
Parallel automated reasoning

Maria Paola Bonacina

Dipartimento di Informatica
Università degli Studi di Verona

Verona, Italy, EU

Lecture at the SAT/SMT/AR School
Lisbon, 5 July 2019

Maria Paola Bonacina Parallel automated reasoning

Motivation for parallel reasoning

I Problems from applications get bigger and bigger

I It is hard to improve sequential performance

I Parallel hardware is available

I Automated reasoning neatly separates inference and control:
from sequential to parallel organization of inferences?

Maria Paola Bonacina Parallel automated reasoning

Motivation for parallel reasoning

I Several SAT/SMT/AR systems are portfolio systems

I Multiple strategies by interleaving, time slicing,
or in parallel

I Portfolio system: framework for parallel experiments or
parallel prover/solver?

I Different degrees of integration/interaction

I What is a parallel prover/solver?

I Why is parallel reasoning challenging?

Maria Paola Bonacina Parallel automated reasoning

Focus of the lecture

Parallel strategies for

I Automated theorem proving (ATP) in

I First-order logic (FOL)

Further reading:

I Youssef Hamadi and Lakhdar Sais (Editors)

Handbook of Parallel Constraint Reasoning

Springer, May 2018

I Chapter 6: Maria Paola Bonacina. Parallel theorem proving

(with 230 references)

Maria Paola Bonacina Parallel automated reasoning

Theorem-proving
strategies

Maria Paola Bonacina Parallel automated reasoning

Theorem proving as inference + search

I Inference system: a set of inference rules

I Generate a derivation by applying the inference rules

I An inference system is non-deterministic

I Theorem-proving strategy: inference system + search plan

I A theorem-proving strategy is a deterministic procedure

I Refutationally complete inference system + fair search plan =
complete theorem-proving strategy

I Parallelism affects the search component

Maria Paola Bonacina Parallel automated reasoning

Taxonomy of theorem-proving strategies

I Ordering-based strategies

I Subgoal-reduction strategies

I Instance-based strategies

I This lecture: ordering-based and subgoal-reduction strategies
I Less work on parallelizing instance-based strategies
I That have some commonalities with subgoal-reduction

strategies from a parallelization viewpoint

Maria Paola Bonacina Parallel automated reasoning

Ordering-based strategies

Maria Paola Bonacina Parallel automated reasoning

Ordering-based strategies

I Expansion and contraction of a set of clauses
(e.g., resolution, subsumption, paramodulation/superposition,

simplification)

I Well-founded partial ordering � on terms, literals, clauses:
I Restrict expansion
I Define contraction and redundancy

I State of the art for quantifier reasoning + equality reasoning

I Provers: e.g., Otter, EQP, Prover9, Spass, Discount, E,
Gandalf, Vampire, Waldmeister, Zipperposition

Maria Paola Bonacina Parallel automated reasoning

Expansion inference scheme

An inference

A

B

where A and B are sets of clauses is an expansion inference if

I A ⊂ B: something is added

I Hence A ≺ B
(� extended by multiset extension)

I Soundness of expansion: what is added is a logical
consequence of what was already there
B \ A ⊆ Th(A) hence B ⊆ Th(A) hence Th(B) ⊆ Th(A)

Maria Paola Bonacina Parallel automated reasoning

Expansion inference rule: superposition

Example:

f (z , e) ' z f (l(x , y), y) ' x

l(x , e) ' x

I f (z , e)σ = f (l(x , y), y)σ

I σ = {z ← l(x , e), y ← e}
I f (l(x , e), e) � l(x , e) (by the subterm property)

I f (l(x , e), e) � x (by the subterm property)

I Superposition closes a peak:
l(x , e)← f (l(x , e), e)→ x

Maria Paola Bonacina Parallel automated reasoning

Expansion inference rule: superposition/paramodulation

S ∪ {l ' r ∨ C , L[s] ∨ D}
S ∪ {l ' r ∨ C , L[s] ∨ D, (L[r] ∨ C ∨ D)σ}

I s is not a variable

I lσ = sσ with σ mgu

I l ' r : para-from literal/clause

I L[s]: para-into literal/clause

I lσ 6� rσ and if L[s] is p[s] ./ q then pσ 6� qσ (./ is ' or 6')

