
Instantiation-Based Automated Theorem Proving

for First-Order Logic

Konstantin Korovin

The University of Manchester

UK

korovin@cs.man.ac.uk

Theorem proving for first-order logic

Theorem proving: Show that a given first-order formula is a theorem.

Maths: Axioms of groups Group

I ∀x , y , z (x · (y · z) ' (x · y) · z)

I ∀x (x · x−1 ' e)

I ∀x (x · e ' x)

Consider F = ∀x∃y ((x · y)−1 ' y−1 · x−1)

Is F a theorem in the group theory: Group |= F ?

Verification: Axioms of arrays

I ∀a, i , e (select(store(a, i , e), i) ' e)

I ∀a, i , j , e (i 6' j → (select(store(a, i , e), j) ' select(a, j)))

I ∀a1, a2 ((∀i (select(a1, i) ' select(a2, i)))→ a1 ' a2)

Is ∃a∃i∀j (select(a, i) ' select(a, j)) a theorem in the theory of arrays ?

2 / 1

Theorem proving for first-order logic

Theorem proving: Show that a given first-order formula is a theorem.

Maths: Axioms of groups Group

I ∀x , y , z (x · (y · z) ' (x · y) · z)

I ∀x (x · x−1 ' e)

I ∀x (x · e ' x)

Consider F = ∀x∃y ((x · y)−1 ' y−1 · x−1)

Is F a theorem in the group theory: Group |= F ?

Verification: Axioms of arrays

I ∀a, i , e (select(store(a, i , e), i) ' e)

I ∀a, i , j , e (i 6' j → (select(store(a, i , e), j) ' select(a, j)))

I ∀a1, a2 ((∀i (select(a1, i) ' select(a2, i)))→ a1 ' a2)

Is ∃a∃i∀j (select(a, i) ' select(a, j)) a theorem in the theory of arrays ?
3 / 1

Why first-order logic

I Expressive most of mathematics can be formalised in FOL

I Complete calculi – uniform reasoning methods

I Efficient reasoning – well-understood algorithms and datastructures

I Reductions from HOL to FOL: Blanchette (Sledgehammer), Urban

(Mizar)

FOL provides a good balance between expressivity and efficiency.

*

[”The Unreasonable Effectiveness of Mathematics in the Natural Sciences” E.

Wigner]

[Unreasonable effectiveness of logic in computer science]

4 / 1

Why first-order logic

I Expressive most of mathematics can be formalised in FOL

I Complete calculi – uniform reasoning methods

I Efficient reasoning – well-understood algorithms and datastructures

I Reductions from HOL to FOL: Blanchette (Sledgehammer), Urban

(Mizar)

FOL provides a good balance between expressivity and efficiency.

*

[”The Unreasonable Effectiveness of Mathematics in the Natural Sciences” E.

Wigner]

[Unreasonable effectiveness of logic in computer science]

5 / 1

Why first-order logic

I Expressive most of mathematics can be formalised in FOL

I Complete calculi – uniform reasoning methods

I Efficient reasoning – well-understood algorithms and datastructures

I Reductions from HOL to FOL: Blanchette (Sledgehammer), Urban

(Mizar)

FOL provides a good balance between expressivity and efficiency.

*

[”The Unreasonable Effectiveness of Mathematics in the Natural Sciences” E.

Wigner]

[Unreasonable effectiveness of logic in computer science]
6 / 1

Calculi for first-order logic

Calculi complete for first-order logic:

I natural deduction

I difficult to automate

I tableaux-based calculi

I popular with special fragments: modal and description logics

I difficult to automate efficiently in the general case

I resolution/superposition calculi

I general purpose

I can be efficiently automated

I decision procedure for many fragments

I instantiation-based calculi

I combination of efficient propositional reasoning with first-order

reasoning

I can be efficiently automated

I decision procedure for the effectively propositional fragment (EPR)

7 / 1

Calculi for first-order logic

Calculi complete for first-order logic:

I natural deduction

I difficult to automate

I tableaux-based calculi

I popular with special fragments: modal and description logics

I difficult to automate efficiently in the general case

I resolution/superposition calculi

I general purpose

I can be efficiently automated

I decision procedure for many fragments

I instantiation-based calculi

I combination of efficient propositional reasoning with first-order

reasoning

I can be efficiently automated

I decision procedure for the effectively propositional fragment (EPR)

8 / 1

Calculi for first-order logic

Calculi complete for first-order logic:

I natural deduction

I difficult to automate

I tableaux-based calculi

I popular with special fragments: modal and description logics

I difficult to automate efficiently in the general case

I resolution/superposition calculi

I general purpose

I can be efficiently automated

I decision procedure for many fragments

I instantiation-based calculi

I combination of efficient propositional reasoning with first-order

reasoning

I can be efficiently automated

I decision procedure for the effectively propositional fragment (EPR)

9 / 1

Calculi for first-order logic

Calculi complete for first-order logic:

I natural deduction

I difficult to automate

I tableaux-based calculi

I popular with special fragments: modal and description logics

I difficult to automate efficiently in the general case

I resolution/superposition calculi

I general purpose

I can be efficiently automated

I decision procedure for many fragments

I instantiation-based calculi

I combination of efficient propositional reasoning with first-order

reasoning

I can be efficiently automated

I decision procedure for the effectively propositional fragment (EPR)

10 / 1

Refutational theorem proving

Theorem proving:

|= Axioms→ Theorem

Refutational theorem proving:

Axioms ∧ ¬Theorem |= ⊥

Other reasoning problems: validity, equivalence etc can be reduced to

(un)satisfiability

In order to apply efficient reasoning methods we need to transform

formulas into equi-satisfiable conjunctive normal form.

11 / 1

CNF transformation

Main steps in the basic CNF transformation:

1. Prenex normal form – moving all quantifiers up-front

∀y [∀x [p(f (x), y)]→ ∀v∃z [q(f (z)) ∧ p(v , z)]]⇒
∀y∃x∀v∃z [p(f (x), y)→ (q(f (z)) ∧ p(v , z))]

2. Skolemization – eliminating existential quantifiers

∀y∃x∀v∃z [p(f (x), y)→ (q(f (z)) ∧ p(v , z))]⇒
∀y∀v [p(f (sk1(y)), y)→ (q(f (sk2(y , v))) ∧ p(v , sk2(y , v)))]

3. CNF transformation of the quantifier-free part

∀y∀v [p(f (sk1(y)), y) → (q(f (sk2(y , v))) ∧ p(v , sk2(y , v)))]⇒
∀y∀v [(¬p(f (sk1(y)), y) ∨ q(f (sk2(y , v)))) ∧

(¬p(f (sk1(y)), y) ∨ p(v , sk2(y , v)))]

Main reasoning problem:

Given set of clauses S prove that it (un)satisfiable.

12 / 1

CNF transformation

Main steps in the basic CNF transformation:

1. Prenex normal form – moving all quantifiers up-front

∀y [∀x [p(f (x), y)]→ ∀v∃z [q(f (z)) ∧ p(v , z)]]⇒
∀y∃x∀v∃z [p(f (x), y)→ (q(f (z)) ∧ p(v , z))]

2. Skolemization – eliminating existential quantifiers

∀y∃x∀v∃z [p(f (x), y)→ (q(f (z)) ∧ p(v , z))]⇒
∀y∀v [p(f (sk1(y)), y)→ (q(f (sk2(y , v))) ∧ p(v , sk2(y , v)))]

3. CNF transformation of the quantifier-free part

∀y∀v [p(f (sk1(y)), y) → (q(f (sk2(y , v))) ∧ p(v , sk2(y , v)))]⇒
∀y∀v [(¬p(f (sk1(y)), y) ∨ q(f (sk2(y , v)))) ∧

(¬p(f (sk1(y)), y) ∨ p(v , sk2(y , v)))]

Main reasoning problem:

Given set of clauses S prove that it (un)satisfiable.

13 / 1

CNF transformation

Main steps in the basic CNF transformation:

1. Prenex normal form – moving all quantifiers up-front

∀y [∀x [p(f (x), y)]→ ∀v∃z [q(f (z)) ∧ p(v , z)]]⇒
∀y∃x∀v∃z [p(f (x), y)→ (q(f (z)) ∧ p(v , z))]

2. Skolemization – eliminating existential quantifiers

∀y∃x∀v∃z [p(f (x), y)→ (q(f (z)) ∧ p(v , z))]⇒
∀y∀v [p(f (sk1(y)), y)→ (q(f (sk2(y , v))) ∧ p(v , sk2(y , v)))]

3. CNF transformation of the quantifier-free part

∀y∀v [p(f (sk1(y)), y) → (q(f (sk2(y , v))) ∧ p(v , sk2(y , v)))]⇒
∀y∀v [(¬p(f (sk1(y)), y) ∨ q(f (sk2(y , v)))) ∧

(¬p(f (sk1(y)), y) ∨ p(v , sk2(y , v)))]

Main reasoning problem:

Given set of clauses S prove that it (un)satisfiable.

14 / 1

CNF transformation

Main steps in the basic CNF transformation:

1. Prenex normal form – moving all quantifiers up-front

∀y [∀x [p(f (x), y)]→ ∀v∃z [q(f (z)) ∧ p(v , z)]]⇒
∀y∃x∀v∃z [p(f (x), y)→ (q(f (z)) ∧ p(v , z))]

2. Skolemization – eliminating existential quantifiers

∀y∃x∀v∃z [p(f (x), y)→ (q(f (z)) ∧ p(v , z))]⇒
∀y∀v [p(f (sk1(y)), y)→ (q(f (sk2(y , v))) ∧ p(v , sk2(y , v)))]

3. CNF transformation of the quantifier-free part

∀y∀v [p(f (sk1(y)), y) → (q(f (sk2(y , v))) ∧ p(v , sk2(y , v)))]⇒
∀y∀v [(¬p(f (sk1(y)), y) ∨ q(f (sk2(y , v)))) ∧

(¬p(f (sk1(y)), y) ∨ p(v , sk2(y , v)))]

Main reasoning problem:

Given set of clauses S prove that it (un)satisfiable.

15 / 1

CNF transformation

Main steps in the basic CNF transformation:

1. Prenex normal form – moving all quantifiers up-front

∀y [∀x [p(f (x), y)]→ ∀v∃z [q(f (z)) ∧ p(v , z)]]⇒
∀y∃x∀v∃z [p(f (x), y)→ (q(f (z)) ∧ p(v , z))]

2. Skolemization – eliminating existential quantifiers

∀y∃x∀v∃z [p(f (x), y)→ (q(f (z)) ∧ p(v , z))]⇒
∀y∀v [p(f (sk1(y)), y)→ (q(f (sk2(y , v))) ∧ p(v , sk2(y , v)))]

3. CNF transformation of the quantifier-free part

∀y∀v [p(f (sk1(y)), y) → (q(f (sk2(y , v))) ∧ p(v , sk2(y , v)))]⇒
∀y∀v [(¬p(f (sk1(y)), y) ∨ q(f (sk2(y , v)))) ∧

(¬p(f (sk1(y)), y) ∨ p(v , sk2(y , v)))]

Main reasoning problem:

Given set of clauses S prove that it (un)satisfiable.

16 / 1

Inference systems: propositional resolution

Inference-based theorem proving

Given: S – set of clauses.

Example: S = {q ∨ ¬p, p ∨ q, ¬q}
We want to prove that S is unsatisfiable.

General Idea:

I use a set of simple rules for deriving new logical consequences from

S .

I use these inference rules to derive the contradiction signified by the

empty clause �

18 / 1

Inference-based theorem proving

Given: S – set of clauses.

Example: S = {q ∨ ¬p, p ∨ q, ¬q}
We want to prove that S is unsatisfiable.

General Idea:

I use a set of simple rules for deriving new logical consequences from

S .

I use these inference rules to derive the contradiction signified by the

empty clause �

19 / 1

Inference-based theorem proving

Given: S – set of clauses.

Example: S = {q ∨ ¬p, p ∨ q, ¬q}
We want to prove that S is unsatisfiable.

General Idea:

I use a set of simple rules for deriving new logical consequences from

S .

I use these inference rules to derive the contradiction signified by the

empty clause �

20 / 1

Propositional Resolution

Propositional Resolution inference system BR, consists of the following

inference rules:

I Binary Resolution Rule (BR):

C ∨ p ¬p ∨ D
(BR)

C ∨ D
I Binary Factoring Rule (BF):

C ∨ L ∨ L (BF)
C ∨ L

where L is a literal.

21 / 1

Example

Given: S = {q ∨ ¬p, p ∨ q, ¬q}

A proof in resolution calculus:

q ∨ ¬p p ∨ q
(BR)

q ∨ q
(BF)

q ¬q
(BR)

�

22 / 1

Soundness/Completeness

Theorem (Soundness)

Resolution is a sound inference system:

S `BR � implies S |= ⊥

Theorem (Completeness)

Resolution is a complete inference system:

S |= ⊥ implies S `BR �

23 / 1

Soundness/Completeness

Theorem (Soundness)

Resolution is a sound inference system:

S `BR � implies S |= ⊥

Theorem (Completeness)

Resolution is a complete inference system:

S |= ⊥ implies S `BR �

24 / 1

Proof search based on inference systems

Basic approach. A Saturation Process:

Given set of clauses S we exhaustively apply all inference rules adding the

conclusions to this set until the contradiction (�) is derived.

