Computing with SAT Oracles

Joao Marques-Silva

SAT/SMT/AR 2019 Summer School
IST, Lisbon, Portugal
July 3-6 2019

Computing with SAT Oracles

Joao Marques-Silva

SAT/SMT/AR 2019 Summer School
IST, Lisbon, Portugal
July 3-6 2019

What is SAT?

- SAT is the decision problem for propositional logic
- Well-formed propositional formulas, with variables, logical connectives: $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$, and parenthesis: (,)
- Often restricted to Conjunctive Normal Form (CNF)

What is SAT?

- SAT is the decision problem for propositional logic
- Well-formed propositional formulas, with variables, logical connectives: $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$, and parenthesis: (,)
- Often restricted to Conjunctive Normal Form (CNF)
- Goal:

Decide whether formula has a satisfying assignment

What is SAT?

- SAT is the decision problem for propositional logic
- Well-formed propositional formulas, with variables, logical connectives: $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$, and parenthesis: (,)
- Often restricted to Conjunctive Normal Form (CNF)
- Goal:

Decide whether formula has a satisfying assignment

- SAT is NP-complete

The CDCL SAT disruption

- CDCL SAT solving is a success story of Computer Science

The CDCL SAT disruption

- CDCL SAT solving is a success story of Computer Science
- Conflict-Driven Clause Learning (CDCL)
- (CDCL) SAT has impacted many different fields
- Hundreds (thousands?) of practical applications

Binate Cuvering Noise Analysis Technology MappingGames Network Seurity Management Fault Localizationn Pedigree Consistency. Function Decomposition Maximum SatisfiabilityConfigurationTTermination Analysis Software Testing filter ofesign Switching Vetwork Verificiction
Satisfiability Modulo Theories fitivilene fivedidim Resource Constrained Scheduding Quantified Boolean formulas Package Management Symboiic Trijectory Evaluation Software Model Checking Constraint Programming FPGA Routing Cyptanaysistelecom Feature Suscripition Timetabling Haplotyping
Test Pattern Generation Model Finding Hardware Model Checking Planning Logic Synthesis Design Debugging Power Estimation Circuit Delay Computation Genome Rearrangement

CDCL SAT solver (continued) improvement

How good are CDCL SAT solvers?

Demos

How good are CDCL SAT solvers?

Demos

- Sample SAT of solvers:

1. POSIT: state of the art DPLL SAT solver in 1995
2. GRASP: first CDCL SAT solver, state of the art 1995~2000
3. Minisat: CDCL SAT solver, state of the art until the late 00s
4. Glucose: modern state of the art CDCL SAT solver
5. ...

How good are CDCL SAT solvers?

Demos

- Sample SAT of solvers:

1. POSIT: state of the art DPLL SAT solver in 1995
2. GRASP: first CDCL SAT solver, state of the art 1995~2000
3. Minisat: CDCL SAT solver, state of the art until the late 00s
4. Glucose: modern state of the art CDCL SAT solver
5. ...

- Example 1: model checking example (from IBM)
- Example 2: cooperative path finding (CPF)

How good are SAT solvers? - an example

- Cooperative pathfinding (CPF)
- N agents on some grid/graph
- Start positions
- Goal positions
- Minimize makespan
- Restricted planning problem

How good are SAT solvers? - an example

- Cooperative pathfinding (CPF)
- N agents on some grid/graph
- Start positions
- Goal positions
- Minimize makespan
- Restricted planning problem
- Concrete example
- Gaming grid
- 1039 vertices
- 1928 edges
- 100 agents

How good are SAT solvers? - an example

- Cooperative pathfinding (CPF)
- N agents on some grid/graph
- Start positions
- Goal positions
- Minimize makespan
- Restricted planning problem
- Concrete example
- Gaming grid
- 1039 vertices
- 1928 edges
- 100 agents

```
*** tracker: a pathfinding tool ***
Initialization ... CPU Time: 0.004711
Number of variables: 113315
Tentative makespan 1
Number of variables: 226630
Number of assumptions: 1
c Running SAT solver ... CPU Time: 0.718112
c Done running SAT solver ... CPU Time: 0.830099
No solution for makespan 1
Elapsed CPU Time: 0.830112
Tentative makespan 2
Number of variables: 339945
Number of assumptions: 1
c Running SAT solver ... CPU Time: 1.27113
c Done running SAT solver ... CPU Time: 1.27114
No solution for makespan 2
Elapsed CPU Time: 1.27114
Tentative makespan 24
Number of variables: 2832875
Number of assumptions: 1
c Running SAT solver ... CPU Time: 11.8653
c Done running SAT solver ... CPU Time: 11.8653
No solution for makespan 24
Elapsed CPU Time: 11.8653
Tentative makespan 25
Number of variables: 2946190
Number of assumptions: 1
c Running SAT solver ... CPU Time: 12.3491
c Done running SAT solver ... CPU Time: 16.6882
Solution found for makespan 25
Elapsed CPU Time: 16.6995
```


How good are SAT solvers? - an example

- Cooperative pathfinding (CPF)
- N agents on some grid/graph
- Start positions
- Goal positions
- Minimize makespan
- Restricted planning problem
- Concrete example
- Gaming grid
- 1039 vertices
- 1928 edges
- 100 agents
- Formula w/ 2946190 variables!

```
*** tracker: a pathfinding tool ***
Initialization ... CPU Time: 0.004711
Number of variables: 113315
Tentative makespan 1
Number of variables: 226630
Number of assumptions: 1
c Running SAT solver ... CPU Time: 0.718112
c Done running SAT solver ... CPU Time: 0.830099
No solution for makespan 1
Elapsed CPU Time: 0.830112
Tentative makespan 2
Number of variables: 339945
Number of assumptions: 1
c Running SAT solver ... CPU Time: 1.27113
c Done running SAT solver ... CPU Time: 1.27114
No solution for makespan 2
Elapsed CPU Time: 1.27114
Tentative makespan 24
Number of variables: 2832875
Number of assumptions: 1
c Running SAT solver ... CPU Time: 11.8653
c Done running SAT solver ... CPU Time: 11.8653
No solution for makespan 24
Elapsed CPU Time: 11.8653
Tentative makespan 25
Number of variables: 2946190
Number of assumptions: 1
c Running SAT solver ... CPU Time: 12.3491
c Done running SAT solver ... CPU Time: 16.6882
Solution found for makespan }2
Elapsed CPU Time: 16.6995
```


How good are SAT solvers? - an example

- Cooperative pathfinding (CPF)
- N agents on some grid/graph
- Start positions
- Goal positions
- Minimize makespan
- Restricted planning problem
- Concrete example
- Gaming grid
- 1039 vertices
- 1928 edges
- 100 agents
- Formula w/ 2946190 variables!
- Note: In the early 90s, SAT solvers could solve formulas with a few hundred variables!

```
*** tracker: a pathfinding tool ***
Initialization ... CPU Time: 0.004711
Number of variables: 113315
Tentative makespan 1
Number of variables: 226630
Number of assumptions: 1
c Running SAT solver ... CPU Time: 0.718112
c Done running SAT solver ... CPU Time: 0.830099
No solution for makespan 1
Elapsed CPU Time: 0.830112
Tentative makespan 2
Number of variables: 339945
Number of assumptions: 1
c Running SAT solver ... CPU Time: 1.27113
c Done running SAT solver ... CPU Time: 1.27114
No solution for makespan 2
Elapsed CPU Time: 1.27114
Tentative makespan 24
Number of variables: 2832875
Number of assumptions: 1
c Running SAT solver ... CPU Time: 11.8653
c Done running SAT solver ... CPU Time: 11.8653
No solution for makespan 24
Elapsed CPU Time: 11.8653
Tentative makespan 25
Number of variables: 2946190
Number of assumptions: 1
c Running SAT solver ... CPU Time: 12.3491
c Done running SAT solver ... CPU Time: 16.6882
Solution found for makespan }2
Elapsed CPU Time: 16.6995
```


Grasping the search space ...

- Number of seconds since the Big Bang: $\approx 10^{17}$

Grasping the search space ...

- Number of seconds since the Big Bang: $\approx 10^{17}$
- Number of fundamental particles in observable universe: $\approx 10^{80}$ (or $\approx 10^{85}$)

Grasping the search space ...

- Number of seconds since the Big Bang: $\approx 10^{17}$
- Number of fundamental particles in observable universe: $\approx 10^{80}$ (or $\approx 10^{85}$)
- Search space with 15775 propositional variables (worst case):

Grasping the search space ...

- Number of seconds since the Big Bang: $\approx 10^{17}$
- Number of fundamental particles in observable universe: $\approx 10^{80}$ (or $\approx 10^{85}$)
- Search space with 15775 propositional variables (worst case):
- \# of assignments to 15775 variables: > 10^{4748} !
- Obs: SAT solvers in the late 90s (but formula dependent)

Grasping the search space ...

- Number of seconds since the Big Bang: $\approx 10^{17}$
- Number of fundamental particles in observable universe: $\approx 10^{80}$ (or $\approx 10^{85}$)
- Search space with 15775 propositional variables (worst case):
- \# of assignments to 15775 variables: > 10^{4748} !
- Obs: SAT solvers in the late 90s (but formula dependent)
- Search space with 2832875 propositional variables (worst case):

Grasping the search space ...

- Number of seconds since the Big Bang: $\approx 10^{17}$
- Number of fundamental particles in observable universe: $\approx 10^{80}$ (or $\approx 10^{85}$)
- Search space with 15775 propositional variables (worst case):
- \# of assignments to 15775 variables: > 10^{4748} !
- Obs: SAT solvers in the late 90s (but formula dependent)
- Search space with 2832875 propositional variables (worst case):
- \# of assignments to $>2.8 \times 10^{6}$ variables: $\gg 10^{840000}$!!
- Obs: SAT solvers at present (but formula dependent)

SAT can make the difference - propositional abduction

- Propositional abduction instances
- Implicit hitting set dualization (IHSD)

SAT can make the difference - axiom pinpointing

- $\mathcal{E} \mathcal{L}^{+}$medical ontologies
- Minimal unsatisfiability (MUSes) \& maximal satisfiability (MCSes) \& Enumeration

SAT can make the difference - model based diagnosis

- Model-based diagnosis problem instances
- Maximum satisfiability (MaxSAT)

CDCL SAT is ubiquitous in problem solving

CDCL SAT is ubiquitous in problem solving

What this tutorial covers ...

- Part \#0: Basic definitions \& notation

What this tutorial covers

- Part \#0: Basic definitions \& notation
- Part \#1: Problem solving with SAT oracles
- Minimal unsatisfiability (MUS)
- Maximum satisfiability (MaxSAT)
- Maximal satisfiability (MSS/MCS)
- Minimal Sets over Monotone Predicates (MSMP)

Contact me

- Enumeration problems
- MUSes
- Quantification problems
- (Approximate) counting problems
- ...

What this tutorial covers

- Part \#0: Basic definitions \& notation
- Part \#1: Problem solving with SAT oracles
- Minimal unsatisfiability (MUS)
- Maximum satisfiability (MaxSAT)
- Maximal satisfiability (MSS/MCS)
- Minimal Sets over Monotone Predicates (MSMP)

Contact me

- Enumeration problems
- MUSes
- Quantification problems

Contact me

- (Approximate) counting problems
- ...
- Part \#2: Exploring with SAT oracles
- Brief introduction to PySAT

What this tutorial covers

- Part \#0: Basic definitions \& notation
- Part \#1: Problem solving with SAT oracles
- Minimal unsatisfiability (MUS)
- Maximum satisfiability (MaxSAT)
- Maximal satisfiability (MSS/MCS)
- Minimal Sets over Monotone Predicates (MSMP)

Contact me

- Enumeration problems
- MUSes
- Quantification problems

Contact me

- (Approximate) counting problems
- ...
- Part \#2: Exploring with SAT oracles
- Brief introduction to PySAT
- Part \#3: Research directions

What this tutorial does not cover ...