I (l ' r)σ 6� Mσ for all M ∈ C

I L[s]σ 6� Mσ for all M ∈ D

Maria Paola Bonacina Parallel automated reasoning

Contraction inference scheme

An inference

A

B

where A and B are sets of clauses is a contraction inference if

I A 6⊆ B: something is deleted or replaced

I B ≺ A: if replaced, replaced by something smaller

I Soundness of contraction adds adequacy:
what is gone is logical consequence of what is kept
A \ B ⊆ Th(B) hence A ⊆ Th(B) hence Th(A) ⊆ Th(B)
(monotonicity)

I Every step sound and adequate: Th(A) = Th(B)

Maria Paola Bonacina Parallel automated reasoning

Contraction inference rule: simplification

S ∪ {s ' t, L[r] ∨ C}
S ∪ {s ' t, L[tσ] ∨ C}

I sσ = r and sσ � tσ

I L[tσ] ∨ C is entailed by the original set (soundness)

I L[r] ∨ C is entailed by the resulting set (adequacy)

I L[r] ∨ C is redundant

S ∪ {f (x , x) ' x , P(f (a, a)) ∨ Q(a)}
S ∪ {f (x , x) ' x , P(a) ∨ Q(a)}

Maria Paola Bonacina Parallel automated reasoning

Ordering-based strategies: derivation

I Input set S

I Inference system: a set of inference rules

I Derivation: S = S0 ` S1 ` . . . Si ` Si+1 ` . . .
∀i Si+1 is derived from Si by an inference

I Refutation: a derivation such that 2 ∈ Sk for some k

I Refutational completeness: for all unsat S there is refutation

I Persistent clauses: S∞ =
⋃

i≥0

⋂
j≥i Sj

I Once redundant always redundant

Maria Paola Bonacina Parallel automated reasoning

Ordering-based inference system

I Expansion rules: ordered resolution, ordered factoring,
superposition/ordered paramodulation, equational factoring,
reflection (resolution with x ' x)

I Contraction rules: subsumption, simplification, tautology
deletion, clausal simplification (unit resolution + subsumption)

I Refutationally complete

Maria Paola Bonacina Parallel automated reasoning

Contraction before expansion

I Simplification-first search plans

I Contraction-first search plans

I Eager-contraction search plans

I Keep sets of clauses interreduced

Maria Paola Bonacina Parallel automated reasoning

Forward and backward contraction I

I Forward contraction:
I Reduce new clause ϕ by older clauses
I Find all clauses ψ that can reduce ϕ

I Backward contraction:
I Reduce older clause ψ by new clause ϕ
I Find all clauses ψ that ϕ can reduce

Maria Paola Bonacina Parallel automated reasoning

Forward and backward contraction II

I Forward contraction before backward contraction
I Forward contraction implemented as pre-processing clause ϕ
I Forward contraction is part of the generation of ϕ
I Before forward contraction: raw clause
I Backward contraction implemented as post-processing ϕ:

detect that ψ can be reduced + forward contraction ψ
I Clauses generated by backward contraction treated like those

generated by expansion

I Backward contraction: highly dynamic database of clauses

Maria Paola Bonacina Parallel automated reasoning

Search plans for ordering-based strategies

I Lists To-Be-Selected and Already-Selected

I Given-clause algorithm: select a given-clause ϕ from
To-Be-Selected, do all expansion inferences between ϕ and
all ψ in Already-Selected, move ϕ to Already-Selected

I Apply forward contraction to each raw clause
I Two versions for backward contraction:

I Keep the union of the two lists interreduced
I Keep only Already-Selected interreduced

Maria Paola Bonacina Parallel automated reasoning

Subgoal-reduction
strategies

Maria Paola Bonacina Parallel automated reasoning

Subgoal-reduction strategies

I Linear resolution, model elimination (ME):
pick a goal clause and try to reduce it to 2

by reducing goals to subgoals

I ME-tableaux: Tableau as survey of interpretations
Try to eliminate them all
Tableau frontier ∼ goal clause

I Equality reasoning still an open problem

I Provers: e.g., Setheo, Protein, leanCoP, EKR-Hyper

Maria Paola Bonacina Parallel automated reasoning

Ordered linear resolution

I At each step: resolve current goal L ∨ C with side clause
L′ ∨ D such that Lσ = ¬L′σ

I Next goal: the resolvent (D ∨ C)σ

I Subgoal L reduced to a new bunch of subgoals Dσ

I Side clause: either input or ancestor

I Linear: at every step one parent is previous resolvent

I Ordered: literals in the goal reduced in fixed order
e.g., left-to-right (literal-selection rule)

