
First-Order Interpolation

Laura Kovács



I Interpolation: Craig Interpolation

I Use of interpolation in software verification thanks to K. McMillan



I Interpolation: Craig Interpolation

I Use of interpolation in software verification thanks to K. McMillan



Interpolation in Software Verification

Reachability of B in ONE iteration: R(c, d) ∧ T (c, d , c′, d ′)→ B(c′, d ′)

{c = d = 0 ∧ N > 0 ∧ (∀k) (0 ≤ k < N → D[k ] = 0)} precondition A(c,d)

while (c < N) do

C[c] := D[d ];

c < N ∧ C[c] = D[d ] ∧ c′ = c + 1 ∧ d ′ = d + 1 ∧ c′ ≥ N︸ ︷︷ ︸
T (c,d,c′,d′)

c := c + 1;
d := d + 1

od

{(∀k)(0 ≤ k < N → C[k ] = 0)} postcondition B(c,d)



Interpolation in Software Verification

Reachability of B in ONE iteration: R(c, d) ∧ T (c, d , c′, d ′)→ B(c′, d ′)

{c = d = 0 ∧ N > 0 ∧ (∀k) (0 ≤ k < N → D[k ] = 0)} precondition R(c,d)

while (c < N) do

C[c] := D[d ];

c < N ∧ C[c] = D[d ] ∧ c′ = c + 1 ∧ d ′ = d + 1 ∧ c′ ≥ N︸ ︷︷ ︸
T (c,d,c′,d′)

c := c + 1;
d := d + 1

od

{(∀k)(0 ≤ k < N → C[k ] = 0)} postcondition B(c,d)



Interpolation in Software Verification

Reachability of B in ONE iteration:

{c = d = 0 ∧ N > 0 ∧ (∀k) (0 ≤ k < N → D[k ] = 0)} precondition R(c,d)

while (c < N) do

C[c] := D[d ];
Loop Invariant?

c := c + 1;
d := d + 1

od

{(∀k)(0 ≤ k < N → C[k ] = 0)} postcondition B(c,d)



Interpolation in Software Verification
Reachability of B in ONE iteration: R(c, d) ∧ T (c, d , c′, d ′) ∧ c′ ≥ N → B(c′, d ′)

{c = d = 0 ∧ N > 0 ∧ (∀k) (0 ≤ k < N → D[k ] = 0)} precondition R(c,d)

while (c < N) do

C[c] := D[d ];

c < N ∧ C[c] = D[d ] ∧ c′ = c + 1 ∧ d ′ = d + 1︸ ︷︷ ︸
T (c,d,c′,d′)

c := c + 1;
d := d + 1

od

{(∀k)(0 ≤ k < N → C[k ] = 0)} postcondition B(c′,d ′)



Interpolation in Software Verification
Reachability of B in ONE iteration: R(c, d) ∧ T (c, d , c′, d ′) ∧ c′ ≥ N → B(c′, d ′)

{c = d = 0 ∧ N > 0 ∧ (∀k) (0 ≤ k < N → D[k ] = 0)} precondition R(c,d)

while (c < N) do

C[c] := D[d ]; c < N ∧ C[c] = D[d ] ∧ c′ = c + 1 ∧ d ′ = d + 1︸ ︷︷ ︸
T (c,d,c′,d′)

c := c + 1;
d := d + 1

od

{(∀k)(0 ≤ k < N → C[k ] = 0)} postcondition B(c′,d ′)



Interpolation in Software Verification
Reachability of B in ONE iteration: R(c, d) ∧ T (c, d , c′, d ′) ∧ c′ ≥ N → B(c′, d ′)

{c = d = 0 ∧ N > 0 ∧ (∀k) (0 ≤ k < N → D[k ] = 0)} precondition R(c,d)

while (c < N) do

C[c] := D[d ];

c < N ∧ C[c] = D[d ] ∧ c′ = c + 1 ∧ d ′ = d + 1︸ ︷︷ ︸
T (c,d,c′,d′)

c := c + 1;
d := d + 1

od

{(∀k)(0 ≤ k < N → C[k ] = 0)} postcondition B(c′,d ′)

Refutation: R(c, d) ∧ T (c, d , c′, d ′) ∧ c′ ≥ N ∧ ¬B(c′, d ′)

• The formula is of 2 states (c, d , c′, d ′).
• Need a state formula I(c′, d ′) such that: (Jhala and McMillan)
R(c, d) ∧ T (c, d , c′, d ′) ∧ c′ ≥ N → I(c′, d ′) and I(c′, d ′) ∧ ¬B(c′, d ′)→ ⊥



Interpolation in Software Verification
Reachability of B in ONE iteration: R(c, d) ∧ T (c, d , c′, d ′) ∧ c′ ≥ N → B(c′, d ′)

{c = d = 0 ∧ N > 0 ∧ (∀k) (0 ≤ k < N → D[k ] = 0)} precondition R(c,d)

while (c < N) do

C[c] := D[d ];

c < N ∧ C[c] = D[d ] ∧ c′ = c + 1 ∧ d ′ = d + 1︸ ︷︷ ︸
T (c,d,c′,d′)

c := c + 1;
d := d + 1

od

{(∀k)(0 ≤ k < N → C[k ] = 0)} postcondition B(c′,d ′)

Refutation: R(c, d) ∧ T (c, d , c′, d ′) ∧ c′ ≥ N ∧ ¬B(c′, d ′)

• The formula is of 2 states (c, d , c′, d ′).
• Need a state formula I(c′, d ′) such that: (Jhala and McMillan)
R(c, d) ∧ T (c, d , c′, d ′) ∧ c′ ≥ N → I(c′, d ′) and I(c′, d ′) ∧ ¬B(c′, d ′)→ ⊥