- CDCL SAT solvers
- Clause learning; search restarts; watched literals; VSIDS; ...
- Modeling in propositional logic

Contact me

- Cardinality constraints; pseudo-boolean constraints; circuits; general constraints; etc.
- Many (high-profile) applications
- Minimal/minimum decision trees/sets
[NIPM18, IPNM18]
- ML model explanations as prime implicants
- ...

$0 \quad$ Basic Definitions

Preliminaries

- Variables: $w, x, y, z, a, b, c, \ldots$
- Literals: $w, \bar{x}, \bar{y}, a, \ldots$, but also $\neg w, \neg y, \ldots$
- Clauses: disjunction of literals or set of literals
- Formula: conjunction of clauses or set of clauses
- Model (satisfying assignment): partial/total mapping from variables to $\{0,1\}$ that satisfies formula
- Each clause can be satisfied, falsified, but also unit, unresolved
- Formula can be SAT/UNSAT

Preliminaries

- Variables: $w, x, y, z, a, b, c, \ldots$
- Literals: $w, \bar{x}, \bar{y}, a, \ldots$, but also $\neg w, \neg y, \ldots$
- Clauses: disjunction of literals or set of literals
- Formula: conjunction of clauses or set of clauses
- Model (satisfying assignment): partial/total mapping from variables to $\{0,1\}$ that satisfies formula
- Each clause can be satisfied, falsified, but also unit, unresolved
- Formula can be SAT/UNSAT
- Example:

$$
\mathcal{F} \triangleq(r) \wedge(\bar{r} \vee s) \wedge(\bar{w} \vee a) \wedge(\bar{x} \vee b) \wedge(\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
$$

- Example models:

Preliminaries

- Variables: $w, x, y, z, a, b, c, \ldots$
- Literals: $w, \bar{x}, \bar{y}, a, \ldots$, but also $\neg w, \neg y, \ldots$
- Clauses: disjunction of literals or set of literals
- Formula: conjunction of clauses or set of clauses
- Model (satisfying assignment): partial/total mapping from variables to $\{0,1\}$ that satisfies formula
- Each clause can be satisfied, falsified, but also unit, unresolved
- Formula can be SAT/UNSAT
- Example:

$$
\mathcal{F} \triangleq(r) \wedge(\bar{r} \vee s) \wedge(\bar{w} \vee a) \wedge(\bar{x} \vee b) \wedge(\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
$$

- Example models:
- $\{r, s, a, b, c, d\}$

Preliminaries

- Variables: $w, x, y, z, a, b, c, \ldots$
- Literals: $w, \bar{x}, \bar{y}, a, \ldots$, but also $\neg w, \neg y, \ldots$
- Clauses: disjunction of literals or set of literals
- Formula: conjunction of clauses or set of clauses
- Model (satisfying assignment): partial/total mapping from variables to $\{0,1\}$ that satisfies formula
- Each clause can be satisfied, falsified, but also unit, unresolved
- Formula can be SAT/UNSAT
- Example:

$$
\mathcal{F} \triangleq(r) \wedge(\bar{r} \vee s) \wedge(\bar{w} \vee a) \wedge(\bar{x} \vee b) \wedge(\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
$$

- Example models:
- $\{r, s, a, b, c, d\}$
- $\{r, s, \bar{x}, y, \bar{w}, z, \bar{a}, b, c, d\}$

Resolution

- Resolution rule:

$$
\frac{(\alpha \vee x) \quad(\beta \vee \bar{x})}{(\alpha \vee \beta)}
$$

- Complete proof system for propositional logic

Resolution

- Resolution rule:

$$
\frac{(\alpha \vee x) \quad(\beta \vee \bar{x})}{(\alpha \vee \beta)}
$$

- Complete proof system for propositional logic

- Extensively used with (CDCL) SAT solvers

Unit propagation

$$
\begin{aligned}
\mathcal{F}= & (r) \wedge(\bar{r} \vee s) \wedge \\
& (\bar{w} \vee a) \wedge(\bar{x} \vee \bar{a} \vee b) \wedge \\
& (\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
\end{aligned}
$$

Unit propagation

$$
\begin{aligned}
\mathcal{F}= & (r) \wedge(\bar{r} \vee s) \wedge \\
& (\bar{w} \vee a) \wedge(\bar{x} \vee \bar{a} \vee b) \wedge \\
& (\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
\end{aligned}
$$

- Decisions / Variable Branchings:
$w=1, x=1, y=1, z=1$

Unit propagation

$$
\begin{aligned}
\mathcal{F}= & (r) \wedge(\bar{r} \vee s) \wedge \\
& (\bar{w} \vee a) \wedge(\bar{x} \vee \bar{a} \vee b) \wedge \\
& (\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
\end{aligned}
$$

- Decisions / Variable Branchings:
$w=1, x=1, y=1, z=1$
- Unit clause rule: if clause is unit, its sole literal must be satisfied

Unit propagation

> Level Dec. Unit Prop.

$$
\begin{aligned}
\mathcal{F}= & (r) \wedge(\bar{r} \vee s) \wedge \\
& (\bar{w} \vee a) \wedge(\bar{x} \vee \bar{a} \vee b) \wedge \\
& (\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
\end{aligned}
$$

- Decisions / Variable Branchings:
$w=1, x=1, y=1, z=1$

- Unit clause rule: if clause is unit, its sole literal must be satisfied

Unit propagation

Level Dec. Unit Prop.

$$
\begin{aligned}
\mathcal{F}= & (r) \wedge(\bar{r} \vee s) \wedge \\
& (\bar{w} \vee a) \wedge(\bar{x} \vee \bar{a} \vee b) \wedge \\
& (\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
\end{aligned}
$$

- Decisions / Variable Branchings:

$$
w=1, x=1, y=1, z=1
$$

- Unit clause rule: if clause is unit, its sole literal must be satisfied
- Additional definitions:
- Antecedent (or reason) of an implied assignment
- $(\bar{b} \vee \bar{c} \vee d)$ for d
- Associate assignment with decision levels
- $w=1 @ 1, x=1 @ 2, y=1 @ 3, z=1 @ 4$
- $r=1 @ 0, d=1 @ 4, \ldots$

Resolution proofs

- Refutation of unsatisfiable formula by iterated resolution operations produces resolution proof
- An example:
$\mathcal{F}=(\bar{c}) \wedge(\bar{b}) \wedge(\bar{a} \vee c) \wedge(a \vee b) \wedge(a \vee \bar{d}) \wedge(\bar{a} \vee \bar{d})$
- Resolution proof:

- Modern SAT solvers can generate resolution proofs using clauses learned by the solver

Unsatisfiable cores \& proof traces

- CNF formula:

$$
\mathcal{F}=(\bar{c}) \wedge(\bar{b}) \wedge(\bar{a} \vee c) \wedge(a \vee b) \wedge(a \vee \bar{d}) \wedge(\bar{a} \vee \bar{d})
$$

Level Dec. Unit Prop.

Implication graph with conflict

Unsatisfiable cores \& proof traces

- CNF formula:

$$
\mathcal{F}=(\bar{c}) \wedge(\bar{b}) \wedge(\bar{a} \vee c) \wedge(a \vee b) \wedge(a \vee \bar{d}) \wedge(\bar{a} \vee \bar{d})
$$

Level Dec. Unit Prop.

Proof trace $\perp:(\bar{a} \vee c)(a \vee b)(\bar{c})(\bar{b})$

Unsatisfiable cores \& proof traces

- CNF formula:

$$
\mathcal{F}=(\bar{c}) \wedge(\bar{b}) \wedge(\bar{a} \vee c) \wedge(a \vee b) \wedge(a \vee \bar{d}) \wedge(\bar{a} \vee \bar{d})
$$

Resolution proof follows structure of conflicts

Unsatisfiable cores \& proof traces

- CNF formula:

$$
\mathcal{F}=(\bar{c}) \wedge(\bar{b}) \wedge(\bar{a} \vee c) \wedge(a \vee b) \wedge(a \vee \bar{d}) \wedge(\bar{a} \vee \bar{d})
$$

Level Dec. Unit Prop.

Unsatisfiable subformula (core): $(\bar{c}),(\bar{b}),(\bar{a} \vee c),(a \vee b)$

Problem Solving with SAT Oracles

So what are SAT oracles?

So what are SAT oracles?

Computing a model

- Q: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula \mathcal{F}, using an NP oracle

Computing a model

- Q: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula \mathcal{F}, using an NP oracle

- A possible algorithm:

1. Analyze each variable $x_{i} \in\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{var}(\mathcal{F})$, in order
2. $i \leftarrow 1$ and $\mathcal{F}_{i} \triangleq \mathcal{F}$
3. Call NP oracle on $\mathcal{F}_{i} \wedge\left(x_{i}\right)$
4. If answer is yes, then $\mathcal{F}_{i+1} \leftarrow \mathcal{F}_{i} \cup\left(x_{i}\right)$
5. If answer is no, then $\mathcal{F}_{i+1} \leftarrow \mathcal{F}_{i} \cup\left(\neg x_{i}\right)$
6. $i \leftarrow i+1$
7. If $i \leq n$, then repeat from 3 .

Computing a model

- Q: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula \mathcal{F}, using an NP oracle

- A possible algorithm:

1. Analyze each variable $x_{i} \in\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{var}(\mathcal{F})$, in order
2. $i \leftarrow 1$ and $\mathcal{F}_{i} \triangleq \mathcal{F}$
3. Call NP oracle on $\mathcal{F}_{i} \wedge\left(x_{i}\right)$
4. If answer is yes, then $\mathcal{F}_{i+1} \leftarrow \mathcal{F}_{i} \cup\left(x_{i}\right)$
5. If answer is no, then $\mathcal{F}_{i+1} \leftarrow \mathcal{F}_{i} \cup\left(\neg x_{i}\right)$
6. $i \leftarrow i+1$
7. If $i \leq n$, then repeat from 3 .

- Algorithm needs $|\operatorname{var}(\mathcal{F})|$ calls to an NP oracle

Computing a model

- Q: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula \mathcal{F}, using an NP oracle

- A possible algorithm:

1. Analyze each variable $x_{i} \in\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{var}(\mathcal{F})$, in order
2. $i \leftarrow 1$ and $\mathcal{F}_{i} \triangleq \mathcal{F}$
3. Call NP oracle on $\mathcal{F}_{i} \wedge\left(x_{i}\right)$
4. If answer is yes, then $\mathcal{F}_{i+1} \leftarrow \mathcal{F}_{i} \cup\left(x_{i}\right)$
5. If answer is no, then $\mathcal{F}_{i+1} \leftarrow \mathcal{F}_{i} \cup\left(\neg x_{i}\right)$
6. $i \leftarrow i+1$
7. If $i \leq n$, then repeat from 3 .

- Algorithm needs $|\operatorname{var}(\mathcal{F})|$ calls to an NP oracle
- Note: Cannot solve FSAT with logarithmic number of NP oracle calls, unless $\mathrm{P}=\mathrm{NP}$
- FSAT is an example of a function problem

Computing a model

- Q: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula \mathcal{F}, using an NP oracle

- A possible algorithm:

1. Analyze each variable $x_{i} \in\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{var}(\mathcal{F})$, in order
2. $i \leftarrow 1$ and $\mathcal{F}_{i} \triangleq \mathcal{F}$
3. Call NP oracle on $\mathcal{F}_{i} \wedge\left(x_{i}\right)$
4. If answer is yes, then $\mathcal{F}_{i+1} \leftarrow \mathcal{F}_{i} \cup\left(x_{i}\right)$
5. If answer is no, then $\mathcal{F}_{i+1} \leftarrow \mathcal{F}_{i} \cup\left(\neg x_{i}\right)$
6. $i \leftarrow i+1$
7. If $i \leq n$, then repeat from 3 .

