCL search schema
Minimizer called incrementally (no restarting of LRA-solver)
Learned clauses drive backjumping up to level 0
Intermediate-assignment LRA-checking (early-pruning) plays
the role of “bounding” in a Branch & Bound fashion

Inline Version: Binary-Search Strategy

¬(cost < lb0) ∧ (cost < ub0) ∈ ϕ

µ |= ϕ

ϕ

lb0 ub0

Range-minimization loop embedded within CDCL search
schema
Level 0: update pivotj and decide (cost < pivotj)

Inline Version: Binary-Search Strategy

pivotj

(cost < pivotj)

ϕ

µ |= ϕ ubilbi

Range-minimization loop embedded within CDCL search
schema
Level 0: update pivotj and decide (cost < pivotj)

Inline Version: Binary-Search Strategy

pivotj

(cost < pivotj)

ϕ

µ |= ϕ ubilbi

Range-minimization loop embedded within CDCL search
schema
Level 0: update pivotj and decide (cost < pivotj)

Inline Version: Binary-Search Strategy

mi+1 pivotjLRA-solver.solve(µi+1)⇒ SAT

ϕ ∧ (cost < mi+1)

LRA-solver.minimize(cost, µi+1)⇒ mi+1

(cost < pivotj)

ϕ

µ |= ϕ ubilbi

Range-minimization loop embedded within CDCL search
schema
Level 0: update pivotj and decide (cost < pivotj)

Inline Version: Binary-Search Strategy

mi+1 pivotjLRA-solver.solve(µi+1)⇒ SAT

ϕ ∧ (cost < mi+1)

LRA-solver.minimize(cost, µi+1)⇒ mi+1

(cost < pivotj)

ϕ

µ |= ϕ ubilbi

Range-minimization loop embedded within CDCL search
schema
Level 0: update pivotj and decide (cost < pivotj)

Inline Version: Binary-Search Strategy

mi+1pivotj+1 pivotjLRA-solver.solve(µi+1)⇒ SAT

ϕ ∧ (cost < mi+1)

LRA-solver.minimize(cost, µi+1)⇒ mi+1

(cost < pivotj+1)

(cost < pivotj)

ϕ

µ |= ϕ ubilbi

Range-minimization loop embedded within CDCL search
schema
Level 0: update pivotj and decide (cost < pivotj)

Inline Version: Binary-Search Strategy

pivotj

conflict

(cost < pivotj)

ϕ

µ |= ϕ ubilbi

Range-minimization loop embedded within CDCL search
schema
Level 0: update pivotj and decide (cost < pivotj)

Inline Version: Binary-Search Strategy

pivotj

conflict

ϕ ∧ ¬(cost < pivotj)
(cost < pivotj)

ϕ

µ |= ϕ ubilbi

Range-minimization loop embedded within CDCL search
schema
Level 0: update pivotj and decide (cost < pivotj)

Inline Version: Binary-Search Strategy

pivotj+1pivotj

conflict

(cost < pivotj+1)
ϕ ∧ ¬(cost < pivotj)

(cost < pivotj)

ϕ

µ |= ϕ ubilbi

Range-minimization loop embedded within CDCL search
schema
Level 0: update pivotj and decide (cost < pivotj)

Outline

1 Motivations

2 Optimization Modulo Theories with Linear-Arithmetic Objectives

3 OMT with Multiple and Combined Objectives

4 Relevant Subcases: OMT+PB & MaxSMT

5 Status of OMT

6 Current and Future Research Directions

7 Appendix
Inline OMT schema
OMT for Bit-vector and Floating-point theories
Imptoving OMT+PB by sorting networks
The MaxRES MaxSMT Procedure
Extended SMT-LIB language
Pareto Optimization (hints)

OMT(BV) back

Minimization of an unsigned Bit-Vector

Given a pair 〈ϕ, cost〉, where cost def
= [cost[0], ..., cost[n− 1]] is an unsigned BV of n

bits:

Reduction to:

Lexicographic OMT: 〈ϕ, {cost[0] 6= 0,, cost[n − 1] 6= 0}〉L
MaxSMT [16, 17]: 〈ϕ,

⋃i=n−1
i=0 〈cost[i] 6= 0,1〉〉

OMT-based Approach: linear-search, binary-search and adaptive-search

Ad-Hoc Algorithms:

OBV-WA [40]
each cost[i] transformed into a high-priority decision variable
the phase-saving of each cost[i] initialized to 0

OBV-BS [40]

binary search over the bits [cost[0], ..., cost[n − 1]]
at most n incremental calls to the underlying SMT solver

Question:
How to deal with other BV goals?

signed vs. unsigned

maximization vs minimization

OMT(BV) - Signed/Unsigned BV [61]
Example: encoding of a 8-bits Bit-Vector

Unsigned:
0 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1 255
1 1 1 1 1 1 1 0 254

...
1 0 0 0 0 0 0 1 129
1 0 0 0 0 0 0 0 128
0 1 1 1 1 1 1 1 127
0 1 1 1 1 1 1 0 126

...
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0

Positive

Signed: (Two’s complement)
0 1 2 3 4 5 6 7

0 1 1 1 1 1 1 1 127
0 1 1 1 1 1 1 0 126

...
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0

 Positive

1 1 1 1 1 1 1 1 −1
1 1 1 1 1 1 1 0 −2

...
1 0 0 0 0 0 0 1 −127
1 0 0 0 0 0 0 0 −128

 Negative

Attractor attr for cost: when minimizing, it’s the smallest BV-value of the same sort
of cost.

it’s the ideal result of the optimization search

depends on signed/unsigned

[Dual for Maximization]

OMT(BV) - Signed/Unsigned BV [61]

Reduction to unsigned BV (minimization)

Given an attractor attr for cost, both BVs of n bits, replace cost with

cost xorn attr

Example: maximization of a signed 8-bits Bit-Vector

Before: cost
0 1 2 3 4 5 6 7

0 1 1 1 1 1 1 1 127
0 1 1 1 1 1 1 0 126

...
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0

 Positive

1 1 1 1 1 1 1 1 −1
1 1 1 1 1 1 1 0 −2

...
1 0 0 0 0 0 0 1 −127
1 0 0 0 0 0 0 0 −128

 Negative

After: cost xor8 #b0111111
0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 127
0 0 0 0 0 0 0 1 126

...
0 1 1 1 1 1 1 0 1
0 1 1 1 1 1 1 1 0

 Positive

1 0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 1 −2

...
1 1 1 1 1 1 1 0 −127
1 1 1 1 1 1 1 1 −128

 Negative

OMT(FP) [61] back

Goal: find a modelM of ϕ for which the value of cost is minimum.
S

ig
n

Exponent Significand

Simplification: ∃M s.t. M |= ϕ andM(cost) 6= NAN.
=⇒ replace ϕ with ϕ ∧ cost 6= NAN

FP Minimization Approaches

Reduction to Bit-Vector Optimization:

- - BV and FP are not Nelson-Oppen disjoint!
=⇒ can only use eager BV/FP SMT-solving approach

OMT-based Approach: linear-search, binary-search and adaptive-search

Ad-Hoc Algorithms:

OFP-BS (based on OBV-BS [40])

binary search over the bits [cost[0], ..., cost[n − 1]]
at most n incremental calls to the underlying SMT solver

OMT(FP) [61]
Example: Encoding of a FP〈3,5〉

0 1 2 3 4 5 6 7

0 1 1 1 0 0 0 0 +∞
0 1 1 0 1 1 1 1 31/2

...

0 0 0 0 0 0 0 1 1/64

0 0 0 0 0 0 0 0 +0

 Positive

1 0 0 0 0 0 0 0 −0
1 0 0 0 0 0 0 1 −1/64

...