S0 ⇒ S1 ⇒ . . . Sn ⇒ . . .

Three outcomes:

1. � is derived (� ∈ Sn for some n), then S is unsatisfiable

(soundness);

2. no new clauses can be derived from S and ⊥ 6∈ S , then S is

saturated; in this case S is satisfiable, (completeness).

3. S grows ad infinitum, the process does not terminate.

The main challenge: speed up the first two cases and reduce

non-termination.

25 / 1

Proof search based on inference systems

Basic approach. A Saturation Process:

Given set of clauses S we exhaustively apply all inference rules adding the

conclusions to this set until the contradiction (�) is derived.

S0 ⇒ S1 ⇒ . . . Sn ⇒ . . .

Three outcomes:

1. � is derived (� ∈ Sn for some n), then S is unsatisfiable

(soundness);

2. no new clauses can be derived from S and ⊥ 6∈ S , then S is

saturated; in this case S is satisfiable, (completeness).

3. S grows ad infinitum, the process does not terminate.

The main challenge: speed up the first two cases and reduce

non-termination.

26 / 1

Proof search based on inference systems

Basic approach. A Saturation Process:

Given set of clauses S we exhaustively apply all inference rules adding the

conclusions to this set until the contradiction (�) is derived.

S0 ⇒ S1 ⇒ . . . Sn ⇒ . . .

Three outcomes:

1. � is derived (� ∈ Sn for some n), then S is unsatisfiable

(soundness);

2. no new clauses can be derived from S and ⊥ 6∈ S , then S is

saturated; in this case S is satisfiable, (completeness).

3. S grows ad infinitum, the process does not terminate.

The main challenge: speed up the first two cases and reduce

non-termination.
27 / 1

First-order resolution

Herbrand theorem

First-order clauses S :

p(a) ∨ q(a, f (b))

∀x , y [¬p(x) ∨ ¬q(x , f (y))]

. . .

How to check if S is (un)satisfiable ?

Theorem (Herbrand)

S is unsatisfiable if and only there is a finite set of ground instances of

clauses in S which are propositionally unsatisfiable.

General approach: enumerate ground instances and apply resolution to

the ground instances.

29 / 1

Herbrand theorem

First-order clauses S :

p(a) ∨ q(a, f (b))

∀x , y [¬p(x) ∨ ¬q(x , f (y))]

. . .

How to check if S is (un)satisfiable ?

Theorem (Herbrand)

S is unsatisfiable if and only there is a finite set of ground instances of

clauses in S which are propositionally unsatisfiable.

General approach: enumerate ground instances and apply resolution to

the ground instances.

30 / 1

Herbrand theorem

First-order clauses S :

p(a) ∨ q(a, f (b))

∀x , y [¬p(x) ∨ ¬q(x , f (y))]

. . .

How to check if S is (un)satisfiable ?

Theorem (Herbrand)

S is unsatisfiable if and only there is a finite set of ground instances of

clauses in S which are propositionally unsatisfiable.

General approach: enumerate ground instances and apply resolution to

the ground instances.

31 / 1

Herbrand theorem

First-order clauses S :
p(a) ∨ q(a, f (b))

¬p(z)

¬q(x , f (y))

How to check if S is (un)satisfiable ?

Replace variables by ground terms and apply resolution:

¬q(a, f (a))

¬q(b, f (f (a)))

. . .

¬q(a, f (b))

p(a) (BR)

¬p(a)

� (BR)

32 / 1

Herbrand theorem

First-order clauses S :
p(a) ∨ q(a, f (b))

¬p(z)

¬q(x , f (y))

How to check if S is (un)satisfiable ?

Replace variables by ground terms and apply resolution:

¬q(a, f (a))

¬q(b, f (f (a)))

. . .

¬q(a, f (b))

p(a) (BR)

¬p(a)

� (BR)

33 / 1

Herbrand theorem

First-order clauses S :
p(a) ∨ q(a, f (b))

¬p(z)

¬q(x , f (y))

How to check if S is (un)satisfiable ?

Replace variables by ground terms and apply resolution:

¬q(a, f (a))

¬q(b, f (f (a)))

. . .

¬q(a, f (b))

p(a) (BR)

¬p(a)

� (BR)

34 / 1

Herbrand theorem

First-order clauses S :
p(a) ∨ q(a, f (b))

¬p(z)

¬q(x , f (y))

How to check if S is (un)satisfiable ?

Replace variables by ground terms and apply resolution:

¬q(a, f (a))

¬q(b, f (f (a)))

. . .

¬q(a, f (b))

p(a) (BR)

¬p(a)

� (BR)

35 / 1

Herbrand theorem

First-order clauses S :
p(a) ∨ q(a, f (b))

¬p(z)

¬q(x , f (y))

How to check if S is (un)satisfiable ?

Replace variables by ground terms and apply resolution:

¬q(a, f (a))

¬q(b, f (f (a)))

. . .

¬q(a, f (b))

p(a) (BR)

¬p(a)

� (BR)

36 / 1

Non-ground resolution

I A non-ground clause can be seen as representation of a (possibly

infinite) set of its ground instances.

I Consider q(x , a) ∨ p(x) and q(y , z) ∨ ¬p(f (y)).

A common instance to which ground resolution is applicable:

q(f (a), a) ∨ p(f (a)) and q(a, a) ∨ ¬p(f (a))

I There are other ground instances e.g.:

q(f (f (a)), a) ∨ p(f (f (a))) and q(f (a), f (f (f (a))) ∨ ¬p(f (f (a))

I In order to apply ground resolution we need find substitution which

make atoms p(x) and p(f (y)) syntactically equal.

I Such substitutions are called unifiers.

I Even for two clauses there are infinite number of possible instances

to which resolution is applicable.

37 / 1

Non-ground resolution

I A non-ground clause can be seen as representation of a (possibly

infinite) set of its ground instances.

I Consider q(x , a) ∨ p(x) and q(y , z) ∨ ¬p(f (y)).

A common instance to which ground resolution is applicable:

q(f (a), a) ∨ p(f (a)) and q(a, a) ∨ ¬p(f (a))

I There are other ground instances e.g.:

q(f (f (a)), a) ∨ p(f (f (a))) and q(f (a), f (f (f (a))) ∨ ¬p(f (f (a))

I In order to apply ground resolution we need find substitution which

make atoms p(x) and p(f (y)) syntactically equal.

I Such substitutions are called unifiers.

I Even for two clauses there are infinite number of possible instances

to which resolution is applicable.

38 / 1

Non-ground resolution

I A non-ground clause can be seen as representation of a (possibly

infinite) set of its ground instances.

I Consider q(x , a) ∨ p(x) and q(y , z) ∨ ¬p(f (y)).

A common instance to which ground resolution is applicable:

q(f (a), a) ∨ p(f (a)) and q(a, a) ∨ ¬p(f (a))

I There are other ground instances e.g.:

q(f (f (a)), a) ∨ p(f (f (a))) and q(f (a), f (f (f (a))) ∨ ¬p(f (f (a))

I In order to apply ground resolution we need find substitution which

make atoms p(x) and p(f (y)) syntactically equal.

I Such substitutions are called unifiers.

I Even for two clauses there are infinite number of possible instances

to which resolution is applicable.

39 / 1

Non-ground resolution

I A non-ground clause can be seen as representation of a (possibly

infinite) set of its ground instances.

I Consider q(x , a) ∨ p(x) and q(y , z) ∨ ¬p(f (y)).

A common instance to which ground resolution is applicable:

q(f (a), a) ∨ p(f (a)) and q(a, a) ∨ ¬p(f (a))

I There are other ground instances e.g.:

q(f (f (a)), a) ∨ p(f (f (a))) and q(f (a), f (f (f (a))) ∨ ¬p(f (f (a))

I In order to apply ground resolution we need find substitution which

make atoms p(x) and p(f (y)) syntactically equal.

I Such substitutions are called unifiers.

I Even for two clauses there are infinite number of possible instances

to which resolution is applicable.

40 / 1

Non-ground resolution

I A non-ground clause can be seen as representation of a (possibly

infinite) set of its ground instances.

I Consider q(x , a) ∨ p(x) and q(y , z) ∨ ¬p(f (y)).

A common instance to which ground resolution is applicable:

q(f (a), a) ∨ p(f (a)) and q(a, a) ∨ ¬p(f (a))

I There are other ground instances e.g.:

q(f (f (a)), a) ∨ p(f (f (a))) and q(f (a), f (f (f (a))) ∨ ¬p(f (f (a))

I In order to apply ground resolution we need find substitution which

make atoms p(x) and p(f (y)) syntactically equal.

I Such substitutions are called unifiers.

I Even for two clauses there are infinite number of possible instances

to which resolution is applicable.

41 / 1

Non-ground resolution

I A non-ground clause can be seen as representation of a (possibly

infinite) set of its ground instances.

I Consider q(x , a) ∨ p(x) and q(y , z) ∨ ¬p(f (y)).

A common instance to which ground resolution is applicable:

q(f (a), a) ∨ p(f (a)) and q(a, a) ∨ ¬p(f (a))

I There are other ground instances e.g.:

q(f (f (a)), a) ∨ p(f (f (a))) and q(f (a), f (f (f (a))) ∨ ¬p(f (f (a))

I In order to apply ground resolution we need find substitution which

make atoms p(x) and p(f (y)) syntactically equal.

I Such substitutions are called unifiers.

I Even for two clauses there are infinite number of possible instances

to which resolution is applicable.

42 / 1

Most general unifiers

I Consider q(x , a) ∨ p(x) and q(y , z) ∨ ¬p(f (y))

I substitute σ = {x 7→ f (y)}

I then q(f (y), a) ∨ p(f (y)) and q(y , z) ∨ ¬p(f (y)).

I Note:

1. underlined atoms are syntactically equal

2. any other substitution can be seen as an instance of σ

σ – most general unifier σ = mgu(p(x), p(f (y)))

3. σ can be seen as a finite representation of all infinitely many

substitutions which makes terms equal.

Theorem [Robinson 1965] If two atoms p(t(x̄)) and p(s(x̄)) have a

common ground instance then there is a unique most general unifier σ,

which can be effectively computed. Note p(t(x̄))σ = p(s(x̄))σ.

43 / 1

Most general unifiers

I Consider q(x , a) ∨ p(x) and q(y , z) ∨ ¬p(f (y))

I substitute σ = {x 7→ f (y)}

I then q(f (y), a) ∨ p(f (y)) and q(y , z) ∨ ¬p(f (y)).

I Note:

1. underlined atoms are syntactically equal

2. any other substitution can be seen as an instance of σ

σ – most general unifier σ = mgu(p(x), p(f (y)))

3. σ can be seen as a finite representation of all infinitely many

substitutions which makes terms equal.

Theorem [Robinson 1965] If two atoms p(t(x̄)) and p(s(x̄)) have a

common ground instance then there is a unique most general unifier σ,

which can be effectively computed. Note p(t(x̄))σ = p(s(x̄))σ.

44 / 1

First-order resolution:

I Resolution rule (BR):

C ∨ p ¬p′ ∨ D
(BR)

(C ∨ D)σ

where σ = mgu(p, p′)

I Example:

q(x , a) ∨ p(x) q(y , z) ∨ ¬p(f (y))
(BR)

q(f (y), a) ∨ q(y , z)

where mgu(p(x), p(f (y))) = {x 7→ f (y)}

Theorem [Bachmair, Ganzinger] Resolution with many refinements is

complete for first-order logic.

45 / 1

First-order resolution:

I Resolution rule (BR):

C ∨ p ¬p′ ∨ D
(BR)

(C ∨ D)σ

where σ = mgu(p, p′)

I Example:

q(x , a) ∨ p(x) q(y , z) ∨ ¬p(f (y))
(BR)

q(f (y), a) ∨ q(y , z)

where mgu(p(x), p(f (y))) = {x 7→ f (y)}

Theorem [Bachmair, Ganzinger] Resolution with many refinements is

complete for first-order logic.

46 / 1

The magic of resolution

Resolution calculus with appropriate simplifications, selection functions

and saturation strategies is a decision procedure for many fragments:

I monadic fragment [Bachmair, Ganzinger, Waldmann]

I modal logic translations [Hustadt, Schmidt]

I guarded fragment [Ganzinger, de Nivelle]

I two variable fragment [de Nivelle, Pratt-Hartmann]

I fluted fragment [Hustadt, Schmidt, Georgieva]

I many description logic fragments [Kazakov, Motik, Sattler, . . .]

I . . .

I Original proofs of decidability for these fragments are based on

diverse, complicated, model theoretic arguments.

I Resolution-based methods provide practical procedures

I Vampire, E, SPASS are based on extensions resolution

47 / 1

The magic of resolution

Resolution calculus with appropriate simplifications, selection functions

and saturation strategies is a decision procedure for many fragments:

I monadic fragment [Bachmair, Ganzinger, Waldmann]

I modal logic translations [Hustadt, Schmidt]

I guarded fragment [Ganzinger, de Nivelle]

I two variable fragment [de Nivelle, Pratt-Hartmann]

I fluted fragment [Hustadt, Schmidt, Georgieva]

I many description logic fragments [Kazakov, Motik, Sattler, . . .]

I . . .