- Algorithm needs $|\operatorname{var}(\mathcal{F})|$ calls to an NP oracle
- Note: Cannot solve FSAT with logarithmic number of NP oracle calls, unless $P=N P$
- FSAT is an example of a function problem
- Note: FSAT can be solved with one SAT oracle call

Beyond decision problems

Beyond decision problems

Answer	Problem Type
Yes/No	Decision Problems

Beyond decision problems

Answer	Problem Type
Yes/No	Decision Problems
Some solution	

Beyond decision problems

Answer	Problem Type
Yes/No	Decision Problems
Some solution	Function Problems

Beyond decision problems

Answer	Problem Type
Yes/No	Decision Problems
Some solution	Function Problems
All solutions	

Beyond decision problems

Answer	Problem Type
Yes/No	Decision Problems
Some solution	Function Problems
All solutions	Enumeration Problems

Beyond decision problems

Answer	Problem Type
Yes/No	Decision Problems
Some solution	Function Problems
All solutions	Enumeration Problems
\# solutions	

Beyond decision problems

Answer	Problem Type
Yes/No	Decision Problems
Some solution	Function Problems
All solutions	Enumeration Problems
\# solutions	Counting Problems

... and beyond NP - decision and function problems

Oracle-based problem solving - simple scenario

Oracle-based problem solving - general setting

Many problems to solve - within FPNP

Answer	Problem Type
Yes/No	Decision Problems
Some solution	Function Problems
All solutions	Enumeration Problems

Many problems to solve - within FPNP

Answer	Problem Type
Yes/No	Decision Problems
Some solution	Function Problems
All solutions	Enumeration Problems

Many problems to solve - within FPNP

Answer	Problem Type
Yes/No	Decision Problems
Some solution	Function Problems
All solutions	Enumeration Problems

Selection of topics

Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability

Analyzing inconsistency - timetabling

Subject	Day	Time	Room
Intro Prog	Mon	$9: 00-10: 00$	6.2 .46
Intro AI	Tue	10:00-11:00	8.2 .37
Databases	Tue	11:00-12:00	8.2 .37
\ldots (hundreds of consistent constraints)			
Linear Alg	Mon	$9: 00-10: 00$	6.2 .46
Calculus	Tue	10:00-11:00	8.2 .37
Adv Calculus	Mon	$9: 00-10: 00$	8.2 .06
\ldots. (hundreds of consistent constraints)			

- Set of constraints consistent / satisfiable?

Analyzing inconsistency - timetabling

Subject	Day	Time	Room
Intro Prog	Mon	$9: 00-10: 00$	6.2 .46
Intro AI	Tue	10:00-11:00	8.2 .37
Databases	Tue	11:00-12:00	8.2 .37
\ldots (hundreds of consistent constraints)			
Linear Alg	Mon	$9: 00-10: 00$	6.2 .46
Calculus	Tue	10:00-11:00	8.2 .37
Adv Calculus	Mon	$9: 00-10: 00$	8.2 .06
\ldots. (hundreds of consistent constraints)			

- Set of constraints consistent / satisfiable? No

Analyzing inconsistency - timetabling

Subject	Day	Time	Room
Intro Prog	Mon	$9: 00-10: 00$	6.2 .46
Intro AI	Tue	10:00-11:00	8.2 .37
Databases	Tue	11:00-12:00	8.2 .37
\ldots (hundreds of consistent constraints)			
Linear Alg	Mon	$9: 00-10: 00$	6.2 .46
Calculus	Tue	10:00-11:00	8.2 .37
Adv Calculus	Mon	$9: 00-10: 00$	8.2 .06
\ldots. (hundreds of consistent constraints)			

- Set of constraints consistent / satisfiable? No
- Minimal subset of constraints that is inconsistent / unsatisfiable?

Analyzing inconsistency - timetabling

Subject	Day	Time	Room
Intro Prog	Mon	9:00-10:00	6.2.46
Intro AI	Tue	10:00-11:00	8.2.37
Databases	Tue	11:00-12:00	8.2.37
... (hundreds of consistent constraints)			
Linear Alg	Mon	9:00-10:00	6.2.46
Calculus	Tue	10:00-11:00	8.2.37
Adv Calculus	Mon	9:00-10:00	8.2.06
... (hundreds of consistent constraints)			

- Set of constraints consistent / satisfiable? No
- Minimal subset of constraints that is inconsistent / unsatisfiable?

Analyzing inconsistency - timetabling

Subject	Day	Time	Room
Intro Prog	Mon	$9: 00-10: 00$	6.2 .46
Intro AI	Tue	10:00-11:00	8.2 .37
Databases	Tue	11:00-12:00	8.2 .37
... (hundreds of consistent constraints)			
Linear Alg	Mon	$9: 00-10: 00$	6.2 .46
Calculus	Tue	10:00-11:00	8.2 .37
Adv Calculus	Mon	$9: 00-10: 00$	8.2 .06
... (hundreds of consistent constraints)			

- Set of constraints consistent / satisfiable? No
- Minimal subset of constraints that is inconsistent / unsatisfiable?
- Minimal subset of constraints whose removal makes remaining constraints consistent?

Analyzing inconsistency - timetabling

Subject	Day	Time	Room
Intro Prog	Mon	$9: 00-10: 00$	6.2 .46
Intro AI	Tue	10:00-11:00	8.2 .37
Databases	Tue	11:00-12:00	8.2 .37
... (hundreds of consistent constraints)			
Linear Alg	Mon	$9: 00-10: 00$	6.2 .46
Calculus	Tue	$10: 00-11: 00$	8.2 .37
Adv Calculus	Mon	$9: 00-10: 00$	8.2 .06
... (hundreds of consistent constraints)			

- Set of constraints consistent / satisfiable? No
- Minimal subset of constraints that is inconsistent / unsatisfiable?
- Minimal subset of constraints whose removal makes remaining constraints consistent?

Analyzing inconsistency - timetabling

Subject	Day	Time	Room
Intro Prog	Mon	$9: 00-10: 00$	6.2 .46
Intro AI	Tue	10:00-11:00	8.2 .37
Databases	Tue	11:00-12:00	8.2 .37
... (hundreds of consistent constraints)			
Linear Alg	Mon	$9: 00-10: 00$	6.2 .46
Calculus	Tue	$10: 00-11: 00$	8.2 .37
Adv Calculus	Mon	$9: 00-10: 00$	8.2 .06
... (hundreds of consistent constraints)			

- Set of constraints consistent / satisfiable? No
- Minimal subset of constraints that is inconsistent / unsatisfiable?
- Minimal subset of constraints whose removal makes remaining constraints consistent?
- How to compute these minimal sets?

Analyzing inconsistency - timetabling

Subject	Day	Time	Room
Intro Prog	Mon	$9: 00-10: 00$	6.2 .46
Intro AI	Tue	10:00-11:00	8.2 .37
Databases	Tue	11:00-12:00	8.2 .37
... (hundreds of consistent constraints)			
Linear Alg	Mon	$9: 00-10: 00$	6.2 .46
Calculus	Tue	$10: 00-11: 00$	8.2 .37
Adv Calculus	Mon	$9: 00-10: 00$	8.2 .06
... (hundreds of consistent constraints)			

- Set of constraints consistent / satisfiable? No
- Minimal subset of constraints that is inconsistent / unsatisfiable?
- Minimal subset of constraints whose removal makes remaining constraints consistent?
- How to compute these minimal sets?

Unsatisfiable formulas - MUSes \& MCSes

- Given $\mathcal{F}(\vDash \perp), \mathcal{M} \subseteq \mathcal{F}$ is a Minimal Unsatisfiable Subset (MUS) iff $\mathcal{M} \vDash \perp$ and $\forall_{\mathcal{M}^{\prime} \subsetneq \mathcal{M}}, \mathcal{M}^{\prime} \not \vDash \perp$

$$
\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3}\right) \wedge\left(x_{4}\right) \wedge\left(x_{5} \vee x_{6}\right)
$$

Unsatisfiable formulas - MUSes \& MCSes

- Given $\mathcal{F}(\vDash \perp), \mathcal{M} \subseteq \mathcal{F}$ is a Minimal Unsatisfiable Subset (MUS) iff $\mathcal{M} \vDash \perp$ and $\forall_{\mathcal{M}^{\prime} \subsetneq \mathcal{M}}, \mathcal{M}^{\prime} \not \models \perp$

$$
\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3}\right) \wedge\left(x_{4}\right) \wedge\left(x_{5} \vee x_{6}\right)
$$

Unsatisfiable formulas - MUSes \& MCSes

- Given $\mathcal{F}(\vDash \perp), \mathcal{M} \subseteq \mathcal{F}$ is a Minimal Unsatisfiable Subset (MUS) iff $\mathcal{M} \vDash \perp$ and $\forall_{\mathcal{M}^{\prime} \subsetneq \mathcal{M}}, \mathcal{M}^{\prime} \not \vDash \perp$

$$
\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3}\right) \wedge\left(x_{4}\right) \wedge\left(x_{5} \vee x_{6}\right)
$$

- Given $\mathcal{F}(\vDash \perp), \mathcal{C} \subseteq \mathcal{F}$ is a Minimal Correction Subset (MCS) iff $\mathcal{F} \backslash \mathcal{C} \not \not \neq \perp$ and $\forall_{\mathcal{C}^{\prime} \subseteq \mathcal{C}}, \mathcal{F} \backslash \mathcal{C}^{\prime} \vDash \perp . \mathcal{S}=\mathcal{F} \backslash \mathcal{C}$ is MSS

$$
\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3}\right) \wedge\left(x_{4}\right) \wedge\left(x_{5} \vee x_{6}\right)
$$

Unsatisfiable formulas - MUSes \& MCSes

- Given $\mathcal{F}(\vDash \perp), \mathcal{M} \subseteq \mathcal{F}$ is a Minimal Unsatisfiable Subset (MUS) iff $\mathcal{M} \vDash \perp$ and $\forall_{\mathcal{M}^{\prime} \subsetneq \mathcal{M}}, \mathcal{M}^{\prime} \not \vDash \perp$

$$
\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3}\right) \wedge\left(x_{4}\right) \wedge\left(x_{5} \vee x_{6}\right)
$$

- Given $\mathcal{F}(\vDash \perp), \mathcal{C} \subseteq \mathcal{F}$ is a Minimal Correction Subset (MCS) iff $\mathcal{F} \backslash \mathcal{C} \not \not \neq \perp$ and $\forall_{\mathcal{C}^{\prime} \subseteq \mathcal{C}}, \mathcal{F} \backslash \mathcal{C}^{\prime} \vDash \perp . \mathcal{S}=\mathcal{F} \backslash \mathcal{C}$ is MSS
$\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3}\right) \wedge\left(x_{4}\right) \wedge\left(x_{5} \vee x_{6}\right)$

Unsatisfiable formulas - MUSes \& MCSes

- Given $\mathcal{F}(\vDash \perp), \mathcal{M} \subseteq \mathcal{F}$ is a Minimal Unsatisfiable Subset (MUS) iff $\mathcal{M} \vDash \perp$ and $\forall_{\mathcal{M}^{\prime} \subsetneq \mathcal{M}}, \mathcal{M}^{\prime} \not \vDash \perp$

$$
\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3}\right) \wedge\left(x_{4}\right) \wedge\left(x_{5} \vee x_{6}\right)
$$