1 1 1 0 1 1 1 1 −31/2

1 1 1 1 0 0 0 0 −∞

 Negative

Minimization in the

Positive Domain, go towards

0 0 0 0 0 0 0 0 +0

Negative Domain, go towards

1 1 1 1 1 1 1 1 NAN

unless the exponent is all 1s,
then go towards

? 1 1 1 0 0 0 0 +∞/−∞

Dynamic Attractor attrτk for cost: given an assignment τk to the first k bits of cost,
it’s the smallest FP-value different from NAN s.t.

∀i=k−1
i=0 attrτk [i] = τk [i]

The ideal result of the optimization wrt. current search horizon

OMT(FP) - OFP-BS [61]
Idea: Use attrτk as look-ahead.

if (M(cost[k]) 6= attrτk [k]) then
SMT.INCREMENTAL_CHECK(ϕ ∧ τk ∧ cost[k] = attrτk [k]) // try improve cost

UNSAT =⇒ update τk and attrτk

SAT =⇒ update τk andM
otherwise: skip

Disclosure: based on OBV-BS [40].

Example: minimization of a FP〈3,5〉
k M(cost) τk attrτk

0 0 1 1 0 1 1 1 1 31/2 1 1 1 1 0 0 0 0 −∞=⇒ UNSAT

1 0 1 1 0 1 1 1 1 31/2 0 0 0 0 0 0 0 0 0 +0=⇒ SAT

2 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 0 0 0 0 +0=⇒ skip

6 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0=⇒ UNSAT

7 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1/32=⇒ skip

8 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1/32=⇒ end.

OMT(FP) - OFP-BS [61]
Idea: Use attrτk as look-ahead.

if (M(cost[k]) 6= attrτk [k]) then
SMT.INCREMENTAL_CHECK(ϕ ∧ τk ∧ cost[k] = attrτk [k]) // try improve cost

UNSAT =⇒ update τk and attrτk

SAT =⇒ update τk andM
otherwise: skip

Disclosure: based on OBV-BS [40].

Example: minimization of a FP〈3,5〉
k M(cost) τk attrτk

0 0 1 1 0 1 1 1 1 31/2 1 1 1 1 0 0 0 0 −∞=⇒ UNSAT

1 0 1 1 0 1 1 1 1 31/2 0 0 0 0 0 0 0 0 0 +0=⇒ SAT

2 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 0 0 0 0 +0=⇒ skip

6 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0=⇒ UNSAT

7 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1/32=⇒ skip

8 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1/32=⇒ end.

OMT(FP) - OFP-BS [61]
Idea: Use attrτk as look-ahead.

if (M(cost[k]) 6= attrτk [k]) then
SMT.INCREMENTAL_CHECK(ϕ ∧ τk ∧ cost[k] = attrτk [k]) // try improve cost

UNSAT =⇒ update τk and attrτk

SAT =⇒ update τk andM
otherwise: skip

Disclosure: based on OBV-BS [40].

Example: minimization of a FP〈3,5〉
k M(cost) τk attrτk

0 0 1 1 0 1 1 1 1 31/2 1 1 1 1 0 0 0 0 −∞=⇒ UNSAT

1 0 1 1 0 1 1 1 1 31/2 0 0 0 0 0 0 0 0 0 +0=⇒ SAT

2 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 0 0 0 0 +0=⇒ skip

6 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0=⇒ UNSAT

7 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1/32=⇒ skip

8 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1/32=⇒ end.

OMT(FP) - OFP-BS [61]
Idea: Use attrτk as look-ahead.

if (M(cost[k]) 6= attrτk [k]) then
SMT.INCREMENTAL_CHECK(ϕ ∧ τk ∧ cost[k] = attrτk [k]) // try improve cost

UNSAT =⇒ update τk and attrτk

SAT =⇒ update τk andM
otherwise: skip

Disclosure: based on OBV-BS [40].