Interpolation in Software Verification
Reachability of B in ONE iteration: R(c, d) ∧ T (c, d , c′, d ′) ∧ c′ ≥ N → B(c′, d ′)

{c = d = 0 ∧ N > 0 ∧ (∀k) (0 ≤ k < N → D[k ] = 0)} precondition R(c,d)

while (c < N) do

C[c] := D[d ];

c < N ∧ C[c] = D[d ] ∧ c′ = c + 1 ∧ d ′ = d + 1︸ ︷︷ ︸
T (c,d,c′,d′)

c := c + 1;
d := d + 1

od

{(∀k)(0 ≤ k < N → C[k ] = 0)} postcondition B(c′,d ′)

Refutation: R(c, d) ∧ T (c, d , c′, d ′) ∧ c′ ≥ N ∧ ¬B(c′, d ′)

• The formula is of 2 states (c, d , c′, d ′).
• Need a state formula I(c′, d ′) such that: (Jhala and McMillan)
R(c, d) ∧ T (c, d , c′, d ′) ∧ c′ ≥ N → I(c′, d ′) and I(c′, d ′) ∧ ¬B(c′, d ′)→ ⊥

Task: Compute interpolant I(c′, d ′) from refutation by eliminating symbols c, d .



Interpolation in Software Verification
Reachability of B in ONE iteration: R(c, d) ∧ T (c, d , c′, d ′) ∧ c′ ≥ N → B(c′, d ′)

{c = d = 0 ∧ N > 0 ∧ (∀k) (0 ≤ k < N → D[k ] = 0)} precondition R(c,d)

while (c < N) do

C[c] := D[d ];

c < N ∧ C[c] = D[d ] ∧ c′ = c + 1 ∧ d ′ = d + 1︸ ︷︷ ︸
T (c,d,c′,d′)

c := c + 1;
d := d + 1

od

{(∀k)(0 ≤ k < N → C[k ] = 0)} postcondition B(c′,d ′)

I(c′,d ′) ≡ 0 < c′ = 1 ∧ C[0] = D[0]

I(c′′,d ′′) ≡ 0 < c′′ = 2 ∧ C[0] = D[0] ∧ C[1] = D[1]

Task: Compute interpolant I(c′, d ′) from refutation by eliminating symbols c, d .



Interpolation in Software Verification
Reachability of B in TWO iterations

{c = d = 0 ∧ N > 0 ∧ (∀k) (0 ≤ k < N → D[k ] = 0)} precondition R(c,d)

while (c < N) do

C[c] := D[d ];
c := c + 1;
d := d + 1

od

{(∀k)(0 ≤ k < N → C[k ] = 0)} postcondition B(c′,d ′)

I(c′,d ′) ≡ 0 < c′ = 1 ∧ C[0] = D[0]

I(c′′,d ′′) ≡ 0 < c′′ = 2 ∧ C[0] = D[0] ∧ C[1] = D[1]

Task: Compute interpolant I(c′′, d ′′) from refutation by eliminating c, d , c′, d ′.



Interpolation in Software Verification
Reachability of B in TWO iterations

{c = d = 0 ∧ N > 0 ∧ (∀k) (0 ≤ k < N → D[k ] = 0)} precondition R(c,d)

while (c < N) do

C[c] := D[d ];
c := c + 1;
d := d + 1

od

{(∀k)(0 ≤ k < N → C[k ] = 0)} postcondition B(c′,d ′)

I(c′,d ′) ≡ (∀k)0 ≤ k < c′ → C[k ] = D[k ]

I(c′′,d ′′) ≡ (∀k)0 ≤ k < c′′ → C[k ] = D[k ]

Task: Compute interpolant I(c′′, d ′′) implying invariant in any state.



Interpolation in Software Verification

Tasks:

I Proving: Refute reachability properties

I Extracting: Compute interpolants from proofs



Outline

Interpolation and Local Proofs

Localizing Proofs

Minimizing Interpolants

Quantifier Complexity of Interpolants



Interpolation

Theorem
Let R,B be closed formulas and let R ` B.

Then there exists a formula I such that
1. R ` I and I ` B;
2. every symbol of I occurs both in R and B;

Any formula I with this property is called an interpolant of R and B.
Essentially, an interpolant is a formula that is

1. intermediate in power between R and B;
2. Uses only common symbols of R and B.

When we deal with refutations rather than proofs and have an
unsatisfiable set {R,B}, it is convenient to use reverse interpolants of
R and B, that is, a formula I such that

1. R ` I and {I,B} is unsatisfiable;
2. every symbol of I occurs both in R and B;



Interpolation

Theorem
Let R,B be closed formulas and let R ` B.

Then there exists a formula I such that
1. R ` I and I ` B;
2. every symbol of I occurs both in R and B;

Any formula I with this property is called an interpolant of R and B.
Essentially, an interpolant is a formula that is

1. intermediate in power between R and B;
2. Uses only common symbols of R and B.

When we deal with refutations rather than proofs and have an
unsatisfiable set {R,B}, it is convenient to use reverse interpolants of
R and B, that is, a formula I such that

1. R ` I and {I,B} is unsatisfiable;
2. every symbol of I occurs both in R and B;



Interpolation

Theorem
Let R,B be closed formulas and let R ` B.

Then there exists a formula I such that
1. R ` I and I ` B;
2. every symbol of I occurs both in R and B;

Any formula I with this property is called an interpolant of R and B.
Essentially, an interpolant is a formula that is

1. intermediate in power between R and B;
2. Uses only common symbols of R and B.

When we deal with refutations rather than proofs and have an
unsatisfiable set {R,B}, it is convenient to use reverse interpolants of
R and B, that is, a formula I such that

1. R ` I and {I,B} is unsatisfiable;
2. every symbol of I occurs both in R and B;



Interpolation Through Colors

I There are three colors: red, blue and grey.