- Given $\mathcal{F}(\vDash \perp), \mathcal{C} \subseteq \mathcal{F}$ is a Minimal Correction Subset (MCS) iff $\mathcal{F} \backslash \mathcal{C} \nvdash \perp$ and $\forall_{\mathcal{C}^{\prime} \subseteq \mathcal{C}}, \mathcal{F} \backslash \mathcal{C}^{\prime} \vDash \perp . \mathcal{S}=\mathcal{F} \backslash \mathcal{C}$ is MSS

$$
\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3}\right) \wedge\left(x_{4}\right) \wedge\left(x_{5} \vee x_{6}\right)
$$

- MUSes and MCSes are (subset-)minimal sets
- MUSes and minimal hitting sets of MCSes and vice-versa
- Easy to see why

Unsatisfiable formulas - MUSes \& MCSes

- Given $\mathcal{F}(\vDash \perp), \mathcal{M} \subseteq \mathcal{F}$ is a Minimal Unsatisfiable Subset (MUS) iff $\mathcal{M} \vDash \perp$ and $\forall_{\mathcal{M}^{\prime} \subsetneq \mathcal{M}}, \mathcal{M}^{\prime} \not \vDash \perp$

$$
\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3}\right) \wedge\left(x_{4}\right) \wedge\left(x_{5} \vee x_{6}\right)
$$

- Given $\mathcal{F}(\vDash \perp), \mathcal{C} \subseteq \mathcal{F}$ is a Minimal Correction Subset (MCS) iff $\mathcal{F} \backslash \mathcal{C} \not \models \perp$ and $\forall_{\mathcal{C}^{\prime} \subseteq \mathcal{C}}, \mathcal{F} \backslash \mathcal{C}^{\prime} \vDash \perp . \mathcal{S}=\mathcal{F} \backslash \mathcal{C}$ is MSS

$$
\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3}\right) \wedge\left(x_{4}\right) \wedge\left(x_{5} \vee x_{6}\right)
$$

- MUSes and MCSes are (subset-)minimal sets
- MUSes and minimal hitting sets of MCSes and vice-versa
- Easy to see why
- How to compute MUSes \& MCSes efficiently with SAT oracles?

Why it matters?

- Analysis of over-constrained systems
- Model-based diagnosis
- Software fault localization
- Spreadsheet debugging
- Debugging relational specifications (e.g. Alloy)
- Type error debugging
- Axiom pinpointing in description logics
- ...
- Model checking of software \& hardware systems
- Inconsistency measurement
- Minimal models; MinCost SAT; ...
- ...
- Find minimal relaxations to recover consistency
- But also minimum relaxations to recover consistency, eg. MaxSAT
- Find minimal explanations of inconsistency
- But also minimum explanations of inconsistency, eg. Smallest MUS

Why it matters?

- Analysis of over-constrained systems
- Model-based diagnosis
- Software fault localization
- Spreadsheet debugging
- Debugging relational specifications (e.g. Alloy)
- Type error debugging
- Axiom pinpointing in description logics
- ...
- Model checking of software \& hardware systems
- Inconsistency measurement
- Minimal models; MinCost SAT; ...

- ...
- Find minimal relaxations to recover consistency
- But also minimum relaxations to recover consistency, eg. MaxSAT
- Find minimal explanations of inconsistency
- But also minimum explanations of inconsistency, eg. Smallest MUS

Deletion-based algorithm

Input : Set \mathcal{F}
Output: Minimal subset \mathcal{M}
begin
$\mathcal{M} \leftarrow \mathcal{F}$
foreach $c \in \mathcal{M}$ do
if $\neg \operatorname{SAT}(\mathcal{M} \backslash\{c\})$ then $\mathcal{M} \leftarrow \mathcal{M} \backslash\{c\} \quad / /$ If $\neg \operatorname{SAT}(\mathcal{M} \backslash\{c\})$, then $c \notin$ MUS
return \mathcal{M}
// Final \mathcal{M} is MUS
end

- Number of oracles calls: $\mathcal{O}(m)$

Deletion-based algorithm

Input : Set \mathcal{F}

Output: Minimal subset \mathcal{M} begin
$\mathcal{M} \leftarrow \mathcal{F}$
foreach $c \in \mathcal{M}$ do if $\neg \operatorname{SAT}(\mathcal{M} \backslash\{c\})$ then $\mathcal{M} \leftarrow \mathcal{M} \backslash\{c\}$
return \mathcal{M} end

- Number of oracles calls: $\mathcal{O}(m)$

Deletion - MUS example

$$
\begin{array}{ccccccc}
c_{1} & c_{2} & c_{3} & c_{4} & c_{5} & c_{6} & c_{7} \\
\hline\left(\neg x_{1} \vee \neg x_{2}\right) & \left(x_{1}\right) & \left(x_{2}\right) & \left(\neg x_{3} \vee \neg x_{4}\right) & \left(x_{3}\right) & \left(x_{4}\right) & \left(x_{5} \vee x_{6}\right) \\
& & & & & & \\
\cline { 5 - 7 } \mathcal{M} & \mathcal{M} \backslash\{c\} & \neg \operatorname{SAT}(\mathcal{M} \backslash\{c\}) & \text { Outcome } \\
\hline
\end{array}
$$

Deletion - MUS example

c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}
$\left(\neg x_{1} \vee \neg x_{2}\right)$	$\left(x_{1}\right)$	$\left(x_{2}\right)$	$\left(\neg x_{3} \vee \neg x_{4}\right)$	$\left(x_{3}\right)$	$\left(x_{4}\right)$	$\left(x_{5} \vee x_{6}\right)$

\mathcal{M}	$\mathcal{M} \backslash\{c\}$	$\neg \mathrm{SAT}(\mathcal{M} \backslash\{c\})$	Outcome
$c_{1} . . c_{7}$	$c_{2} . . c_{7}$	1	Drop c_{1}

Deletion - MUS example

c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}
$\left(\neg x_{1} \vee \neg x_{2}\right)$	$\left(x_{1}\right)$	$\left(x_{2}\right)$	$\left(\neg x_{3} \vee \neg x_{4}\right)$	$\left(x_{3}\right)$	$\left(x_{4}\right)$	$\left(x_{5} \vee x_{6}\right)$
\mathcal{M}	$\mathcal{M} \backslash\{c\}$	$\neg \operatorname{SAT}(\mathcal{M} \backslash\{c\})$	Outcome			
$c_{1} . . c_{7}$	$c_{2} . . c_{7}$	1	Drop c_{1}			
$c_{2} . . c_{7}$	$c_{3} . . c_{7}$	1	Drop c_{2}			

Deletion - MUS example

c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}
$\left(\neg x_{1} \vee \neg x_{2}\right)$	$\left(x_{1}\right)$	$\left(x_{2}\right)$	$\left(\neg x_{3} \vee \neg x_{4}\right)$	$\left(x_{3}\right)$	$\left(x_{4}\right)$	$\left(x_{5} \vee x_{6}\right)$
\mathcal{M}	$\mathcal{M} \backslash\{c\}$	$\neg \operatorname{SAT}(\mathcal{M} \backslash\{c\})$	Outcome			
$c_{1} . . c_{7}$	$c_{2} . . c_{7}$	1	Drop c_{1}			
$c_{2} . . c_{7}$	$c_{3} . . c_{7}$	1	Drop c_{2}			
$c_{3} . . c_{7}$	$c_{4} . . c_{7}$	1	Drop c_{3}			

Deletion - MUS example

c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}
$\left(\neg x_{1} \vee \neg x_{2}\right)$	$\left(x_{1}\right)$	$\left(x_{2}\right)$	$\left(\neg x_{3} \vee \neg x_{4}\right)$	$\left(x_{3}\right)$	$\left(x_{4}\right)$	$\left(x_{5} \vee x_{6}\right)$
\mathcal{M}	$\mathcal{M} \backslash\{c\}$	$\neg \operatorname{SAT}(\mathcal{M} \backslash\{c\})$	Outcome			
$c_{1} . . c_{7}$	$c_{2} . . c_{7}$	1	Drop c_{1}			
$c_{2} . . c_{7}$	$c_{3} . . c_{7}$	1	Drop c_{2}			
$c_{3} . . c_{7}$	$c_{4} . . c_{7}$	1	Drop c_{3}			
$c_{4} . . c_{7}$	$c_{5} . . c_{7}$	0	Keep c_{4}			

Deletion - MUS example

$$
\begin{array}{ccccccc}
c_{1} & c_{2} & c_{3} & c_{4} & c_{5} & c_{6} & c_{7} \\
\hline\left(\neg x_{1} \vee \neg x_{2}\right) & \left(x_{1}\right) & \left(x_{2}\right) & \left(\neg x_{3} \vee \neg x_{4}\right) & \left(x_{3}\right) & \left(x_{4}\right) & \left(x_{5} \vee x_{6}\right)
\end{array}
$$

\mathcal{M}	$\mathcal{M} \backslash\{c\}$	$\neg \operatorname{SAT}(\mathcal{M} \backslash\{c\})$	Outcome
$c_{1} . . c_{7}$	$c_{2} . . c_{7}$	1	Drop c_{1}
$c_{2} . . c_{7}$	$c_{3} . . c_{7}$	1	Drop c_{2}
$c_{3} . . c_{7}$	$c_{4} . . c_{7}$	1	Drop c_{3}
$c_{4} . . c_{7}$	$c_{5} . . c_{7}$	0	Keep c_{4}
$c_{4} . . c_{7}$	$c_{4} c_{6} c_{7}$	0	Keep c_{5}

Deletion - MUS example

$$
\begin{array}{ccccccc}
c_{1} & c_{2} & c_{3} & c_{4} & c_{5} & c_{6} & c_{7} \\
\hline\left(\neg x_{1} \vee \neg x_{2}\right) & \left(x_{1}\right) & \left(x_{2}\right) & \left(\neg x_{3} \vee \neg x_{4}\right) & \left(x_{3}\right) & \left(x_{4}\right) & \left(x_{5} \vee x_{6}\right)
\end{array}
$$

\mathcal{M}	$\mathcal{M} \backslash\{c\}$	$\neg \operatorname{SAT}(\mathcal{M} \backslash\{c\})$	Outcome
$c_{1} . . c_{7}$	$c_{2} . . c_{7}$	1	Drop c_{1}
$c_{2} . . c_{7}$	$C_{3} . . c_{7}$	1	Drop c_{2}
$c_{3} . . c_{7}$	$C_{4} . . c_{7}$	1	Drop c_{3}
$c_{4} . . c_{7}$	$c_{5} . . c_{7}$	0	Keep c_{4}
$C_{4} . . c_{7}$	$C_{4} C_{6} c_{7}$	0	Keep c_{5}
$c_{4} . . c_{7}$	$C_{4} C_{5} c_{7}$	0	Keep c_{6}

Deletion - MUS example

c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}
$\left(\neg x_{1} \vee \neg x_{2}\right)$	$\left(x_{1}\right)$	$\left(x_{2}\right)$	$\left(\neg x_{3} \vee \neg x_{4}\right)$	$\left(x_{3}\right)$	$\left(x_{4}\right)$	$\left(x_{5} \vee x_{6}\right)$

\mathcal{M}	$\mathcal{M} \backslash\{c\}$	$\neg \operatorname{SAT}(\mathcal{M} \backslash\{c\})$	Outcome
$c_{1} . . c_{7}$	$c_{2} . . c_{7}$	1	Drop c_{1}
$c_{2} . . c_{7}$	$c_{3} . . c_{7}$	1	Drop c_{2}
$c_{3} . . c_{7}$	$C_{4} . . c_{7}$	1	Drop c_{3}
$c_{4} . . c_{7}$	$c_{5} . . c_{7}$	0	Keep c_{4}
$c_{4} . . c_{7}$	$c_{4} c_{6} c_{7}$	0	Keep c_{5}
$c_{4} . . c_{7}$	$c_{4} c_{5} c_{7}$	0	Keep c_{6}
$c_{4} . . c_{7}$	$c_{4} . . c_{6}$	1	Drop c_{7}