Example: minimization of a FP〈3,5〉
k M(cost) τk attrτk

0 0 1 1 0 1 1 1 1 31/2 1 1 1 1 0 0 0 0 −∞=⇒ UNSAT

1 0 1 1 0 1 1 1 1 31/2 0 0 0 0 0 0 0 0 0 +0=⇒ SAT

2 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 0 0 0 0 +0=⇒ skip

6 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0=⇒ UNSAT

7 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1/32=⇒ skip

8 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1/32=⇒ end.

OMT(FP) - OFP-BS [61]
Idea: Use attrτk as look-ahead.

if (M(cost[k]) 6= attrτk [k]) then
SMT.INCREMENTAL_CHECK(ϕ ∧ τk ∧ cost[k] = attrτk [k]) // try improve cost

UNSAT =⇒ update τk and attrτk

SAT =⇒ update τk andM
otherwise: skip

Disclosure: based on OBV-BS [40].

Example: minimization of a FP〈3,5〉
k M(cost) τk attrτk

0 0 1 1 0 1 1 1 1 31/2 1 1 1 1 0 0 0 0 −∞=⇒ UNSAT

1 0 1 1 0 1 1 1 1 31/2 0 0 0 0 0 0 0 0 0 +0=⇒ SAT

2 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 0 0 0 0 +0=⇒ skip

6 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0=⇒ UNSAT

7 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1/32=⇒ skip

8 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1/32=⇒ end.

OMT(FP) - OFP-BS [61]
Idea: Use attrτk as look-ahead.

if (M(cost[k]) 6= attrτk [k]) then
SMT.INCREMENTAL_CHECK(ϕ ∧ τk ∧ cost[k] = attrτk [k]) // try improve cost

UNSAT =⇒ update τk and attrτk

SAT =⇒ update τk andM
otherwise: skip

Disclosure: based on OBV-BS [40].

Example: minimization of a FP〈3,5〉
k M(cost) τk attrτk

0 0 1 1 0 1 1 1 1 31/2 1 1 1 1 0 0 0 0 −∞=⇒ UNSAT

1 0 1 1 0 1 1 1 1 31/2 0 0 0 0 0 0 0 0 0 +0=⇒ SAT

2 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 0 0 0 0 +0=⇒ skip

6 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0=⇒ UNSAT

7 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1/32=⇒ skip

8 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1/32=⇒ end.

OMT(FP) - OFP-BS [61]
Idea: Use attrτk as look-ahead.

if (M(cost[k]) 6= attrτk [k]) then
SMT.INCREMENTAL_CHECK(ϕ ∧ τk ∧ cost[k] = attrτk [k]) // try improve cost

UNSAT =⇒ update τk and attrτk

SAT =⇒ update τk andM
otherwise: skip

Disclosure: based on OBV-BS [40].

Example: minimization of a FP〈3,5〉
k M(cost) τk attrτk

0 0 1 1 0 1 1 1 1 31/2 1 1 1 1 0 0 0 0 −∞=⇒ UNSAT

1 0 1 1 0 1 1 1 1 31/2 0 0 0 0 0 0 0 0 0 +0=⇒ SAT

2 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 0 0 0 0 +0=⇒ skip

6 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0=⇒ UNSAT

7 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1/32=⇒ skip

8 0 0 0 0 0 0 1 0 1/32 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1/32=⇒ end.

Outline

1 Motivations

2 Optimization Modulo Theories with Linear-Arithmetic Objectives

3 OMT with Multiple and Combined Objectives

4 Relevant Subcases: OMT+PB & MaxSMT

5 Status of OMT

6 Current and Future Research Directions

7 Appendix
Inline OMT schema
OMT for Bit-vector and Floating-point theories
Imptoving OMT+PB by sorting networks
The MaxRES MaxSMT Procedure
Extended SMT-LIB language
Pareto Optimization (hints)

Running Example: performance bottleneck back

Problem:

〈ϕ,min(cost)〉, where cost := w ·
∑n−1

i=0 Ai , currently obj = k · w
OPTIMIZATION STEP: learn ¬(k · w ≤ cost) and restart/jump to level 0