Maria Paola Bonacina Parallel automated reasoning

Model elimination

I ME-extension: resolve current goal L ∨ C with side clause
L′ ∨ D such that Lσ = ¬L′σ

I Next goal: the resolvent (D ∨ [L] ∨ C)σ

I Reduced subgoal L saved as framed literal

I ME-reduction: reduce goal L′ ∨ D ∨ [L] ∨ C to (D ∨ [L] ∨ C)σ
when Lσ = ¬L′σ

I ME-contraction: reduce goal [L] ∨ C to C

I Side clause: input clause

I Linear input strategy for FOL

Maria Paola Bonacina Parallel automated reasoning

Why model elimination?

I L ∨ C and L′ ∨ D with Lσ = ¬L′σ:
no model can satisfy the two clauses by satisfying Lσ and L′σ

I (D ∨ [L] ∨ C)σ: the framed Lσ is added to the current
candidate model (satisfies (L ∨ C)σ)

I Something in Dσ must be satisfied to satisfy (L′ ∨ D)σ:
the literals of Dσ are subgoals of Lσ

I ME-reduction of L′ ∨ D ∨ [L] ∨ C to (D ∨ [L] ∨ C)σ
when Lσ = ¬L′σ:
a model with L cannot satisfy L′σ

I ME-contraction of [L] ∨ C to C : no model with L

Maria Paola Bonacina Parallel automated reasoning

Subgoal-reduction strategies: derivation

I Derivation: (S ;ϕ0) ` (S ;ϕ1) ` . . . (S ;ϕi) ` . . .
ϕi : goal clauses

I Refutation: (S ;2) at some stage

I Refutational completeness: if S unsat and S \ {ϕ0} sat, there
is refutation from (S ;ϕ0)

I Redundancy: repeated subgoals

I Lemma learning: when ME-contracting [L] ∨ C to C
learn lemma ¬L

Maria Paola Bonacina Parallel automated reasoning

Subgoal-reduction strategies: search plan

I Depth-first search (DFS)
I Literal-selection rule or And-rule
I Clause-selection rule or Or-rule

I Backtracking to get out of dead-end
(goal clause to which no inference applies)

I Iterative deepening on the number of inferences (resolution or
ME-extension) for fairness, hence completeness

Maria Paola Bonacina Parallel automated reasoning

Parallelism and deduction

Maria Paola Bonacina Parallel automated reasoning

Parallelism and deduction

Parallelism at the

I Term/literal level: fine-grain
Below the inference level

I Clause level: medium-grain
At the inference level: parallel inferences

I Search level: coarse-grain
Multiple processes cooperate searching in parallel for a proof

Maria Paola Bonacina Parallel automated reasoning

Fine-grain parallelism for subgoal-reduction

I And-parallelism: reduce in parallel distinct goal clause literals
or tableau leaves

I Literals of the same clause may share variables: conflict
I Example:

I Subgoals: ¬P(x) and ¬Q(x , y)
I Side clauses: P(a) ∨ C and Q(f (z), z) ∨ D
I Conflict between x ← a and x ← f (z)

And-parallelism not for theorem proving

Maria Paola Bonacina Parallel automated reasoning

Fine-grain parallelism for ordering-based strategies

I Rewrite in parallel subterms at distinct positions in a term
I The positions can be:

I Disjoint positions
I A variable overlap
I A non-variable overlap

Maria Paola Bonacina Parallel automated reasoning

Disjoint positions: parallel rewriting

I Example:
I i(i(x)) ' x
I f (x , y) ' f (y , x)
I h(i(i(a)), f (a, b))→‖ h(a, f (b, a))

I Parallel rewriting: at disjoint positions

Maria Paola Bonacina Parallel automated reasoning

Variable overlap: concurrent rewriting

I Example:
I h(x , x) ' x
I f (y , b) ' y
I a← h(a, a)← f (h(a, a), b)→ f (a, b)→ a

I Same result in either order

I Concurrent rewriting: at disjoint positions and variable
overlaps

Maria Paola Bonacina Parallel automated reasoning

Non-variable overlap: conflict

I Example:
I f (z , e) ' z
I f (l(x , y), y) ' x
I l(a, e)← f (l(a, e), e)→ a

I Contraction/contraction Write-write conflict:
two contraction steps rewrite the same clause