Deletion - MUS example

c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}
$\left(\neg x_{1} \vee \neg x_{2}\right)$	$\left(x_{1}\right)$	$\left(x_{2}\right)$	$\left(\neg x_{3} \vee \neg x_{4}\right)$	$\left(x_{3}\right)$	$\left(x_{4}\right)$	$\left(x_{5} \vee x_{6}\right)$

\mathcal{M}	$\mathcal{M} \backslash\{c\}$	$\neg \operatorname{SAT}(\mathcal{M} \backslash\{c\})$	Outcome
$c_{1} . . c_{7}$	$c_{2} . . c_{7}$	1	Drop c_{1}
$c_{2} . . c_{7}$	$c_{3} . . c_{7}$	1	Drop c_{2}
$c_{3} . . c_{7}$	$C_{4} . . c_{7}$	1	Drop c_{3}
$c_{4} . . c_{7}$	$c_{5} . . c_{7}$	0	Keep c_{4}
$c_{4} . . c_{7}$	$c_{4} c_{6} c_{7}$	0	Keep c_{5}
$c_{4} . . c_{7}$	$c_{4} c_{5} c_{7}$	0	Keep c_{6}
$c_{4} . . c_{7}$	$c_{4} . . c_{6}$	1	Drop c_{7}

- MUS: $\left\{c_{4}, c_{5}, c_{6}\right\}$

Many MUS algorithms

- Formula \mathcal{F} with m clauses k the size of largest minimal subset

Algorithm	Oracle Calls	Reference
Insertion-based	$\mathcal{O}(k m)$	[dSNP88, vMW08]
MCS_MUS	$\mathcal{O}(k m)$	${ }^{\text {[BK15] }}$
Deletion-based	$\mathcal{O}(m)$	[CD91, BDTw93]
Linear insertion	$\mathcal{O}(m)$	[MSL11, BLM12]
Dichotomic	$\mathcal{O}(k \log (m))$	[HLLB06]
QuickXplain	$\mathcal{O}\left(k+k \log \left(\frac{m}{k}\right)\right)$	[Jun04]
Progression	$\mathcal{O}\left(k \log \left(1+\frac{m}{k}\right)\right)$	[MJB13]

- Note: Lower bound in $\mathrm{FP}_{\|}{ }_{\|}^{\mathrm{NP}}$ and upper bound in $\mathrm{FP}^{N P}$
- Oracle calls correspond to testing unsatisfiability with SAT solver
- Practical optimizations: clause set trimming; clause set refinement; redundancy removal; (recursive) model rotation

Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability

How to enumerate MUSes?

How to enumerate MUSes?

1. Standard solution:

Exploit HS duality between MCSes and MUSes

MCSes are MHSes of MUSes and vice-versa

- Enumerate all MCSes and then enumerate all MHSes of the MCSes, i.e. compute all the MUSes
- Problematic if too many MCSes, and we want the MUSes
- And, often we want to enumerate the MUSes

How to enumerate MUSes?

1. Standard solution:

Exploit HS duality between MCSes and MUSes

MCSes are MHSes of MUSes and vice-versa

- Enumerate all MCSes and then enumerate all MHSes of the MCSes, i.e. compute all the MUSes
- Problematic if too many MCSes, and we want the MUSes
- And, often we want to enumerate the MUSes

2. Exploit recent advances in 2QBF solving

How to enumerate MUSes?

1. Standard solution:

Exploit HS duality between MCSes and MUSes

MCSes are MHSes of MUSes and vice-versa

- Enumerate all MCSes and then enumerate all MHSes of the MCSes, i.e. compute all the MUSes
- Problematic if too many MCSes, and we want the MUSes
- And, often we want to enumerate the MUSes

2. Exploit recent advances in 2QBF solving
3. Implicit hitting set dualization

- Most effective if MUSes provided to user on-demand

How to enumerate MUSes, preferably?

1. Keep sets representing computed MUSes (set \mathcal{N}) and MCSes (set \mathcal{P})

How to enumerate MUSes, preferably?

1. Keep sets representing computed MUSes (set \mathcal{N}) and MCSes (set \mathcal{P})
2. Compute minimal hitting set (MHS) H of \mathcal{N}, subject to \mathcal{P}

- Must not repeat MUSes
- Must not repeat MCSes
- Maximize clauses picked, i.e. prefer to check satisfiability on as many clauses as possible
- If unsatisfiable: no more MUSes/MCSes to enumerate

How to enumerate MUSes, preferably?

1. Keep sets representing computed MUSes (set \mathcal{N}) and MCSes (set \mathcal{P})
2. Compute minimal hitting set (MHS) H of \mathcal{N}, subject to \mathcal{P}

- Must not repeat MUSes
- Must not repeat MCSes
- Maximize clauses picked, i.e. prefer to check satisfiability on as many clauses as possible
- If unsatisfiable: no more MUSes/MCSes to enumerate

3. Target set: \mathcal{F}^{\prime}, i.e. \mathcal{F} minus clauses from H

How to enumerate MUSes, preferably?

1. Keep sets representing computed MUSes (set \mathcal{N}) and MCSes (set \mathcal{P})
2. Compute minimal hitting set (MHS) H of \mathcal{N}, subject to \mathcal{P}

- Must not repeat MUSes
- Must not repeat MCSes
- Maximize clauses picked, i.e. prefer to check satisfiability on as many clauses as possible
- If unsatisfiable: no more MUSes/MCSes to enumerate

3. Target set: \mathcal{F}^{\prime}, i.e. \mathcal{F} minus clauses from H
4. Run SAT oracle on \mathcal{F}^{\prime}

- If \mathcal{F}^{\prime} unsatisfiable: extract new MUS
- Otherwise, H is already an MCS of \mathcal{F}

How to enumerate MUSes, preferably?

1. Keep sets representing computed MUSes (set \mathcal{N}) and MCSes (set \mathcal{P})
2. Compute minimal hitting set (MHS) H of \mathcal{N}, subject to \mathcal{P}

- Must not repeat MUSes
- Must not repeat MCSes
- Maximize clauses picked, i.e. prefer to check satisfiability on as many clauses as possible
- If unsatisfiable: no more MUSes/MCSes to enumerate

3. Target set: \mathcal{F}^{\prime}, i.e. \mathcal{F} minus clauses from H
4. Run SAT oracle on \mathcal{F}^{\prime}

- If \mathcal{F}^{\prime} unsatisfiable: extract new MUS
- Otherwise, H is already an MCS of \mathcal{F}

5. Repeat loop

MARCO/eMUS algorithm

Input: CNF formula \mathcal{F}

1 begin

$2 \quad I \leftarrow\left\{p_{i} \mid c_{i} \in \mathcal{F}\right\}$
$3 \quad(\mathcal{P}, \mathcal{N}) \leftarrow(\emptyset, \emptyset)$
4 while true do
$(s t, H) \leftarrow$ MinHittingSet $(\mathcal{N}, \mathcal{P})$
if not $s t$ then return
$\mathcal{F}^{\prime} \leftarrow\left\{c_{i} \mid p_{i} \in I \wedge p_{i} \notin H\right\}$
if not $\operatorname{SAT}\left(\mathcal{F}^{\prime}\right)$ then
$\mathcal{M} \leftarrow$ ComputeMUS $\left(\mathcal{F}^{\prime}\right)$
ReportMUS (M)
$\mathcal{N} \leftarrow \mathcal{N} \cup\left\{\neg p_{i} \mid c_{i} \in \mathcal{M}\right\}$
else
$\mathcal{P} \leftarrow \mathcal{P} \cup\left\{p_{i} \mid p_{i} \in H\right\}$
14 end

An example

$\operatorname{MinHS}(\mathcal{N})$	\mathcal{F}^{\prime}	MUS $/ \mathrm{MCS}$
$p_{1} p_{2} p_{3} p_{4} p_{5} p_{6} p_{7}$	$\mathrm{~S} / \mathrm{U}$	
1111111	U	$\neg p_{1} \vee \neg p_{2} \vee \neg p_{3}$
0111111	U	$\neg p_{6} \vee \neg p_{7}$
0111101	S	$p_{1} \vee p_{6}$
1011101	U	$\neg p_{1} \vee \neg p_{4} \vee \neg p_{5}$
1101010	S	$p_{3} \vee p_{5} \vee p_{7}$
1010110	S	$p_{2} \vee p_{4} \vee p_{7}$
1100101	S	$p_{3} \vee p_{4} \vee p_{6}$
0111110	S	$p_{1} \vee p_{7}$
1101001	S	$p_{3} \vee p_{5} \vee p_{6}$
1010101	S	$p_{2} \vee p_{4} \vee p_{6}$
1011001	S	$p_{2} \vee p_{5} \vee p_{6}$
1100110	S	$p_{3} \vee p_{4} \vee p_{7}$
1011010	S	$p_{2} \vee p_{5} \vee p_{7}$

An example

$\operatorname{MinHS}(\mathcal{N})$	\mathcal{F}^{\prime}	$\mathrm{MUS} / \mathrm{MCS}$
$p_{1} p_{2} p_{3} p_{4} p_{5} p_{6} p_{7}$	$\mathrm{~S} / \mathrm{U}$	
1111111	U	$\neg p_{1} \vee \neg p_{2} \vee \neg p_{3}$
0111111	U	$\neg p_{6} \vee \neg p_{7}$
0111101	S	$p_{1} \vee p_{6}$
1011101	U	$\neg p_{1} \vee \neg p_{4} \vee \neg p_{5}$
1101010	S	$p_{3} \vee p_{5} \vee p_{7}$
1010110	S	$p_{2} \vee p_{4} \vee p_{7}$
1100101	S	$p_{3} \vee p_{4} \vee p_{6}$
0111110	S	$p_{1} \vee p_{7}$
1101001	S	$p_{3} \vee p_{5} \vee p_{6}$
1010101	S	$p_{2} \vee p_{4} \vee p_{6}$
1011001	S	$p_{2} \vee p_{5} \vee p_{6}$
1100110	S	$p_{3} \vee p_{4} \vee p_{7}$
1011010	S	$p_{2} \vee p_{5} \vee p_{7}$

An example

$\operatorname{MinHS}(\mathcal{N})$	\mathcal{F}^{\prime}	$\mathrm{MUS} / \mathrm{MCS}$
$p_{1} p_{2} p_{3} p_{4} p_{5} p_{6} p_{7}$	$\mathrm{~S} / \mathrm{U}$	
1111111	U	$\neg p_{1} \vee \neg p_{2} \vee \neg p_{3}$
0111111	U	$\neg p_{6} \vee \neg p_{7}$
0111101	S	$p_{1} \vee p_{6}$
1011101	U	$\neg p_{1} \vee \neg p_{4} \vee \neg p_{5}$
1101010	S	$p_{3} \vee p_{5} \vee p_{7}$
1010110	S	$p_{2} \vee p_{4} \vee p_{7}$
1100101	S	$p_{3} \vee p_{4} \vee p_{6}$
0111110	S	$p_{1} \vee p_{7}$
1101001	S	$p_{3} \vee p_{5} \vee p_{6}$
1010101	S	$p_{2} \vee p_{4} \vee p_{6}$
1011001	S	$p_{2} \vee p_{5} \vee p_{6}$
1100110	S	$p_{3} \vee p_{4} \vee p_{7}$
1011010	S	$p_{2} \vee p_{5} \vee p_{7}$