Example: with k = 2, w = 1 and n = 4

Running Example: performance bottleneck back

Problem:

¬(k ≤ cost) causes the inconsistency of
(n

k

)
truth assignments satisfying

exactly k variables in A0, ...,An−1

Example: with k = 2, w = 1 and n = 4

Running Example: performance bottleneck back

Problem:

¬(k ≤ cost) causes the inconsistency of
(n

k

)
truth assignments satisfying

exactly k variables in A0, ...,An−1

=⇒ inconsistency is not revealed by Boolean Constraint Propagation

Example: with k = 2, w = 1 and n = 4

Running Example: performance bottleneck back

Problem:

up to
(n

k

)
(expensive) calls to the LA-Solver required

Example: with k = 2, w = 1 and n = 4

Solution: OMT + sorting networks [56]

Contribution:

Enriched OMT encoding with bidirectional sorting networks [58, 10].

Approach:

Given 〈ϕ, cost〉, cost := w ·
∑n−1

i=0 Ai , and a bi-directional sorting network relation
C(A0, ...,An−1,B0, ...,Bn−1) s.t.

k Ai ’s are > ⇐⇒
{B0, ...,Bk−1} are >,

m − k Ai ’s are ∗ ⇐⇒
{Bk , ...,Bm−1} are ∗,
n −m Ai ’s are ⊥ ⇐⇒
{Bm, ...,Bn−1} are ⊥

then we encode it as 〈ϕ′, cost〉, where

ϕ′ := ϕ ∧ C(A0, ...,An−1,B0, ...,Bn−1) ∧
n−1∧
i=0

Bi ↔ ((i + 1) · w ≤ cost) ∧
n−2∧
i=0

Bi+1 → Bi

Properties: OMT + sorting networks [56]
Properties:

if (k · w ≤ cost) = ⊥, then by BCP ∀i ∈ [k , n].Bi−1 = ⊥

Example: with k = 2, w = 1 and n = 4

Properties: OMT + sorting networks [56]
Properties:

if (k · w ≤ cost) = ⊥, then by BCP ∀i ∈ [k , n].Bi−1 = ⊥
as soon as k − 1 Ai are assigned >

=⇒ all others are unit-propagated to ⊥

Dual if (k · w ≤ cost) = >.

Example: with k = 2, w = 1 and n = 4

Example: OMT with sorting networks back

OPTIMIZATION STEP: learn ¬(k · w ≤ cost) and restart/jump to level 0

Example: with k = 2, w = 1 and n = 4

Example: OMT with sorting networks back

OPTIMIZATION STEP: learn ¬(k · w ≤ cost) and restart/jump to level 0

as soon as k − 1 Ai are assigned >
=⇒ all others are unit-propagated to ⊥

Example: with k = 2, w = 1 and n = 4

Solution: Combine OMT with Sorting Networks

OPTIMATHSAT: sorting networks implemented

Bi-directional Sequential Counter [58], in O(n2) but incremental
sum of Ai ’s, unary representation

Bi-directional Cardinality Network [10, 6], in O(n log2n)
based on merge-sort algorithm

Generalization

The same performance issue occurs for 〈ϕ, cost〉, where

cost = τ1 + ...+ τm,

∀j ∈ [1,m]. (τj = wj ·
i=kj∑
i=0

Aji) ∧ (0 ≤ τj) ∧ (τj ≤ wj · kj)

Solution:

use a separate sorting circuit for each term τj

add clauses in the form (wj · i ≤ τj)→ (wj · i ≤ cost)

Outline

1 Motivations

2 Optimization Modulo Theories with Linear-Arithmetic Objectives

3 OMT with Multiple and Combined Objectives

4 Relevant Subcases: OMT+PB & MaxSMT

5 Status of OMT

6 Current and Future Research Directions

7 Appendix
Inline OMT schema
OMT for Bit-vector and Floating-point theories
Imptoving OMT+PB by sorting networks
The MaxRES MaxSMT Procedure
Extended SMT-LIB language
Pareto Optimization (hints)