I Parallel/concurrent rewriting assume non-overlapping
equations

Maria Paola Bonacina Parallel automated reasoning

Parallel/concurrent rewriting: summary I

Declarative programming languages:

I Fixed set E of input equations

I Goal is to rewrite a term t to its unique normal form

I Regular rewrite system R: non-overlapping and left-linear

I R: confluent, not terminating

I Compile R in ad hoc data structures for concurrent rewriting

I Rewrite engines: Elan, Maude

Maria Paola Bonacina Parallel automated reasoning

Parallel/concurrent rewriting: summary II

Theorem proving:

I Equations do overlap

I Goal is refutation

I Superposition (that closes the peak of a write-write rewriting
conflict) is necessary

I Large set of generated and kept clauses

I Dynamic set of clauses: growing by expansion and shrinking
by contraction

I Concurrent rewriting not for theorem proving

Maria Paola Bonacina Parallel automated reasoning

Take-home message

I Conflicts among parallel inferences

I Size and dynamicity of the database of generated and kept
clauses

stand in the way of fine-grain parallelism for theorem proving

Maria Paola Bonacina Parallel automated reasoning

Parallel inferences

Maria Paola Bonacina Parallel automated reasoning

Parallel inferences for subgoal-reduction I

I Or-parallelism: reduce distinct goal clauses in parallel

I Try in parallel the proof attempts that a sequential strategy
tries in sequence by backtracking

I Task (ϕ, j , k)
I ϕ: goal clause
I j : number of ME-extension steps used to generate ϕ
I k: limit of iterative deepening
I Reduce ϕ to 2 in at most k − j ME-extension steps
I Active iff k > j

I From (ϕi , j , k) to (ϕi+1, j + 1, k)

Maria Paola Bonacina Parallel automated reasoning

Parallel inferences for subgoal-reduction II

I Parallel derivation: (S ;G0) ` (S ;G1) ` . . . (S ;Gi) ` . . .
Gi : set of active tasks

I Processes p0, . . . , pn−1: all active as soon as |Gi | > n

I Each ph maintains a queue of its active tasks

I Distribution of tasks by task stealing

I Communication by message passing or in shared memory

Maria Paola Bonacina Parallel automated reasoning

Parallel inferences for subgoal-reduction: summary

I Static database of clauses S

I Compile S à la Prolog (Prolog Technology Theorem Proving)

I (ϕ, j , k) encoded as the operations that generate it

I Recall ratio of iterative deepening: in exponential search tree,
almost all nodes are on the frontier, re-expanding inner nodes
does not matter much

I Provers Partheo, Parthenon, and Meteor

Maria Paola Bonacina Parallel automated reasoning

Parallel inferences in ordering-based strategies I

I Parallelize the Otter given-clause algorithm: ROO

I To-Be-Selected and Already-Selected in shared memory

I Task A: expansion (including forward contraction) with
given-clause ϕ

I Processes p0, . . . , pn−1 select given-clauses ϕ0, . . . , ϕn−1 and
each executes Task A

I Can ph append its set Nh of new clauses to
To-Be-Selected? No: ψ ∈ N1 not reduced w.r.t. N2

I ph appends them to a third list: K-list

Maria Paola Bonacina Parallel automated reasoning

Parallel inferences in ordering-based strategies II

I Backward contraction in parallel? No, conflicts

I ph finds that ψ can be back-contracted: ψ in To-Be-Deleted

I Task B: inter-reduce K-list, move its clauses to
To-Be-Selected; backward-contraction of To-Be-Deleted

I If K-list != nil or To-Be-Deleted != nil and none’s
doing Task B, do it, else do Task A

I Only one ph does Task B: sequential backward-contraction

I Backward-contraction bottleneck

Maria Paola Bonacina Parallel automated reasoning

Parallel inferences: more conflicts

1. Contraction/contraction write-read conflict: one rewrites a ϕ
that another one uses as premise to contract some other ψ

2. Contraction/expansion write-read conflict: one rewrites a ϕ
that an expansion step uses as premise

I Both due to backward contraction
(clauses subject to forward contraction not used as premises)

I Type (1) harmless as once redundant always redundant

Maria Paola Bonacina Parallel automated reasoning

Parallel inferences for ordering-based strategies: summary

I Backward contraction indispensable to counter space growth
I Impact of backward contraction:

