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Satisfiability Modulo Theories SMT(T)

SMT(T): the problem of deciding the satisfiability of a (typically)
ground first-order formula wrt some background theory 7.

@ 7 can be a combination of theories | J; 7;

@ Theories of Interest:
o Linear arithmetic over the rationals (LR.A)
(T§ — (51 =S +34-t—34- fo)) N (—‘Tg — (51 = So))
e Linear arithmetic over the integers (£LZ.A)
(x =x+2"%x)A(x >0)A(x <2 —1)
e Arrays (AR)
(i =J) V read(write(a, i, e),j) = read(a, )
e Bit vectors (BY)
X[16][15 . 0] = (y[16][15 : 8] i Z[16][7 . 0]) << W[g][3 . 0]
o Non-linear arithmetic (M £.A)
((c=a-b)n(as=a—-1)A(bi=a+1))—(c=ai-b+1)
O ooo

@ “Lazy” Approach: SMT solver = CDCL SAT solver + 7 -solver(s)

V.




Need for Satisfiability Modulo Theories (SMT)

SMT solvers widely used as backend engines in formal verification
and many other applications

SW verification

verification of Timed and Hybrid Systems
verification of RTL Circuit designs & of microcode
static analysis of SW programs

test-case generation

program synthesis

scheduling

planning with resources

compiler optimization




Need for Optimization Modulo Theories (SMT)

Many SMT-encodable problems require optimum solutions wrt. some
objective function. E.qg.:

@ SW verification

o formal verification of parametric systems

@ optimization of physical layout of circuit designs
@ scheduling and temporal reasoning

@ displacement of tools (e.g. strip-packing problem)
@ planning with resources and retrofit planning

@ radio link frequency assignment

@ machine learning on hybrid domains

@ goal modeling in requirement engineering

° ..




Ex.:

FV of parametric systems

timed system from [Alur, CAV-99] [8]:

TN approach YT ™ 7N lower . t \\_
—= S = = 1y } ~(
) e=0 e< 0/ N oy==0 =1 /
exit z>2,in y>1,up down
53 \ / Sy ‘ / Tt N\ y:=0 ‘/ t.,,\
\ <57 out \J < ‘V \J <2 raise N 2 -/
TRAIN GATE
/ o exn z:=0 : /uﬂ —approach, z : 70,u ~
\es1/ S 4—\7_<1/
raise 7 z=1,lower
CONTROLLER

Decision Problem: check safety under fixed choices of the constants
(e.g, the delay after which the controller orders the gate to lower the

bar)

(M = G—(in A up))

@ BMC encodable into a SMT(LR.A) problem (sat. = unsafe)



Ex.: FV of parametric systems

A (parametric version of a) timed system from [Alur, CAV-99] [8]:

N /"_0 ™ approach ./ s1N g /71'\\‘ lower _~ b \\
\‘;,T/,/ =0 KT < ‘)/ \\,,E// y:=0 \/ <1/
exit [J‘ >2,in y>1 up ‘ ljdown

s3 s N Tl N w=0 TN
3/ out \J < ‘V \J <2 aise N /
TRAIN GATE
/ exit, z :== 0 pproach, z 1= ( TN
u 2 \f—/ b{ 1
\z<t/ Ml le<p)
raise T z =D, lower
CONTROLLER

Optimization Problem: find the minimum “unsafe” delay D after which
the controller orders the gate to lower the bar, which doesn’t
guarantee safety (M [~ G—(in A up)).

—> Set the delay D strictly smaller

@ BMC encodable into a OMT(LR.A) problem (min. D s.t. satisf.)



Ex.: Formal Verification of Real-Time Systems

Model Checking: M = f?

Bounded Model Checking (BMC) looks for an execution path of M of
(increasing) length k

@ satisfying the temporal property —f (i.e. M =, E—f)

BMC is encoded into SMT(7) (e.9. T = LRAUARU...):
@ if ¢y is satisfiable, then M (= f

DUMP'  — (A" = write(A°,i',v}))

~DUMP' — (A" =A%)

DUMP' — (t'—1°=0)

WAIT! - (t'=1©>0)

>>>> > > >

DUMPN  —



Ex.: Formal Verification of Real-Time Systems

Model Checking: M = f?
Bounded Model Checking (BMC) looks for an execution path of M of
(increasing) length k

@ satisfying the temporal property —f (i.e. M =, E—f)

@ minimizing the total elapsed time: cost = min(tV — 19)

BMC is encoded into SMT(7) (e.9. T = LRAUARU...):
@ if ¢y is satisfiable, then M (= f

DUMP'  — (A" = write(A°,i', v}))

~DUMP' — (A" =A%)

DUMP' — (t'—1=0)

WAIT! - (t'=1>0)

>>>> > > >

DUMPN  —



Ex.: Planning with Resources [62]

@ SAT-based planning augmented with numerical constraints
@ Straightforward to encode into into SMT(LR.A)

@ Goal: find a plan minimizing some resource consumption (time,
money, gasoline, ...)

Example (sketch) [62]

Deliver)
MaxLoad)
MaxFuel)

Move — MinFuel)
Move — Deliver)

( // goal
(

(

%

(GoodTrip — Deliver)

(

(

(

(

(

// load constraint

// fuel constraint

// move requires fuel

// move implies delivery
// a good trip requires
// a full delivery

// load limit

GoodTrip — AllLoaded)
MaxLoad — (load < 30))
MaxFuel — (fuel < 15)) // fuel limit
MinFuel — (fuel > 7 + 0.5load)) // fuel constraint
AllLoaded — (load = 45)) //

> > > >>>> > > >




Ex.: (LGDP/MILP) Strip-packing & Carpet-cutting
[29, 51, 53]

Strip-packing: Minimize the length L of a strip of width W while fitting
N rectangles (no overlap, no rotation) [29]. Carpet-cutting: w.
rotatLofn.
¢ = (cost=L)AN\jen(L> X+ L))
A Nijen,icj <(Xi +Li < x) V(X + L < xi)
Vi~ HiZ )V (v~ Hy = )
A Nien(Xi <ub = L) A Njen(X = 0)
A Nien(Hi < ¥i) A Nien(W = i) A Nien(yi = 0)



Ex.: (LGDP/MILP) Zero-Wait Jobshop Scheduling
[29, 51, 53]

siege 1 [N N
sege2 | 1 ENEII

seges | IIH B

Given a set / of jobs which must be scheduled sequentially on a set J
of consecutive stages with zero-wait transfer between them, minimize
the makespan M [47].

def
¢ = (cost=M)ANig) (M= i+ 3 jcy tj) A Nie/(Si = 0)
N Necyikeli<k <(Si + 2 med,me;j fim < Sk + X me gy m<j thm)

v (Sk + ZmeJk,mgj fkm < Sj + ZmeJ,»,m<j tim))



Outline

e Optimization Modulo Theories with Linear-Arithmetic Objectives



Optimization Modulo Theories: General Case

Ingredients
@ a SMT formula ¢ in some background theory 7 = 7= U J; T;

e J; 7i may be empty
@ 7= has a predicate < representing a total order

@ a 7<-variable/term “cost” occurring in ¢

Optimization Modulo 7< U |J; 7; (OMT(7= U U; 77))

The problem of finding a model M for ¢ whose value of cost is
minimum according to <.

@ maximization dual




Optimization Modulo Theories with LZR.A costs

Ingredients

@ an SMT formula ¢ on LIRAUT
e LTRA canbe LRA, LTA or a combination of both
o TE U; T, possibly empty
e LTRA and 7; disjoint Nelson-Oppen theories

@ a LIRA variable [term] “cost” occurring in ¢

@ (optionally) two constant numbers Ib (lower bound) and ub
(upper bound) s.t. Ib < cost < ub (Ib, ub may be Fo0)

Optimization Modulo Theories with LZR.A costs (OMT(LZRAUT))
Find a model for ¢ whose value of cost is minimum.
@ maximization dual




Optimization Modulo Theories with LR .A costs

Ingredients
@ an SMT formula ¢ on LRAU T

"]
o TE U; T, possibly empty
e LR.A and 7; disjoint Nelson-Oppen theories

@ a LRA variable [term] “cost” occurring in ¢

@ (optionally) two constant numbers Ib (lower bound) and ub
(upper bound) s.t. Ib < cost < ub (Ib, ub may be Fo0)

Optimization Modulo Theories with LR.A costs (OMT(LRA U T))
Find a model for ¢ whose value of cost is minimum.
@ maximization dual

We first restrict to the case LIRA = LRA and |J; 7; = {}
(OMT(LRA)).




Solving OMT(LR.A) [52, 53]

General idea
Combine standard SMT and LP minimization techniques.