I Each symbol (function or predicate) is colored in exactly one of
these colors.

I We have two formulas: R and B.
I Each symbol in R is either red or grey.
I Each symbol in B is either blue or grey.
I We know that ` R → B.
I Our goal is to find a grey formula I such that:

1. ` R → I;
2. ` I → B.



Interpolation Through Colors

I There are three colors: red, blue and grey.
I Each symbol (function or predicate) is colored in exactly one of

these colors.

I We have two formulas: R and B.
I Each symbol in R is either red or grey.
I Each symbol in B is either blue or grey.
I We know that ` R → B.
I Our goal is to find a grey formula I such that:

1. ` R → I;
2. ` I → B.



Interpolation Through Colors

I There are three colors: red, blue and grey.
I Each symbol (function or predicate) is colored in exactly one of

these colors.
I We have two formulas: R and B.
I Each symbol in R is either red or grey.
I Each symbol in B is either blue or grey.

I We know that ` R → B.
I Our goal is to find a grey formula I such that:

1. ` R → I;
2. ` I → B.



Interpolation Through Colors

I There are three colors: red, blue and grey.
I Each symbol (function or predicate) is colored in exactly one of

these colors.
I We have two formulas: R and B.
I Each symbol in R is either red or grey.
I Each symbol in B is either blue or grey.
I We know that ` R → B.
I Our goal is to find a grey formula I such that:

1. ` R → I;
2. ` I → B.



Interpolation with Theories
I Theory T : any set of closed green formulas.
I C1, . . . ,Cn `T C denotes that the formula C1 ∧ . . . ∧ C1 → C

holds in all models of T .
I Interpreted symbols: symbols occurring in T .
I Uninterpreted symbols: all other symbols.

Theorem
Let R,B be formulas and let R `T B.

Then there exists a formula I such that
1. R `T I and I ` B;
2. every uninterpreted symbol of I occurs both in R and B;
3. every interpreted symbol of I occurs in B.

Likewise, there exists a formula I such that
1. R ` I and I `T B;
2. every uninterpreted symbol of I occurs both in R and B;
3. every interpreted symbol of I occurs in R.



Interpolation with Theories
I Theory T : any set of closed green formulas.
I C1, . . . ,Cn `T C denotes that the formula C1 ∧ . . . ∧ C1 → C

holds in all models of T .
I Interpreted symbols: symbols occurring in T .
I Uninterpreted symbols: all other symbols.

Theorem
Let R,B be formulas and let R `T B.

Then there exists a formula I such that
1. R `T I and I ` B;
2. every uninterpreted symbol of I occurs both in R and B;
3. every interpreted symbol of I occurs in B.

Likewise, there exists a formula I such that
1. R ` I and I `T B;
2. every uninterpreted symbol of I occurs both in R and B;
3. every interpreted symbol of I occurs in R.



Local Derivations

A derivation is called local (well-colored) if each inference in it

C1 · · · Cn

C

either has no blue symbols or has no red symbols.
That is, one cannot mix blue and red in the same inference.



Local Derivations: Example

I R := ∀x(x = a)

I B := c = b
I Interpolant: ∀x∀y(x = y) (note: universally quantified!)



Local Derivations: Example

I R := ∀x(x = a)

I B := c = b
I Interpolant: ∀x∀y(x = y) (note: universally quantified!)

Non-local proof Local Proof

x =a
c=a

x =a
b=a

c=b c 6=b
⊥

x =a y =a
x = y c 6=b

y 6=b
⊥



Local Derivations: Example

I R := ∀x(x = a)

I B := c = b
I Interpolant: ∀x∀y(x = y) (note: universally quantified!)

Non-local proof

Local Proof

x =a
c=a

x =a
b=a

c=b c 6=b
⊥

x =a y =a
x = y c 6=b

y 6=b
⊥



Local Derivations: Example

I R := ∀x(x = a)

I B := c = b
I Interpolant: ∀x∀y(x = y) (note: universally quantified!)

Non-local proof Local Proof

x =a
c=a

x =a
b=a

c=b c 6=b
⊥

x =a y =a
x = y c 6=b

y 6=b
⊥



Shape of a local derivation



Symbol Eliminating Inference

I At least one of the premises is not grey.
I The conclusion is grey.

x = a y = a
x = y c 6= b

y 6= b
⊥



Extracting Interpolants from Local Proofs

G is in the digest:

- comes from a red block

- followed by a blue or grey block

or

- comes from a blue block

- followed by a red

G1
G2

G3

G4

Digest

Interpolant: boolean combination of {G1, . . . ,G4}
[McMillan05, KV09]



Extracting Interpolants from Local Proofs

G is in the digest:

- comes from a red block

- followed by a blue or grey block

or

- comes from a blue block

- followed by a red

G1
G2

G3

G4

Digest

Interpolant: boolean combination of {G1, . . . ,G4}
[McMillan05, KV09]



Extracting Interpolants from Local Proofs

G is in the digest:

- comes from a red block

- followed by a blue or grey block

or

- comes from a blue block

- followed by a red

G1
G2

G3

G4

Digest

Interpolant: boolean combination of {G1, . . . ,G4}

[McMillan05, KV09]



Extracting Interpolants from Local Proofs

G is in the digest:

- comes from a red block

- followed by a blue or grey block

or

- comes from a blue block

- followed by a red

G1
G2

G3

G4

Digest

Interpolant: boolean combination of {G1, . . . ,G4}

[McMillan05, KV09]



Extracting Interpolants from Local Proofs

G is in the digest:

- comes from a red block

- followed by a blue or grey block

or

- comes from a blue block

- followed by a red

G1
G2

G3

G4

Digest

Interpolant: boolean combination of {G1, . . . ,G4}

[McMillan05, KV09]



Extracting Interpolants from Local Proofs

Theorem
Let Π be a local refutation. Then one can extract from Π in linear time
a reverse interpolant I of R and B. This interpolant is ground if all
formulas in Π are ground.