I Original proofs of decidability for these fragments are based on

diverse, complicated, model theoretic arguments.

I Resolution-based methods provide practical procedures

I Vampire, E, SPASS are based on extensions resolution

48 / 1

Modular instantiation-based reasoning

SAT/SMT vs First-Order

The main reasoning problem:

Check that a given a set of clauses S is (un)satisfiable.

Ground (SAT/SMT)

bv(a) ∨mem(c , d)

¬bv(a) ∨mem(d , c)

Very efficient solvers

Not very expressive

CDCL/Congruence closure

First-Order

∀x∃y ¬mem1(x , y)∨mem2(y , f (x))

bv(a) ∨mem(d , c)

Very expressive

Ground: not as efficient

Resolution/Superposition

From ground to first-order: Efficient at ground + Expressive?

50 / 1

Resolution weaknesses

Resolution :

C ∨ L L′ ∨ D
(C ∨ D)σ

Example :

Q(x) ∨ P(x) ¬P(a) ∨ R(y)

Q(a) ∨ R(y)

L1 ∨ C1

...

Ln ∨ Cn

Weaknesses:

I Inefficient in propositional case

I Proof search without model search

I Length of clauses can grow fast

I Recombination of clauses

I No effective model representation

51 / 1

Basic idea behind instantiation proving

Can we approximate first-order by ground reasoning?

Theorem (Herbrand). S is unsatisfiable if and only there is a finite set of

ground instances of clauses of S which are propositionally unsatisfiable.

Basic idea: Interleave instantiation with propositional reasoning.

Main issues:

I How to restrict instantiations.

I How to interleave instantiation with propositional reasoning.

[Wang’59; Gilmore’60; Plaisted’92; Inst-Gen Ganzinger, Korovin; Model

Evolution Baumgartner Tinelli; AVATAR Voronkov; SGGS Bonacina Plaisted;

Weidenbach,. . . , SMT quantifier instantiations Ge, de Moura, Reynolds. . .]

52 / 1

Basic idea behind instantiation proving

Can we approximate first-order by ground reasoning?

Theorem (Herbrand). S is unsatisfiable if and only there is a finite set of

ground instances of clauses of S which are propositionally unsatisfiable.

Basic idea: Interleave instantiation with propositional reasoning.

Main issues:

I How to restrict instantiations.

I How to interleave instantiation with propositional reasoning.

[Wang’59; Gilmore’60; Plaisted’92; Inst-Gen Ganzinger, Korovin; Model

Evolution Baumgartner Tinelli; AVATAR Voronkov; SGGS Bonacina Plaisted;

Weidenbach,. . . , SMT quantifier instantiations Ge, de Moura, Reynolds. . .]

53 / 1

Basic idea behind instantiation proving

Can we approximate first-order by ground reasoning?

Theorem (Herbrand). S is unsatisfiable if and only there is a finite set of

ground instances of clauses of S which are propositionally unsatisfiable.

Basic idea: Interleave instantiation with propositional reasoning.

Main issues:

I How to restrict instantiations.

I How to interleave instantiation with propositional reasoning.

[Wang’59; Gilmore’60; Plaisted’92; Inst-Gen Ganzinger, Korovin; Model

Evolution Baumgartner Tinelli; AVATAR Voronkov; SGGS Bonacina Plaisted;

Weidenbach,. . . , SMT quantifier instantiations Ge, de Moura, Reynolds. . .]

54 / 1

Overview of the Inst-Gen procedure

First-Order Clauses

S

Ground Clauses

S⊥

⊥ : x̄ → ⊥

Theorem Proved

S⊥ UnSAT

C ∨ L L′ ∨ D

(C ∨ L)σ (L′ ∨ D)σ

Igr |= L⊥, L′⊥ σ = mgu(L, L′)

S⊥ SAT

Igr |= S⊥

Theorem.(Ganzinger, Korovin) Inst-Gen is sound and complete for FOL.

55 / 1

Overview of the Inst-Gen procedure

First-Order Clauses

S

Ground Clauses

S⊥

⊥ : x̄ → ⊥

Theorem Proved

S⊥ UnSAT

C ∨ L L′ ∨ D

(C ∨ L)σ (L′ ∨ D)σ

Igr |= L⊥, L′⊥ σ = mgu(L, L′)

S⊥ SAT

Igr |= S⊥

Theorem.(Ganzinger, Korovin) Inst-Gen is sound and complete for FOL.

56 / 1

Overview of the Inst-Gen procedure

First-Order Clauses

S

Ground Clauses

S⊥

⊥ : x̄ → ⊥

Theorem Proved

S⊥ UnSAT

C ∨ L L′ ∨ D

(C ∨ L)σ (L′ ∨ D)σ

Igr |= L⊥, L′⊥ σ = mgu(L, L′)

S⊥ SAT

Igr |= S⊥

Theorem.(Ganzinger, Korovin) Inst-Gen is sound and complete for FOL.

57 / 1

Overview of the Inst-Gen procedure

First-Order Clauses

S

Ground Clauses

S⊥

⊥ : x̄ → ⊥

Theorem Proved

S⊥ UnSAT

C ∨ L L′ ∨ D

(C ∨ L)σ (L′ ∨ D)σ

Igr |= L⊥, L′⊥ σ = mgu(L, L′)

S⊥ SAT

Igr |= S⊥

Theorem.(Ganzinger, Korovin) Inst-Gen is sound and complete for FOL.

58 / 1

Overview of the Inst-Gen procedure

First-Order Clauses

S

Ground Clauses

S⊥

⊥ : x̄ → ⊥

Theorem Proved

S⊥ UnSAT

C ∨ L L′ ∨ D

(C ∨ L)σ (L′ ∨ D)σ

Igr |= L⊥, L′⊥ σ = mgu(L, L′)

S⊥ SAT

Igr |= S⊥

Theorem.(Ganzinger, Korovin) Inst-Gen is sound and complete for FOL.

59 / 1

Overview of the Inst-Gen procedure

First-Order Clauses

S

Ground Clauses

S⊥

⊥ : x̄ → ⊥

Theorem Proved

S⊥ UnSAT

C ∨ L L′ ∨ D

(C ∨ L)σ (L′ ∨ D)σ

Igr |= L⊥, L′⊥ σ = mgu(L, L′)

S⊥ SAT

Igr |= S⊥

Theorem.(Ganzinger, Korovin) Inst-Gen is sound and complete for FOL.
60 / 1

Example:

p(f (x), b) ∨ q(x , y)

¬p(f (f (x)), y)

¬q(f (x), x)

p(f (⊥), b) ∨ q(⊥,⊥)

¬p(f (f (⊥)),⊥)

¬q(f (⊥),⊥)

p(f (f (x)), b) ∨ q(f (x), y)

¬p(f (f (x)), b)

p(f (x), b) ∨ q(x , y)

¬p(f (f (x)), y)

¬q(f (x), x)

p(f (f (⊥)), b) ∨ q(f (⊥),⊥)

¬p(f (f (⊥)), b)

p(f (⊥), b) ∨ q(⊥,⊥)

¬p(f (f (⊥)),⊥)

¬q(f (⊥),⊥)

The final set is propositionally unsatisfiable.

61 / 1

Example:

p(f (x), b) ∨ q(x , y)

¬p(f (f (x)), y)

¬q(f (x), x)

p(f (⊥), b) ∨ q(⊥,⊥)

¬p(f (f (⊥)),⊥)

¬q(f (⊥),⊥)

p(f (f (x)), b) ∨ q(f (x), y)

¬p(f (f (x)), b)

p(f (x), b) ∨ q(x , y)

¬p(f (f (x)), y)

¬q(f (x), x)

p(f (f (⊥)), b) ∨ q(f (⊥),⊥)

¬p(f (f (⊥)), b)

p(f (⊥), b) ∨ q(⊥,⊥)

¬p(f (f (⊥)),⊥)

¬q(f (⊥),⊥)

The final set is propositionally unsatisfiable.

62 / 1

Example:

p(f (x), b) ∨ q(x , y)

¬p(f (f (x)), y)

¬q(f (x), x)

p(f (⊥), b) ∨ q(⊥,⊥)

¬p(f (f (⊥)),⊥)

¬q(f (⊥),⊥)

p(f (f (x)), b) ∨ q(f (x), y)

¬p(f (f (x)), b)

p(f (x), b) ∨ q(x , y)

¬p(f (f (x)), y)

¬q(f (x), x)

p(f (f (⊥)), b) ∨ q(f (⊥),⊥)

¬p(f (f (⊥)), b)

p(f (⊥), b) ∨ q(⊥,⊥)

¬p(f (f (⊥)),⊥)

¬q(f (⊥),⊥)

The final set is propositionally unsatisfiable.

63 / 1

Example:

p(f (x), b) ∨ q(x , y)

¬p(f (f (x)), y)

¬q(f (x), x)

p(f (⊥), b) ∨ q(⊥,⊥)

¬p(f (f (⊥)),⊥)

¬q(f (⊥),⊥)

p(f (f (x)), b) ∨ q(f (x), y)

¬p(f (f (x)), b)

p(f (x), b) ∨ q(x , y)

¬p(f (f (x)), y)

¬q(f (x), x)

p(f (f (⊥)), b) ∨ q(f (⊥),⊥)

¬p(f (f (⊥)), b)

p(f (⊥), b) ∨ q(⊥,⊥)

¬p(f (f (⊥)),⊥)

¬q(f (⊥),⊥)

The final set is propositionally unsatisfiable.

64 / 1

Example:

p(f (x), b) ∨ q(x , y)

¬p(f (f (x)), y)

¬q(f (x), x)

p(f (⊥), b) ∨ q(⊥,⊥)

¬p(f (f (⊥)),⊥)

¬q(f (⊥),⊥)

p(f (f (x)), b) ∨ q(f (x), y)

¬p(f (f (x)), b)

p(f (x), b) ∨ q(x , y)

¬p(f (f (x)), y)

¬q(f (x), x)

p(f (f (⊥)), b) ∨ q(f (⊥),⊥)

¬p(f (f (⊥)), b)

p(f (⊥), b) ∨ q(⊥,⊥)

¬p(f (f (⊥)),⊥)

¬q(f (⊥),⊥)

The final set is propositionally unsatisfiable.

65 / 1

Example:

p(f (x), b) ∨ q(x , y)

¬p(f (f (x)), y)

¬q(f (x), x)

p(f (⊥), b) ∨ q(⊥,⊥)

¬p(f (f (⊥)),⊥)

¬q(f (⊥),⊥)

p(f (f (x)), b) ∨ q(f (x), y)

¬p(f (f (x)), b)

p(f (x), b) ∨ q(x , y)

¬p(f (f (x)), y)

¬q(f (x), x)

p(f (f (⊥)), b) ∨ q(f (⊥),⊥)

¬p(f (f (⊥)), b)

p(f (⊥), b) ∨ q(⊥,⊥)

¬p(f (f (⊥)),⊥)

¬q(f (⊥),⊥)

The final set is propositionally unsatisfiable.
66 / 1

Resolution vs Inst-Gen

Resolution :

(C ∨ L) (L′ ∨ D)

(C ∨ D)σ

σ = mgu(L, L′)

Instantiation :

(C ∨ L) (L′ ∨ D)

(C ∨ L)σ (L′ ∨ D)σ

σ = mgu(L, L′)

Weaknesses of resolution:

Proof search without model search

Inefficient in the ground/EPR case

Length of clauses can grow fast

Recombination of clauses

No explicit model representation

Strengths of instantiation:

Proof search guided by prop. models

Modular ground reasoning

Length of clauses is fixed

Decision procedure for EPR

No recombination

Redundancy elimination

Effective model representation

67 / 1

Redundancy Elimination (Inst-Gen)

The key to efficiency is redundancy elimination.

I usual: tautology elimination, strict subsumption

I global subsumption: non-ground simplifications using SAT/SMT

reasoning

I blocking non-proper instantiators

I dismatching constraints

I predicate elimination

I sort inference/redundancies

I definitional redundancies

I . . .

68 / 1

Redundancy Elimination

The key to efficiency is redundancy elimination.

Ground clause C is redundant if

I C 1, . . . ,Cn |= C

I C 1, . . . ,Cn ≺ C

I P(a) |= Q(b) ∨ P(a)

I P(a) ≺(((((
(

Q(b) ∨ P(a)

Where ≺ is a well-founded ordering.

Theorem Redundant clauses/closures can be eliminated.

Consequences:

I many usual redundancy elimination techniques

I redundancy for inferences

I new instantiation-specific redundancies

69 / 1

Redundancy Elimination

The key to efficiency is redundancy elimination.

Ground clause C is redundant if

I C 1, . . . ,Cn |= C

I C 1, . . . ,Cn ≺ C

I P(a) |= Q(b) ∨ P(a)

I P(a) ≺(((((
(

Q(b) ∨ P(a)

Where ≺ is a well-founded ordering.

Theorem Redundant clauses/closures can be eliminated.

Consequences:

I many usual redundancy elimination techniques

I redundancy for inferences

I new instantiation-specific redundancies

70 / 1

Redundancy Elimination

The key to efficiency is redundancy elimination.

Ground clause C is redundant if

I C 1, . . . ,Cn |= C

I C 1, . . . ,Cn ≺ C

I P(a) |= Q(b) ∨ P(a)

I P(a) ≺(((((
(

Q(b) ∨ P(a)

Where ≺ is a well-founded ordering.