MAXRES: Maximum Resolution [16] back

Idea: given a MaxSMT 〈ϕh, ϕs〉, treat both ϕh and ϕs as hard clauses.
Analyze conflict τ , where τ def

= τh ∪ τs, τh ⊆ ϕh and τs ⊆ ϕs

if τs = ∅ =⇒ input problem is unsatisfiable

else let wmin
def
= min(wi | 〈Ci ,wi〉 ∈ τs) and relax the problem:

Learn conflict-clause and replace soft-clauses

ϕh := ϕh ∪
∨
〈Ci ,wi 〉∈τs

¬Ci

ϕs := ϕs \ τs ∪
⋃
〈Ci ,wi 〉∈τs

〈Ci ,wi − wmin〉 if wi − wmin > 0

if | τs |> 1 =⇒ add compensation clauses

ϕh := ϕh ∪
⋃
〈Ci ,wi 〉∈τs

.Bi → (Bi−1 ∧ Ci)

// B0 := >, ∀i>0.Bi is fresh Boolean var

ϕs := ϕs ∪
⋃
〈Ci ,wi 〉∈{τs\〈C1,w1〉}

.〈Bi−1 ∨ Ci ,wmin〉

No Conflict: optimal solution

Outline

1 Motivations

2 Optimization Modulo Theories with Linear-Arithmetic Objectives

3 OMT with Multiple and Combined Objectives

4 Relevant Subcases: OMT+PB & MaxSMT

5 Status of OMT

6 Current and Future Research Directions

7 Appendix
Inline OMT schema
OMT for Bit-vector and Floating-point theories
Imptoving OMT+PB by sorting networks
The MaxRES MaxSMT Procedure
Extended SMT-LIB language
Pareto Optimization (hints)

Extended SMT-LIBV2 Interface [57] back

(minimize <term> [:id <string>] [:signed]
[:lower <const_term>] [:upper <const_term>])

(maximize <term> [:id <string>] [:signed]
[:lower <const_term>] [:upper <const_term>])

(minmax <term> ... <term> [:id <string>] [:signed]
[:lower <const_term>] [:upper <const_term>])

(maxmin <term> ... <term> [:id <string>] [:signed]
[:lower <const_term>] [:upper <const_term>])

(assert-soft <term> [:id <string>] [:weight <const_term>])

(check-sat)
(check-allsat (<const_term> ... <const_term>))

(get-objectives)
(load-objective-model <numeral>)

Outline

1 Motivations

2 Optimization Modulo Theories with Linear-Arithmetic Objectives

3 OMT with Multiple and Combined Objectives

4 Relevant Subcases: OMT+PB & MaxSMT

5 Status of OMT

6 Current and Future Research Directions

7 Appendix
Inline OMT schema
OMT for Bit-vector and Floating-point theories
Imptoving OMT+PB by sorting networks
The MaxRES MaxSMT Procedure
Extended SMT-LIB language
Pareto Optimization (hints)

Pareto OMT back

Definitions:

A modelM Pareto-dominatesM′ iff

∀i.M(costi) ≤M′(costi)

and

∃j.M(costj) <M′(costj)

(dual for maximization)

M is Pareto-optimal iff it is not
Pareto-dominated by anyM′.

