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Interpolation in Software Verification

Reachability of B in ONE iteration: R(c, d) ∧ T (c, d , c′, d ′)→ B(c′, d ′)

{c = d = 0 ∧ N > 0 ∧ (∀k) (0 ≤ k < N → D[k ] = 0)} precondition A(c,d)

while (c < N) do

C[c] := D[d ];

c < N ∧ C[c] = D[d ] ∧ c′ = c + 1 ∧ d ′ = d + 1 ∧ c′ ≥ N︸ ︷︷ ︸
T (c,d,c′,d′)

c := c + 1;
d := d + 1

od

{(∀k)(0 ≤ k < N → C[k ] = 0)} postcondition B(c,d)
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Refutation: R(c, d) ∧ T (c, d , c′, d ′) ∧ c′ ≥ N ∧ ¬B(c′, d ′)

• The formula is of 2 states (c, d , c′, d ′).
• Need a state formula I(c′, d ′) such that: (Jhala and McMillan)
R(c, d) ∧ T (c, d , c′, d ′) ∧ c′ ≥ N → I(c′, d ′) and I(c′, d ′) ∧ ¬B(c′, d ′)→ ⊥
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Interpolation in Software Verification
Reachability of B in TWO iterations
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Reachability of B in TWO iterations

{c = d = 0 ∧ N > 0 ∧ (∀k) (0 ≤ k < N → D[k ] = 0)} precondition R(c,d)

while (c < N) do

C[c] := D[d ];
c := c + 1;
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Interpolation in Software Verification

Tasks:

I Proving: Refute reachability properties

I Extracting: Compute interpolants from proofs
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Interpolation and Local Proofs

Localizing Proofs

Minimizing Interpolants

Quantifier Complexity of Interpolants



Interpolation

Theorem
Let R,B be closed formulas and let R ` B.

Then there exists a formula I such that
1. R ` I and I ` B;
2. every symbol of I occurs both in R and B;

Any formula I with this property is called an interpolant of R and B.
Essentially, an interpolant is a formula that is

1. intermediate in power between R and B;
2. Uses only common symbols of R and B.

When we deal with refutations rather than proofs and have an
unsatisfiable set {R,B}, it is convenient to use reverse interpolants of
R and B, that is, a formula I such that

1. R ` I and {I,B} is unsatisfiable;
2. every symbol of I occurs both in R and B;
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Interpolation Through Colors

I There are three colors: red, blue and grey.

I Each symbol (function or predicate) is colored in exactly one of
these colors.

I We have two formulas: R and B.
I Each symbol in R is either red or grey.
I Each symbol in B is either blue or grey.
I We know that ` R → B.
I Our goal is to find a grey formula I such that:

1. ` R → I;
2. ` I → B.
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Interpolation with Theories
I Theory T : any set of closed green formulas.
I C1, . . . ,Cn `T C denotes that the formula C1 ∧ . . . ∧ C1 → C

holds in all models of T .
I Interpreted symbols: symbols occurring in T .
I Uninterpreted symbols: all other symbols.

Theorem
Let R,B be formulas and let R `T B.

Then there exists a formula I such that
1. R `T I and I ` B;
2. every uninterpreted symbol of I occurs both in R and B;
3. every interpreted symbol of I occurs in B.

Likewise, there exists a formula I such that
1. R ` I and I `T B;
2. every uninterpreted symbol of I occurs both in R and B;
3. every interpreted symbol of I occurs in R.
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Local Derivations

A derivation is called local (well-colored) if each inference in it

C1 · · · Cn

C

either has no blue symbols or has no red symbols.
That is, one cannot mix blue and red in the same inference.



Local Derivations: Example

I R := ∀x(x = a)

I B := c = b
I Interpolant: ∀x∀y(x = y) (note: universally quantified!)
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Shape of a local derivation



Symbol Eliminating Inference

I At least one of the premises is not grey.
I The conclusion is grey.

x = a y = a
x = y c 6= b

y 6= b
⊥



Extracting Interpolants from Local Proofs

G is in the digest:

- comes from a red block

- followed by a blue or grey block

or

- comes from a blue block

- followed by a red

G1
G2

G3

G4

Digest

Interpolant: boolean combination of {G1, . . . ,G4}
[McMillan05, KV09]
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Extracting Interpolants from Local Proofs

Theorem
Let Π be a local refutation. Then one can extract from Π in linear time
a reverse interpolant I of R and B. This interpolant is ground if all
formulas in Π are ground.

This reverse interpolant is a boolean
combination of conclusions of symbol-eliminating inferences of Π.
What is remarkable in this theorem:

I No restriction on the calculus (only soundness required) – can be
used with theories.

I Can generate interpolants in theories where no good
interpolation algorithms exist.
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Interpolation: Examples in Vampire

Our running example:

Local proof and interpolant: vampire interpol1.p

Non-local proof: vampire interpol2.p
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An automated theorem prover for first-order logic and theories.

https://vprover.github.io/download.html

I Completely automatic: once you started a proof attempt, it
can only be interrupted by terminating the process.