I No read-only data: any clause can be contracted
I Highly dynamic database of generated and kept clauses
I Conflicts between parallel inferences

I Stand in the way of medium-grain parallelism for
ordering-based strategies

Maria Paola Bonacina Parallel automated reasoning

Take-home message

I Subgoal-reduction strategies: somewhat amenable to parallel
inferences

I Ordering-based strategies: not amenable to parallel inferences

I From parallel inferences to parallel search

Maria Paola Bonacina Parallel automated reasoning

Parallel search

Maria Paola Bonacina Parallel automated reasoning

Parallelism at the search level

I Parallelism at the term/literal or clause levels:
find proof sooner by speeding-up the same search
that would be done sequentially

I Parallelism at the search level:
find proof sooner by generating
multiple different communicating searches

Maria Paola Bonacina Parallel automated reasoning

Parallel search I

I Parallel processes p0, . . . , pn−1

I Each builds its own derivation and its own database of
generated and kept clauses

I Success when one ph finds a proof

I Communication

I Separate databases: no conflicts, no backward-contraction
bottleneck

I Duplication harmless for soundness if inferences are sound

Maria Paola Bonacina Parallel automated reasoning

Parallel search II

How to differentiate the searches of p0, . . . , pn−1?

I Distributed search: subdivide the search space among the
processes (divide and conquer)

I Multi-search: let the processes use different search plans or
different inference systems or both

I Both with communication

I The two can be combined

Maria Paola Bonacina Parallel automated reasoning

Parallel search III

I Ordering-based strategies:
I Distributed search
I Multi-search
I Their combination

I Subgoal-reduction strategies:
I Multi-search

Maria Paola Bonacina Parallel automated reasoning

Multi-search

Maria Paola Bonacina Parallel automated reasoning

Multi-search for subgoal-reduction I

Differentiate the searches of p0, . . . , pn−1 by

I Different literal-selection rules

I Different clause-selection rules

I Different limits for iterative deepening

I Different initial goal clauses

I Combinations of these

Maria Paola Bonacina Parallel automated reasoning

Multi-search for subgoal-reduction II

I Derivation: (S ;G k
0) ` (S ;G k

1) ` . . . (S ;G k
i) ` . . .

G k
i : set of active tasks at process pk at stage i

I Communication of tasks

I If pk has (ϕ, j , q) and (ϕ′, j ′, q′) with q < q′, (ϕ, j , q) has
higher priority for completeness

I Successors of Partheo prover: SEtheo, E-SEtheo,
SPtheo, CPtheo, and P-SEtheo

Maria Paola Bonacina Parallel automated reasoning

Heterogeneous multi-search for subgoal-reduction

I Model-elimination (ME) prover

I Resolution engine (e.g., binary resolution, hyperresolution,
unit-resulting resolution)

I Used to generate lemmas for ME

I Heuristics to pick best lemmas

I Provers: Hpds, CPtheo

Maria Paola Bonacina Parallel automated reasoning

Multi-search for ordering-based strategies I

I Different search plans
(e.g., different evaluation functions to select the given-clause)

I Derivation: Sk
0 ` Sk

1 ` . . . Sk
i ` . . .

Sk
i : set of clauses at process pk at stage i

I Communication:
I Periodic resync: interleave search plans
I Share heuristically chosen “good” clauses: combine search

plans, “learning”

I Method and prover: Team-Work

Maria Paola Bonacina Parallel automated reasoning

Distributed search

Maria Paola Bonacina Parallel automated reasoning

Distributed search for ordering-based strategies

I All processes with the same inference system

I Distribute work: subdivide the data or the operations?

I Theorem proving: few inference rules, many clauses

I Subdivide the clauses

I Subdivision of inferences follow

I Notion of subdividing the search space

I Method: theorem proving by Clause-Diffusion

Maria Paola Bonacina Parallel automated reasoning

Distributed search: the Clause-Diffusion method

I Deductive processes p0, . . . , pn−1 that are peers

I All pj ’s get input problem, same inference system

I Basic version: also same search plan

I Asynchronous processes: sync on halt, e.g., one found proof

I Search space subdivided by a notion of ownership of clauses:
every clause is owned by a process

Maria Paola Bonacina Parallel automated reasoning

Clause-Diffusion derivation

I (O0;NO0)j ` (O1;NO1)j ` . . . (Oi ;NO i)
j ` . . .