This reverse interpolant is a boolean
combination of conclusions of symbol-eliminating inferences of Π.
What is remarkable in this theorem:

I No restriction on the calculus (only soundness required) – can be
used with theories.

I Can generate interpolants in theories where no good
interpolation algorithms exist.



Extracting Interpolants from Local Proofs

Theorem
Let Π be a local refutation. Then one can extract from Π in linear time
a reverse interpolant I of R and B. This interpolant is ground if all
formulas in Π are ground. This reverse interpolant is a boolean
combination of conclusions of symbol-eliminating inferences of Π.

What is remarkable in this theorem:

I No restriction on the calculus (only soundness required) – can be
used with theories.

I Can generate interpolants in theories where no good
interpolation algorithms exist.



Extracting Interpolants from Local Proofs

Theorem
Let Π be a local refutation. Then one can extract from Π in linear time
a reverse interpolant I of R and B. This interpolant is ground if all
formulas in Π are ground. This reverse interpolant is a boolean
combination of conclusions of symbol-eliminating inferences of Π.
What is remarkable in this theorem:

I No restriction on the calculus (only soundness required) – can be
used with theories.

I Can generate interpolants in theories where no good
interpolation algorithms exist.



Interpolation: Examples in Vampire

Our running example:

Local proof and interpolant: vampire interpol1.p

Non-local proof: vampire interpol2.p



What is Vampire?

An automated theorem prover for first-order logic and theories.

https://vprover.github.io/download.html

I Completely automatic: once you started a proof attempt, it
can only be interrupted by terminating the process.

I Champion of the CASC world-cup in first-order theorem
proving: won CASC >45 times.

https://vprover.github.io/download.html


What is Vampire?

An automated theorem prover for first-order logic and theories.

https://vprover.github.io/download.html

I Completely automatic: once you started a proof attempt, it
can only be interrupted by terminating the process.

I Champion of the CASC world-cup in first-order theorem
proving: won CASC >45 times.

https://vprover.github.io/download.html


What is Vampire?

An automated theorem prover for first-order logic and theories.

https://vprover.github.io/download.html

I Completely automatic: once you started a proof attempt, it
can only be interrupted by terminating the process.

I Champion of the CASC world-cup in first-order theorem
proving: won CASC >45 times.

https://vprover.github.io/download.html


Vampire:

. It produces detailed proofs but also supports finding finite models

. It competes with SMT solvers on their problems (thanks to our

FOOL logic and AVATAR)

. In normal operation it is saturation-based - it saturates a clausal
form with respect to an inference system

. It is portfolio-based - it works best when you allow it to try lots
of strategies

. It supports lots of extra features and options

helpful for program
analysis by symbol elimination



Vampire:

. It produces detailed proofs but also supports finding finite models

. It competes with SMT solvers on their problems (thanks to our

FOOL logic and AVATAR)

. In normal operation it is saturation-based - it saturates a clausal
form with respect to an inference system

. It is portfolio-based - it works best when you allow it to try lots
of strategies

. It supports lots of extra features and options helpful for program
analysis by symbol elimination



Interpolation: Examples in Vampire

Our running example:

Local proof and interpolant: vampire interpol1.p

Non-local proof: vampire interpol2.p



Interpolation: Examples in Vampire

fof(fA,axiom, q(f(a)) & ˜q(f(b)) ).
fof(fB,conjecture, ?[V]: V != c).

Non-local proof: vampire interpol4.p



Interpolation: Examples in Vampire

% request to generate an interpolant
vampire(option,show_interpolant,on).
% symbol coloring
vampire(symbol,predicate,q,1,left).
vampire(symbol,function,f,1,left).
vampire(symbol,function,a,0,left).
vampire(symbol,function,b,0,left).
vampire(symbol,function,c,0,right).
% formula R
vampire(left_formula).

fof(fA,axiom, q(f(a)) & ˜q(f(b)) ).
vampire(end_formula).
% formula B
vampire(right_formula).

fof(fB,conjecture, ?[V]: V != c).
vampire(end_formula).

Local proof and interpolant: vampire interpol3.p



Outline

Interpolation and Local Proofs

Localizing Proofs

Minimizing Interpolants

Quantifier Complexity of Interpolants



Localizing Proofs

Task: eliminate non-local inferences

Idea: quantify away colored symbols
↓

Idea: colored symbols replaced by logical variables.

Cons: Comes at the cost of using extra quantifiers.

But we can minimise the number of quantifiers in the interpolant.

Given R(a) ` B where a is an uninterpreted constant not occurring in B.

Then, R(a) ` (∃x)R(x) and (∃x)R(x) ` B.

R1(a)

R2(a) B
A

R1(a)

(∃x)R2(x) B
A



Localizing Proofs

Task: eliminate non-local inferences
Idea: quantify away colored symbols

↓
Idea: colored symbols replaced by logical variables.

Cons: Comes at the cost of using extra quantifiers.

But we can minimise the number of quantifiers in the interpolant.

Given R(a) ` B where a is an uninterpreted constant not occurring in B.

Then, R(a) ` (∃x)R(x) and (∃x)R(x) ` B.

R1(a)

R2(a) B
A

R1(a)

(∃x)R2(x) B
A



Localizing Proofs

Task: eliminate non-local inferences
Idea: quantify away colored symbols

↓
Idea: colored symbols replaced by logical variables.

Cons: Comes at the cost of using extra quantifiers.

But we can minimise the number of quantifiers in the interpolant.

Given R(a) ` B where a is an uninterpreted constant not occurring in B.

Then, R(a) ` (∃x)R(x) and (∃x)R(x) ` B.