Offline Schema
@ Minimizer: based on the Simplex LR.A-solver by [25]
e Handles strict inequalities
@ Search Strategies:

e Linear-Search strategy
e Mixed Linear/Binary strategy




A toy example (linear search)

[w. pure-literal filt. = partial assignments]
@ OMT(LR.A) problem:

= (-AV(2x+y>-2)

AN (AV(x+y>3)

AN (RAV (4x —y > —4))

AN (AV(@x—y>-6))




A toy example (linear search)

[w. pure-literal filt. = partial assignments]
@ OMT(LR.A) problem:
gef (ﬁA1 vV )
V(x+y=>3)

(
(v (4x—y > ~4)
( AV

> > > |

costE  x
, DA, Az,

(4X_y2 _4)7
(x+y=3),

= SAT, min = —0.2



A toy example (linear search)

[w. pure-literal filt. = partial assignments]

@ OMT(LR.A) problem:
def (ﬁA1 \Y

V(x+y=3))

def
cost= x
(x+y >3),

(2x —y > -6)
(cost < —0.2)

= SAT, min=—1.0

A

A )
A (AV(2x -y = -6))
A (cost < —0.2)

) _'A17 ) _'A27

k]

I

)




A toy example (linear search)

[w. pure-literal filt. = partial assignments]

@ OMT(LR.A) problem:

e® AV Exty>-2)

A (ALY )

A (HAV )
A ( Av(@x—y>-6))
A (cost < —0.2)

A (cost < —1.0)

cost= x
A1 ) ) ) _'A27

k]

2x +y > -2),

(

(2x —y > -6)
(cost < —0.2)
(cost < —1.0)

T ‘ /I\
(cost < —0.2)
(cost< —-1.0) +

I
I
I
I
I
I
I
I
I
|
|
|
I
I
I
I
I
:
def :
I
I
I
I
I
I
I
I
I
I
|
|
|
I
I
I
I
I
I

= SAT, min=-20 L ______.



A toy example (linear search)

[w. pure-literal filt. = partial assignments]
@ OMT(LR.A) problem:

def ( V )

v )

v )

(
(
( AV )
(
(

cost < —0.2)
cost < —1.0)
cost < —2.0)

X

>>>>> >

Q
o
@
@
18

T ‘ /\
(cost < —0.2) (cast < —0.2)
(cost < —1.0) (cost<—1.0) 1
(cost < —2.0) (cost < —2.0)

— UNSAT,min=—-2.0 (o _____:




Offline Schema: Mixed Linear/Binary-Search Strategy

Input: (p, cost, Ib, ub) // Ib can be —oco, ub can be +oco
|+ Ib;u < ub; M <+ 0; ¢ < ¢ U {=(cost < Ib), (cost < ub)};
while (I < u) do

—h
,_

0 Uo



Offline Schema: Mixed Linear/Binary-Search Strategy

Input: (p, cost, Ib, ub) // Ib can be —oco, ub can be +oco

| < Ib; u < ub; M <+ 0; ¢ + p U {=(cost < Ib), (cost < ub)};
while (I < u) do

if (BinSearchMode()) then // Binary-search Mode

else // Linear-search Mode

L




Offline Schema: Mixed Linear/Binary-Search Strategy

Input: (p, cost, Ib, ub) // Ib can be —oco, ub can be +oco

|+ Ib;u < ub; M <+ 0; ¢ < ¢ U {=(cost < Ib), (cost < ub)};
while (I < u) do

if (BinSearchMode()) then // Binary-search Mode

else // Linear-search Mode
| (res, u) < SMT.IncrementalSolve(y);




Offline Schema: Mixed Linear/Binary-Search Strategy

Input: (p, cost, Ib, ub) // Ib can be —oco, ub can be +oco

|+ Ib;u < ub; M <+ 0; ¢ < ¢ U {=(cost < Ib), (cost < ub)};
while (I < u) do

if (BinSearchMode()) then // Binary-search Mode

else // Linear-search Mode
| (res, u) < SMT.IncrementalSolve(y);

if (res = sAT) then
(M, u) + LR.A-Solver.Minimize(cost, u);
@+ @U{(cost < u)};

Ise {res = UNSAT}

(1]

i Uit Ui



Offline Schema: Mixed Linear/Binary-Search Strategy

Input: (p, cost, Ib, ub) // Ib can be —oco, ub can be +oco

| < Ib; u < ub; M <+ 0; ¢ + p U {=(cost < Ib), (cost < ub)};
while (I < u) do

if (BinSearchMode()) then // Binary-search Mode

else // Linear-search Mode
| (res, u) < SMT.IncrementalSolve(y);

if (res = sAT) then

(1]

Ise {res = UNSAT}

| < u;

E== .
return(M, u) ; it = U

[u N}



Offline Schema: Mixed Linear/Binary-Search Strategy

Input: (p, cost, Ib, ub) // Ib can be —oco, ub can be +oco
|+ Ib;u < ub; M <+ 0; ¢ < ¢ U {=(cost < Ib), (cost < ub)};
while (I < u) do
if (BinSearchMode()) then // Binary-search Mode
pivot <— ComputePivot(l, u);
¢ < p U {(cost < pivot)};
(res, u) + SMT.IncrementalSolve(y);
else // Linear-search Mode

L

C
i pivot; Uj



Offline Schema: Mixed Linear/Binary-Search Strategy

Input: (p, cost, Ib, ub) // Ib can be —oco, ub can be +oco
|+ Ib;u < ub; M <+ 0; ¢ < ¢ U {=(cost < Ib), (cost < ub)};
while (I < u) do
if (BinSearchMode()) then // Binary-search Mode
pivot <— ComputePivot(l, u);
¢ < p U {(cost < pivot)};
(res, u) + SMT.IncrementalSolve(y);
else // Linear-search Mode

L

if (res = sAT) then
(M, u) + LR.A-Solver.Minimize(cost, u);
@+ @U{(cost < u)};

Ise {res = UNSAT}

(1]

i Uj;1 pivot; uj



Offline Schema: Mixed Linear/Binary-Search Strategy

Input: (p, cost, Ib, ub) // Ib can be —oco, ub can be +oco
|+ Ib;u < ub; M <+ 0; ¢ < ¢ U {=(cost < Ib), (cost < ub)};
while (I < u) do
if (BinSearchMode()) then // Binary-search Mode
pivot <— ComputePivot(l, u);
¢ < p U {(cost < pivot)};
(res, u) + SMT.IncrementalSolve(y);
else // Linear-search Mode

L

if (res = sAT) then

(1]

Ise {res = UNSAT}
if ((cost < pivot) ¢ SMT.ExtractUnsatCore(y)) then

| < u;

else

L k] r r
El

T
return(M, u) i pivot; i1 = uj




Offline Schema: Mixed Linear/Binary-Search Strategy

Input: (p, cost, Ib, ub) // Ib can be —oco, ub can be +oco
|+ Ib;u < ub; M <+ 0; ¢ < ¢ U {=(cost < Ib), (cost < ub)};
while (I < u) do
if (BinSearchMode()) then // Binary-search Mode
pivot <— ComputePivot(l, u);
¢ < p U {(cost < pivot)};
(res, u) + SMT.IncrementalSolve(y);
else // Linear-search Mode

L

if (res = sAT) then

(1]

Ise {res = UNSAT}
if ((cost < pivot) ¢ SMT.ExtractUnsatCore(y)) then

else

| + pivot;
L ¢ < (¢ \ {(cost < pivot)) U {—(cost < pivot)}};

L E

C
i pivot; Uj

2
)
I



The Minimizer

Minimizer embedded within the Simplex-based LR.A-solver by [25]
@ Minimization by standard Simplex techniques

Strict Inequalities
Temporally treated as non-strict inequalities:
@ if minimum cost min lays only on non-strict inequalities, min is a
solution
@ otherwise, for some ¢ > 0 there exists a solution for every cost
¢ €]min, min + 4]

If min is a non-strict minimum, then (cost < min) is added to .




Binary vs. Linear search

Beware of Zeno: pure binary search can cause infinite partitioning

| r [
d

r r
C

0

|~ m

C
1
1 -1 _

EE
ol— M

7

o

@ E.g. if no solution in [—1, 0], then
[-1,0[,[-1/2,0[,[-1/4,0[,[-1/8,0],...

@ SMT solver may find a conflict set n U (cost < pivot) even if
¢\ {(cost < pivot)} is LR.A-inconsistent




Binary vs. Linear search

Beware of Zeno: pure binary search can cause infinite partitioning

| r [
d

r r
C

0
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@ E.g. if no solution in [—1, 0], then
[-1,0[,[-1/2,0[,[-1/4,0[,[-1/8,0],...

@ SMT solver may find a conflict set n U (cost < pivot) even if
¢\ {(cost < pivot)} is LR.A-inconsistent

@ Solution: Binary-search interleaved with linear-search
(Mixed Linear/Binary Search Strategy)




Binary vs. Linear search

Beware of Zeno: pure binary search can cause infinite partitioning

| r [
d

r r
C

0

|~ m

C
1
1 -1 _

EE
ol— M

7

o

@ E.g. if no solution in [—1, 0], then
[-1,0[,[-1/2,0[,[-1/4,0[,[-1/8,0[,...