An example

$\operatorname{MinHS}(\mathcal{N})$	\mathcal{F}^{\prime}	MUS $/ \mathrm{MCS}$
$p_{1} p_{2} p_{3} p_{4} p_{5} p_{6} p_{7}$	$\mathrm{~S} / \mathrm{U}$	
1111111	U	$\neg p_{1} \vee \neg p_{2} \vee \neg p_{3}$
0111111	U	$\neg p_{6} \vee \neg p_{7}$
0111101	S	$p_{1} \vee p_{6}$
1011101	U	$\neg p_{1} \vee \neg p_{4} \vee \neg p_{5}$
1101010	S	$p_{3} \vee p_{5} \vee p_{7}$
1010110	S	$p_{2} \vee p_{4} \vee p_{7}$
1100101	S	$p_{3} \vee p_{4} \vee p_{6}$
0111110	S	$p_{1} \vee p_{7}$
1101001	S	$p_{3} \vee p_{5} \vee p_{6}$
1010101	S	$p_{2} \vee p_{4} \vee p_{6}$
1011001	S	$p_{2} \vee p_{5} \vee p_{6}$
1100110	S	$p_{3} \vee p_{4} \vee p_{7}$
1011010	S	$p_{2} \vee p_{5} \vee p_{7}$

An example

$\operatorname{MinHS}(\mathcal{N})$	\mathcal{F}^{\prime}	MUS $/ \mathrm{MCS}$
$p_{1} p_{2} p_{3} p_{4} p_{5} p_{6} p_{7}$	$\mathrm{~S} / \mathrm{U}$	
1111111	U	$\neg p_{1} \vee \neg p_{2} \vee \neg p_{3}$
0111111	U	$\neg p_{6} \vee \neg p_{7}$
0111101	S	$p_{1} \vee p_{6}$
1011101	U	$\neg p_{1} \vee \neg p_{4} \vee \neg p_{5}$
1101010	S	$p_{3} \vee p_{5} \vee p_{7}$
1010110	S	$p_{2} \vee p_{4} \vee p_{7}$
1100101	S	$p_{3} \vee p_{4} \vee p_{6}$
0111110	S	$p_{1} \vee p_{7}$
1101001	S	$p_{3} \vee p_{5} \vee p_{6}$
1010101	S	$p_{2} \vee p_{4} \vee p_{6}$
1011001	S	$p_{2} \vee p_{5} \vee p_{6}$
1100110	S	$p_{3} \vee p_{4} \vee p_{7}$
1011010	S	$p_{2} \vee p_{5} \vee p_{7}$

An example

$\operatorname{MinHS}(\mathcal{N})$	\mathcal{F}^{\prime}	MUS $/ \mathrm{MCS}$
$p_{1} p_{2} p_{3} p_{4} p_{5} p_{6} p_{7}$	$\mathrm{~S} / \mathrm{U}$	
1111111	U	$\neg p_{1} \vee \neg p_{2} \vee \neg p_{3}$
0111111	U	$\neg p_{6} \vee \neg p_{7}$
0111101	S	$p_{1} \vee p_{6}$
1011101	U	$\neg p_{1} \vee \neg p_{4} \vee \neg p_{5}$
1101010	S	$p_{3} \vee p_{5} \vee p_{7}$
1010110	S	$p_{2} \vee p_{4} \vee p_{7}$
1100101	S	$p_{3} \vee p_{4} \vee p_{6}$
0111110	S	$p_{1} \vee p_{7}$
1101001	S	$p_{3} \vee p_{5} \vee p_{6}$
1010101	S	$p_{2} \vee p_{4} \vee p_{6}$
1011001	S	$p_{2} \vee p_{5} \vee p_{6}$
1100110	S	$p_{3} \vee p_{4} \vee p_{7}$
1011010	S	$p_{2} \vee p_{5} \vee p_{7}$

An example

$\operatorname{MinHS}(\mathcal{N})$	\mathcal{F}^{\prime}	MUS $/ \mathrm{MCS}$
$p_{1} p_{2} p_{3} p_{4} p_{5} p_{6} p_{7}$	$\mathrm{~S} / \mathrm{U}$	
1111111	U	$\neg p_{1} \vee \neg p_{2} \vee \neg p_{3}$
0111111	U	$\neg p_{6} \vee \neg p_{7}$
0111101	S	$p_{1} \vee p_{6}$
1011101	U	$\neg p_{1} \vee \neg p_{4} \vee \neg p_{5}$
1101010	S	$p_{3} \vee p_{5} \vee p_{7}$
1010110	S	$p_{2} \vee p_{4} \vee p_{7}$
1100101	S	$p_{3} \vee p_{4} \vee p_{6}$
0111110	S	$p_{1} \vee p_{7}$
1101001	S	$p_{3} \vee p_{5} \vee p_{6}$
1010101	S	$p_{2} \vee p_{4} \vee p_{6}$
1011001	S	$p_{2} \vee p_{5} \vee p_{6}$
1100110	S	$p_{3} \vee p_{4} \vee p_{7}$
1011010	S	$p_{2} \vee p_{5} \vee p_{7}$

Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability

Recap MaxSAT

$x_{6} \vee x_{2}$	$\neg x_{6} \vee x_{2}$	$\neg x_{2} \vee x_{1}$	$\neg x_{1}$
$\neg x_{6} \vee x_{8}$	$x_{6} \vee \neg x_{8}$	$x_{2} \vee x_{4}$	$\neg x_{4} \vee x_{5}$
$x_{7} \vee x_{5}$	$\neg x_{7} \vee x_{5}$	$\neg x_{5} \vee x_{3}$	$\neg x_{3}$

- Given unsatisfiable formula, find largest subset of clauses that is satisfiable

Recap MaxSAT

- Given unsatisfiable formula, find largest subset of clauses that is satisfiable
- A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula

Recap MaxSAT

$$
\begin{array}{llll}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

- Given unsatisfiable formula, find largest subset of clauses that is satisfiable
- A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula
- The MaxSAT solution is one of the smallest MCSes

Recap MaxSAT

$$
\begin{array}{cccc}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

- Given unsatisfiable formula, find largest subset of clauses that is satisfiable
- A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula
- The MaxSAT solution is one of the smallest MCSes
- Note: Clauses can have weights \& there can be hard clauses

Recap MaxSAT

$$
\begin{array}{lllc}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

- Given unsatisfiable formula, find largest subset of clauses that is satisfiable
- A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula
- The MaxSAT solution is one of the smallest cost MCSes
- Note: Clauses can have weights \& there can be hard clauses

Recap MaxSAT

$$
\begin{array}{cccc}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

- Given unsatisfiable formula, find largest subset of clauses that is satisfiable
- A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula
- The MaxSAT solution is one of the smallest cost MCSes
- Note: Clauses can have weights \& there can be hard clauses
- Many practical applications

MaxSAT problem(s)

MaxSAT problem(s)

		Hard Clauses?	
		No	Yes
Weights?	No	Plain	Partial
	Yes	Weighted	Weighted Partial

MaxSAT problem(s)

		Hard Clauses?	
		No	Yes
Weights?	No	Plain	Partial
	Yes	Weighted	Weighted Partial

- Must satisfy hard clauses, if any
- Compute set of satisfied soft clauses with maximum cost
- Without weights, cost of each falsified soft clause is 1
- Or, compute set of falsified soft clauses with minimum cost (s.t. hard \& remaining soft clauses are satisfied)

MaxSAT problem(s)

		Hard Clauses?	
		No	Yes
Weights?	No	Plain	Partial
	Yes	Weighted	Weighted Partial

- Must satisfy hard clauses, if any
- Compute set of satisfied soft clauses with maximum cost
- Without weights, cost of each falsified soft clause is 1
- Or, compute set of falsified soft clauses with minimum cost (s.t. hard \& remaining soft clauses are satisfied)
- Note: goal is to compute set of satisfied (or falsified) clauses; not just the cost !

Issues with MaxSAT

- Unit propagation is unsound for MaxSAT

Issues with MaxSAT

- Unit propagation is unsound for MaxSAT
- Formula with all clauses soft:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

Issues with MaxSAT

- Unit propagation is unsound for MaxSAT

- Formula with all clauses soft:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

- After unit propagation:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

Issues with MaxSAT

- Unit propagation is unsound for MaxSAT

- Formula with all clauses soft:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

- After unit propagation:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

- Is 2 the MaxSAT solution??

Issues with MaxSAT

- Unit propagation is unsound for MaxSAT

- Formula with all clauses soft:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

- After unit propagation:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

- Is 2 the MaxSAT solution??
- No! Enough to either falsify (x) or (z)

Issues with MaxSAT

- Unit propagation is unsound for MaxSAT

- Formula with all clauses soft:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

- After unit propagation:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

- Is 2 the MaxSAT solution??
- No! Enough to either falsify (x) or (z)
- Cannot use unit propagation

Issues with MaxSAT

- Unit propagation is unsound for MaxSAT

- Formula with all clauses soft:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

- After unit propagation:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

- Is 2 the MaxSAT solution??
- No! Enough to either falsify (x) or (z)
- Cannot use unit propagation
- Cannot learn clauses (using unit propagation)

Issues with MaxSAT

- Unit propagation is unsound for MaxSAT

- Formula with all clauses soft:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

- After unit propagation:

$$
\left\{(x),\left(\neg x \vee y_{1}\right),\left(\neg x \vee y_{2}\right),\left(\neg y_{1} \vee \neg z\right),\left(\neg y_{2} \vee \neg z\right),(z)\right\}
$$

- Is 2 the MaxSAT solution??
- No! Enough to either falsify (x) or (z)
- Cannot use unit propagation
- Cannot learn clauses (using unit propagation)
- Need to solve MaxSAT using different techniques

Many MaxSAT approaches

Many MaxSAT approaches

- For practical (industrial) instances: core-guided \& iterative MHS approaches are the most effective

Core-guided solver performance - partial

Number x of instances solved in y seconds

Source: [MaxSAT 2014 organizers]

Core-guided solver performance - weighted partial

Number x of instances solved in y seconds

Source: [MaxSAT 2014 organizers]

Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability
Iterative SAT Solving
Core-Guided Algorithms
Minimum Hitting Sets

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{lllc}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

Example CNF formula

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{llll}
x_{6} \vee x_{2} \vee r_{1} & \neg x_{6} \vee x_{2} \vee r_{2} & \neg x_{2} \vee x_{1} \vee r_{3} & \neg x_{1} \vee r_{4} \\
\neg x_{6} \vee x_{8} \vee r_{5} & x_{6} \vee \neg x_{8} \vee r_{6} & x_{2} \vee x_{4} \vee r_{7} & \neg x_{4} \vee x_{5} \vee r_{8} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{11} & \neg x_{3} \vee r_{12} \\
& & & \\
\sum_{i=1}^{12} r_{i} \leq 12 & & &
\end{array}
$$

Relax all clauses; Set $U B=12+1$

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{lccc}
x_{6} \vee x_{2} \vee r_{1} & \neg x_{6} \vee x_{2} \vee r_{2} & \neg x_{2} \vee x_{1} \vee r_{3} & \neg x_{1} \vee r_{4} \\
\neg x_{6} \vee x_{8} \vee r_{5} & x_{6} \vee \neg x_{8} \vee r_{6} & x_{2} \vee x_{4} \vee r_{7} & \neg x_{4} \vee x_{5} \vee r_{8} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{11} & \neg x_{3} \vee r_{12} \\
\sum_{i=1}^{12} r_{i} \leq 12 & & &
\end{array}
$$

Formula is SAT; E.g. all $x_{i}=0$ and $r_{1}=r_{7}=r_{9}=1$ (i.e. cost $=3$)