I Champion of the CASC world-cup in first-order theorem
proving: won CASC >45 times.

https://vprover.github.io/download.html
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Vampire:

. It produces detailed proofs but also supports finding finite models

. It competes with SMT solvers on their problems (thanks to our

FOOL logic and AVATAR)

. In normal operation it is saturation-based - it saturates a clausal
form with respect to an inference system

. It is portfolio-based - it works best when you allow it to try lots
of strategies

. It supports lots of extra features and options

helpful for program
analysis by symbol elimination
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Our running example:

Local proof and interpolant: vampire interpol1.p

Non-local proof: vampire interpol2.p



Interpolation: Examples in Vampire

fof(fA,axiom, q(f(a)) & ˜q(f(b)) ).
fof(fB,conjecture, ?[V]: V != c).

Non-local proof: vampire interpol4.p



Interpolation: Examples in Vampire

% request to generate an interpolant
vampire(option,show_interpolant,on).
% symbol coloring
vampire(symbol,predicate,q,1,left).
vampire(symbol,function,f,1,left).
vampire(symbol,function,a,0,left).
vampire(symbol,function,b,0,left).
vampire(symbol,function,c,0,right).
% formula R
vampire(left_formula).

fof(fA,axiom, q(f(a)) & ˜q(f(b)) ).
vampire(end_formula).
% formula B
vampire(right_formula).

fof(fB,conjecture, ?[V]: V != c).
vampire(end_formula).

Local proof and interpolant: vampire interpol3.p
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Localizing Proofs

Task: eliminate non-local inferences

Idea: quantify away colored symbols
↓

Idea: colored symbols replaced by logical variables.

Cons: Comes at the cost of using extra quantifiers.

But we can minimise the number of quantifiers in the interpolant.

Given R(a) ` B where a is an uninterpreted constant not occurring in B.

Then, R(a) ` (∃x)R(x) and (∃x)R(x) ` B.

R1(a)

R2(a) B
A

R1(a)

(∃x)R2(x) B
A
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Minimizing Interpolants

Our Interest: Small Interpolants

I in size;
I in weight;
I in the number of quantifiers;
I . . .

Given ` R → B, find a grey formula I:

� ` R → I;

� ` I → B;

� I is small.
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Minimizing Interpolant
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I compute small interpolants: smallest digest of grey formulas;
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Experiments with Small Interpolants

I Implemented in Vampire;

I We used Yices for solving pseudo-boolean constraints;

I Experimental results:

I 9632 first-order examples from the TPTP library:

for example, for 2000 problems the size of the interpolants became
20-49 times smaller;

I 4347 SMT examples:

I we used Z3 for proving SMT examples;
I Z3 proofs were localised in Vampire;
I small interpolants were generated for 2123 SMT examples.
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Quantifier Complexity of Interpolants

Local Proofs Do Not Always Exist

I R: (∀x)p(r , x)

I B: (∀y)¬p(y ,b)

I Reverse interpolant I of R and B: (∃y)(∀x)p(y , x).

I Note: R and B contain no quantifier alternations, yet I contains
quantifier alternations. One can prove that every interpolant of
this formula must have at least one quantifier alternation.

I There is no local refutation of R,B in the resolution/superposition
calculus.

I There is a non-local one:

p(r , x) ¬p(y ,b)

⊥
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Quantifier Complexity of Interpolants

Theorem There is no lower bound on the number of quantifier
alternations in interpolants of universal sentences.

That is, for every positive integer n there exist universal sentences
R,B such that {R,B} is unsatisfiable and every reverse interpolant of
R and B has at least n quantifier alternations.



Quantifier Complexity of Interpolants

Example

Take the formula A: ∀x1∃y1∀x1∃y2 . . . p(x1, y1, x2, y2, . . .) and let R be
obtained by skolemizing A and B be obtained by skolemizing ¬A:

R = ∀x1∀x2 . . . p(x1, r1(x1), x2, r2(x1, x2), . . .)

B = ∀y1∀y2 . . .¬p(b1, y1,b2(y1), y2, . . .)

I = ∀x1∃y1∀x2∃y2 . . . p(x1, y1, x2, y2, . . .)

There is no reverse interpolant with a smaller number of quantifier
alternations.

The resolution refutation consists of a single step deriving the empty
clause from R and B.
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Quantifier Complexity of Interpolants

Bad News for Local Proof Systems
Let S be an inference system with the following property: for every
red formula R and blue formula B, if {R,B} is unsatisfiable, then
there is a local refutation of R,B in S.

Then the number of quantifier alternations in refutations of universal
formulas of S is not bound by any positive integer.



Quantifier Complexity of Interpolants

I There is no bound on the number of quantifier alternations in
reverse interpolants of universal formulas.

I Any complete local proof system for first-order predicate logic
must have inferences dealing with formulas of an arbitrary
quantifier complexity, even if the input formulas have no
quantifier alternations.

I There is no simple modification of the superposition calculus for
logic with/without equality in which every unsatisfiable formula
has a local refutation.
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