@ SMT solver may find a conflict set n U (cost < pivot) even if
¢\ {(cost < pivot)} is LR.A-inconsistent

@ Solution: Binary-search interleaved with linear-search
(Mixed Linear/Binary Search Strategy)

Note: Binary search not “obviously faster” than linear search

@ Binary search: typically smaller number of range-restriction steps

@ Linear search: average smaller cost of each range-restriction
steps (unsatisfiable calls typically much harder than sat. ones)




Termination & Correctness

Termination
The linear search procedure terminates:
@ Finite number of satisfiable truth assignments ;

@ No truth assignment ; generated twice

e guaranteed by computing the minimum cost m; of x; and
learning (cost < m;)

— also the mixed linear/binary search procedure terminates

Correctness
The procedure returns the minimum cost
@ Explores the whole space of satisfiable truth assignments

@ For every satisfiable truth assignment, Minimize finds the
minimum cost




Some Enhancements [52, 53, 16]

@ After invoking the minimizer and learning (cost < m;)
e Invoke LR .A-solver.solve(u; A (cost < m;)) = conflict set n;
and learn also —;
e Binary mode: learn also (cost < pivot;) to reuse previously
learned clauses in the form —(cost < pivot;) vV C
@ Tightening of conflicts on binary search [52, 53, 16])
e when ¢ A (cost < pivot;) fails, look for tighter conflict
—(cost < M;) s.t. M; > pivot;
@ Adaptive Mixed Linear/Binary-Search Strategy:

BinSearchMode() chooses according to W‘fmm




From OMT(LR.A) to OMT(LRAUT)

OMT(LR.A) procedure extended for handling LR.A U T-formulas ¢:

For free if SMT solver handles LR.A U T-solving by Delayed Theory
Combination [18] or Model-based Combination [23], splitting negated
interface equalities —(x; = x;) into ((x; < X;) V (X; > X})):

@ Truth assignments 1/ £ prra U pieig U pr St 1/ = ¢

® Lieig is @ set containing interface equalities (x; = x;), disequalities
—(x; = x;) and one inequality in {(x; < X;), (x; > x;)} for every
disequality in pejg

@ LR.A-solver.solve invoked on p/q5 4

® Urpa gl rera U uei Obtained from ey by dropping disequalities




From OMT(LR.A) to OMT(LRAUT)

OMT(LR.A) procedure extended for handling LR.A U T-formulas ¢:

For free if SMT solver handles LR.A U T-solving by Delayed Theory
Combination [18] or Model-based Combination [23], splitting negated
interface equalities —(x; = x;) into ((x; < X;) V (X; > X})):

@ Truth assignments 1/ £ prra U pieig U pr St 1/ = ¢

® Lieig is @ set containing interface equalities (x; = x;), disequalities
—(x; = x;) and one inequality in {(x; < X;), (x; > x;)} for every
disequality in pejg

@ LR.A-solver.solve invoked on p/q5 4

® Urpa gl rera U uei Obtained from ey by dropping disequalities

= LRA-solver.minimize invoked on (cost, (/-5 1)




From OMT(LRAU T) to OMT(LZIRAUT) [55, 16]

@ OMT(LR.AU T) procedures extended to LZ.A and mixed
LRAILTA costs [16, 55]

@ LRA/LTA-solvers enhanced with ILP minimization techniques
(branch & bound, cutting planes, backjumping, ...)

@ Note: with £LZ A

@ ILP minimization often expensive

@ no “Zeno” problem for binary search

@ in principle, if problem is lower-bounded, the ILP minimizer is not
necessary

@ tradeoff between LP, (in)complete ILP minimization, binary
search and Boolean Search [16, 55]




Truncated Branch and Bound

Observations:
@ branch & bound can be expensive in degenerate cases

@ optimality not truly necessary

Idea:
always stop B&B after first iteration, even if cost value is not

guaranteed to be optimal.

Trade-off:
@ less expensive minimization procedure on Integers
@ risk of CDCL generating same p multiple times
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Incremental OMT [15, 55, 54]

Call OMT incrementally
@ e.g., in BMC with parametric systems [53]

Intuition

In OMT, all learned clauses are either T-lemmas, or derive from
T-lemmas and the original formulas , or are in the form (cost < min)
— exploit incrementality of SMT solvers, in two alternative ways:

(i) drop the (cost < min) from one OMT call to the other

(i) assert fresh variable S at each OMT call, and learn
~S V (cost < min) instead of (cost < min)
— can reuse learned clauses from OMT call to the other,
(included these in the form —(cost < minyy) v C as soon as
MiNgyr < MiNgyg.)




OMT with Independent Objectives (Boxed OMT)
[38, 55]

The problem: (p, {costy, ..., costx}) [38]
Given (¢,C) s.t.:

@ ¢ is the input formula

@ C = {costy, ...,cost,} is a set of LIR.A-terms on variables in ¢,

(p,C) is the problem of finding a set of independent LZR.A-models
My, ..., Mg s.t. s.t. each M; makes cost; minimum.

Notes
@ derives from SW verification problems [38]
@ equivalent to k independent problems (p, costy), ..., (¢, costy)
@ intuition: share search effort for the different objectives
@ generalizes to OMT(LZR.A U T) straightforwardly




OMT with Multiple Objectives [38, 16, 55]

Solution

@ Intuition: when a T-consistent satisfying assignment 4 is found,
foreach cost;
min; (= min{minhTsolver.minimize(u,COS’[i)};
learn \/,(cost; <min;); // (cost; < —o0) =1
proceed until UNSAT;
@ Notice:

e for each u, guaranteed improvement of at least one min;
@ in practice, for each p, multiple cost; minima are improved
@ Implemented improvements:
(a) drop previous clauses \/;(cost; < min;)
(b) (cost; < min;) pushed in u first: if T-inconsistent, skip
minimization
(c) learn —(cost; < min;) v (cost; < min®®), s.t. min®d previous min;
= reuse previously-learned clauses like —(cost; < min®d@) v C




Boxed OMT: Example [38, 55]

Acost N
AN N
3 \/%1 \/\Lz
. cost
1 NS
o 3 4
o = (1<NAFSHA(TS)A(K<B)V (x> 4)
A (costy = —y) A (cost, = —x — y)
po = {(1<y),(y<3),(1 <x),(x<3)} = SAT = [-3, 6]

= learn {(cost; < —3) V (cost, < —6)}

pe = {(1<y),(y <3),(x>4)} = SAT — [-3, —]]
= learn  {(cost; < —3)}
=—> UNSAT



OMT with Lexicographic Combination of Objectives
[16]

The problem

Find one optimal model M minimizing costs o costq, costo, ..., costy
lexicographically.

Solution
@ Intuition:
{minimize cost; }
when UNSAT

{substitute unit clause (costy < miny) with (costy = miny)}
{minimize costy}




OMT with Other forms of Objective Combination

OMT with Min-Max [Max-Min] optimization
Given (p, {costy, ..., costx }), find a solution which minimizes the
maximum value among {costy, ..., costx }. (Max-Min dual.)

@ Frequent in some applications (e.g. [53, 59])

— encode into OMT(LZR.AU T) problem
{¢ A \;(cost; < cost), cost} s.t. cost fresh.

OMT with linear combinations of costs
Given (p, {costy, ..., cost,}) and a set of weights {wj, ..., wk}, find a
solution which minimizes ), w; - cost;.

—> encode into OMT(LZR.AU T) problem
{¢ A (cost =), w; - cost;), cost} s.t. cost fresh.

These objectives can be composed with other OMT(LZR.A)
objectives.




Outline

e Relevant Subcases: OMT+PB & MaxSMT



OMT(LRAUT) vs. SMT with PB costs (& MaxSMT)
SMT + PB costs (& MaxSMT) can be encoded into OMT(LRAU T):

minimize 2w Ai //(3) ite(Aj, wj, 0))

st. 0
4

minimize %

st @ N4 = (5= W) A (<A = (= 0))

AN((X = 0) A (X < w)))

but not vice versa!




OMT(LRAUT) vs. SMT with PB costs (& MaxSMT)
SMT + PB costs (& MaxSMT) can be encoded into OMT(LRAU T):

minimize 2w Ai //(3) ite(Aj, wj, 0))

st. 0
4

minimize %

st @ N4 = (5= W) A (<A = (= 0))

AN((X = 0) A (x; < wj))

but not vice versa!

@ SMT + PB costs finds the minimum-cost 7 -satisfiable
assignment
— search for minimum is purely Boolean

@ OMT(LZRAU T) finds the T-satisfiable assignment whose
minimum cost is minimum
— search for minimum involves two dimensions: Boolean and
arithmetical




Remark: range constraints “(x; > 0) A (x; < w;)”

OMT +PB: Y, w- A, w;>0 //(3;ite(A;, w},0))
U
>_j X, X fresh
s.t. A /\j(Aj — (X = w))) A (RA; = (x; = 0))
A = 0) A (x; < w))
Range constraints “(x; > 0) A (x; < w;)” logically redundant, but
essential for efficiency:




Remark: range constraints “(x; > 0) A (x; < w;)”

OMT +PB: > ;w;- A, w;>0 //(3;ite(Aj, w;,0))
U
>_j X, X fresh
st. AN = (X =w)) A (RA = (x5 =0))
A(X; > 0) A (X < w)
Range constraints “(x; > 0) A (x; < w;)” logically redundant, but
essential for efficiency:

@ Without range constraints, the SMT solver can detect the
violation of a bound only after all A;’s are assigned :
Ex: wqy =4, wo =7, Z,-:1X,'< 10, Ai =A=T,A =xVi>2.