R1(a)

R2(a) B
A

R1(a)

(∃x)R2(x) B
A



Localizing Proofs

Task: eliminate non-local inferences
Idea: quantify away colored symbols

↓
Idea: colored symbols replaced by logical variables.

Cons: Comes at the cost of using extra quantifiers.

But we can minimise the number of quantifiers in the interpolant.

Given R(a) ` B where a is an uninterpreted constant not occurring in B.

Then, R(a) ` (∃x)R(x) and (∃x)R(x) ` B.

R1(a)

R2(a) B
A

R1(a)

(∃x)R2(x) B
A



Localizing Proofs

Task: eliminate non-local inferences
Idea: quantify away colored symbols

↓
Idea: colored symbols replaced by logical variables.

Cons: Comes at the cost of using extra quantifiers.

But we can minimise the number of quantifiers in the interpolant.

Given R(a) ` B where a is an uninterpreted constant not occurring in B.

Then, R(a) ` (∃x)R(x) and (∃x)R(x) ` B.

R1(a)

R2(a) B
A

R1(a)

(∃x)R2(x) B
A



Localizing Proofs

Task: eliminate non-local inferences
Idea: quantify away colored symbols

↓
Idea: colored symbols replaced by logical variables.

Cons: Comes at the cost of using extra quantifiers.

But we can minimise the number of quantifiers in the interpolant.

Given R(a) ` B where a is an uninterpreted constant not occurring in B.

Then, R(a) ` (∃x)R(x) and (∃x)R(x) ` B.

R1(a)

R2(a) B
A

R1(a)

(∃x)R2(x) B
A



Outline

Interpolation and Local Proofs

Localizing Proofs

Minimizing Interpolants

Quantifier Complexity of Interpolants



Minimizing Interpolants

Our Interest: Small Interpolants

I in size;
I in weight;
I in the number of quantifiers;
I . . .

Given ` R → B, find a grey formula I:

� ` R → I;

� ` I → B;

� I is small.



Minimizing Interpolants

Our Interest: Small Interpolants

I in size;
I in weight;
I in the number of quantifiers;
I . . .

Given ` R → B, find a grey formula I:

� ` R → I;

� ` I → B;

� I is small.



Minimizing Interpolant

Task: minimise interpolants = minimise digest

Hercule Poirot:

It is the little GREY CELLS, mon ami, on which one must rely.

Mon Dieu, mon ami, but use your little GREY CELLS!



Minimizing Interpolant

Task: minimise interpolants = minimise digest

Hercule Poirot:

It is the little GREY CELLS, mon ami, on which one must rely.

Mon Dieu, mon ami, but use your little GREY CELLS!



Minimizing Interpolant

Task: minimise interpolants = minimise digest

Hercule Poirot:

It is the little GREY CELLS, mon ami, on which one must rely.

Mon Dieu, mon ami, but use your little GREY CELLS!



Minimizing Interpolant

Task: minimise interpolants = minimise digest

Idea: Change the grey areas of the local proof

, but preserve locality!

Slicing off formulas



Minimizing Interpolant

Task: minimise interpolants = minimise digest

Idea: Change the grey areas of the local proof

, but preserve locality!

Slicing off formulas



Minimizing Interpolant

Task: minimise interpolants = minimise digest

Idea: Change the grey areas of the local proof

, but preserve locality!

Slicing off formulas

A1 · · · An

An+1 · · · Am

A
A0 −→slicing off A

A1 · · · An An+1 · · · Am

A0

If A is grey: Grey slicing



Minimizing Interpolant

Task: minimise interpolants = minimise digest

Idea: Change the grey areas of the local proof

, but preserve locality!

Slicing off formulas

A1 · · · An

An+1 · · · Am

A
A0 −→slicing off A

A1 · · · An An+1 · · · Am

A0

If A is grey: Grey slicing



Minimizing Interpolant

Task: minimise interpolants = minimise digest

Idea: Change the grey areas of the local proof

, but preserve locality!

Slicing off formulas

B0

R0

G1

G0 −→slicing off G1

B0 R0

G0

If A is grey: Grey slicing



Minimizing Interpolant

Task: minimise interpolants = minimise digest

Idea: Change the grey areas of the local proof, but preserve locality!

Slicing off formulas

B0

R0

G1

G0 −→slicing off G1

B0 R0

G0

If A is grey: Grey slicing



Minimizing Interpolant

R3

R1 G1

G3

B1 G2

G4

G5

G6

R4

G7

⊥

Digest:

Reverse interpolant:
Note that the interpolant has changed from G4 → G7 to ¬G6.

I There is no obvious logical relation between G4 → G7 and ¬G6,
for example none of these formulas implies the other one;

I These formulas may even have no common atoms or no
common symbols.



Minimizing Interpolant

R3

R1 G1

G3

B1 G2

G4

G5

G6

R4

G7

⊥

Digest: {G4,G7}

Reverse interpolant: G4 → G7

Note that the interpolant has changed from G4 → G7 to ¬G6.

I There is no obvious logical relation between G4 → G7 and ¬G6,
for example none of these formulas implies the other one;

I These formulas may even have no common atoms or no
common symbols.



Minimizing Interpolant

R3

R1 G1

G3

B1 G2

G4

G5

G6

R4

G7

⊥

Digest:

Reverse interpolant:
Note that the interpolant has changed from G4 → G7 to ¬G6.

I There is no obvious logical relation between G4 → G7 and ¬G6,
for example none of these formulas implies the other one;

I These formulas may even have no common atoms or no
common symbols.



Minimizing Interpolant

R3

R1 G1

G3

B1 G2

G4

G5

G6

R4

G7

⊥

Digest: {G5,G7}

Reverse interpolant: G5 → G7

Note that the interpolant has changed from G4 → G7 to ¬G6.