Theorem Redundant clauses/closures can be eliminated.

Consequences:

I many usual redundancy elimination techniques

I redundancy for inferences

I new instantiation-specific redundancies

71 / 1

Simplifications by SAT/SMT solver (K. IJCAR’08)

Can off-the-shelf ground solver be used to simplify ground clauses?

Abstract redundancy:

C1, . . . ,Cn |= C

C1, . . . ,Cn ≺ C

Sgr |= C — ground solver

follows from smaller ?

Basic idea:

I split D ⊂ C

I check Sgr |= D

I add D to S and remove C

Global ground subsumption:

���
�

D ∨ C ′

D

where Sgr |= D and C ′ 6= ∅

72 / 1

Simplifications by SAT/SMT solver (K. IJCAR’08)

Can off-the-shelf ground solver be used to simplify ground clauses?

Abstract redundancy:

C1, . . . ,Cn |= C

C1, . . . ,Cn ≺ C

Sgr |= C — ground solver

follows from smaller ?

Basic idea:

I split D ⊂ C

I check Sgr |= D

I add D to S and remove C

Global ground subsumption:

���
�

D ∨ C ′

D

where Sgr |= D and C ′ 6= ∅

73 / 1

Simplifications by SAT/SMT solver (K. IJCAR’08)

Can off-the-shelf ground solver be used to simplify ground clauses?

Abstract redundancy:

C1, . . . ,Cn |= C

C1, . . . ,Cn ≺ C

Sgr |= C — ground solver

follows from smaller ?

Basic idea:

I split D ⊂ C

I check Sgr |= D

I add D to S and remove C

Global ground subsumption:

���
�

D ∨ C ′

D

where Sgr |= D and C ′ 6= ∅

74 / 1

Simplifications by SAT/SMT solver (K. IJCAR’08)

Can off-the-shelf ground solver be used to simplify ground clauses?

Abstract redundancy:

C1, . . . ,Cn |= C

C1, . . . ,Cn ≺ C

Sgr |= C — ground solver

follows from smaller ?

Basic idea:

I split D ⊂ C

I check Sgr |= D

I add D to S and remove C

Global ground subsumption:

���
�

D ∨ C ′

D

where Sgr |= D and C ′ 6= ∅

75 / 1

Global Ground Subsumption

Sgr

¬Q(a, b) ∨ P(a) ∨ P(b)

P(a) ∨ Q(a, b)

¬P(b)

C

P(a) ∨ Q(c , d) ∨ Q(a, c)

A minimal D ⊂ C such that Sgr |= D can be found in

a linear number of implication checks.

Global Ground Subsumption generalises:

I strict subsumption

I subsumption resolution

I . . .

76 / 1

Global Ground Subsumption

Sgr

¬Q(a, b) ∨ P(a) ∨ P(b)

P(a) ∨ Q(a, b)

¬P(b)

C

P(a) ∨ Q(c , d) ∨����Q(a, c)

A minimal D ⊂ C such that Sgr |= D can be found in

a linear number of implication checks.

Global Ground Subsumption generalises:

I strict subsumption

I subsumption resolution

I . . .

77 / 1

Global Ground Subsumption

Sgr

¬Q(a, b) ∨ P(a) ∨ P(b)

P(a) ∨ Q(a, b)

¬P(b)

C

P(a) ∨����Q(c , d) ∨����Q(a, c)

A minimal D ⊂ C such that Sgr |= D can be found in

a linear number of implication checks.

Global Ground Subsumption generalises:

I strict subsumption

I subsumption resolution

I . . .

78 / 1

Global Ground Subsumption

Sgr

¬Q(a, b) ∨ P(a) ∨ P(b)

P(a) ∨ Q(a, b)

¬P(b)

C

P(a) ∨����Q(c , d) ∨����Q(a, c)

A minimal D ⊂ C such that Sgr |= D can be found in

a linear number of implication checks.

Global Ground Subsumption generalises:

I strict subsumption

I subsumption resolution

I . . .
79 / 1

Non-ground simplifications by SAT/SMT (K. IJCAR’08)

Off-the-shelf SAT solver can be used to simplify ground clauses.

Can we also use SAT solver to simplify non-ground clauses?

Yes!

The main idea:

Sgr |= ∀x̄C (x̄)

C1(x̄), . . . ,Cn(x̄) ∈ S

C1(x̄), . . . ,Cn(x̄) ≺ C (x̄)

Sgr |= C (d̄) for fresh d̄

C1(d̄), . . . ,Cn(d̄) |= C (d̄) as

in Global Subsumption

Non-Ground Global Subsumption

80 / 1

Non-ground simplifications by SAT/SMT (K. IJCAR’08)

Off-the-shelf SAT solver can be used to simplify ground clauses.

Can we also use SAT solver to simplify non-ground clauses? Yes!

The main idea:

Sgr |= ∀x̄C (x̄)

C1(x̄), . . . ,Cn(x̄) ∈ S

C1(x̄), . . . ,Cn(x̄) ≺ C (x̄)

Sgr |= C (d̄) for fresh d̄

C1(d̄), . . . ,Cn(d̄) |= C (d̄) as

in Global Subsumption

Non-Ground Global Subsumption

81 / 1

Non-ground simplifications by SAT/SMT (K. IJCAR’08)

Off-the-shelf SAT solver can be used to simplify ground clauses.

Can we also use SAT solver to simplify non-ground clauses? Yes!

The main idea:

Sgr |= ∀x̄C (x̄)

C1(x̄), . . . ,Cn(x̄) ∈ S

C1(x̄), . . . ,Cn(x̄) ≺ C (x̄)

Sgr |= C (d̄) for fresh d̄

C1(d̄), . . . ,Cn(d̄) |= C (d̄) as

in Global Subsumption

Non-Ground Global Subsumption

82 / 1

Non-ground simplifications by SAT/SMT (K. IJCAR’08)

Off-the-shelf SAT solver can be used to simplify ground clauses.

Can we also use SAT solver to simplify non-ground clauses? Yes!

The main idea:

Sgr |= ∀x̄C (x̄)

C1(x̄), . . . ,Cn(x̄) ∈ S

C1(x̄), . . . ,Cn(x̄) ≺ C (x̄)

Sgr |= C (d̄) for fresh d̄

C1(d̄), . . . ,Cn(d̄) |= C (d̄) as

in Global Subsumption

Non-Ground Global Subsumption

83 / 1

Non-ground simplifications by SAT/SMT (K. IJCAR’08)

Off-the-shelf SAT solver can be used to simplify ground clauses.

Can we also use SAT solver to simplify non-ground clauses? Yes!

The main idea:

Sgr |= ∀x̄C (x̄)

C1(x̄), . . . ,Cn(x̄) ∈ S

C1(x̄), . . . ,Cn(x̄) ≺ C (x̄)

Sgr |= C (d̄) for fresh d̄

C1(d̄), . . . ,Cn(d̄) |= C (d̄)

as

in Global Subsumption

Non-Ground Global Subsumption

84 / 1

Non-ground simplifications by SAT/SMT (K. IJCAR’08)

Off-the-shelf SAT solver can be used to simplify ground clauses.

Can we also use SAT solver to simplify non-ground clauses? Yes!

The main idea:

Sgr |= ∀x̄C (x̄)

C1(x̄), . . . ,Cn(x̄) ∈ S

C1(x̄), . . . ,Cn(x̄) ≺ C (x̄)

Sgr |= C (d̄) for fresh d̄

C1(d̄), . . . ,Cn(d̄) |= C (d̄) as

in Global Subsumption

Non-Ground Global Subsumption

85 / 1

Non-Ground Global Subsumption

S

¬P(x) ∨ Q(x)

¬Q(x) ∨ S(x , y)

P(x) ∨ S(x , y)

C

S(x , y) ∨ Q(x)

Sgr

¬P(a) ∨ Q(a)

¬Q(a) ∨ S(a, b)

P(a) ∨ S(a, b)

Cgr

Simplify first-order by purely ground reasoning!

86 / 1

Non-Ground Global Subsumption

S

¬P(x) ∨ Q(x)

¬Q(x) ∨ S(x , y)

P(x) ∨ S(x , y)

C

S(x , y) ∨ Q(x)

Sgr

¬P(a) ∨ Q(a)

¬Q(a) ∨ S(a, b)

P(a) ∨ S(a, b)

Cgr

S(a, b) ∨ Q(a)

Simplify first-order by purely ground reasoning!

87 / 1

Non-Ground Global Subsumption

S

¬P(x) ∨ Q(x)

¬Q(x) ∨ S(x , y)

P(x) ∨ S(x , y)

C

S(x , y) ∨ Q(x)

Sgr

¬P(a) ∨ Q(a)

¬Q(a) ∨ S(a, b)

P(a) ∨ S(a, b)

Cgr

S(a, b) ∨���Q(a)

Simplify first-order by purely ground reasoning!

88 / 1

Non-Ground Global Subsumption

S

¬P(x) ∨ Q(x)

¬Q(x) ∨ S(x , y)

P(x) ∨ S(x , y)

C

S(x , y) ∨���Q(x)

Sgr

¬P(a) ∨ Q(a)

¬Q(a) ∨ S(a, b)

P(a) ∨ S(a, b)

Cgr

S(a, b) ∨���Q(a)

Simplify first-order by purely ground reasoning!

89 / 1

Non-Ground Global Subsumption

S

¬P(x) ∨ Q(x)

((((
((((¬Q(x) ∨ S(x , y)

(((
((((P(x) ∨ S(x , y)

C

S(x , y) ∨���Q(x)

Sgr

¬P(a) ∨ Q(a)

((((
(((¬Q(a) ∨ S(a, b)

((((
(((P(a) ∨ S(a, b)

Cgr

S(a, b) ∨���Q(a)

Simplify first-order by purely ground reasoning!

90 / 1

Inst-Gen summary

Inst-Gen modular instantiation based reasoning for first-order logic.

I Inst-Gen combines efficient ground reasoning with first-order

reasoning

I sound and complete for first-order logic

I decision procedure for effectively propositional logic (EPR)

I redundancy elimination

I strict subsumption, subsumption resolution

I global subsumption:

non-ground simplifications using SAT/SMT reasoning

I dismatching constraints
I preprocessing:

I predicate elimination

I sort inference: EPR and non-cyclic sorts

I semantic filter

I definition inference

91 / 1

Equational instantiation-based reasoning

Equality and Paramodulation

Superposition calculus:

C ∨ s ' t L[s ′] ∨ D

(C ∨ D ∨ L[t])θ

where (i) θ = mgu(s, s ′), (ii) s ′ is not a variable, (iii) sθσ � tθσ , (iv) . . .

The same weaknesses as resolution has:

I Inefficient in the ground/EPR case

I Length of clauses can grow fast

I Recombination of clauses

I No explicit model representation

93 / 1

Equality Superposition vs Inst-Gen

Superposition

C ∨ l ' r L[l ′] ∨ D

(C ∨ D ∨ L[r])θ

θ = mgu(l , l ′)

Instantiation?

C ∨ l ' r L[l ′] ∨ D

(C ∨ l ' r)θ (L[l ′] ∨ D)θ

θ = mgu(l , l ′)

Incomplete !

94 / 1

Equality Superposition vs Inst-Gen

Superposition

C ∨ l ' r L[l ′] ∨ D

(C ∨ D ∨ L[r])θ

θ = mgu(l , l ′)

Instantiation?

C ∨ l ' r L[l ′] ∨ D

(C ∨ l ' r)θ (L[l ′] ∨ D)θ

θ = mgu(l , l ′)

Incomplete !

95 / 1

Superposition+Instantiation

f (h(y)) ' c

∨ C1(y , u)

h(x) ' x

∨ C2(x , v)

f (a) 6' c

∨ C3(e)

f (h(a)) ' c ∨ C1(a, u)

h(a) ' a ∨ C2(a, v)

f (a) 6' c ∨ C3(e)

This set is inconsistent but the contradiction is not deducible by the inference

system above.

The idea is to consider proofs generated by unit superposition:

h(x) ' x f (h(y)) ' c

f (x) ' c

[x/y]

f (a) 6' c

c 6' c

[a/x]

�

Propagating substitutions: {h(a) ' a; f (h(a)) ' c ; f (a) 6' c}
ground unsatisfiable.

96 / 1

Superposition+Instantiation

f (h(y)) ' c

∨ C1(y , u)

h(x) ' x

∨ C2(x , v)

f (a) 6' c

∨ C3(e)

f (h(a)) ' c ∨ C1(a, u)

h(a) ' a ∨ C2(a, v)

f (a) 6' c ∨ C3(e)

This set is inconsistent but the contradiction is not deducible by the inference

system above.

The idea is to consider proofs generated by unit superposition:

h(x) ' x f (h(y)) ' c

f (x) ' c

[x/y]

f (a) 6' c

c 6' c

[a/x]

�

Propagating substitutions: {h(a) ' a; f (h(a)) ' c ; f (a) 6' c}
ground unsatisfiable.

97 / 1

Superposition+Instantiation

f (h(y)) ' c

∨ C1(y , u)

h(x) ' x

∨ C2(x , v)

f (a) 6' c

∨ C3(e)

f (h(a)) ' c ∨ C1(a, u)

h(a) ' a ∨ C2(a, v)

f (a) 6' c ∨ C3(e)

This set is inconsistent but the contradiction is not deducible by the inference

system above.