Remark: range constraints “(x; > 0) A (x; < w;)”

OMT +PB: > ;w;- A, w;>0 //(3;ite(Aj, w;,0))
U
>_j X, X fresh
s.t. A /\j(Aj — (X =w)) A (-A; — (x; =0))
A = 0) A (x; < w))
Range constraints “(x; > 0) A (x; < w;)” logically redundant, but
essential for efficiency:

@ Without range constraints, the SMT solver can detect the
violation of a bound only after all A;’s are assigned :
Ex: wqy =4, wo =7, Z,-:1X,'< 10, A=A =T,A =xVi>2.
@ With range constraints, the SMT solver detects the violation as
soon as the assigned A;’s violate a bound
= drastic pruning of the search




Remark: range constraints “(x; > 0) A (x; < w;)”

OMT +PB: > ;w;- A, w;>0 //(3;ite(Aj, w;,0))
U
>_j X, X fresh
s.t. A /\j(Aj — (X =w)) A (-A; — (x; =0))
A = 0) A (x; < w))
Range constraints “(x; > 0) A (x; < w;)” logically redundant, but
essential for efficiency:

@ Without range constraints, the SMT solver can detect the
violation of a bound only after all A;’s are assigned :
Ex: wqy =4, wo =7, Z,-:1X,'< 10, A=A =T,A =xVi>2.
@ With range constraints, the SMT solver detects the violation as
soon as the assigned A;’s violate a bound
= drastic pruning of the search

Further improvement: Enhance encoding of PB constraints/MaxSMT
with sorting networks [56]




SMT/OMT with Pseudo-Boolean Costraints & Costs:

Alternative Solution: conversion into SMT(7)
@ SAT + PB can be efficiently encoded into SAT [26]
— encode SMT(T) + PB into SMT(T)
@ similar idea implemented in [16, 15] for cardinality constraints




SMT/OMT with Pseudo-Boolean Costraints & Costs:

Alternative Solution: conversion into SMT(7)
@ SAT + PB can be efficiently encoded into SAT [26]
— encode SMT(T) + PB into SMT(T)
@ similar idea implemented in [16, 15] for cardinality constraints

Alternative Solution: Leverage SAT+PB
@ develop a “modulo theory” version of your favourite PB-solver
@ afaik, no implementation available




SMT/OMT with Pseudo-Boolean Costraints & Costs:

Alternative Solution: conversion into SMT(T)
@ SAT + PB can be efficiently encoded into SAT [26]
— encode SMT(T) + PB into SMT(T)
@ similar idea implemented in [16, 15] for cardinality constraints

Alternative Solution: Leverage SAT+PB
@ develop a “modulo theory” version of your favourite PB-solver
@ afaik, no implementation available

Alternative Solution: SMT(7 U C) [20]

@ C is an ad-hoc “theory of costs”
@ a specialized very-fast theory-solver for C added
e very fast & aggressive search pruning and theory-propagation




A “Theory of cost” C

A “theory of costs” C
@ M variables cost’
@ predicate “bound cost” BC(cost', k) (“cost’ < k)
@ predicate “incur cost” /C(cost’, j,c/’f) (“the jth addend of cost' is

in
Cj )
“ [ Ni [ [ [ [ /19
@ “cost' =37 ¢cj-Aj, s.t.cost' € (I'.U]
encoded as:

—~BC(cost', I') A BC(cost', u') A /\/'-\’:i1(A/’1 < IC(cost',j, c}))




C-solver

for each i, C-solver mantains the current values of the incurred costs

cost' = 210 (costl o))+ T c;, the total cost of all unassigned IC's

Acost €3, I0(costhj.cl) unassigned) ¢/, and of the range ]b;, ub'|

1. BC(cost', ¢) «+ T /1 = update ]lb;, ub']

2. IC(cost',j,¢f) +— T = cost' + cost' +c]
IC(cost', ], ¢j) < L = Acost' + Acost' — ¢;

cost' > ub' = conflict

cost' + Acost’ < Ib' = conflict

IC(cost',j,c}) T causes 3. = propagate —/C(cost’, ], c})

IC(cost', j,c]) + L causes 4. —> propagate /C(cost',j,c})

RO S




C-solver

for each i, C-solver mantains the current values of the incurred costs

cost' = 210 (costl o))+ T c;, the total cost of all unassigned IC's

Acost €3, I0(costhj.cl) unassigned) ¢/, and of the range ]b;, ub'|

1. BC(cost', ¢) «+ T /1 = update ]lb;, ub']

2. IC(cost',j,¢f) +— T = cost' + cost' +c]
IC(cost', ], ¢j) < L = Acost' + Acost' — ¢;

cost' > ub' = conflict

cost' + Acost’ < Ib' = conflict

IC(cost',j,c}) T causes 3. = propagate —/C(cost’, ], c})

IC(cost', j,c]) + L causes 4. —> propagate /C(cost',j,c})

RO S

@ very fast:

@ add one constraint & solve: 1 sum + 1 comparison
e theory propagation: linear in the number of propagated literals




MaxSAT Modulo Theories (MaxSMT) |

[Partial Weighted] MaxSMT: The problem
Input: 7, I : resp. sets of hard and (weighted) soft
T-clauses;

Output: a maximum-weight set of soft 7-clauses 1] s.t.
Yl C ol and o] Uy is T-satisfiable




MaxSAT Modulo Theories (MaxSMT) |

[Partial Weighted] MaxSMT: The problem
Input: ], pZ: resp. sets of hard and (weighted) soft
T-clauses;

Output: a maximum-weight set of soft 7-clauses 1] s.t.
Yl C ol and o] Uy is T-satisfiable

MaxSMT vs. SMT with PB cost functions
MaxSMT (], »I') encodable into SMT with PB costs (¢7", cost):

" Zplu Ucrepr 1(A;V C7)}: cost= 2cTeol Wi A
SMT with PB costs (o7, cost £ >_j W - Aj) encodable into MaxSMT:

def U def
oh ST ol SUACAY
M

Y




MaxSAT Modulo Theories (MaxSMT) I

Solution: encode into OMT(LR.A) [44, 52, 53]
@ can be composed with other objective functions




MaxSAT Modulo Theories (MaxSMT) Il

Solution: encode into OMT(LR.A) [44, 52, 53]
@ can be composed with other objective functions

Alternative Solution: Leverage MaxSAT

@ develop a “modulo theory” version of your favourite MaxSAT
solver

@ a few implementations available [4, 5, 15]




MaxSAT Modulo Theories (MaxSMT) Il

Solution: encode into OMT(LR.A) [44, 52, 53]
@ can be composed with other objective functions

Alternative Solution: Leverage MaxSAT

@ develop a “modulo theory” version of your favourite MaxSAT
solver

@ a few implementations available [4, 5, 15]

A “Modular” Approach to MaxSMT [21]

@ |Idea: Combine an SMT and a MaxSAT solver:
MaxSMT = MaxSAT + SMT




A Modular Approach for MaxSMT (], 1) [21]

Input: 7, oI // sets of hard and (weighted) soft 7-clauses
(0F, B) « T2B (o}, #1));
©7 « 0; // current set of T-lemmas
Yl «+ ¢l // current approximation of the result
while ( SMT.Solve(y] Uy UOT) = UNSAT) do
07 «+ 67 U SMT.GetTLemmas(); ©8 « 728 (07);
L ¥e + MaxSAT(pf UGB, f); vl « B2T (¢5);

return + ;

Based on the cyclic interaction of an SMT and a MaxSAT solver:




A Modular Approach for MaxSMT (], 1) [21]

Input: 7, oI // sets of hard and (weighted) soft 7-clauses
(0F, B) < T2B ({0}, 01 ));
©7 « (; // current set of T-lemmas
Yl «+ ¢l // current approximation of the result
while ( SMT.Solve(y/ Uy UOT) = UNSAT) do
L o7 «0oTu SMT.GetTLemmas() 08 « 128 (97);
PB «— MaxSAT (o8 U OB, pB); vl « B2T (v5);

return + ;

Based on the cyclic interaction of an SMT and a MaxSAT solver:
@ SMT.Solve used as a generator of sets of 7-lemmas @07, @T,
— provide the information to rule-out 7-inconsistent solutions




A Modular Approach for MaxSMT (], 1) [21]

Input: 7, oI // sets of hard and (weighted) soft 7-clauses
(08, ¥8) + T2B ({of , o))
©7 « 0; // current set of T-lemmas
vl «+ ¢l // current approximation of the result
while ( SMT.Solve(y/ Uy UOT) = UNSAT) do
07 «+ 67 U SMT.GetTLemmas(); ©8 « 728 (07);
L YB « MaxSAT (o8 U OB, pB); vl « B2T (y5);

return + ;

Based on the cyclic interaction of an SMT and a MaxSAT solver:

@ MaxSAT used to extract minimum-cost clause sets ¢5,, V5, ...
e works on Boolean abstractions ¢,% plus the T-lemmas ©%