I ∀pj , 0 ≤ j ≤ n − 1, ∀i , i ≥ 0:

I O j
i is the set of clauses owned by pj

I NO j
i is the set of clauses not owned by pj

I S j
i = O j

i] NO j
i is the local database of clauses at pj

I S0
0 = S input set: p0 reads the input

I
⋃n−1

j=0 S j
i is the global database at stage i

I Every clause is owned by a process:
⋃n−1

j=0 O j
i =

⋃n−1
j=0 S j

i

And only one: O j
i ∩ Ok

i = ∅ (exceptions in practice)

Maria Paola Bonacina Parallel automated reasoning

Subdivision and diffusion of clauses I

I pj reads or generates ψ by expansion or backward contraction

I Forward contraction: ϕ = ψ ↓
I pj determines owner pk of ϕ by an allocation criterion

I Say ϕ is the m-th clause generated by pj
I ϕ’s id: 〈k ,m, j〉 globally unique

I k = j : ϕ enters O j

I k 6= j : ϕ enters NO j

Maria Paola Bonacina Parallel automated reasoning

Subdivision and diffusion of clauses II

I pj applies ϕ to backward-contract clauses in S j

I pj broadcasts inference message 〈ϕ, k ,m, j〉
I pq, q 6= j , receives 〈ϕ, k ,m, j〉
I Forward contraction: α = ϕ ↓
I k = q: α enters Oq

I k 6= q: α enters NOq

I pq applies α to backward-contract clauses in Sq

Maria Paola Bonacina Parallel automated reasoning

Clause Diffusion: allocation criteria I

I Round-robin
I Input clauses by round-robin then work-load based

I Measured as number of generated clauses
I Estimated based on inference messages

I Syntax-based: weight-based

I Variant of any of these: assign a fixed fraction to self

Maria Paola Bonacina Parallel automated reasoning

Clause Diffusion: allocation criteria II

I Try to minimize the overlap of the searches by p0, . . . , pn−1

I Each ϕ carries id’s of parents for proof reconstruction
I Ancestor-graph oriented (AGO) heuristics, e.g.:

I Input clauses by round-robin then by majority
I Assign ϕ to the process that owns the most of its ancestors

Maria Paola Bonacina Parallel automated reasoning

Clause Diffusion: subdivision of inferences

I No subdivision of forward-contraction inferences

I No subdivision of backward-contraction inferences that delete
clauses (e.g., subsumption)

I Subdivision of expansion inferences:
pj performs the inference if it owns the clause paramodulated
or superposed into or the negative-literal parent in resolution

I Subdivision of backward-contraction inferences that simplify
clauses: ψ ∈ S j can backward-simplify ϕ ∈ S j :
pj generates ϕ ↓ if it owns ϕ, only deletes ϕ otherwise

Maria Paola Bonacina Parallel automated reasoning

Distributed fairness

I Fairness of a distributed derivation

I Sufficient conditions: local fairness +
broadcast eventually all persistent irredundant clauses

I Clause-Diffusion satisfies the second one eagerly because of
distributed proof reconstruction

Maria Paola Bonacina Parallel automated reasoning

Distributed proof reconstruction

I Proof reconstruction at the end of a refutation

I Ordering-based strategies: save clauses deleted by backward
contraction

I Proof reconstruction in a distributed derivation:
I Make sure that whoever finds 2 can do it alone
I Sufficient condition:

Broadcast eventually all clauses ever used as premises

I Otherwise: proof reconstruction in post-processing

Maria Paola Bonacina Parallel automated reasoning

Distributed global contraction

I If ϕ redundant w.r.t. the global database at some stage,
ϕ recognized redundant eventually by every process

I If ϕ redundant in
⋃n−1

j=0 S j
i , for all pj there is a stage l , l ≥ i ,

such that ϕ redundant in S j
l

I Guaranteed by broadcasting mechanism:
global redundancy/contraction reduced to local

I Subdivision of backward contraction:
All delete ϕ and only one generates ϕ ↓

Maria Paola Bonacina Parallel automated reasoning

Clause Diffusion: summary

I A methodology to turn a sequential ordering-based strategy
into a distributed one

I Each process executes the sequential strategy, modified with
subdivision of work and communication

I If the requirements for distributed fairness are met:
if the sequential strategy is complete,
so is the distributed one