I There is no obvious logical relation between G4 → G7 and ¬G6,
for example none of these formulas implies the other one;

I These formulas may even have no common atoms or no
common symbols.



Minimizing Interpolant

R3

R1 G1

G3

B1 G2

G4

G5

G6

R4

G7

⊥

Digest:

Reverse interpolant:
Note that the interpolant has changed from G4 → G7 to ¬G6.

I There is no obvious logical relation between G4 → G7 and ¬G6,
for example none of these formulas implies the other one;

I These formulas may even have no common atoms or no
common symbols.



Minimizing Interpolant

R3

R1 G1

G3

B1 G2

G4

G5

G6

R4

G7

⊥

Digest: {G6,G7}

Reverse interpolant: G6 → G7

Note that the interpolant has changed from G4 → G7 to ¬G6.

I There is no obvious logical relation between G4 → G7 and ¬G6,
for example none of these formulas implies the other one;

I These formulas may even have no common atoms or no
common symbols.



Minimizing Interpolant

R3

R1 G1

G3

B1 G2

G4

G5

G6

R4

G7

⊥

Digest:

Reverse interpolant:
Note that the interpolant has changed from G4 → G7 to ¬G6.

I There is no obvious logical relation between G4 → G7 and ¬G6,
for example none of these formulas implies the other one;

I These formulas may even have no common atoms or no
common symbols.



Minimizing Interpolant

R3

R1 G1

G3

B1 G2

G4

G5

G6

R4

G7

⊥

Digest: {G6}

Reverse interpolant: ¬G6

Note that the interpolant has changed from G4 → G7 to ¬G6.

I There is no obvious logical relation between G4 → G7 and ¬G6,
for example none of these formulas implies the other one;

I These formulas may even have no common atoms or no
common symbols.



Minimizing Interpolant

R3

R1 G1

G3

B1 G2

G4

G5

G6

R4

G7

⊥

Digest:

Reverse interpolant:

Note that the interpolant has changed from G4 → G7 to ¬G6.

I There is no obvious logical relation between G4 → G7 and ¬G6,
for example none of these formulas implies the other one;

I These formulas may even have no common atoms or no
common symbols.



Minimizing Interpolant

R3

R1 G1

G3

B1 G2

G4

G5

G6

R4

G7

⊥

Digest:

Reverse interpolant:

Note that the interpolant has changed from G4 → G7 to ¬G6.

I There is no obvious logical relation between G4 → G7 and ¬G6,
for example none of these formulas implies the other one;

I These formulas may even have no common atoms or no
common symbols.



Minimizing Interpolant

If grey slicing gives us very different interpolants, we can use it for
finding small interpolants.

Problem: if the proof contains n grey formulas, the number of possible
different slicing off transformations is 2n.



Minimizing Interpolant

If grey slicing gives us very different interpolants, we can use it for
finding small interpolants.

Problem: if the proof contains n grey formulas, the number of possible
different slicing off transformations is 2n.



Minimizing Interpolant
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ grey(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ grey(G3)

sliced(G3)→ (grey(G3)↔ grey(G1) ∧ grey(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·
digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



Minimizing Interpolant
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ grey(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ grey(G3)

sliced(G3)→ (grey(G3)↔ grey(G1) ∧ grey(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·
digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



Minimizing Interpolant
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ grey(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ grey(G3)

sliced(G3)→ (grey(G3)↔ grey(G1) ∧ grey(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·
digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



Minimizing Interpolant
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

Some predicates on grey for-
mulas:

I sliced(G): G was sliced
off;

I red(G): the trace of G
contains a red formula;

I blue(G): the trace of G
contains a blue formula;

I grey(G): the trace of G
contains only grey
formulas;

I digest(G): G belongs to
the digest.

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ grey(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ grey(G3)

sliced(G3)→ (grey(G3)↔ grey(G1) ∧ grey(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·
digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



Minimizing Interpolant
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

Some predicates on grey for-
mulas:

I sliced(G): G was sliced
off;

I red(G): the trace of G
contains a red formula;

I blue(G): the trace of G
contains a blue formula;

I grey(G): the trace of G
contains only grey
formulas;

I digest(G): G belongs to
the digest.

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ grey(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ grey(G3)

sliced(G3)→ (grey(G3)↔ grey(G1) ∧ grey(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·
digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



Minimizing Interpolant
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

Some predicates on grey for-
mulas:

I sliced(G): G was sliced
off;

I red(G): the trace of G
contains a red formula;

I blue(G): the trace of G
contains a blue formula;

I grey(G): the trace of G
contains only grey
formulas;

I digest(G): G belongs to
the digest.

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ grey(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ grey(G3)

sliced(G3)→ (grey(G3)↔ grey(G1) ∧ grey(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·
digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



Minimizing Interpolant
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

Some predicates on grey for-
mulas:

I sliced(G): G was sliced
off;

I red(G): the trace of G
contains a red formula;

I blue(G): the trace of G
contains a blue formula;

I grey(G): the trace of G
contains only grey
formulas;

I digest(G): G belongs to
the digest.

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ grey(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ grey(G3)

sliced(G3)→ (grey(G3)↔ grey(G1) ∧ grey(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·
digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



Minimizing Interpolant
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

Some predicates on grey for-
mulas:

I sliced(G): G was sliced
off;

I red(G): the trace of G
contains a red formula;

I blue(G): the trace of G
contains a blue formula;

I grey(G): the trace of G
contains only grey
formulas;

I digest(G): G belongs to
the digest.