A toy example |

T def
Ph =

0
Co .
7 det Ci:
Ps = Co:

Cs:

(x<o
((x <1
(x>2
(x>3

) |
) |
) |
) |

4]
3]
2]
6]

|



A toy example |

Q

e

o £ 0 oh = 0
Co: ((x<0)) [4] Ao) [4]
o7 & Ci: ((x<1)) [3] o8 A1) (3]
s C: ((x=2) [2] ° (A2) 2]
Cs: ((x=3)) [6] (As) [6]
Notice that the set of all (minimal) 7-lemmas on the T-atoms of ] U ¢! is:
01: (~(x<0)Vv(x<1)) (—Ao V Ar)
6: (~(x>3)V(x>2) (~As V Ay)
or _ ) 0 (F(x<0)v-(x>2)) o5 _ ) (~Agv-hy)
i 02 (=(x <0) V(x> 3)) o (—Ao V —As3)
Os: (—(x <1)V~(x=2)) (mA1V —Az)
Bs: (~(x <1)V=(x>3) (~A; V —As)



A toy example |

of £ 0 b
Co: (x<0)) [4] (Ao) [4]
T def Ci: (x<1) [3] B def (A1) [3]
T VG (xz2) (T ) (A&) 2
Cs: ((x>3) [6] (As) [6]

An "unlucky" possible execution of the algorithm is:

i|e] | ¥, | Weight(vd,) | SMT (5 Uvg;UOT)

ol {} {Co, C1, Cz, C3} 15




A toy example |

ol g ok £
Co: (x<0)) [4] (Ao) [4]
7 oat ) Ci: ((x<1) [3] s s | (A) [3]
T Y G ((xz2) 2 (T ) (A) [
Cs: ((x>3)) [6] (As) [6]
0s: (—(x <0)V (x> 3)) (=Ay V —As3)

An "unlucky" possible execution of the algorithm is:

i|e] | ¥, | Weight(vd,) | SMT (5 Uvg;UOT)

0 {} {Co, C1, Cz, C3} 15 UNSAT
{04}




A toy example |

of £ 0 b
7 o ) Ci:((x<1) [3] s o ) (A) [3]
T Y G ((x=2) (T ) (A) [
Cs: ((x>3)) [6] (As) [6]
0s: (~(x <0)V~(x>3)) (—Ao V —As)

An "unlucky" possible execution of the algorithm is:

i|e] | ¥, | Weight(vd,) | SMT (5 Uvg;UOT)

0 {} {Co, C1, Cz, C3} 15 UNSAT
1| {04} { ,C1,C, G} 11



A toy example |

of £ 0 b
7 o ) Ci:((x<1) [3] s o ) (A) [3]
T Y G ((x=2) (T ) (A) [
Cs: ((x>3)) [6] (As) [6]
0s: (~(x <0)V~(x>3)) (—Ao V —As)
b6 : (~(x <1)V—(x>3)) (A1 V —As)

An "unlucky" possible execution of the algorithm is:

i|ef | 3 | Weight(vd,) | SMT(of UvZ;ueT)
0 {} {Co, C1, Cz, C3} 15 UNSAT
1| {04} { .,Ci,C,Cs} 11 UNSAT

{04,065}



A toy example |

ol E 0 o Z 0

Co: ((x<0)) [4] (Ao) [4]

o7 & Ci: ((x<1)) [3] o5 (A1) [3]

° Co: (x=2) [2] ° (A2) [2]
04 : (‘\(X < O) \Y ‘!(X > 3)) (ﬁAo Vv ﬁAg)
06 : (—(x <1)Vv~=(x>3)) (=A1 vV -A3)

An "unlucky" possible execution of the algorithm is:

i|ef | 3 | Weight(vd,) | SMT(of UvZ;ueT)
0 {} {Co, Gy, Co, G5} 15 UNSAT
1| {0a} { ,Ci,C, G5} 11 UNSAT

2 | {64, 06} {Co,Ci,Co,  } 9



A toy example |

of £ 0 of =0

Co: ((x<0)) [4] (Ao) [4]

;e ) Ci:((x<1) [ s s ) (A) 3]

T ) G ((x=2) [ (A) [2]
03 : (—\(X < 0) V —\(X > 2)) (—|A0 \Vi —|A2)
04 : (‘\(X < O) \Y ‘!(X > 3)) (ﬁAo Vv ﬁAg)
05 (~(x <1)V=(x>3)) (—A; V —As)

An "unlucky" possible execution of the algorithm is:

i|ef | i | Weight(vd,) | SMT(of UvZ;ueT)
0 {} {Co, Cy, Gz, C3} 15 UNSAT
1] {04} { ,C,C, G5} 11 UNSAT
2 | {04,606} {Co,Cy,Co, } 9 UNSAT

{947 967 93}



A toy example |

o £ 0 of £ 0
def def
S Yz @[ ) (A 1@
i (x> 9) [6] (A) 6]
By ((x < 0)V (x> 2)) (=Ao V —A2)
6s - (~(x < 0)V (x> 3)) (=Ao V —As)
06 (—(x <1)V—(x>3)) (=A; v —As)

An "unlucky" possible execution of the algorithm is:

i|ef | 3 | Weight(vd,) | SMT(of UvZ;ueT)
0 {} {Co,C1,CQ,Cg} 15 UNSAT
1| {64} { ,Ci,Cs,C3} 11 UNSAT
2 {94,66} {Co,C1,Cg, } 9 UNSAT
3 {94796793} { ) aCQaC3} 8



A toy example |

o £ 0 of £ 0
def def
S Yz @[ ) (A 1@
i (x> 9) [6] (A) 6]
By ((x < 0)V (x> 2)) (=Ao V —A2)
6s - (~(x < 0)V (x> 3)) (=Ao V —As)
06 (—(x <1)V—(x>3)) (=A; v —As)

An "unlucky" possible execution of the algorithm is:

i|e] | ¥, | Weight(vd,) | SMT (5 Uvg;UOT)

{} {Co,C1,CQ,Cg} 15 UNSAT
{64} { ,Ci,Cs,C3} 11 UNSAT
{Co,Cy,Co, } 9 UNSAT
{94795793} { , 5 Co, C3} 8 SAT

wWwnNh = O
—~

>

Ny

>
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—



A toy example

def
T:®

Co .
7 def Ci:
‘Ps - 02 .



A toy example

of £ oF ¥
Co: ((x<0)) [4]

7o ) Gt ((x<1)) [3] 5 e

v Co: (x>2) [2] [ 7*
Cs: ((x>3)) [6]

—_———

(A0) [4]
(A1) [3]
(A2) [2]

(4s) [6]

Notice that the set of all (minimal) 7-lemmas on the T-atoms of ] U o] is:

01: (~(x<0)V(x<1))
0>: (=(x>3)V(x>2)
or _ ) ((x<ovopzz) | g
* O4 : (ﬁ(X < 0) \Y ﬁ(X > 3)) *
Os: (=(x <1)Vv-(x>2)
Os: (—(x <1)Vv-—(x>3))

(ﬁAo V A4 )
(—\A;; Vv Az)
(—|A0 V —|A2)
(ﬁAo \Y ﬁAg)
(—\A1 Vv —\Ag)
(—|A1 \Y —|A3)



A toy example

of 0 of =0
Co: ((x<0)) [4] (Ao) [4]

or ot ) O (<) Bl L s e ) (A) [3)

° Co: ((x=2) [2] ° (A2) [2]
Cs: ((x=3)) [6] (As) [6]

A "lucky" possible execution of the algorithm is:
i|ef | %, | Weight(vg,) | SMT (¢4 Ut U6])
15 ‘

0 ‘ {} ‘ {00701702703}




A toy example

of 0 of =0
Co: ((x<0)) [4] (Ao) [4]
o7 Ci: ((x<1)) [3] o5 (A1) [3]
° Co: ((x=2) [2] ° (A2) [2]
Cs: ((x=>3)) [6] (As) [6]
01 : (ﬁ(XSO)\/(XS‘I)) (ﬁAoVA1)
O (-(x>3)V(x>2)) (mAs V A2)
05 : (—(x <1)Vv~=(x>2)) (mA1 V —A2)
A "lucky" possible execution of the algorithm is:
i|ef | %, | Weight(vg,) | SMT (¢4 Ut U6])
0 {} {Co, Gy, Co, C3} 15 ‘ UNSAT

{01 ) 027 65}



A toy example

@hT d:ef @ B def

0
A2 NaiwepE (| F T {

(A2) [2]
Cs: ((x=>3)) [6] (As) [6]
01 : (ﬁ(XSO)\/(XS‘I)) (ﬁAoVA1)
02 (~(x>3)V(x>2)) (~As V Ay)
05 : (—(x <1)V=(x>2) (=4 V —As)

A "lucky" possible execution of the algorithm is:

i|ef | vd; | Weight(d,) | SMT(ef Uvl;ueT)
01 {} {Co, Cy, C2, C3} 15 UNSAT
1 {01702765} { ’ 762703} 8