Maria Paola Bonacina Parallel automated reasoning

The Clause-Diffusion provers I

I Aquarius:
I Parallelization of Otter
I PCN for message passing
I Also multi-search (e.g., different heuristic evaluation functions)

I Peers:
I Parallelization of code from Otter Parts Store
I Equational theories possibly with AC function symbols
I p4 for message passing
I Pairs algorithm instead of given-clause algorithm

Maria Paola Bonacina Parallel automated reasoning

The Clause-Diffusion provers II

Peers-mcd:

I Parallelization of EQP

I Equational theories possibly with AC function symbols

I Blocking, Basic paramodulation

I MPI for message passing

I AGO allocation criteria

I Both given-clause and pairs algorithms

Maria Paola Bonacina Parallel automated reasoning

The first big proof: the Robbins theorem

I The Robbins conjecture: Robbins algebra are Boolean
open in mathematics since 1933
a challenge for theorem provers since 1990

I EQP proved the Robbins conjecture
I Peers-mcd exhibited super-linear speedup in, e.g.:

I Two out of three parts of the Robbins proof and almost
super-linear speedup in the third

I The Levi commutator problem in group theory

Maria Paola Bonacina Parallel automated reasoning

The Clause-Diffusion provers III

I Peers-mcd: both distributed search and multi-search,
distributed mode, multi-search mode, hybrid mode

I Different search plans: given-clause and pairs, different
heuristic evaluation functions, different pick-given-ratio

I Moufang identities in alternative rings with cancellation laws
built-in

I Peers-mcd.d proved them without cancellation laws, with
super-linear speedup (w.r.t. EQP) in distributed and hybrid
mode with hybrid doing best (no speed-up by multi-search)

Maria Paola Bonacina Parallel automated reasoning

Discussion

Maria Paola Bonacina Parallel automated reasoning

Lessons learned from experiments I

I Super-linear speed-up possible as sequential and distributed
strategies generate different searches

I Fewer clauses generated, higher percentage of retained
clauses, different proof

I Effective subdivision of the search space

I The searches by the pk ’s do not overlap too much, the
successful one finds a proof much sooner

I The proof is not necessarily smaller

I Sub-optimal sequential search plan

Maria Paola Bonacina Parallel automated reasoning

Lessons learned from experiments II

I Different search: irregular scalability

I As the point is not to use more computers to do the same
steps, no guarantee of scalability

I The problem may not be hard enough to justify using more
processes

I Oscillations: the subdivision of the search space depends on
the number of processes

I Combining distributed search and multi-search may smooth
this effect

Maria Paola Bonacina Parallel automated reasoning

Take-home message

I Ordering-based strategies: parallel search
I Team-Work pioneered multi-search
I Clause-Diffusion pioneered distributed search

I Parallel ATP compounds the complications of first-order
reasoning with those of parallelism

Maria Paola Bonacina Parallel automated reasoning

Parallel ATP and parallel SAT-solving

I Distributed search ∼ Divide-and-conquer

I Multi-search ∼ Portfolio approach

Maria Paola Bonacina Parallel automated reasoning

Multi-search for parallel SAT-solving

I Different heuristics for decisions

I Different heuristics for restart

I Randomization

Maria Paola Bonacina Parallel automated reasoning

Distributed search for parallel SAT-solving

I Cube-and-conquer as an instance of satisfiability modulo
assignment

I Communicating “good” learned clauses

I Activity-based heuristics “intensify” search

Maria Paola Bonacina Parallel automated reasoning

More theorem-proving strategies

I Semantically-guided strategies

I Goal-sensitive strategies
I Strategies that combine proof search and model search:

I Model-based strategies: the state of the derivation contains a
representation of a candidate partial model

I Conflict-driven strategies: nontrivial inferences only to explain
and solve conflicts between clauses and candidate model

Maria Paola Bonacina Parallel automated reasoning

Future: parallelism and model-based ATP?

I Instance-based strategies (e.g., Inst-Gen, MEC, SGGS)

I Strategies that hybridize tableaux and instance-generation
(e.g., hypertableaux)

I SGGS: Semantically-Guided Goal-Sensitive reasoning:
model-based and conflict-driven

I Strategies that generalize CDCL to EPR (e.g., NRCL,
DPLL(SX)) or FOL (SGGS)

Maria Paola Bonacina Parallel automated reasoning

Thank you!

Maria Paola Bonacina Parallel automated reasoning