Example: 〈ϕ, {cost1, cost2}〉P
−1−2−3−4−5−6−7

−1

−2

−3

−4

−5

−6

−7

cost1

cost2

Pareto-optimal

Dominated by
(-3,-4)

Goal: given a pair 〈ϕ,O〉P , where O def
= {cost1, ..., costN}

find the set of Pareto-optimal models {M1, ...,MM} (i.e. the Pareto front)

Pareto OMT: Guided Improvement Algorithm (GIA)

Guided Improvement Algorithm [49, 16]

Given a pair 〈ϕ,O〉P , where O def
= {cost1, ..., costN}:

start from random modelM of ϕ

loop: look for a modelM′ of ϕ that Pareto-dominatesM
=⇒ if any, replaceM withM′ and keep looking

block solutions Pareto-dominated byM
repeat

Infinite Loop:

some costi is unbounded

some costj can always be improved by an infinitesimal value (e.g. OMT(LRA))

Also: T -minimization procedure not used
=⇒ the same µ may be visited multiple times by CDCL/SAT engine

Pareto OMT: Lexicographic GIA

Observation. If modelM is Lexicographic-optimal for 〈ϕ, {cost1, ..., costN}〉L, then
M is also Pareto-optimal for 〈ϕ, {cost1, ..., costN}〉P .

Idea:

Shuffle {cost1, ..., costN}
=⇒ explore from different directions

Extract Lexicographic-optimalM
Learn

i=N∨
i=1

(costi <M[costi])

to block Pareto-dominated solutions

repeat

Example: 〈ϕ, {cost1, cost2}〉P
−1−2−3−4−5−6−7

−1

−2

−3

−4

−5

−6

−7

cost1

cost2

〈ϕ, {cost1, cost2}〉L

Pareto OMT: Lexicographic GIA

Observation. If modelM is Lexicographic-optimal for 〈ϕ, {cost1, ..., costN}〉L, then
M is also Pareto-optimal for 〈ϕ, {cost1, ..., costN}〉P .

Idea:

Shuffle {cost1, ..., costN}
=⇒ explore from different directions

Extract Lexicographic-optimalM
Learn

i=N∨
i=1

(costi <M[costi])

to block Pareto-dominated solutions

repeat

Example: 〈ϕ, {cost1, cost2}〉P
−1−2−3−4−5−6−7

−1

−2

−3

−4

−5

−6

−7

cost1

cost2

〈ϕ, {cost1, cost2}〉L

ϕ′ := ϕ ∧ ((cost1 < −6)
∨(cost2 < −1))

Pareto OMT: Lexicographic GIA

Observation. If modelM is Lexicographic-optimal for 〈ϕ, {cost1, ..., costN}〉L, then
M is also Pareto-optimal for 〈ϕ, {cost1, ..., costN}〉P .

Idea:

Shuffle {cost1, ..., costN}
=⇒ explore from different directions

Extract Lexicographic-optimalM
Learn

i=N∨
i=1

(costi <M[costi])

to block Pareto-dominated solutions

repeat

Example: 〈ϕ, {cost1, cost2}〉P
−1−2−3−4−5−6−7

−1

−2

−3

−4

−5

−6

−7

cost1

cost2

〈ϕ, {cost1, cost2}〉L

ϕ′ := ϕ ∧ ((cost1 < −6)
∨(cost2 < −1))

〈ϕ′, {cost2, cost1}〉L

Pareto OMT: Lexicographic GIA

Observation. If modelM is Lexicographic-optimal for 〈ϕ, {cost1, ..., costN}〉L, then
M is also Pareto-optimal for 〈ϕ, {cost1, ..., costN}〉P .

Idea:

Shuffle {cost1, ..., costN}
=⇒ explore from different directions

Extract Lexicographic-optimalM
Learn

i=N∨
i=1

(costi <M[costi])

to block Pareto-dominated solutions

repeat

Example: 〈ϕ, {cost1, cost2}〉P
−1−2−3−4−5−6−7

−1

−2

−3

−4

−5

−6

−7

cost1

cost2

(cost1 lower-unbounded)

Problem: how to deal with unbounded objectives?

Pareto OMT: dealing with unbounded objectives

−1−2−3−4−5−6−7

−1

−2

−3

−4

−5

−6

−7

cost1

cost2

(cost1 lower-unbounded)

1. Sort objectives:

lower-bounded first

lower-unbounded last

before Lex. OMT.