A toy example

of £ b
def def
S Yz @[ ) (A 1@
G (x>9) [6] (A) [6]
01 : (ﬁ(XSO)\/(XS‘I)) (ﬁAoVA1)
B2: (—(x>3)V(x >2)) (=As V As)
b5 (~(x < 1)V (x> 2)) (=Ar v —Ay)

A "lucky" possible execution of the algorithm is:

i|ef | % | Weight(yd)) | SMT (o] Upd;uO])
0 {} {Co, C1, Cz, Cs} 15 UNSAT
1 {01,02,05} | { , ,C Cs} 8 SAT
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Q Optimization Modulo Theories with Linear-Arithmetic Objectives
© OMT with Multiple and Combined Objectives

0 Relevant Subcases: OMT+PB & MaxSMT

e Status of OMT

Q Current and Future Research Directions

o Appendix
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Imptoving OMT+PB by sorting networks

The MaxRES MaxSMT Procedure
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OMT(LZR.A U T) captures lots of interesting problems

Sets of LIRA
Boolean formulas| consiraints SMT(LIRA) SMT(LIRAU; T))

DECISION
(Satisfiability)

OPTIMIZATION
with PB cost function
and constraints

OPTIMIZATION
with linear
cost function




OMT(LZR.A U T) captures lots of interesting problems

s| Sets of LIRA

Boolean formula: :
constraints

SMT(LZRA) | SMT(LZRA U, 7))

DECISION
(Satisfiability) SMT(T)

OPTIMIZATION
with PB cost function
and constraints

OPTIMIZATION
with linear
cost function




OMT(LZR.A U T) captures lots of interesting problems

Sets of LIRA
Boolean formulas| consiraints SMT(LIRA) SMT(LIRAU; T))

DECISION
(Satisfiability)

OPTIMIZATION
with PB cost function
and constraints

OPTIMIZATION
with linear
cost function




OMT(LZR.A U T) captures lots of interesting problems

Sets of LIRA
constraints

Boolean formula SMT(LIRA) SMT(LIRAU; T))

DECISION
(Satisfiability)

OPTIMIZATION MaxSMT and
with PB cost function SMT(T) with

and constraints PB cost funct

OPTIMIZATION
with linear
cost function




OMT(LZR.A U T) captures lots of interesting problems

Boolean formulag  S¢15 of LTRA SMT(LTRA) | SMT(LZRAUU,T))
constraints
DECISION Lp
(Satisfiability)
OPTIMIZATION

with PB cost function
and constraints

OPTIMIZATION
with linear
cost function




OMT(LZR.A U T) captures lots of interesting problems

Sets of LIRA

Boolean formula: :
constraints

SMT(LZRA) | SMT(LZRA U, 7))

DECISION ILP, MILP.
DP, LGDP

(Satisfiability)

OPTIMIZATION
with PB cost function
and constraints

OPTIMIZATION
with linear
cost function




OMT(LZR.A U T) captures lots of interesting problems

Boolean formula:

Sets of LIRA
constraints

DECISION
(Satisfiability)

SMT(LIRA)

SMT(LIRAU;
OPTIMIZATION

with PB cost function
and constraints

OPTIMIZATION
with linear
cost function

OMT(LIRAUT




OMT(LZR.A U T) captures lots of interesting problems

Boolean formulasl  S° O LTRA | sum(czra) | SMT(cZRAUY,T)
DECISION
(Satisfiability) LP 'B';’ ll\_AéLDPFg
OPTIMIZATION MaxSMT and
with PB cost function SMT(T) with
and constraints PB cost funct.
OPTIMIZATION
with linear
cost function

-

o




(Finite Domain) Constraint Programming

FDCP/MILP

@ Very efficient on (integer) linear
arithmetic / combinatorial
reasoning

@ Very efficient handling of global
constraints (e.g. all-different)

@ Booleans typically represented as
0-1 integers

@ (typically) finite precision
arithmetic

SMT/OMT

@ Very efficient on Boolean
reasoning

@ Supports other theories (Array,
Bit-Vectors, Strings, ...)

@ Incremental

infinite precision arithmetic

@ Other functionalities: all-smt,
proofs, unsat-cores, interpolants,




Some OMT tools

@ BCLT [44, 35]

http://www.cs.upc.edu/~oliveras/bclt-main.html

@ OPTIMATHSAT [52, 53, 55, 54, 57], on top of MATHSAT [22]
http://optimathsat.disi.unitn.it

@ SYMBA [38], on top of Z3 [24]
https://bitbucket.org/arieg/symba/src

@ Z3[16, 15], on top of Z3 [24]
http://z3.codeplex.com

More Recently:

@ HAZEL [40]. = BV, incremental
@ CEGIO [7, 9] = counterexample guided inductive optimization

@ MAXHS-MSAT [27] = MaxSMT with Implicit Hitting Set (IHS)
algorithm

@ PULI[33]. = LZ.A cost functions, (based on linear regression)


http://www.cs.upc.edu/~oliveras/bclt-main.html
http://optimathsat.disi.unitn.it
https://bitbucket.org/arieg/symba/src
http://z3.codeplex.com

OMT Applications (OPTIMATHSAT)

Real-Time Systems. Worst-Case Execution Time (WCET) of programs [28]
= reproduced with OPTIMATHSAT [3]

Requirements Engineering. Constrained Goal Models with resources, preferences and goals
[41, 42, 43].
—> OPTIMATHSAT backend engine of CGM-TooL [1]

Machine Learning. Inference & Learning in Hybrid domains [46, 60].
—> OPTIMATHSAT backend engine of LMT tool [2]

— offline used of OPTIMATHSAT to generate optimal QUBO encodings of Boolean functions

Formal Verification & Model Checking. Synthesis of Barrier Certificates for Hybrid
Dynamical Systems [48]
—> OPTIMATHSAT used as oracle to separate safe/unsafe regions starting from a simulation

Scheduling. Optimal sleep/wake-up scheduling for WSNs [32, 34, 33]

Quantum Annealing. Solving SAT and MaxSAT with D-Wave 2000Q QAs [12, 13] J
—> OPTIMATHSAT used to deal with increasingly denser WSNs [34] J




OMT Applications (Other tools)

Static Analysis.
@ Generation of Invariants and Proving Termination via Constraint-based method [19]
@ Finding Inductive Invariants via Local Policy Iteration [30, 31]

Formal Verification & Model Checking.
@ Computing Loop lterations for Bounded Program Verification [39]

Scheduling and Planning with Resources.
@ Optimal plans for multi-robot systems [36, 37]
@ Task planning for smart factories [14]
@ Optimal Job-Shop Scheduling with OMT [50]
@ Synthesis Communication Schedules for Time Sensitive Networks [45]

Software Security Engineering.
@ Multi-Objective Workflow Satisfiability Problem [11]




Outline

e Current and Future Research Directions



Ongoing Work & Research Directions on OMT

Field still far from maturity, lots of possible research directions:
@ Improve efficiency!
@ OMT on different theories, e.g.:

e Bit vectors ([16, 40])
o NLA(R)

o NLA(Z) ([35])

e Floating point ([61])

@ Exploit alternative SMT schemas (e.g., Model-Construction SMT)

@ Hybrid techniques, integration with techniques in neighbour fields
(MaxSAT, PB, CSP, MILP, CA, ...

@ Extensive empirical comparison wrt. techniques in neighbour
fields
(MaxSAT, PB, CSP, MILP, ...)

@ Bridge SMT/OMT with CSP/COP (Minizinc)




To this extent....

Announcement

PHD POSITION available in Trento on
“Advancing Optimization Modulo Theories”
The call will expire in a couple of months.

Please contact me if interested: roberto.sebastiani@unitn.it.
(Se also flier on the desk. )




©Warner Bros. Inc.
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Solving OMT(LR.A) [52, 53]

General idea
Combine standard SMT and LP minimization techniques.

Offline Schema
SMT solver and LP minimizer used as blackbox procedures.

— no need to hack the code of the SMT solver




Solving OMT(LR.A) [52, 53]

General idea
Combine standard SMT and LP minimization techniques.

Offline Schema
SMT solver and LP minimizer used as blackbox procedures.

— no need to hack the code of the SMT solver

Inline Schema

Search for minimum integrated inside the CDCL loop of the SMT
solver.
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@ Search for optimum integrated inside CDCL search schema
@ Minimizer called incrementally (no restarting of LR.A-solver)
@ Learned clauses drive backjumping up to level 0



Inline Version: Linear-Search Strategy

3

.-4

;17/ = 7j A (cost < mj4)
cost(n';) > mj4

LRA-solver.solve(u.1) = SAT  plE ¢ Ib;
LR.A-solver.minimize(cost, 1) = M1

@ Search for optimum integrated inside CDCL search schema
@ Minimizer called incrementally (no restarting of LR.A-solver)
@ Learned clauses drive backjumping up to level 0

@ Intermediate-assignment LR.A-checking (early-pruning) plays
the role of “bounding” in a Branch & Bound fashion
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Inline Version: Binary-Search Strategy
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@ Range-minimization loop embedded within CDCL search
schema

@ Level 0: update pivot; and decide (cost < pivot;)



Inline Version: Binary-Search Strategy
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@ Range-minimization loop embedded within CDCL search
schema

@ Level 0: update pivot; and decide (cost < pivot;)
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Inline Version: Binary-Search Strategy

_(cost< plvot)
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LRA-solver.solve(pj 1) = SAT = "L). mlf Livotv GbA
LR A-solver.minimize(cost, y1i1) = Mj,1 ! 1 PIVOG !