The idea is to consider proofs generated by unit superposition:

h(x) ' x f (h(y)) ' c

f (x) ' c
[x/y]

f (a) 6' c

c 6' c
[a/x]

�

Propagating substitutions: {h(a) ' a; f (h(a)) ' c ; f (a) 6' c}
ground unsatisfiable.

98 / 1

Superposition+Instantiation

f (h(y)) ' c

∨ C1(y , u)

h(x) ' x

∨ C2(x , v)

f (a) 6' c

∨ C3(e)

f (h(a)) ' c ∨ C1(a, u)

h(a) ' a ∨ C2(a, v)

f (a) 6' c ∨ C3(e)

This set is inconsistent but the contradiction is not deducible by the inference

system above.

The idea is to consider proofs generated by unit superposition:

h(x) ' x f (h(y)) ' c

f (x) ' c
[x/y]

f (a) 6' c

c 6' c
[a/x]

�

Propagating substitutions: {h(a) ' a; f (h(a)) ' c ; f (a) 6' c}
ground unsatisfiable.

99 / 1

Superposition+Instantiation

f (h(y)) ' c ∨ C1(y , u)

h(x) ' x ∨ C2(x , v)

f (a) 6' c ∨ C3(e)

f (h(a)) ' c ∨ C1(a, u)

h(a) ' a ∨ C2(a, v)

f (a) 6' c ∨ C3(e)

This set is inconsistent but the contradiction is not deducible by the inference

system above.

The idea is to consider proofs generated by unit superposition:

h(x) ' x f (h(y)) ' c

f (x) ' c
[x/y]

f (a) 6' c

c 6' c
[a/x]

�

Propagating substitutions: {h(a) ' a; f (h(a)) ' c ; f (a) 6' c}
ground unsatisfiable.

100 / 1

Superposition+Instantiation

f (h(y)) ' c ∨ C1(y , u)

h(x) ' x ∨ C2(x , v)

f (a) 6' c ∨ C3(e)

f (h(a)) ' c ∨ C1(a, u)

h(a) ' a ∨ C2(a, v)

f (a) 6' c ∨ C3(e)

This set is inconsistent but the contradiction is not deducible by the inference

system above.

The idea is to consider proofs generated by unit superposition:

h(x) ' x f (h(y)) ' c

f (x) ' c
[x/y]

f (a) 6' c

c 6' c
[a/x]

�

Propagating substitutions: {h(a) ' a; f (h(a)) ' c ; f (a) 6' c}
ground unsatisfiable.

101 / 1

Inst-Gen-Eq instantiation-based equational reasoning

f.-o. clauses

S

Ground Clauses

S⊥

⊥ : x̄ → ⊥ theorem

proved

S⊥ UnSAT

Semantic selection

of literals I⊥ |= L⊥

S⊥ SAT

I⊥ |= S⊥

Inst. gen.

from UP proofs

L ` �

S

satisfiable

L 6` �

Theorem. Inst-Gen-Eq is sound and complete.

102 / 1

Inst-Gen-Eq instantiation-based equational reasoning

f.-o. clauses

S

Ground Clauses

S⊥

⊥ : x̄ → ⊥

theorem

proved

S⊥ UnSAT

Semantic selection

of literals I⊥ |= L⊥

S⊥ SAT

I⊥ |= S⊥

Inst. gen.

from UP proofs

L ` �

S

satisfiable

L 6` �

Theorem. Inst-Gen-Eq is sound and complete.

103 / 1

Inst-Gen-Eq instantiation-based equational reasoning

f.-o. clauses

S

Ground Clauses

S⊥

⊥ : x̄ → ⊥ theorem

proved

S⊥ UnSAT

Semantic selection

of literals I⊥ |= L⊥

S⊥ SAT

I⊥ |= S⊥

Inst. gen.

from UP proofs

L ` �

S

satisfiable

L 6` �

Theorem. Inst-Gen-Eq is sound and complete.

104 / 1

Inst-Gen-Eq instantiation-based equational reasoning

f.-o. clauses

S

Ground Clauses

S⊥

⊥ : x̄ → ⊥ theorem

proved

S⊥ UnSAT

Semantic selection

of literals I⊥ |= L⊥

S⊥ SAT

I⊥ |= S⊥

Inst. gen.

from UP proofs

L ` �

S

satisfiable

L 6` �

Theorem. Inst-Gen-Eq is sound and complete.

105 / 1

Inst-Gen-Eq instantiation-based equational reasoning

f.-o. clauses

S

Ground Clauses

S⊥

⊥ : x̄ → ⊥ theorem

proved

S⊥ UnSAT

Semantic selection

of literals I⊥ |= L⊥

S⊥ SAT

I⊥ |= S⊥

Inst. gen.

from UP proofs

L ` �

S

satisfiable

L 6` �

Theorem. Inst-Gen-Eq is sound and complete.

106 / 1

Inst-Gen-Eq instantiation-based equational reasoning

f.-o. clauses

S

Ground Clauses

S⊥

⊥ : x̄ → ⊥ theorem

proved

S⊥ UnSAT

Semantic selection

of literals I⊥ |= L⊥

S⊥ SAT

I⊥ |= S⊥

Inst. gen.

from UP proofs

L ` �

S

satisfiable

L 6` �

Theorem. Inst-Gen-Eq is sound and complete. 107 / 1

Inst-Gen-Eq: Key properties

Inst-Gen-Eq:

I combines SMT for ground reasoning and superposition-based unit

reasoning

I sound and complete for first-order logic with equality

I unit superposition does not have weaknesses of the general

superposition

I all redundancy elimination techniques from Inst-Gen are applicable

to Inst-Gen-Eq

I redundancy elimination become more powerful: now we can use

SMT to simplify first-order rather than SAT

108 / 1

Theory instantiation

Theory instantiation

f.-o. clauses S

theory T

Ground Clauses

S⊥

⊥ : x̄ → ⊥ theorem

proved

S⊥ UnSAT

Semantic selection

of literals I⊥ |=T L⊥

S⊥ SAT

I⊥ |=T S⊥

L1 ∨ C1, . . . , Ln ∨ Cn

(L1 ∨ C1)θ, . . . , (Ln ∨ Cn)θ

L1θ⊥ ∧ . . . ∧ Lnθ⊥ |=T 0

L `T �

S

satisfiable

L 6`T �

110 / 1

Theory instantiation

f.-o. clauses S

theory T

Ground Clauses

S⊥

⊥ : x̄ → ⊥

theorem

proved

S⊥ UnSAT

Semantic selection

of literals I⊥ |=T L⊥

S⊥ SAT

I⊥ |=T S⊥

L1 ∨ C1, . . . , Ln ∨ Cn

(L1 ∨ C1)θ, . . . , (Ln ∨ Cn)θ

L1θ⊥ ∧ . . . ∧ Lnθ⊥ |=T 0

L `T �

S

satisfiable

L 6`T �

111 / 1

Theory instantiation

f.-o. clauses S

theory T

Ground Clauses

S⊥

⊥ : x̄ → ⊥ theorem

proved

S⊥ UnSAT

Semantic selection

of literals I⊥ |=T L⊥

S⊥ SAT

I⊥ |=T S⊥

L1 ∨ C1, . . . , Ln ∨ Cn

(L1 ∨ C1)θ, . . . , (Ln ∨ Cn)θ

L1θ⊥ ∧ . . . ∧ Lnθ⊥ |=T 0

L `T �

S

satisfiable

L 6`T �

112 / 1

Theory instantiation

f.-o. clauses S

theory T

Ground Clauses

S⊥

⊥ : x̄ → ⊥ theorem

proved

S⊥ UnSAT

Semantic selection

of literals I⊥ |=T L⊥

S⊥ SAT

I⊥ |=T S⊥

L1 ∨ C1, . . . , Ln ∨ Cn

(L1 ∨ C1)θ, . . . , (Ln ∨ Cn)θ

L1θ⊥ ∧ . . . ∧ Lnθ⊥ |=T 0

L `T �

S

satisfiable

L 6`T �

113 / 1

Theory instantiation

f.-o. clauses S

theory T

Ground Clauses

S⊥

⊥ : x̄ → ⊥ theorem

proved

S⊥ UnSAT

Semantic selection

of literals I⊥ |=T L⊥

S⊥ SAT

I⊥ |=T S⊥

L1 ∨ C1, . . . , Ln ∨ Cn

(L1 ∨ C1)θ, . . . , (Ln ∨ Cn)θ

L1θ⊥ ∧ . . . ∧ Lnθ⊥ |=T 0

L `T �

S

satisfiable

L 6`T �

114 / 1

Theory instantiation

f.-o. clauses S

theory T

Ground Clauses

S⊥

⊥ : x̄ → ⊥ theorem

proved

S⊥ UnSAT

Semantic selection

of literals I⊥ |=T L⊥

S⊥ SAT

I⊥ |=T S⊥

L1 ∨ C1, . . . , Ln ∨ Cn

(L1 ∨ C1)θ, . . . , (Ln ∨ Cn)θ

L1θ⊥ ∧ . . . ∧ Lnθ⊥ |=T 0

L `T �

S

satisfiable

L 6`T �

115 / 1

Implementation

iProver general features

iProver an instantiation-based theorem prover for FOL based on Inst-Gen.

I Proof search guided by SAT solver

I Redundancy elimination global subsumption, dismatching

constraints, predicate elimination, semantic filtering, splitting. . .

I Indexing techniques for inferences and simplifications

I Sort inference, non-cyclic sorts

I Combination with resolution

I Finite model finding based on EPR/sort inference/non-cyclic sorts

I Bounded model checking and k-induction

I QBF and bit-vectors

I Planning

I Query answering

I Proof representation: non-trivial due to global solver simplifications

I Model representation: using definitional extensions
117 / 1

Inst-Gen Loop

Passive (Queues) Given Clause
simpl. II

SAT

passive
empty

Active (Unif. Index)

literal selection change

Instantiation Inferences

Unprocessed
simpl. I

Input

SAT Solver

grounding

Unsatisfiable
unsat

sat, propositional model

literal selection

118 / 1

CASC 2018

EPR:

iProver Vampire E LEO-III

prob solved 133 128 27 17

First-order SAT:

Vampire iProver CVC4 E

prob solved 191 137 116 38

119 / 1

Applications and the EPR fragment

Effectively Propositional Logic (EPR)

EPR: ∃∗∀∗ fragment of first-order logic

EPR after Skolemization: No functions except constants

P(x , y , d) ∨ ¬Q(c , y , x)

Transitivity: ¬P(x , y) ∨ ¬P(y , z) ∨ P(x , z)

Symmetry: P(x , y) ∨ ¬P(y , x)

Verification:

∀A(wrenh1 ∧ A = wraddrFunc→
∀B(range[35,0](B)→ (imem′(A,B)↔ iwrite(B)))).

Applications:

I Hardware verification: bounded model checking/bit-vectors

I Program verification: linked data structures (Sagiv)

I Planning/Scheduling

I Knowledge representation

I Finite model finding

EPR is hard for resolution, but decidable by instantiation methods.

121 / 1

Effectively Propositional Logic (EPR)

EPR: ∃∗∀∗ fragment of first-order logic

EPR after Skolemization: No functions except constants

P(x , y , d) ∨ ¬Q(c , y , x)

Transitivity: ¬P(x , y) ∨ ¬P(y , z) ∨ P(x , z)

Symmetry: P(x , y) ∨ ¬P(y , x)

Verification:

∀A(wrenh1 ∧ A = wraddrFunc→
∀B(range[35,0](B)→ (imem′(A,B)↔ iwrite(B)))).

Applications:

I Hardware verification: bounded model checking/bit-vectors

I Program verification: linked data structures (Sagiv)

I Planning/Scheduling

I Knowledge representation

I Finite model finding

EPR is hard for resolution, but decidable by instantiation methods.
122 / 1

Hardware verification

Functional Equivalence Checking

I The same functional behaviour can be implemented in different ways

I Optimised for:

I Timing – better performance

I Power – longer battery life

I Area – smaller chips

I Verification: optimisations do not change functional behaviour

Method of choice: Bounded Model Checking (BMC)

Biere, Cimatti, Clarke, Zhu (TACAS’99)
123 / 1

SAT-based bounded model checking

c

a

b

g

d

Symbolic representation:

I = (a0 ↔ ¬c0) ∧ (c0 → b0)

(g0 ↔ a0 ∧ b0) ∧ (d0 ↔ ¬g0 ∧ ¬c0)

T =

a′ ↔ a ∧
b′ ↔ b ∧
g ′ ↔ a′ ∧ b′ ∧
c ′ ↔ d ∧
d ′ ↔ ¬c ′ ∧ ¬g ′

P = (d ↔ ¬g)

124 / 1

SAT-based bounded model checking (unrolling)

I0 . . .

a0

b0

c0

g0

d0

a1

b1

c1

g1

d1

ak

bk

ck

gk

dk ¬Pk

The system is unsafe if and only if

I0 ∧ T<1,2> ∧ . . . ∧ T<k−1,k> ∧ ¬Pk

is satisfiable for some k.