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{llll}
x_{6} \vee x_{2} \vee r_{1} & \neg x_{6} \vee x_{2} \vee r_{2} & \neg x_{2} \vee x_{1} \vee r_{3} & \neg x_{1} \vee r_{4} \\
\neg x_{6} \vee x_{8} \vee r_{5} & x_{6} \vee \neg x_{8} \vee r_{6} & x_{2} \vee x_{4} \vee r_{7} & \neg x_{4} \vee x_{5} \vee r_{8} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{11} & \neg x_{3} \vee r_{12} \\
& & & \\
\sum_{i=1}^{12} r_{i} \leq 2 & & &
\end{array}
$$

Refine $U B=3$

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{llll}
x_{6} \vee x_{2} \vee r_{1} & \neg x_{6} \vee x_{2} \vee r_{2} & \neg x_{2} \vee x_{1} \vee r_{3} & \neg x_{1} \vee r_{4} \\
\neg x_{6} \vee x_{8} \vee r_{5} & x_{6} \vee \neg x_{8} \vee r_{6} & x_{2} \vee x_{4} \vee r_{7} & \neg x_{4} \vee x_{5} \vee r_{8} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{11} & \neg x_{3} \vee r_{12} \\
& & & \\
\sum_{i=1}^{12} r_{i} \leq 2 & & &
\end{array}
$$

Formula is SAT; E.g. $x_{1}=x_{2}=1 ; x_{3}=\ldots=x_{8}=0$ and $r_{4}=r_{9}=1$ (i.e. cost $=2$)

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{llll}
x_{6} \vee x_{2} \vee r_{1} & \neg x_{6} \vee x_{2} \vee r_{2} & \neg x_{2} \vee x_{1} \vee r_{3} & \neg x_{1} \vee r_{4} \\
\neg x_{6} \vee x_{8} \vee r_{5} & x_{6} \vee \neg x_{8} \vee r_{6} & x_{2} \vee x_{4} \vee r_{7} & \neg x_{4} \vee x_{5} \vee r_{8} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{11} & \neg x_{3} \vee r_{12} \\
& & & \\
\sum_{i=1}^{12} r_{i} \leq 1 & & &
\end{array}
$$

Refine $U B=2$

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{llll}
x_{6} \vee x_{2} \vee r_{1} & \neg x_{6} \vee x_{2} \vee r_{2} & \neg x_{2} \vee x_{1} \vee r_{3} & \neg x_{1} \vee r_{4} \\
\neg x_{6} \vee x_{8} \vee r_{5} & x_{6} \vee \neg x_{8} \vee r_{6} & x_{2} \vee x_{4} \vee r_{7} & \neg x_{4} \vee x_{5} \vee r_{8} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{11} & \neg x_{3} \vee r_{12} \\
& & & \\
\sum_{i=1}^{12} r_{i} \leq 1 & & &
\end{array}
$$

Formula is UNSAT; terminate

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{llll}
x_{6} \vee x_{2} \vee r_{1} & \neg x_{6} \vee x_{2} \vee r_{2} & \neg x_{2} \vee x_{1} \vee r_{3} & \neg x_{1} \vee r_{4} \\
\neg x_{6} \vee x_{8} \vee r_{5} & x_{6} \vee \neg x_{8} \vee r_{6} & x_{2} \vee x_{4} \vee r_{7} & \neg x_{4} \vee x_{5} \vee r_{8} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{11} & \neg x_{3} \vee r_{12} \\
& & & \\
\sum_{i=1}^{12} r_{i} \leq 1 & & &
\end{array}
$$

MaxSAT solution is last satisfied UB: $U B=2$

Basic MaxSAT with iterative SAT solving

$$
\begin{array}{llll}
x_{6} \vee x_{2} \vee r_{1} & \neg x_{6} \vee x_{2} \vee r_{2} & \neg x_{2} \vee x_{1} \vee r_{3} & \neg x_{1} \vee r_{4} \\
\neg x_{6} \vee x_{8} \vee r_{5} & x_{6} \vee \neg x_{8} \vee r_{6} & x_{2} \vee x_{4} \vee r_{7} & \neg x_{4} \vee x_{5} \vee r_{8} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{11} & \neg x_{3} \vee r_{12} \\
& & &
\end{array}
$$

MaxSAT solution is last satisfied UB: UB $=2$

AtMostk/PB constraints over all relaxation variables

Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability
Iterative SAT Solving
Core-Guided Algorithms
Minimum Hitting Sets

MSU3 core-guided algorithm

$$
\begin{array}{llll}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

Example CNF formula

MSU3 core-guided algorithm

$$
\begin{array}{ll}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5}
\end{array}
$$

Formula is UNSAT; OPT $\leq|\varphi|-1$; Get unsat core

MSU3 core-guided algorithm

$$
\begin{array}{cccc}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
\sum_{i=1}^{6} r_{i} \leq 1 & & &
\end{array}
$$

Add relaxation variables and AtMostk, $k=1$, constraint

MSU3 core-guided algorithm

Formula is (again) UNSAT; OPT $\leq|\varphi|-2$; Get unsat core

MSU3 core-guided algorithm

$$
\begin{array}{lccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
\sum_{i=1}^{10} r_{i} \leq 2 & & &
\end{array}
$$

Add new relaxation variables and update AtMostk, k=2, constraint

MSU3 core-guided algorithm

$$
\begin{array}{lccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
\sum_{i=1}^{10} r_{i} \leq 2 & & &
\end{array}
$$

Instance is now SAT

MSU3 core-guided algorithm

$$
\begin{array}{lccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
\sum_{i=1}^{10} r_{i} \leq 2 & & &
\end{array}
$$

MaxSAT solution is $|\varphi|-\mathcal{I}=12-2=10$

MSU3 core-guided algorithm

$$
\begin{array}{lccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
\sum_{i=1}^{10} r_{i} \leq 2 & & &
\end{array}
$$

MaxSAT solution is $|\varphi|-\mathcal{I}=12-2=10$

AtMostk/PB

constraints used

Relaxed soft clauses
become hard

MSU3 core-guided algorithm

$$
\begin{array}{cccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{9} & -x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
\sum_{i=1}^{10} r_{i} \leq 2 & & &
\end{array}
$$

MaxSAT solution is $|\varphi|-\mathcal{I}=12-2=10$

AtMostk/PB
constraints used

Some clauses not relaxed

Relaxed soft clauses become hard

Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability
Iterative SAT Solving
Core-Guided Algorithms
Minimum Hitting Sets

MHS approach for MaxSAT

$$
\begin{aligned}
& C_{1}=X_{6} \vee X_{2} \quad C_{2}=\neg X_{6} \vee X_{2} \quad C_{3}=\neg X_{2} \vee X_{1} \quad C_{4}=\neg X_{1} \\
& C_{5}=\neg X_{6} \vee X_{8} \quad C_{6}=X_{6} \vee \neg X_{8} \\
& C_{7}=X_{2} \vee X_{4} \\
& C_{8}=\neg X_{4} \vee X_{5} \\
& C_{9}=X_{7} \vee X_{5} \\
& C_{10}=\neg X_{7} \vee X_{5} \\
& C_{11}=\neg X_{5} \vee X_{3} \\
& C_{12}=\neg X_{3} \\
& \mathcal{K}=\emptyset
\end{aligned}
$$

- Find MHS of \mathcal{K} :

MHS approach for MaxSAT

$$
\begin{aligned}
& C_{1}=X_{6} \vee X_{2} \quad C_{2}=\neg X_{6} \vee X_{2} \quad C_{3}=\neg X_{2} \vee X_{1} \quad C_{4}=\neg X_{1} \\
& C_{5}=\neg X_{6} \vee X_{8} \quad C_{6}=X_{6} \vee \neg X_{8} \\
& C_{7}=X_{2} \vee X_{4} \\
& C_{8}=\neg X_{4} \vee X_{5} \\
& C_{9}=X_{7} \vee X_{5} \\
& C_{10}=\neg X_{7} \vee X_{5} \\
& C_{11}=\neg X_{5} \vee X_{3} \\
& C_{12}=\neg X_{3} \\
& \mathcal{K}=\emptyset
\end{aligned}
$$

- Find MHS of \mathcal{K} : \emptyset

MHS approach for MaxSAT

$$
\begin{aligned}
& C_{1}=X_{6} \vee X_{2} \quad C_{2}=\neg X_{6} \vee X_{2} \quad C_{3}=\neg X_{2} \vee X_{1} \quad C_{4}=\neg X_{1} \\
& C_{5}=\neg X_{6} \vee X_{8} \quad C_{6}=X_{6} \vee \neg X_{8} \\
& C_{7}=X_{2} \vee X_{4} \\
& C_{8}=\neg X_{4} \vee X_{5} \\
& C_{9}=X_{7} \vee X_{5} \\
& C_{10}=\neg X_{7} \vee X_{5} \\
& C_{11}=\neg X_{5} \vee X_{3} \\
& C_{12}=\neg X_{3} \\
& \mathcal{K}=\emptyset
\end{aligned}
$$

- Find MHS of $\mathcal{K}: \emptyset$
- $\operatorname{SAT}(\mathcal{F} \backslash \emptyset)$?

MHS approach for MaxSAT

$$
\begin{aligned}
& C_{1}=X_{6} \vee X_{2} \quad C_{2}=\neg X_{6} \vee X_{2} \quad C_{3}=\neg X_{2} \vee X_{1} \quad C_{4}=\neg X_{1} \\
& C_{5}=\neg X_{6} \vee X_{8} \quad C_{6}=X_{6} \vee \neg X_{8} \\
& C_{7}=X_{2} \vee X_{4} \\
& C_{8}=\neg X_{4} \vee X_{5} \\
& C_{9}=X_{7} \vee X_{5} \\
& C_{10}=\neg X_{7} \vee X_{5} \\
& C_{11}=\neg X_{5} \vee X_{3} \\
& C_{12}=\neg X_{3} \\
& \mathcal{K}=\emptyset
\end{aligned}
$$

- Find MHS of \mathcal{K} : \emptyset
- $\operatorname{SAT}(\mathcal{F} \backslash \emptyset)$? No

MHS approach for MaxSAT

$$
\begin{aligned}
& C_{1}=X_{6} \vee X_{2} \quad C_{2}=\neg X_{6} \vee X_{2} \quad C_{3}=\neg X_{2} \vee X_{1} \quad C_{4}=\neg X_{1} \\
& C_{5}=\neg X_{6} \vee X_{8} \quad C_{6}=X_{6} \vee \neg X_{8} \quad C_{7}=X_{2} \vee X_{4} \quad C_{8}=\neg X_{4} \vee X_{5} \\
& C_{9}=X_{7} \vee X_{5} \\
& C_{10}=\neg X_{7} \vee X_{5} \\
& C_{11}=\neg X_{5} \vee X_{3} \\
& C_{12}=\neg X_{3} \\
& \mathcal{K}=\emptyset
\end{aligned}
$$

- Find MHS of \mathcal{K} : \emptyset
- $\operatorname{SAT}(\mathcal{F} \backslash \emptyset)$? No
- Core of $\mathcal{F}:\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$

MHS approach for MaxSAT

$$
\left.\begin{array}{ccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1}
\end{array} c_{4}=\neg x_{1}\right]
$$

- Find MHS of \mathcal{K} : \emptyset
- $\operatorname{SAT}(\mathcal{F} \backslash \emptyset)$? No
- Core of $\mathcal{F}:\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$. Update \mathcal{K}

MHS approach for MaxSAT

$$
\begin{aligned}
& C_{1}=X_{6} \vee X_{2} \quad C_{2}=\neg X_{6} \vee X_{2} \quad c_{3}=\neg X_{2} \vee X_{1} \quad C_{4}=\neg X_{1} \\
& C_{5}=\neg X_{6} \vee X_{8} \quad C_{6}=X_{6} \vee \neg X_{8} \\
& C_{7}=X_{2} \vee X_{4} \\
& C_{8}=\neg X_{4} \vee X_{5} \\
& C_{9}=X_{7} \vee X_{5} \\
& C_{10}=\neg X_{7} \vee X_{5} \\
& C_{11}=\neg X_{5} \vee X_{3} \\
& C_{12}=\neg X_{3} \\
& \mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}\right\}
\end{aligned}
$$

- Find MHS of \mathcal{K} :

MHS approach for MaxSAT

$$
\left.\begin{array}{ccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1}
\end{array} c_{4}=\neg x_{1}\right]\left(c_{6}=x_{6}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5}\right\}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}\right\}$

MHS approach for MaxSAT

$$
\left.\begin{array}{ccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1}
\end{array} c_{4}=\neg x_{1}\right]
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}\right\}\right)$?