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ grey(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ grey(G3)

sliced(G3)→ (grey(G3)↔ grey(G1) ∧ grey(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·

digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



Minimizing Interpolant
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

Express digest(G)

by considering the possibilities:

I G comes from a
red/ blue/ grey formula

rc(G)/bc(G)

I G is followed by a
red/ blue/ grey formula

bf(G)/rf(G)

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ grey(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ grey(G3)

sliced(G3)→ (grey(G3)↔ grey(G1) ∧ grey(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·
digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



Minimizing Interpolant
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

Express digest(G)

by considering the possibilities:

I G comes from a
red/ blue/ grey formula

rc(G)/bc(G)

I G is followed by a
red/ blue/ grey formula

bf(G)/rf(G)

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ grey(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ grey(G3)

sliced(G3)→ (grey(G3)↔ grey(G1) ∧ grey(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·
digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



Minimizing Interpolant
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

Express digest(G)

by considering the possibilities:

I G comes from a
red/ blue/ grey formula

rc(G)/bc(G)

I G is followed by a
red/ blue/ grey formula
bf(G)/rf(G)

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ grey(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ grey(G3)

sliced(G3)→ (grey(G3)↔ grey(G1) ∧ grey(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·
digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



Minimizing Interpolant
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

Express digest(G)

by considering the possibilities:

I G comes from a
red/ blue/ grey formula

rc(G)/bc(G)

I G is followed by a
red/ blue/ grey formula
bf(G)/rf(G)

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ grey(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ grey(G3)

sliced(G3)→ (grey(G3)↔ grey(G1) ∧ grey(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·

digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



Minimizing Interpolant
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

Express digest(G)

by considering the possibilities:

I G comes from a
red/ blue/ grey formula

rc(G)/bc(G)

I G is followed by a
red/ blue/ grey formula
bf(G)/rf(G)

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ grey(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ grey(G3)

sliced(G3)→ (grey(G3)↔ grey(G1) ∧ grey(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·

digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



Minimizing Interpolant
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

Express digest(G)

by considering the possibilities:

I G comes from a
red/ blue/ grey formula

rc(G)/bc(G)

I G is followed by a
red/ blue/ grey formula
bf(G)/rf(G)

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ grey(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ grey(G3)

sliced(G3)→ (grey(G3)↔ grey(G1) ∧ grey(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·

digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



Minimizing Interpolant
Solution:

I encode all sequences of transformations as an instance of SAT;

I solutions encode all slicing off transformations;

I compute small interpolants: smallest digest of grey formulas;

min{Gi1 ,...,Gin}

(∑
Gi

digest(Gi )
)

min{Gi1 ,...,Gin}

(∑
Gi

quantifier number(Gi) digest(Gi )
)

I use a pseudo-boolean optimisation tool or an SMT solver to
minimise interpolants;

I minimising interpolants is an NP-complete problem.



Minimizing Interpolant
Solution:

I encode all sequences of transformations as an instance of SAT;

I solutions encode all slicing off transformations;

I compute small interpolants: smallest digest of grey formulas;

min{Gi1 ,...,Gin}

(∑
Gi

digest(Gi )
)

min{Gi1 ,...,Gin}

(∑
Gi

quantifier number(Gi) digest(Gi )
)

I use a pseudo-boolean optimisation tool or an SMT solver to
minimise interpolants;

I minimising interpolants is an NP-complete problem.



Minimizing Interpolant
Solution:

I encode all sequences of transformations as an instance of SAT;

I solutions encode all slicing off transformations;

I compute small interpolants: smallest digest of grey formulas;

min{Gi1 ,...,Gin}

(∑
Gi

digest(Gi )
)

min{Gi1 ,...,Gin}

(∑
Gi

quantifier number(Gi) digest(Gi )
)

I use a pseudo-boolean optimisation tool or an SMT solver to
minimise interpolants;

I minimising interpolants is an NP-complete problem.



Minimizing Interpolant
Solution:

I encode all sequences of transformations as an instance of SAT;

I solutions encode all slicing off transformations;

I compute small interpolants: smallest digest of grey formulas;

min{Gi1 ,...,Gin}

(∑
Gi

digest(Gi )
)

min{Gi1 ,...,Gin}

(∑
Gi

quantifier number(Gi) digest(Gi )
)

I use a pseudo-boolean optimisation tool or an SMT solver to
minimise interpolants;

I minimising interpolants is an NP-complete problem.



Minimizing Interpolant
Solution:

I encode all sequences of transformations as an instance of SAT;

I solutions encode all slicing off transformations;

I compute small interpolants: smallest digest of grey formulas;

min{Gi1 ,...,Gin}

(∑
Gi

digest(Gi )
)

min{Gi1 ,...,Gin}

(∑
Gi

quantifier number(Gi) digest(Gi )
)

I use a pseudo-boolean optimisation tool or an SMT solver to
minimise interpolants;

I minimising interpolants is an NP-complete problem.



Experiments with Small Interpolants

I Implemented in Vampire;

I We used Yices for solving pseudo-boolean constraints;

I Experimental results:

I 9632 first-order examples from the TPTP library:

for example, for 2000 problems the size of the interpolants became
20-49 times smaller;

I 4347 SMT examples:

I we used Z3 for proving SMT examples;
I Z3 proofs were localised in Vampire;
I small interpolants were generated for 2123 SMT examples.



Experiments with Small Interpolants

I Implemented in Vampire;

I We used Yices for solving pseudo-boolean constraints;

I Experimental results:

I 9632 first-order examples from the TPTP library:

for example, for 2000 problems the size of the interpolants became
20-49 times smaller;

I 4347 SMT examples:

I we used Z3 for proving SMT examples;
I Z3 proofs were localised in Vampire;
I small interpolants were generated for 2123 SMT examples.



Experiments with Small Interpolants

I Implemented in Vampire;

I We used Yices for solving pseudo-boolean constraints;

I Experimental results:

I 9632 first-order examples from the TPTP library:

for example, for 2000 problems the size of the interpolants became
20-49 times smaller;

I 4347 SMT examples:

I we used Z3 for proving SMT examples;
I Z3 proofs were localised in Vampire;
I small interpolants were generated for 2123 SMT examples.