−1−2−3−4−5−6−7

−1

−2

−3

−4

−5

−6

−7

cost1

cost2

(both
lower-unbounded)

Pareto OMT: dealing with unbounded objectives

−1−2−3−4−5−6−7

−1

−2

−3

−4

−5

−6

−7

cost1

cost2

(cost1 lower-unbounded)

〈ϕ, {cost2, cost1}〉L

1. Sort objectives:

lower-bounded first

lower-unbounded last

before Lex. OMT.

−1−2−3−4−5−6−7

−1

−2

−3

−4

−5

−6

−7

cost1

cost2

(both
lower-unbounded)

Pareto OMT: dealing with unbounded objectives

−1−2−3−4−5−6−7

−1

−2

−3

−4

−5

−6

−7

cost1

cost2

(cost1 lower-unbounded)

〈ϕ, {cost2, cost1}〉L

〈ϕ′, {cost2, cost1}〉L

1. Sort objectives:

lower-bounded first

lower-unbounded last

before Lex. OMT.

−1−2−3−4−5−6−7

−1

−2

−3

−4

−5

−6

−7

cost1

cost2

(both
lower-unbounded)

Pareto OMT: dealing with unbounded objectives

−1−2−3−4−5−6−7

−1

−2

−3

−4

−5

−6

−7

cost1

cost2

(cost1 lower-unbounded)

〈ϕ, {cost2, cost1}〉L

〈ϕ′, {cost2, cost1}〉L

1. Sort objectives:

lower-bounded first

lower-unbounded last

before Lex. OMT.

−1−2−3−4−5−6−7

−1

−2

−3

−4

−5

−6

−7

cost1

cost2

(both
lower-unbounded)

2. If Lex. OMT unbounded, (temporarily)
learn:

i=N∧
i=1

(costi ≤M[costi])

and try again.

Pareto OMT: dealing with unbounded objectives

−1−2−3−4−5−6−7

−1

−2

−3

−4

−5

−6

−7

cost1

cost2

(cost1 lower-unbounded)

〈ϕ, {cost2, cost1}〉L

〈ϕ′, {cost2, cost1}〉L

1. Sort objectives:

lower-bounded first

lower-unbounded last

before Lex. OMT.

−1−2−3−4−5−6−7

−1

−2

−3

−4

−5

−6

−7

cost1

cost2

(both
lower-unbounded)

ϕ′ = ϕ ∧ (cost1 ≤ −3.5)
∧(cost2 ≤ −3.5)

2. If Lex. OMT unbounded, (temporarily)
learn:

i=N∧
i=1

(costi ≤M[costi])

and try again.

Pareto OMT: dealing with unbounded objectives

−1−2−3−4−5−6−7

−1

−2

−3

−4

−5

−6

−7

cost1

cost2

(cost1 lower-unbounded)

〈ϕ, {cost2, cost1}〉L

〈ϕ′, {cost2, cost1}〉L

1. Sort objectives:

lower-bounded first

lower-unbounded last

before Lex. OMT.

−1−2−3−4−5−6−7

−1

−2

−3

−4

−5

−6

−7

cost1

cost2

(both
lower-unbounded)

ϕ′ = ϕ ∧ (cost1 ≤ −3.5)
∧(cost2 ≤ −3.5)

2. If Lex. OMT unbounded, (temporarily)
learn:

i=N∧
i=1

(costi ≤M[costi])

and try again.

3. If Lex. OMT still unbounded, give up.

	Motivations
	Optimization Modulo Theories with Linear-Arithmetic Objectives
	OMT with Multiple and Combined Objectives
	Relevant Subcases: OMT+PB & MaxSMT
	Status of OMT
	Current and Future Research Directions
	Appendix
	Inline OMT schema
	OMT for Bit-vector and Floating-point theories
	Imptoving OMT+PB by sorting networks
	The MaxRES MaxSMT Procedure
	Extended SMT-LIB language
	Pareto Optimization (hints)