A. Biere, A. Cimatti, E. Clarke, Y. Zhu (TACAS’99)

125 / 1

EPR-based BMC

EPR encoding:

I EPR formulas Finit(S),Ftarget(S),Fnext(S ,S
′)

I encoding predicates init(S), target(S), next(S ,S ′)

Transition system:

∀S [init(S)→ Finit(S)] (1)

∀S ,S ′ [next(S ,S ′)→ Fnext(S ,S
′)] (2)

∀S [target(S)↔ Ftarget(S)] (3)

BMC: init(s0) ∧ next(s0, s1) ∧ . . . ∧ next(sn−1, sn) ∧ ¬target(sn)

I EPR encoding provides succinct representation

I avoids copying transition relation

I reasoning can be done at higher level

I major challenge: hardware designs are very large and complex

126 / 1

EPR-based BMC

EPR encoding:

I EPR formulas Finit(S),Ftarget(S),Fnext(S ,S
′)

I encoding predicates init(S), target(S), next(S ,S ′)

Transition system:

∀S [init(S)→ Finit(S)] (1)

∀S ,S ′ [next(S ,S ′)→ Fnext(S ,S
′)] (2)

∀S [target(S)↔ Ftarget(S)] (3)

BMC: init(s0) ∧ next(s0, s1) ∧ . . . ∧ next(sn−1, sn) ∧ ¬target(sn)

I EPR encoding provides succinct representation

I avoids copying transition relation

I reasoning can be done at higher level

I major challenge: hardware designs are very large and complex
127 / 1

Word level

==wraddr[5:0]

rdaddr[5:0]

cacheline[63:0]

memory

m
u
x

wrdata[63:0]

circuit

rden

wren
clock

sel

outp[63:0]

rddata[63:0]

∀S, S’(next(S, S’)→ // write is enabled

∀y(Assocwraddr(S’, y)→
∀A(clock(S’) ∧ wren(S’) ∧ A = y →
∀B(range[0,63](B)→ (mem(S’, A, B)↔ wrdata(S, B)))))).

BMC with memories and bit-vectors

first-order predicates: mem(S, A, B), wrdata(S, B).

M. Emmer, Z. Khasidashvili, K. Korovin, C. Sticksel, A. Voronkov IJCAR’12

128 / 1

Properties of EPR

Direct reduction to SAT — exponential blow-up.

Satisfiability for EPR is NEXPTIME-complete.

More succinct but harder to solve.... Any gain?

Yes: Reasoning can be done at a more general level.

Restricting instances:

¬mem(a1, x1) ∨ ¬mem(a2, x2) ∨ . . .¬mem(an, xn)

mem(b1, x1) ∨ mem(b2, x2) ∨ . . . ∨ mem(bn, xn)

General lemmas:
¬bv1(x) ∨ bv2(x)

Quantified invariants:

∀s∀x [cond(s, x)→ prop(s, x)]

Using more expressive logics can speed up reasoning!

129 / 1

Properties of EPR

Direct reduction to SAT — exponential blow-up.

Satisfiability for EPR is NEXPTIME-complete.

More succinct but harder to solve.... Any gain?

Yes: Reasoning can be done at a more general level.

Restricting instances:

¬mem(a1, x1) ∨ ¬mem(a2, x2) ∨ . . .¬mem(an, xn)

mem(b1, x1) ∨ mem(b2, x2) ∨ . . . ∨ mem(bn, xn)

General lemmas:
¬bv1(x) ∨ bv2(x) ¬bv2(x) ∨ mem(x , y)

bv1(x) ∨ mem(x , y)

Quantified invariants:

∀s∀x [cond(s, x)→ prop(s, x)]

Using more expressive logics can speed up reasoning!

130 / 1

Properties of EPR

Direct reduction to SAT — exponential blow-up.

Satisfiability for EPR is NEXPTIME-complete.

More succinct but harder to solve.... Any gain?

Yes: Reasoning can be done at a more general level.

Restricting instances:

¬mem(a1, x1) ∨ ¬mem(a2, x2) ∨ . . .¬mem(an, xn)

mem(b1, x1) ∨ mem(b2, x2) ∨ . . . ∨ mem(bn, xn)

General lemmas:
¬bv1(x) ∨ bv2(x) ¬bv2(x) ∨ mem(x , y)

bv1(x) ∨ mem(x , y)

Quantified invariants:

∀s∀x [cond(s, x)→ prop(s, x)]

Using more expressive logics can speed up reasoning!

131 / 1

Properties of EPR

Direct reduction to SAT — exponential blow-up.

Satisfiability for EPR is NEXPTIME-complete.

More succinct but harder to solve.... Any gain?

Yes: Reasoning can be done at a more general level.

Restricting instances:

¬mem(a1, x1) ∨ ¬mem(a2, x2) ∨ . . .¬mem(an, xn)

mem(b1, x1) ∨ mem(b2, x2) ∨ . . . ∨ mem(bn, xn)

General lemmas:
¬bv1(x) ∨ bv2(x) ((((

(((
((

¬bv2(x) ∨ mem(x , y)

((((
((((bv1(x) ∨ mem(x , y) mem(x , y)

Quantified invariants:

∀s∀x [cond(s, x)→ prop(s, x)]

Using more expressive logics can speed up reasoning!

132 / 1

Properties of EPR

Direct reduction to SAT — exponential blow-up.

Satisfiability for EPR is NEXPTIME-complete.

More succinct but harder to solve.... Any gain?

Yes: Reasoning can be done at a more general level.

Restricting instances:

¬mem(a1, x1) ∨ ¬mem(a2, x2) ∨ . . .¬mem(an, xn)

mem(b1, x1) ∨ mem(b2, x2) ∨ . . . ∨ mem(bn, xn)

General lemmas:
¬bv1(x) ∨ bv2(x) ((((

(((
((

¬bv2(x) ∨ mem(x , y)

((((
((((bv1(x) ∨ mem(x , y) mem(x , y)

Quantified invariants:

∀s∀x [cond(s, x)→ prop(s, x)]

Using more expressive logics can speed up reasoning!

133 / 1

Properties of EPR

Direct reduction to SAT — exponential blow-up.

Satisfiability for EPR is NEXPTIME-complete.

More succinct but harder to solve.... Any gain?

Yes: Reasoning can be done at a more general level.

Restricting instances:

¬mem(a1, x1) ∨ ¬mem(a2, x2) ∨ . . .¬mem(an, xn)

mem(b1, x1) ∨ mem(b2, x2) ∨ . . . ∨ mem(bn, xn)

General lemmas:
¬bv1(x) ∨ bv2(x) ((((

(((
((

¬bv2(x) ∨ mem(x , y)

((((
((((bv1(x) ∨ mem(x , y) mem(x , y)

Quantified invariants:

∀s∀x [cond(s, x)→ prop(s, x)]

Using more expressive logics can speed up reasoning!

134 / 1

Properties of EPR

Direct reduction to SAT — exponential blow-up.

Satisfiability for EPR is NEXPTIME-complete.

More succinct but harder to solve.... Any gain?

Yes: Reasoning can be done at a more general level.

Restricting instances:

¬mem(a1, x1) ∨ ¬mem(a2, x2) ∨ . . .¬mem(an, xn)

mem(b1, x1) ∨ mem(b2, x2) ∨ . . . ∨ mem(bn, xn)

General lemmas:
¬bv1(x) ∨ bv2(x) ((((

(((
((

¬bv2(x) ∨ mem(x , y)

((((
((((bv1(x) ∨ mem(x , y) mem(x , y)

Quantified invariants:

∀s∀x [cond(s, x)→ prop(s, x)]

Using more expressive logics can speed up reasoning!
135 / 1

Experiments: iProver vs Intel BMC

Problem # Memories # Transient BVs Intel BMC iProver BMC

ROB2 2 (4704 bits) 255 (3479 bits) 50 8

DCC2 4 (8960 bits) 426 (1844 bits) 8 11

DCC1 4 (8960 bits) 1827 (5294 bits) 7 8

DCI1 32 (9216 bits) 3625 (6496 bits) 6 4

BPB2 4 (10240 bits) 550 (4955 bits) 50 11

SCD2 2 (16384 bits) 80 (756 bits) 4 14

SCD1 2 (16384 bits) 556 (1923 bits) 4 12

PMS1 8 (46080 bits) 1486 (6109 bits) 2 10

Large memories:

iProver performs well compared to highly optimised Intel SAT-based

model checker.

136 / 1

From bounded to unbounded model checking

EPR-based k-induction

EPR-based k-induction

Base case:

init(s0) ∧ target(s0) ∧ next(s0, s1) ∧ . . . ∧ next(sk−1, sk) ∧ ¬target(sk)

Bad states are not reachable in ≤ k steps.

Induction case:

target(s0)∧ next(s0, s1)∧ . . .∧ target(sk)∧ next(sn, sk+1)∧¬target(sk+1)

Assume that bad states are not reachable in ≤ k steps then bad states

are not reachable in k + 1 steps.

Visited states are non-equivalent

∀S ,S ′ (S 6≡p S ′ → ∃x̄ [p(S , x̄)↔ ¬p(S ′, x̄)])

∀S ,S ′ (S 6≡Σ S ′ →
∨

p∈Σ S 6≡p S ′)∧
0≤i≤j≤k si 6≡Σ sj

Z. Khasidashvili, K. Korovin, D. Tsarkov (EPR k-induction)

138 / 1

EPR-based k-induction

Base case:

init(s0) ∧ target(s0) ∧ next(s0, s1) ∧ . . . ∧ next(sk−1, sk) ∧ ¬target(sk)

Bad states are not reachable in ≤ k steps.

Induction case:

target(s0)∧ next(s0, s1)∧ . . .∧ target(sk)∧ next(sn, sk+1)∧¬target(sk+1)

Assume that bad states are not reachable in ≤ k steps then bad states

are not reachable in k + 1 steps.

Visited states are non-equivalent

∀S ,S ′ (S 6≡p S ′ → ∃x̄ [p(S , x̄)↔ ¬p(S ′, x̄)])

∀S ,S ′ (S 6≡Σ S ′ →
∨

p∈Σ S 6≡p S ′)∧
0≤i≤j≤k si 6≡Σ sj

Z. Khasidashvili, K. Korovin, D. Tsarkov (EPR k-induction)
139 / 1

QBF to EPR

QBF to EPR

QBF:

∀x1∃y1∀x2∃y2 [x1 ∨ y1 ∨ ¬y2 ∧ . . .]

First-order: Domain: {1, 0}; p(1); ¬p(0)

∀x1∃y1∀x2∃y2 [p(x1) ∨ p(y1) ∨ ¬p(y2) ∧ . . .]

Skolemize:

∀x1∀x2 [p(x1) ∨ p(sk1(x1)) ∨ ¬p(sk2(x1, x2)) ∧ . . .]

EPR: Replace Skolem functions with predicates:

∀x1∀x2 [p(x1) ∨ psk1 (x1) ∨ ¬psk2 (x1, x2) ∧ . . .]

M. Seidl, F. Lonsing, A. Biere (PAAR’12)
141 / 1

BV with log-encoded width to EPR

142 / 1

BV with log-encoded width to EPR

01. . .0. . .1

0652n

Encode bit indexes in binary using n bits:

E.g. ¬bv(0, . . . , 0, 1, 0, 0, 0, 0, 1︸ ︷︷ ︸
n

) represents value 0 at index 65.

Succinct encodings of bit-vector operations avoiding bit-blasting:

bv and , bv or , bv shl , bv shr , bv mult, bv add ,

G. Kovásznai, A. Fröhlich, and A. Biere (CADE’13)

143 / 1

What’s next ?

Abstraction refinement reasoning

Large theories in TPTP

TPTP large theories benchmarks:

I Mizar – formalising mathematics

I Isabelle, HOL 4, HOL Light

translation of higher order problems from different domains into FOL

I CakeML – verification

I Cyc/SUMO – large first-order ontologies

Many of these benchmarks contain hundreds of thousand of axioms.

Observation: large number of axioms is only one indication of complexity.

145 / 1

Large theories in TPTP

TPTP large theories benchmarks:

I Mizar – formalising mathematics

I Isabelle, HOL 4, HOL Light

translation of higher order problems from different domains into FOL

I CakeML – verification

I Cyc/SUMO – large first-order ontologies

Many of these benchmarks contain hundreds of thousand of axioms.

Observation: large number of axioms is only one indication of complexity.

146 / 1

Large theories in TPTP

TPTP large theories benchmarks:

I Mizar – formalising mathematics

I Isabelle, HOL 4, HOL Light

translation of higher order problems from different domains into FOL

I CakeML – verification

I Cyc/SUMO – large first-order ontologies

Many of these benchmarks contain hundreds of thousand of axioms.

Observation: large number of axioms is only one indication of complexity.

147 / 1

QBF benchmarks

148 / 1

HOL benchmarks

149 / 1

Reasoning with large theories: axiom selection

Previous approaches: select “relevant axioms”

I Semantic or syntactic structure

I SRASS

I SInE

I Machine learning

I MaLARea

I Two phases

I Axiom selection

I Reasoning

Axiom selection phase

Selected axioms

Reasoning phase

Observation: large number of axioms is only one source of complexity.

We also have: large number of arguments; large signatures; long/deep

clauses; etc.