@ Range-minimization loop embedded within CDCL search
schema

@ Level 0: update pivot; and decide (cost < pivot;)



Inline Version: Binary-Search Strategy
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LR.A-solver.minimize(cost, ;1) = Mj.4 i pivot;, ym;;1 pivot; ;

@ Range-minimization loop embedded within CDCL search
schema

@ Level 0: update pivot; and decide (cost < pivot;)
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@ Range-minimization loop embedded within CDCL search
schema

@ Level 0: update pivot; and decide (cost < pivot;)



Inline Version: Binary-Search Strategy
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@ Range-minimization loop embedded within CDCL search
schema

@ Level 0: update pivot; and decide (cost < pivot;)



Inline Version: Binary-Search Strategy
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@ Range-minimization loop embedded within CDCL search
schema

@ Level 0: update pivot; and decide (cost < pivot;)
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@ OMT for Bit-vector and Floating-point theories



OMT(BV)

Minimization of an unsigned Bit-Vector

Given a pair (¢, cost), where cost &f [cost[0], ..., cost[n — 1]] is an unsigned BV of n
bits:

@ Reduction to:

e Lexicographic OMT: (¢, {cost[0] # O, ....,cost[n — 1] # 0}) .

o MaxSMT [16, 17]: (o, U=~ (cost[i] # 0, 1))
@ OMT-based Approach: linear-search, binary-search and adaptive-search
@ Ad-Hoc Algorithms:

@ OBV-WA [40]

@ each cost[i] transformed into a high-priority decision variable
@ the phase-saving of each cost|[/] initialized to 0

@ OBV-BS [40]

@ binary search over the bits [cost[0], ..., cost[n — 1]]
@ at most n incremental calls to the underlying SMT solver

Question: @ signed vs. unsigned
How to deal with other BV goals? @ maximization vs minimization




OMT(BV) - Signed/Unsigned BY [61]

Example: encoding of a 8-bits Bit-Vector

Unsigned: Signed: (Two’s complement)
012345867 012345867
1111]1]1{1{1] 255 O[] 127
1{1{1{1][1][1{1]0] 254 Ol1[1[{1{1]1[1({0] 126
Positive
1/0[0[0|0|0|0|1]| 129 0/0/0|0]0]0|0]1 1
1/0[0[0|0|0|0|0| 128 it 0/0/0|0|0|0|0|0 0
OHAA ] 127 (°s™e A =1
O[1]11111111110] 126 1A {1{1[1{1]0] -2
Negative
0/0/0]0|0|0|0|1 1 1/0/0]0]0|0[0[1]|—127
0lojojojofolojo 0 1/0]/0]0]0]0]0|0]—128

Attractor atir for cost: when minimizing, it's the smallest BV-value of the same sort
of cost.

@ it's the ideal result of the optimization search
@ depends on signed/unsigned
[Dual for Maximization]




OMT(BV) - Signed/Unsigned BY [61]

Reduction to unsigned BV (minimization)
Given an attractor attr for cost, both BVs of n bits, replace cost with

cost xor, attr

Example: maximization of a signed 8-bits Bit-Vector

Before: cost After: cost xorg #b0111111
01234567 01234567
O[] 127 0/0(0]0|0[0[0|0] 127
Ol111111111110] 126 oloJolo]o]olo[1] 126

Positive
0]0/0]0|0|0|0|1 1 O|1]11/1|1/1|0 1
0/0]0[0[0|0|0|0 0 O A1 0
1A -1 1]0{0]0]0]0[0]0] —1
1[1]1]1]1{1[1[0] -2 1]0[0[0[0]0[0[1] -2

Negative
1101010010101 [{—127 TAAAAAA0]—127
1101010]010]0]0]—-128 TAAAAA[ANA[=128

Positive

Negative




OMT(FP) [61]

Goal: find a model M of ¢ for which the value of cost is minimum.

Sign

Exponent Significand

Simplification: IM s.t. M |= ¢ and M(cost) # NAN.
— replace ¢ with ¢ A cost # NAN

FP Minimization Approaches

@ Reduction to Bit-Vector Optimization:

- - BY and FP are not Nelson-Oppen disjoint!
— can only use eager BV/FP SMT-solving approach
@ OMT-based Approach: linear-search, binary-search and adaptive-search
@ Ad-Hoc Algorithms:
@ OFP-BS (based on 0BV-BS [40])

@ binary search over the bits [cost[0], ..., cost[n — 1]]
@ at most n incremental calls to the underlying SMT solver




OMT(FP) [61]

Example: Encoding of a 7P 3 5)

Vizgeb67 Minimization in the
0[1]1]1/0/0/0/0] +oc @ Positive Domain, go towards
o|1[1]|0|1(1|1]1| 3'/2
= Positive o[o[o[o[o[o]o[o] +0
0/0/ojo|ojojO[1] /64 @ Negative Domain, go towards
0/0/0/0]0/0/0]0] +0 M[[ANANAAA] NAN
1]/0|0|0({0[0|0|0|] —O .
1/0[olololo[o[1] —/e4 @ unless the exponent is all 1s,
Negative then go towards
o8 1 S [2[1[1]1]o]o]o]0] +00/—o0
1|1|1/1]|0]|0|0(0] —o0

Dynamic Attractor attr., for cost: given an assignment 7 to the first k bits of cost,
it's the smallest FP-value different from NAN s.t.

V=K attry, 1] = 7l

@ The ideal result of the optimization wrt. current search horizon




OMT(FP) - OFP-BS [61]
Idea: Use attr., as look-ahead.

@ if (M(cost[k]) # attr-, [K]) then
SMT.INCREMENTAL_CHECK(p A 7x A cost[k] = attr,, [k]) // try improve cost

@ UNSAT = update 7 and aftr.,
@ SAT — update 7, and M

@ otherwise: skip

Disclosure: based on oBV-BS [40].

Example: minimization of a 7P 3 5

k M(cost) attr,,
o O[[o[[[a[a] 34 [T [ 1] | | ] ||1|1|1|1|o|o|o|0| —od
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Idea: Use attr., as look-ahead.
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Idea: Use attr., as look-ahead.
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SMT.INCREMENTAL_CHECK(p A 7x A cost[k] = attr,, [k]) // try improve cost
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OMT(FP) - OFP-BS [61]
Idea: Use attr., as look-ahead.

@ if (M(cost[k]) # attr-, [K]) then
SMT.INCREMENTAL_CHECK(p A 7x A cost[k] = attr,, [k]) // try improve cost

@ UNSAT = update 7 and aftr.,
@ SAT — update 7, and M

@ otherwise: skip

Disclosure: based on oBV-BS [40].

Example: minimization of a 7P 3 5

k M(cost) Tk attr,

o 0[1[1]0[1[1]1]1] 3'/3 1[1]1]1]0]0|0[0] —o9 . nsAT
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@ Imptoving OMT+PB by sorting networks



Running Example: performance bottleneck

Problem:
@ (p,min(cost)), where cost := w - """ A;, currently obj = k - w
@ OPTIMIZATION STEP: learn —(k - w < cost) and restart/jump to level 0

Example: withk =2, w=1andn=14

Learned Clauses —(2 < obj)




Running Example: performance bottleneck

Problem:

@ —(k < cost) causes the inconsistency of (;’) truth assignments satisfying
exactly k variables in Ao, ..., An—1

Example: withk =2, w=1andn=14

Learned Clauses —(2 < obj)




Running Example: performance bottleneck

Problem:

@ —(k < cost) causes the inconsistency of (;’) truth assignments satisfying
exactly k variables in Ao, ..., An—1
— inconsistency is not revealed by Boolean Constraint Propagation

Example: withk =2, w=1andn=14

Learned Clauses

LA-Solver




Running Example: performance bottleneck

Problem:
@ upto (}) (expensive) calls to the £.A-Solver required

Example: withk =2, w=1andn=14

Learned Clauses

—(2 < obj)

J

_)\( /“
1

LA-Solver




Solution: OMT + sorting networks [56]

Contribution:
Enriched OMT encoding with bidirectional sorting networks [58, 10].

Approach:

Given (g, cost), cost := w - S.7" A;, and a bi-directional sorting network relation
C(Ao, cao) An_y 9 Bo, ceog Bn,1) s.t.