Outline

Interpolation and Local Proofs

Localizing Proofs

Minimizing Interpolants

Quantifier Complexity of Interpolants



Quantifier Complexity of Interpolants

Local Proofs Do Not Always Exist

I R: (∀x)p(r , x)

I B: (∀y)¬p(y ,b)

I Reverse interpolant I of R and B: (∃y)(∀x)p(y , x).

I Note: R and B contain no quantifier alternations, yet I contains
quantifier alternations. One can prove that every interpolant of
this formula must have at least one quantifier alternation.

I There is no local refutation of R,B in the resolution/superposition
calculus.

I There is a non-local one:

p(r , x) ¬p(y ,b)

⊥



Quantifier Complexity of Interpolants

Local Proofs Do Not Always Exist

I R: (∀x)p(r , x)

I B: (∀y)¬p(y ,b)

I Reverse interpolant I of R and B: (∃y)(∀x)p(y , x).

I Note: R and B contain no quantifier alternations, yet I contains
quantifier alternations. One can prove that every interpolant of
this formula must have at least one quantifier alternation.

I There is no local refutation of R,B in the resolution/superposition
calculus.

I There is a non-local one:

p(r , x) ¬p(y ,b)

⊥



Quantifier Complexity of Interpolants

Local Proofs Do Not Always Exist

I R: (∀x)p(r , x)

I B: (∀y)¬p(y ,b)

I Reverse interpolant I of R and B: (∃y)(∀x)p(y , x).

I Note: R and B contain no quantifier alternations, yet I contains
quantifier alternations. One can prove that every interpolant of
this formula must have at least one quantifier alternation.

I There is no local refutation of R,B in the resolution/superposition
calculus.

I There is a non-local one:

p(r , x) ¬p(y ,b)

⊥



Quantifier Complexity of Interpolants

Theorem There is no lower bound on the number of quantifier
alternations in interpolants of universal sentences.

That is, for every positive integer n there exist universal sentences
R,B such that {R,B} is unsatisfiable and every reverse interpolant of
R and B has at least n quantifier alternations.



Quantifier Complexity of Interpolants

Example

Take the formula A: ∀x1∃y1∀x1∃y2 . . . p(x1, y1, x2, y2, . . .) and let R be
obtained by skolemizing A and B be obtained by skolemizing ¬A:

R = ∀x1∀x2 . . . p(x1, r1(x1), x2, r2(x1, x2), . . .)

B = ∀y1∀y2 . . .¬p(b1, y1,b2(y1), y2, . . .)

I = ∀x1∃y1∀x2∃y2 . . . p(x1, y1, x2, y2, . . .)

There is no reverse interpolant with a smaller number of quantifier
alternations.

The resolution refutation consists of a single step deriving the empty
clause from R and B.



Quantifier Complexity of Interpolants

Example

Take the formula A: ∀x1∃y1∀x1∃y2 . . . p(x1, y1, x2, y2, . . .) and let R be
obtained by skolemizing A and B be obtained by skolemizing ¬A:

R = ∀x1∀x2 . . . p(x1, r1(x1), x2, r2(x1, x2), . . .)

B = ∀y1∀y2 . . .¬p(b1, y1,b2(y1), y2, . . .)

I = ∀x1∃y1∀x2∃y2 . . . p(x1, y1, x2, y2, . . .)

There is no reverse interpolant with a smaller number of quantifier
alternations.

The resolution refutation consists of a single step deriving the empty
clause from R and B.



Quantifier Complexity of Interpolants

Example

Take the formula A: ∀x1∃y1∀x1∃y2 . . . p(x1, y1, x2, y2, . . .) and let R be
obtained by skolemizing A and B be obtained by skolemizing ¬A:

R = ∀x1∀x2 . . . p(x1, r1(x1), x2, r2(x1, x2), . . .)

B = ∀y1∀y2 . . .¬p(b1, y1,b2(y1), y2, . . .)

I = ∀x1∃y1∀x2∃y2 . . . p(x1, y1, x2, y2, . . .)

There is no reverse interpolant with a smaller number of quantifier
alternations.

The resolution refutation consists of a single step deriving the empty
clause from R and B.



Quantifier Complexity of Interpolants

Bad News for Local Proof Systems
Let S be an inference system with the following property: for every
red formula R and blue formula B, if {R,B} is unsatisfiable, then
there is a local refutation of R,B in S.

Then the number of quantifier alternations in refutations of universal
formulas of S is not bound by any positive integer.



Quantifier Complexity of Interpolants

I There is no bound on the number of quantifier alternations in
reverse interpolants of universal formulas.

I Any complete local proof system for first-order predicate logic
must have inferences dealing with formulas of an arbitrary
quantifier complexity, even if the input formulas have no
quantifier alternations.

I There is no simple modification of the superposition calculus for
logic with/without equality in which every unsatisfiable formula
has a local refutation.



Quantifier Complexity of Interpolants

I There is no bound on the number of quantifier alternations in
reverse interpolants of universal formulas.

I Any complete local proof system for first-order predicate logic
must have inferences dealing with formulas of an arbitrary
quantifier complexity, even if the input formulas have no
quantifier alternations.

I There is no simple modification of the superposition calculus for
logic with/without equality in which every unsatisfiable formula
has a local refutation.



Quantifier Complexity of Interpolants

I There is no bound on the number of quantifier alternations in
reverse interpolants of universal formulas.

I Any complete local proof system for first-order predicate logic
must have inferences dealing with formulas of an arbitrary
quantifier complexity, even if the input formulas have no
quantifier alternations.

I There is no simple modification of the superposition calculus for
logic with/without equality in which every unsatisfiable formula
has a local refutation.