150 / 1

Reasoning with large theories: axiom selection

Previous approaches: select “relevant axioms”

I Semantic or syntactic structure

I SRASS

I SInE

I Machine learning

I MaLARea

I Two phases

I Axiom selection

I Reasoning

Axiom selection phase

Selected axioms

Reasoning phase

Observation: large number of axioms is only one source of complexity.

We also have: large number of arguments; large signatures; long/deep

clauses; etc.

151 / 1

Abstraction-refinement approach L. Hernandez, K. IJCAR’18

I Abstraction-Refinement

I Interleaving abstraction and

reasoning phases

I Over-Approximation

I Under-Approximation

I Combination of approximations

I The abstraction is easier

to solve

I If there is no solution, the

abstraction is refined

I If A |= ⊥ then α(A) |= ⊥

I If α(A) |= ⊥ then A |= ⊥

I Converge rapidly to a

solution if it exists

152 / 1

Abstraction-refinement approach L. Hernandez, K. IJCAR’18

I Abstraction-Refinement

I Interleaving abstraction and

reasoning phases

I Over-Approximation

I Under-Approximation

I Combination of approximations

I The abstraction is easier

to solve

I If there is no solution, the

abstraction is refined

I If A |= ⊥ then α(A) |= ⊥

I If α(A) |= ⊥ then A |= ⊥

I Converge rapidly to a

solution if it exists

153 / 1

Abstraction-refinement approach L. Hernandez, K. IJCAR’18

I Abstraction-Refinement

I Interleaving abstraction and

reasoning phases

I Over-Approximation

I Under-Approximation

I Combination of approximations

I The abstraction is easier

to solve

I If there is no solution, the

abstraction is refined

I If A |= ⊥ then α(A) |= ⊥

I If α(A) |= ⊥ then A |= ⊥

I Converge rapidly to a

solution if it exists

154 / 1

Abstraction-refinement approach L. Hernandez, K. IJCAR’18

I Abstraction-Refinement

I Interleaving abstraction and

reasoning phases

I Over-Approximation

I Under-Approximation

I Combination of approximations

I The abstraction is easier

to solve

I If there is no solution, the

abstraction is refined

I If A |= ⊥ then α(A) |= ⊥

I If α(A) |= ⊥ then A |= ⊥

I Converge rapidly to a

solution if it exists

155 / 1

Abstraction-Refinement in ATPs

I . . .

I Inst-Gen: Ganzinger, Korovin

I SPASS: targeted decidable fragment Teucke, Weidenbach

I Speculative inferences: Bonacina, Lynch, de Moura

I SMT: conflict and model-based instantiation

de Moura, Ge; Reynolds, Tinelli . . .

I AVATAR: new architecture for first-order theorem provers

Voronkov; Reger, Suda, . . .

156 / 1

Over-Approximating Abstractions

Over-approximation abstractions:

I Subsumption abstraction

I Generalisation abstraction

I Argument filtering abstraction

I Signature grouping abstraction

157 / 1

Over-Approximation Procedure

Concrete

axioms A
αs(A)

Abstract

axioms Âs
ATPC Disproved

Conjecture C

Get Âs
uc

Retrieve concrete

axioms, γs(Âs
uc)

Refine abstrac-

tion α′
s(A)

ATPS Proved

UNSAT

SAT

UNSATSAT

Subsumption-Based Abstraction

I Partition based on joint literals.

I Abstract clauses represent each partition and

subsume all clauses in the collection.
`1 ∨`2 ∨ `3

`1`1 ∨`3 ∨ `4

`1 ∨`6 ∨ `4

`2 ∨`7 ∨ `6

}
`2

`2 ∨`8 ∨ `5

Subsumption-Based refinement

I Subpartition of the previous

collections based on a new joint

literal.

`1


`1 ∨`2∨ `3

}
`1 ∨ `3

`1 ∨ `3 ∨`4

`1 ∨`6∨ `4

}
`1 ∨ `4

Argument Filtering Abstraction

I Removing certain arguments in the signature

symbols.

P(x, f (x, g(y))) ∨ ¬P(c, x)


P 0̄ ∨ ¬P 0̄

¬P(g(f (x, y)), g(y)) ¬P 0̄

P(c, x) P 0̄

Argument Filtering refinement

I Restoring arguments of abstract

symbols.

P 0̄ ∨ ¬P 0̄


P(x, f 0̄) ∨ ¬P(c, x)

¬P 0̄ ¬P(g 0̄, g 0̄)

P 0̄ P(c, x)

Signature Grouping Abstraction

I Abstraction of the signature by grouping symbols

of the same type.

R(x,y) ∨ Q(x)


¬ S(c,c) ∨ Q(y) T1(x, y) ∨ T2(x)

¬R(c,c) ∨ P(y) ¬T1(c, c) ∨ T2(y)

¬Q(c) ¬T2(c)

¬P(c)

Signature grouping refinement

I Concretising abstract symbols.

T1(x, y) ∨T2(x)


R(x, y) ∨T2(x)

¬ T1(c, c) ∨T2(y) ¬ S(c, c) ∨T2(y)

¬T2(c) ¬ R(c, c) ∨T2(y)

¬T2(c)

158 / 1

Over-Approximation Procedure

Concrete

axioms A
αs(A)

Abstract

axioms Âs
ATPC Disproved

Conjecture C

Get Âs
uc

Retrieve concrete

axioms, γs(Âs
uc)

Refine abstrac-

tion α′
s(A)

ATPS Proved

UNSAT

SAT

UNSATSAT

Subsumption-Based Abstraction

I Partition based on joint literals.

I Abstract clauses represent each partition and

subsume all clauses in the collection.
`1 ∨`2 ∨ `3

`1`1 ∨`3 ∨ `4

`1 ∨`6 ∨ `4

`2 ∨`7 ∨ `6

}
`2

`2 ∨`8 ∨ `5

Subsumption-Based refinement

I Subpartition of the previous

collections based on a new joint

literal.

`1


`1 ∨`2∨ `3

}
`1 ∨ `3

`1 ∨ `3 ∨`4

`1 ∨`6∨ `4

}
`1 ∨ `4

Argument Filtering Abstraction

I Removing certain arguments in the signature

symbols.

P(x, f (x, g(y))) ∨ ¬P(c, x)


P 0̄ ∨ ¬P 0̄

¬P(g(f (x, y)), g(y)) ¬P 0̄

P(c, x) P 0̄

Argument Filtering refinement

I Restoring arguments of abstract

symbols.

P 0̄ ∨ ¬P 0̄


P(x, f 0̄) ∨ ¬P(c, x)

¬P 0̄ ¬P(g 0̄, g 0̄)

P 0̄ P(c, x)

Signature Grouping Abstraction

I Abstraction of the signature by grouping symbols

of the same type.

R(x,y) ∨ Q(x)


¬ S(c,c) ∨ Q(y) T1(x, y) ∨ T2(x)

¬R(c,c) ∨ P(y) ¬T1(c, c) ∨ T2(y)

¬Q(c) ¬T2(c)

¬P(c)

Signature grouping refinement

I Concretising abstract symbols.

T1(x, y) ∨T2(x)


R(x, y) ∨T2(x)

¬ T1(c, c) ∨T2(y) ¬ S(c, c) ∨T2(y)

¬T2(c) ¬ R(c, c) ∨T2(y)

¬T2(c)

159 / 1

Over-Approximation Procedure

Concrete

axioms A
αs(A)

Abstract

axioms Âs
ATPC Disproved

Conjecture C

Get Âs
uc

Retrieve concrete

axioms, γs(Âs
uc)

Refine abstrac-

tion α′
s(A)

ATPS Proved

UNSAT

SAT

UNSATSAT

Subsumption-Based Abstraction

I Partition based on joint literals.

I Abstract clauses represent each partition and

subsume all clauses in the collection.
`1 ∨`2 ∨ `3

`1`1 ∨`3 ∨ `4

`1 ∨`6 ∨ `4

`2 ∨`7 ∨ `6

}
`2

`2 ∨`8 ∨ `5

Subsumption-Based refinement

I Subpartition of the previous

collections based on a new joint

literal.

`1


`1 ∨`2∨ `3

}
`1 ∨ `3

`1 ∨ `3 ∨`4

`1 ∨`6∨ `4

}
`1 ∨ `4

Argument Filtering Abstraction

I Removing certain arguments in the signature

symbols.

P(x, f (x, g(y))) ∨ ¬P(c, x)


P 0̄ ∨ ¬P 0̄

¬P(g(f (x, y)), g(y)) ¬P 0̄

P(c, x) P 0̄

Argument Filtering refinement

I Restoring arguments of abstract

symbols.

P 0̄ ∨ ¬P 0̄


P(x, f 0̄) ∨ ¬P(c, x)

¬P 0̄ ¬P(g 0̄, g 0̄)

P 0̄ P(c, x)

Signature Grouping Abstraction

I Abstraction of the signature by grouping symbols

of the same type.

R(x,y) ∨ Q(x)


¬ S(c,c) ∨ Q(y) T1(x, y) ∨ T2(x)

¬R(c,c) ∨ P(y) ¬T1(c, c) ∨ T2(y)

¬Q(c) ¬T2(c)

¬P(c)

Signature grouping refinement

I Concretising abstract symbols.

T1(x, y) ∨T2(x)


R(x, y) ∨T2(x)

¬ T1(c, c) ∨T2(y) ¬ S(c, c) ∨T2(y)

¬T2(c) ¬ R(c, c) ∨T2(y)

¬T2(c)

160 / 1

Over-Approximation Procedure

Concrete

axioms A
αs(A)

Abstract

axioms Âs
ATPC Disproved

Conjecture C

Get Âs
uc

Retrieve concrete

axioms, γs(Âs
uc)

Refine abstrac-

tion α′
s(A)

ATPS Proved

UNSAT

SAT

UNSATSAT

Subsumption-Based Abstraction

I Partition based on joint literals.

I Abstract clauses represent each partition and

subsume all clauses in the collection.
`1 ∨`2 ∨ `3

`1`1 ∨`3 ∨ `4

`1 ∨`6 ∨ `4

`2 ∨`7 ∨ `6

}
`2

`2 ∨`8 ∨ `5

Subsumption-Based refinement

I Subpartition of the previous

collections based on a new joint

literal.

`1


`1 ∨`2∨ `3

}
`1 ∨ `3

`1 ∨ `3 ∨`4

`1 ∨`6∨ `4

}
`1 ∨ `4

Argument Filtering Abstraction

I Removing certain arguments in the signature

symbols.

P(x, f (x, g(y))) ∨ ¬P(c, x)


P 0̄ ∨ ¬P 0̄

¬P(g(f (x, y)), g(y)) ¬P 0̄

P(c, x) P 0̄

Argument Filtering refinement

I Restoring arguments of abstract

symbols.

P 0̄ ∨ ¬P 0̄


P(x, f 0̄) ∨ ¬P(c, x)

¬P 0̄ ¬P(g 0̄, g 0̄)

P 0̄ P(c, x)

Signature Grouping Abstraction

I Abstraction of the signature by grouping symbols

of the same type.

R(x,y) ∨ Q(x)


¬ S(c,c) ∨ Q(y) T1(x, y) ∨ T2(x)

¬R(c,c) ∨ P(y) ¬T1(c, c) ∨ T2(y)

¬Q(c) ¬T2(c)

¬P(c)

Signature grouping refinement

I Concretising abstract symbols.

T1(x, y) ∨T2(x)


R(x, y) ∨T2(x)

¬ T1(c, c) ∨T2(y) ¬ S(c, c) ∨T2(y)

¬T2(c) ¬ R(c, c) ∨T2(y)

¬T2(c)

161 / 1

Generalisation abstraction

I Strengthening abstraction function αs.

I Partition axioms A = ∪iAi ; abstract axiom: αs(Ai) |= Ai

¬Q(x , a)

Negated conjecture

S(f (x))

S(h(x , y)) Q(z , x) ∨ R(x) ∨ P(x , z)

Q(f (x), a) ∨ R(g(x))

¬P(x , h(y , a)) ∨ R(y)

¬P(f (x), g(z)) ∨ R(h(a, z))
¬R(f (y))

¬R(h(f (x), g(y)))

Q(x0, x1) ∨ R(x2)S(x0)

¬P(x0, x1) ∨ R(x2)

¬R(x0)

⊃⊂

⊂

⊃

S(x0) Q(x0, x1) ∨ R(x2)

¬P(x0, x1) ∨ R(x2)
¬R(x0)

162 / 1

Generalisation abstraction

I Strengthening abstraction function αs.

I Partition axioms A = ∪iAi ; abstract axiom: αs(Ai) |= Ai

¬Q(x , a)

Negated conjecture

S(f (x))

S(h(x , y)) Q(z , x) ∨ R(x) ∨ P(x , z)

Q(f (x), a) ∨ R(g(x))

¬P(x , h(y , a)) ∨ R(y)

¬P(f (x), g(z)) ∨ R(h(a, z))
¬R(f (y))

¬R(h(f (x), g(y)))

Q(x0, x1) ∨ R(x2)S(x0)

¬P(x0, x1) ∨ R(x2)

¬R(x0)

⊃⊂

⊂

⊃

S(x0) Q(x0, x1) ∨ R(x2)

¬P(x0, x1) ∨ R(x2)
¬R(x0)

163 / 1

Generalisation abstraction

I Strengthening abstraction function αs.