@ kA'sare T — Ay A B,
{Bo, .., Bk—1} are T, A bi-directional —B }T
@ m— k A's are x <— Az i sorting network B B”:*l
{Bx; ---; Bm—1} are x, . e }*
7 "Bm,—l
@ n—mA/’sare L — Ap_3 C ' B
{Bm,...,Bp—1} are L Ap—o L I
An—17 - Brn—1
then we encode it as (¢, cost), where
n—1 n—2

¢ == AC(Ao,.... An1,Bo, ... Bi1) A \ Bi> ((i+1)-w<cost) A /\ By — By
i=0 i=0

v




Properties: OMT + sorting networks [56]

Properties:

@ if (k-w<cost)=_L1,thenby BCP Vi€ [k,n].Bi_1 =L

Example: withk =2, w=1and n=14

Ag

Ay

Az

As

bi-directional
sorting network

C

“ (1 < obj)
(2 < obj)

(3 < obj)

13 18 I

(4 < obyj)



Properties: OMT + sorting networks [56]

Properties:
@ if (k-w<cost)=_L1,thenby BCP Vi€ [k,n].Bi_1 =L

@ assoonas k — 1 A;are assigned T
— all others are unit-propagated to L

Dual if (k- w < cost) = T.

Example: withk =2, w=1and n=14

5

< .
Ao |5 bi-directional By |« (1 < obj)

A, 1 sorting network LB, | (2 < obj)

A, |8 C - | B2 |« (3 < obj)
As ¢ - | B3 < (4 < obj)




Example: OMT with sorting networks

@ OPTIMIZATION STEP: learn —(k - w < cost) and restart/jump to /evel 0

Example: withk =2, w=1and n=4

Learned Clauses —(2 < obj)




Example: OMT with sorting networks

@ OPTIMIZATION STEP: learn —(k - w < cost) and restart/jump to /evel 0

@ assoonas k — 1 A;are assigned T
— all others are unit-propagated to L

Example: withk =2, w=1and n=4

Learned Clauses (2 < obj)




Solution: Combine OMT with Sorting Networks

OPTIMATHSAT: sorting networks implemented
@ Bi-directional Sequential Counter [58], in O(n?) but incremental
sum of A;’s, unary representation

@ Bi-directional Cardinality Network [10, 6], in O(n /ogzn)
based on merge-sort algorithm

Generalization
The same performance issue occurs for (p, cost), where
cost =71 + ... + Tm,
i=kj
Vielt,ml. (=w-Y Ai) A (0<7)A(r < w-k)
i=0
Solution:
@ use a separate sorting circuit for each term 7;
@ add clauses in the form (w; - i < 77) — (w; - i < cost)
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@ The MaxRES MaxSMT Procedure



MAXRES: Maximum Resolution [16]

Idea: given a MaxSMT (@, ¢s), treat both ¢, and ¢s as hard clauses.
Analyze conflict 7, where 7 &f Th U Ts, Th € p and 7s C ps

@ if 7 = () = input problem is unsatisfiable

@ else let Wy, & min(w; | (Ci, wi) € 7s) and relax the problem:
e Learn conflict-clause and replace soft-clauses

©h (phu\/<ci,wi>67's -C;

s \ 7s UU<C_ wiyrg VO WI = Win) i Wi — Wpip > 0
1Y

Ps
e if | 7s | > 1 = add compensation clauses

oh = pp U U<C,-,w,->€rs -Bi = (Bi—1 A Gj)
/I By == T, Vi>0.Bj is fresh Boolean var

ps = (Bi—1 V Ci, Wnin)

U .
25 U U, mye trerccrmyy
No Conflict: optimal solution
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@ Extended SMT-LIB language



Extended SMT-LIBV2 Interface [57]

(minimize <term> [:id <string>] [:signed]
[:lower <const_term>] [:upper <const_term>])
(maximize <term> [:id <string>] [:signed]
10

[:lower <const_term> :upper <const_term>])

(minmax <term> ... <term> [:id <string>] [:signed]
[:lower <const_term>] [:upper <const_term>])

(maxmin <term> ... <term> [:id <string>] [:signed]
[:lower <const_term>] [:upper <const_term>])

(assert-soft <term> [:1id <string>] [:weight <const_term>])

(check-sat)
(check-allsat (<const_term> ... <const_term>))

(get-objectives)
(load-objective-model <numeral>)
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@ Pareto Optimization (hints)



Pareto OMT

Definitions:
@ A model M Pareto-dominates M’ iff

Vi.M(cost;) < M'(cost;)
and

3j.M(cost;) < M’ (cost;)

(dual for maximization)

@ M is Pareto-optimal iff it is not
Pareto-dominated by any M.

Example: (p, {costy, costz})»
-7 6 -5 -4 -3 -2

Pareto-optimal

Goal: given a pair (p, O)», where O = {costy, ..., costy}
@ find the set of Pareto-optimal models { M, ..., My} (i.e. the Pareto front)




Pareto OMT: Guided Improvement Algorithm (GIA)

Guided Improvement Algorithm [49, 16]

Given a pair {p, O)p, where O &f {costy, ..., costy}:
@ start from random model M of ¢

@ loop: look for a model M’ of ¢ that Pareto-dominates M
— if any, replace M with M’ and keep looking

@ block solutions Pareto-dominated by M
@ repeat

Infinite Loop:
@ some cost; is unbounded
@ some cost; can always be improved by an infinitesimal value (e.g. OMT(LR.A))

Also: 7-minimization procedure not used
— the same © may be visited multiple times by CDCL/SAT engine




Pareto OMT: Lexicographic GIA

Observation. If model M is Lexicographic-optimal for (p, {costs, ..., costy}) -, then
M is also Pareto-optimal for (¢, {costy, ..., costy})p.

Example: (p, {costy,costz})»
Idea: -7 6 -5 -4 -3 -2 -
@ Shuffle {costy, ..., costy}
= explore from different directions

@ Extract Lexicographic-optimal M | Lcogh, cos

@ Learn
i=N
\/ (cost; < Micost])
i=1
to block Pareto-dominated solutions
@ repeat




Pareto OMT: Lexicographic GIA

Observation. If model M is Lexicographic-optimal for (p, {costs, ..., costy}) -, then
M is also Pareto-optimal for (¢, {costy, ..., costy})p.

Example: (p, {costy,costz})»
Idea: -7 6 -5 -4 -3 -2 -
@ Shuffle {costy, ..., costy}
= explore from different directions

@ Extract Lexicographic-optimal M (» Loogt, cos

@ Learn v
¢ =@ A ((cost; < —6)

=0 V(cost, < —1))

\/ (cost; < Micost])
i=1
to block Pareto-dominated solutions
@ repeat




Pareto OMT: Lexicographic GIA

Observation. If model M is Lexicographic-optimal for (p, {costs, ..., costy}) -, then
M is also Pareto-optimal for (¢, {costy, ..., costy})p.

Example: (p, {costy,costz})»
Idea: -7 6 -5 -4 -3 -2 -
@ Shuffle {costy, ..., costy}
= explore from different directions

@ Extract Lexicographic-optimal M (» Loogt, cos
@ Learn v
¢ =@ A ((cost; < —6)

=0 V(cost, < —1))

\/ (cost; < Micost])

i=1

to block Pareto-dominated solutions

@ repeat (¢', {costz, costi }) 2 o




Pareto OMT: Lexicographic GIA

Observation. If model M is Lexicographic-optimal for (p, {costs, ..., costy}) .z, then
M is also Pareto-optimal for (¢, {costy, ..., costy})p.

Example: (p, {costy,costza})»
Idea: -7 -6 -5 -4 -3 -2

@ Shuffle {costy, ..., costy}
= explore from different directions

@ Extract Lexicographic-optimal M
@ Learn

i=N
\/ (cost; < Mcost])

i=1
to block Pareto-dominated solutions
@ repeat

Problem: how to deal with unbounded objectives? )




Pareto OMT: dealing with unbounded objectives

1. Sort objectives:

@ lower-bounded first
@ lower-unbounded last
before Lex. OMT.




Pareto OMT: dealing with unbounded objectives

, {costy, cost
(¢, {costz, costi }) o

1. Sort objectives:

@ lower-bounded first
@ lower-unbounded last
before Lex. OMT.




Pareto OMT: dealing with unbounded objectives

(¢, {costz,costs })c "~

, {costy, cost
(¢, {costz, costi }) o

1. Sort objectives:

@ lower-bounded first
@ lower-unbounded last
before Lex. OMT.




Pareto OMT: dealing with unbounded objectives

(¢, {costa,costs })c "~

, {costa, cost
(¢, {costz, costi }) 2 o

1. Sort objectives:
@ lower-bounded first
@ lower-unbounded last
before Lex. OMT.

2. If Lex. OMT unbounded, (temporarily)
learn:

i=N

/\ (cost; < Micost])

i=1
and try again.




Pareto OMT: dealing with unbounded objectives

(¢, {costa,costs })c "~

p, {costy, cost
(¢, {costz, costi }) £ o

1. Sort objectives:
@ lower-bounded first
@ lower-unbounded last
before Lex. OMT.

2. If Lex. OMT unbounded, (temporarily)
learn:

i=N

/\ (cost; < Micost])

i=1
and try again.



Pareto OMT: dealing with unbounded objectives

(¢, {costa,costs }) e "~

p, {costy, cost
(¢, {costz, costi }) £ o

1. Sort objectives:
@ lower-bounded first
@ lower-unbounded last
before Lex. OMT.

3. If Lex. OMT still unbounded, give up.

2. If Lex. OMT unbounded, (temporarily)
learn:

i=N
/\ (cost; < Micost])
i=1

and try again.
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