I Partition axioms A = ∪iAi ; abstract axiom: αs(Ai) |= Ai

¬Q(x , a)

Negated conjecture

S(f (x))

S(h(x , y)) Q(z , x) ∨ R(x) ∨ P(x , z)

Q(f (x), a) ∨ R(g(x))

¬P(x , h(y , a)) ∨ R(y)

¬P(f (x), g(z)) ∨ R(h(a, z))
¬R(f (y))

¬R(h(f (x), g(y)))

Q(x0, x1) ∨ R(x2)S(x0)

¬P(x0, x1) ∨ R(x2)

¬R(x0)

⊃⊂

⊂

⊃

S(x0) Q(x0, x1) ∨ R(x2)

¬P(x0, x1) ∨ R(x2)
¬R(x0)

164 / 1

Generalisation abstraction refinement

I Weakening abstraction refinement.

I Sub-partition groups of concrete axioms involved in an abstract

proof.

¬Q(x , a)

Negated conjecture

S(x0)

¬P(x0, x1) ∨ R(x2)

Q(z , x) ∨ R(x) ∨ P(x , z)

Q(x0, x1) ∨ R(g(x))

¬R(f (y))

¬R(h(f (x), g(y)))

165 / 1

Generalisation abstraction for termination

Consider the following set of clauses:

S = { p(g(x), g(x)) ∨ q(f (g(x)))

g(f (f (x))) ' g(f (x))}

A generalisation abstraction of S :

α(S) = { p(x , x) ∨ q(f (x))

g(f (x)) ' g(x)}

Superposition is not applicable after subsumption abstraction and

therefore S is satisfiable.

166 / 1

Over-approximation

Over-approximation abstractions:

I Subsumption abstraction

I Generalisation abstraction

I Argument filtering abstraction

I Signature grouping abstraction

Combinations of these abstractions

I --abstr ref [sig;subs;arg filter]

I abstractions can enable further abstractions: e.g, argument filtering

can enable signature grouping which can enable subsumption

Targeted abstractions:

I abstractions can target fragments e.g., EPR

I block superposition inferences

167 / 1

Under-Approximation

I Weakening abstraction function.

I Removing irrelevant axioms using methods like SInE or MaLARea.

I Using ground instances of concrete axioms.

I Strengthening abstraction refinement.

I Turning a model I into a countermodel.

I Add concrete axioms

I Generate and add ground instances of axioms

168 / 1

Under-Approximation

Concrete

axioms A
αw (A)

Abstract

axioms Âw
ATPS Proved

Conjecture C

I |=
Âw ∧ ¬C

Refine abstraction Âw

find a set Ă, I 6|= Ă

Âw := Âw ∪ Ă

Disproved

UNSAT

SAT

Ă = ∅

Ă 6= ∅

Weakening Abstraction Function

I Using ground instances of concrete

axioms (instantiation abstraction).

I Removing irrelevant axioms (deletion

abstraction).

Strengthening Abstraction Refinement

I Generate and add ground instances of

axioms

I Add concrete axioms

169 / 1

Under-Approximation

Concrete

axioms A
αw (A)

Abstract

axioms Âw
ATPS Proved

Conjecture C

I |=
Âw ∧ ¬C

Refine abstraction Âw

find a set Ă, I 6|= Ă

Âw := Âw ∪ Ă

Disproved

UNSAT

SAT

Ă = ∅

Ă 6= ∅

Weakening Abstraction Function

I Using ground instances of concrete

axioms (instantiation abstraction).

I Removing irrelevant axioms (deletion

abstraction).

Strengthening Abstraction Refinement

I Generate and add ground instances of

axioms

I Add concrete axioms

170 / 1

Under-Approximation

Concrete

axioms A
αw (A)

Abstract

axioms Âw
ATPS Proved

Conjecture C

I |=
Âw ∧ ¬C

Refine abstraction Âw

find a set Ă, I 6|= Ă

Âw := Âw ∪ Ă

Disproved

UNSAT

SAT

Ă = ∅

Ă 6= ∅

Weakening Abstraction Function

I Using ground instances of concrete

axioms (instantiation abstraction).

I Removing irrelevant axioms (deletion

abstraction).

Strengthening Abstraction Refinement

I Generate and add ground instances of

axioms

I Add concrete axioms

171 / 1

Under-Approximation

Concrete

axioms A
αw (A)

Abstract

axioms Âw
ATPS Proved

Conjecture C

I |=
Âw ∧ ¬C

Refine abstraction Âw

find a set Ă, I 6|= Ă

Âw := Âw ∪ Ă

Disproved

UNSAT

SAT

Ă = ∅

Ă 6= ∅

Weakening Abstraction Function

I Using ground instances of concrete

axioms (instantiation abstraction).

I Removing irrelevant axioms (deletion

abstraction).

Strengthening Abstraction Refinement

I Generate and add ground instances of

axioms

I Add concrete axioms

172 / 1

Combined Approximations

Concrete

axioms A
αw (A)

Abstract

axioms Âw

Over-approximation

embedded as ATPS

Proved

Conjecture C

I |=
Âw ∧ ¬C

Refine abstraction Âw

find a set Ă, I 6|= Ă

Âw := Âw ∪ Ă

Disproved

UNSAT

SAT

Ă = ∅

Ă 6= ∅

Shared abstractions.

173 / 1

Implementation & Experiments

I Abstraction-refinement implemented in iProver v2.8

I Strategies: combination of atomic abstractions

--abstr ref [subs;arg filger;sig]

I SInE as under-approximating abstraction

174 / 1

The Most Effective Strategies

Table: SC = Skolem and constant, SS = Skolem and split symb.

Depth Tolerance Abstractions Signature Arg-filter Until SAT Solutions

1 1.0 sig, subs, arg-fil SS true 1001

1 2.0 subs, sig, arg-fil SC false 42

2 1.0 subs, sig, arg-fil SC false 23

1 4.0 arg-fil, sig, subs SS true 5

1 1.0 subs, sig, arg-fil SC SS false 4

1 1.0 subs, sig, arg-fil false 2

2 1.0 sig SC false 2

1 8.0 subs, sig, arg-fil false 2

1 1.0 arg-fil, subs, sig SS false 2

2 1.0 arg-fil, sig, subs SS true 2

2 1.0 arg-fil false 1

2 1.0 subs, sig false 1

Total 1087

175 / 1

CASC-26

Table: CASC-26 LTB comparison (out of 1500 problems)

Vampire

4.0

Vampire

4.2

MaLARea iProver 2.8 iProver

2.6

E LTB

1156 1144 1131 1087 777 683

176 / 1

Abstraction-refinement current work

I Abstractions targeted for specific theories

I Goal directed abstractions

I Reuse of abstractions

I Different combination schemes/ ML

I Target abstractions for theories

177 / 1

Conclusions

Instantiation-based theorem proving for first-order logic:

I Modular combination of SAT/SMT and first-order reasoning

I Combination of proof search and model search

I Abstraction-refinement for large/complex problems

Further directions:

I The quest of combining first-order and theories: highly undecidable

I Combination with SMT approaches to quantifier instantiation

I Abstraction-refinement as a generalisation of instantiation based

reasoning ?

178 / 1

Extra: efficient datastructures and indexes

179 / 1

Indexing

Why indexing:

I Single subsumption is NP-hard.

I We can have 100,000 clauses in our search space

I Applying naively between all pairs of clauses we need

10,000,000,000 subsumption checks !

Indexes in iProver:

I non-perfect discrimination trees for unification, matching

I compressed feature vector indexes for subsumption, subsumption

resolution, dismatching constraints.

180 / 1

Indexing

Why indexing:

I Single subsumption is NP-hard.

I We can have 100,000 clauses in our search space

I Applying naively between all pairs of clauses we need

10,000,000,000 subsumption checks !

Indexes in iProver:

I non-perfect discrimination trees for unification, matching

I compressed feature vector indexes for subsumption, subsumption

resolution, dismatching constraints.

181 / 1

Unification: Discrimination trees

ε

f

g

∗

a

f (g(x), a)

∗

h

∗

f (g(x), h(x))
f (g(y), h(x))

h

.

g

. . . a

g(a)

Efficient filtering unification, matching and generalisation candidates
182 / 1

Subsumption: Feature vector index

Subsumption is very expensive and usual indexing are complicated.

Feature vector index [Schulz] works well for subsumption, and many other

operations

Design efficient filters based on “features of clauses”:

I clause C can not subsume any clause with number of literals strictly

less than C

I clause C can not subsume any clause with number of positive

literals strictly less than C

I clause C can not subsume any clause with the number of

occurrences of a symbol f less than in C

I . . .

183 / 1

Subsumption: Feature vector index

Subsumption is very expensive and usual indexing are complicated.

Feature vector index [Schulz] works well for subsumption, and many other

operations

Design efficient filters based on “features of clauses”:

I clause C can not subsume any clause with number of literals strictly

less than C

I clause C can not subsume any clause with number of positive

literals strictly less than C

I clause C can not subsume any clause with the number of

occurrences of a symbol f less than in C

I . . .

184 / 1

Subsumption: Feature vector index

Subsumption is very expensive and usual indexing are complicated.

Feature vector index [Schulz] works well for subsumption, and many other

operations

Design efficient filters based on “features of clauses”:

I clause C can not subsume any clause with number of literals strictly

less than C

I clause C can not subsume any clause with number of positive

literals strictly less than C

I clause C can not subsume any clause with the number of

occurrences of a symbol f less than in C

I . . .

185 / 1

Subsumption: Feature vector index

Subsumption is very expensive and usual indexing are complicated.

Feature vector index [Schulz] works well for subsumption, and many other

operations

Design efficient filters based on “features of clauses”:

I clause C can not subsume any clause with number of literals strictly

less than C

I clause C can not subsume any clause with number of positive

literals strictly less than C

I clause C can not subsume any clause with the number of

occurrences of a symbol f less than in C

I . . .

186 / 1

Subsumption: Feature vector index

Subsumption is very expensive and usual indexing are complicated.

Feature vector index [Schulz] works well for subsumption, and many other

operations

Design efficient filters based on “features of clauses”:

I clause C can not subsume any clause with number of literals strictly

less than C

I clause C can not subsume any clause with number of positive

literals strictly less than C

I clause C can not subsume any clause with the number of

occurrences of a symbol f less than in C

I . . .

187 / 1

Subsumption: Feature vector index

Subsumption is very expensive and usual indexing are complicated.

Feature vector index [Schulz] works well for subsumption, and many other

operations

Design efficient filters based on “features of clauses”:

I clause C can not subsume any clause with number of literals strictly

less than C

I clause C can not subsume any clause with number of positive

literals strictly less than C

I clause C can not subsume any clause with the number of

occurrences of a symbol f less than in C

I . . .

188 / 1

Feature vector index

Fix: a list of features:

1. number of literals

2. number of occurrences of f

3. number of occurrences of g

With each clause associate a feature vector:

numeric vector of feature values

Example: feature vector of C = p(f (f (x))) ∨ ¬p(g(y)) is

fv(C) = [2, 2, 1]

Arrange feature vectors in a trie data structure similar to discrimination

tree

For retrieving all candidates which can be subsumed by C we need to

traverse only vectors which are component-wise greater or equal to fv(C).

189 / 1

Feature vector index

Fix: a list of features:

1. number of literals

2. number of occurrences of f

3. number of occurrences of g

With each clause associate a feature vector:

numeric vector of feature values

Example: feature vector of C = p(f (f (x))) ∨ ¬p(g(y)) is

fv(C) = [2, 2, 1]

Arrange feature vectors in a trie data structure similar to discrimination

tree

For retrieving all candidates which can be subsumed by C we need to

traverse only vectors which are component-wise greater or equal to fv(C).

190 / 1

Compressed feature vector index [iProver]

The signature based features are most useful but also expensive.

Example: is signature contains 1000 symbols and we use all symbols as

features then feature vector for every clause will be 1000 in length.

Basic idea: for each clause most features will be 0.

Compress feature vector: use list of pairs [(p1, v1), . . . , (pn, v1)] where pi

are non-zero positions and vi are values that start from this position.

Sequential positions with the same value are combined.

iProver uses compressed feature vector index for forward and backward

subsumption, subsumption resolution and dismatching constraints.

191 / 1

Compressed feature vector index [iProver]

The signature based features are most useful but also expensive.

Example: is signature contains 1000 symbols and we use all symbols as

features then feature vector for every clause will be 1000 in length.

Basic idea: for each clause most features will be 0.

Compress feature vector: use list of pairs [(p1, v1), . . . , (pn, v1)] where pi

are non-zero positions and vi are values that start from this position.

Sequential positions with the same value are combined.

iProver uses compressed feature vector index for forward and backward

subsumption, subsumption resolution and dismatching constraints.

192 / 1

Compressed feature vector index [iProver]

The signature based features are most useful but also expensive.

Example: is signature contains 1000 symbols and we use all symbols as

features then feature vector for every clause will be 1000 in length.

Basic idea: for each clause most features will be 0.

Compress feature vector: use list of pairs [(p1, v1), . . . , (pn, v1)] where pi

are non-zero positions and vi are values that start from this position.

Sequential positions with the same value are combined.

iProver uses compressed feature vector index for forward and backward

subsumption, subsumption resolution and dismatching constraints.

193 / 1