MHS approach for MaxSAT

$$
\begin{aligned}
& C_{1}=X_{6} \vee X_{2} \quad C_{2}=\neg X_{6} \vee X_{2} \quad C_{3}=\neg X_{2} \vee X_{1} \quad C_{4}=\neg X_{1} \\
& C_{5}=\neg X_{6} \vee X_{8} \quad C_{6}=X_{6} \vee \neg X_{8} \\
& C_{7}=X_{2} \vee X_{4} \\
& C_{8}=\neg X_{4} \vee X_{5} \\
& C_{9}=X_{7} \vee X_{5} \\
& C_{10}=\neg X_{7} \vee X_{5} \\
& C_{11}=\neg X_{5} \vee X_{3} \\
& C_{12}=\neg X_{3} \\
& \mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}\right\}
\end{aligned}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}\right\}\right)$? No

MHS approach for MaxSAT

$$
\left.\begin{array}{ccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1}
\end{array} c_{4}=\neg x_{1}\right]
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}\right\}\right)$? No
- Core of $\mathcal{F}:\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}$

MHS approach for MaxSAT

$$
\begin{array}{cccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1} & c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} & c_{6}=x_{6} \vee \neg x_{8} & c_{7}=x_{2} \vee x_{4} & c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} & c_{10}=\neg x_{7} \vee x_{5} & c_{11}=\neg x_{5} \vee x_{3} & c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}\right\}
\end{array}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}\right\}\right)$? No
- Core of $\mathcal{F}:\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}$. Update \mathcal{K}

MHS approach for MaxSAT

$$
\begin{array}{cccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1} & c_{4}=\neg X_{1} \\
c_{5}=\neg x_{6} \vee x_{8} & c_{6}=x_{6} \vee \neg x_{8} & c_{7}=x_{2} \vee x_{4} & c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} & c_{10}=\neg x_{7} \vee x_{5} & c_{11}=\neg x_{5} \vee x_{3} & c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}\right\}
\end{array}
$$

- Find MHS of \mathcal{K} :

MHS approach for MaxSAT

$$
\begin{array}{cccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1} & c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} & c_{6}=x_{6} \vee \neg x_{8} & c_{7}=x_{2} \vee x_{4} & c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} & c_{10}=\neg x_{7} \vee x_{5} & c_{11}=\neg x_{5} \vee x_{3} & c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}\right\}
\end{array}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}, c_{9}\right\}$

MHS approach for MaxSAT

$$
\begin{array}{cccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1} & c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} & c_{6}=x_{6} \vee \neg x_{8} & c_{7}=x_{2} \vee x_{4} & c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} & c_{10}=\neg x_{7} \vee x_{5} & c_{11}=\neg x_{5} \vee x_{3} & c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}\right\}
\end{array}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}, c_{9}\right\}\right)$?

MHS approach for MaxSAT

$$
\begin{array}{cccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1} & c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} & c_{6}=x_{6} \vee \neg x_{8} & c_{7}=x_{2} \vee x_{4} & c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} & c_{10}=\neg x_{7} \vee x_{5} & c_{11}=\neg x_{5} \vee x_{3} & c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}\right\}
\end{array}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}, c_{9}\right\}\right)$? No

MHS approach for MaxSAT

$$
\begin{array}{cccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1} & c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} & c_{6}=x_{6} \vee \neg x_{8} & c_{7}=x_{2} \vee x_{4} & c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} & c_{10}=\neg x_{7} \vee x_{5} & c_{11}=\neg x_{5} \vee x_{3} & c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}\right\}
\end{array}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}, c_{9}\right\}\right)$? No
- Core of $\mathcal{F}:\left\{c_{3}, c_{4}, c_{7}, c_{8}, c_{11}, c_{12}\right\}$

MHS approach for MaxSAT

$$
\left.\begin{array}{ccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1}
\end{array} c_{4}=\neg x_{1} ~ 子 x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5}\right\}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}, c_{9}\right\}\right)$? No
- Core of $\mathcal{F}:\left\{c_{3}, c_{4}, c_{7}, c_{8}, c_{11}, c_{12}\right\}$. Update \mathcal{K}

MHS approach for MaxSAT

$$
\begin{gathered}
c_{1}=x_{6} \vee x_{2} \\
c_{2}=\neg x_{6} \vee x_{2} \\
c_{5}=\neg x_{6} \vee x_{8} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
\\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\},\left\{c_{3}, c_{4}, c_{7}, c_{8}, c_{11}, c_{12}\right\}\right\}
\end{gathered}
$$

- Find MHS of \mathcal{K} :

MHS approach for MaxSAT

$$
\left.\begin{array}{ccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1}
\end{array} c_{4}=\neg x_{1} ~ 子 x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5}\right\}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{4}, c_{9}\right\}$

MHS approach for MaxSAT

$$
\left.\begin{array}{ccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1}
\end{array} c_{4}=\neg x_{1} ~ 子 x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5}\right\}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{4}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{4}, c_{9}\right\}\right)$?

MHS approach for MaxSAT

$$
\begin{array}{lllc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1} & c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} & c_{6}=x_{6} \vee \neg x_{8} & c_{7}=x_{2} \vee x_{4} & c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} & c_{10}=\neg x_{7} \vee x_{5} & c_{11}=\neg x_{5} \vee x_{3} & c_{12}=\neg x_{3}
\end{array}
$$

$$
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\},\left\{c_{3}, c_{4}, c_{7}, c_{8}, c_{11}, c_{12}\right\}\right\}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{4}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{4}, c_{9}\right\}\right)$? Yes

MHS approach for MaxSAT

$$
\begin{array}{lllc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1} & c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} & c_{6}=x_{6} \vee \neg x_{8} & c_{7}=x_{2} \vee x_{4} & c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} & c_{10}=\neg x_{7} \vee x_{5} & c_{11}=\neg x_{5} \vee x_{3} & c_{12}=\neg x_{3}
\end{array}
$$

$$
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\},\left\{c_{3}, c_{4}, c_{7}, c_{8}, c_{11}, c_{12}\right\}\right\}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{4}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{4}, c_{9}\right\}\right)$? Yes
- Terminate \& return 2

MaxSAT solving with SAT oracles - a sample

- A sample of recent algorithms:

Algorithm	\# Oracle Queries	Reference
Linear search SU	Exponential***	[BP10]
Binary search	Linear*	[FM06]
FM/WMSU1/WPM1	Exponential**	[FMO6, MP08, MMSP09, ABLO9, ABGL12]
WPM2	Exponential**	[AbL10, ABL13]
Bin-Core-Dis	Linear	[HMM11, MHM12]
Iterative MHS	Exponential	[DB11, DB13a, DB13b]
$\mathcal{O}(\log m)$ queries with SAT oracle, for (partial) unweighted MaxSAT		
Weighted case; depends on computed cores		
On \# bits of problem instance (due to weights)		

- But also additional recent work:
- Progression
- Soft cardinality constraints (OLL)
- Recent implementation (RC2, using PySAT) won 2018 MaxSAT Evaluation
- MaxSAT resolution

Exploring With SAT Oracles

Incremental SAT solving

- SAT solver often called multiple times on related formulas
- It helps to make incremental changes \& remember already learned clauses (that still hold)

Incremental SAT solving

- SAT solver often called multiple times on related formulas
- It helps to make incremental changes \& remember already learned clauses (that still hold)
- Most often used solution:

Incremental SAT solving

- SAT solver often called multiple times on related formulas
- It helps to make incremental changes \& remember already learned clauses (that still hold)
- Most often used solution:
- Use activation/selector/indicator variables

Given clause	Added to SAT solver
\mathfrak{c}_{i}	$\mathfrak{c}_{i} \vee \overline{\boldsymbol{s}_{i}}$

Incremental SAT solving

- SAT solver often called multiple times on related formulas
- It helps to make incremental changes \& remember already learned clauses (that still hold)
- Most often used solution:
- Use activation/selector/indicator variables

Given clause	Added to SAT solver
\mathfrak{c}_{i}	$\mathfrak{c}_{i} \vee \bar{s}_{i}$

- To activate clause: add assumption $s_{i}=1$

Incremental SAT solving

- SAT solver often called multiple times on related formulas
- It helps to make incremental changes \& remember already learned clauses (that still hold)
- Most often used solution:
- Use activation/selector/indicator variables

Given clause	Added to SAT solver
\mathfrak{c}_{i}	$\mathfrak{c}_{i} \vee \bar{s}_{i}$

- To activate clause: add assumption $s_{i}=1$
- To deactivate clause: add assumption $s_{i}=0$

Incremental SAT solving

- SAT solver often called multiple times on related formulas
- It helps to make incremental changes \& remember already learned clauses (that still hold)
- Most often used solution:
- Use activation/selector/indicator variables

Given clause	Added to SAT solver
\mathfrak{c}_{i}	$\mathfrak{c}_{i} \vee \bar{s}_{i}$

- To activate clause: add assumption $s_{i}=1$
- To deactivate clause: add assumption $s_{i}=0$
- To remove clause: add unit (\bar{s}_{i})

Incremental SAT solving

- SAT solver often called multiple times on related formulas
- It helps to make incremental changes \& remember already learned clauses (that still hold)
- Most often used solution:
- Use activation/selector/indicator variables

Given clause	Added to SAT solver
\mathfrak{c}_{i}	$\mathfrak{c}_{i} \vee \overline{s_{i}}$

- To activate clause: add assumption $s_{i}=1$
- To deactivate clause: add assumption $s_{i}=0$
- To remove clause: add unit (\bar{s}_{i})
- Any learned clause contains explanation given working assumptions (more next)

An example

$$
\begin{aligned}
& \mathcal{B}=\{(\bar{a} \vee b),(\bar{a} \vee c)\} \\
& \mathcal{S}=\left\{\left(a \vee \overline{s_{1}}\right),\left(\bar{b} \vee \bar{c} \vee \overline{s_{2}}\right),\left(a \vee \bar{c} \vee \overline{s_{3}}\right),\left(a \vee \bar{b} \vee \overline{s_{4}}\right)\right\}
\end{aligned}
$$

- Background knowledge \mathcal{B} : final clauses, i.e. no indicator variables
- Soft clauses \mathcal{S} : add indicator variables $\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$

An example

$$
\begin{aligned}
& \mathcal{B}=\{(\bar{a} \vee b),(\bar{a} \vee c)\} \\
& \mathcal{S}=\left\{\left(a \vee \overline{s_{1}}\right),\left(\bar{b} \vee \bar{c} \vee \overline{s_{2}}\right),\left(a \vee \bar{c} \vee \overline{s_{3}}\right),\left(a \vee \bar{b} \vee \overline{s_{4}}\right)\right\}
\end{aligned}
$$

- Background knowledge \mathcal{B} : final clauses, i.e. no indicator variables
- Soft clauses \mathcal{S} : add indicator variables $\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$
- E.g. given assumptions $\left\{s_{1}=1, s_{2}=0, s_{3}=0, s_{4}=1\right\}$, SAT solver handles formula:

$$
\mathcal{F}=\{(\bar{a} \vee b),(\bar{a} \vee c),(a),(a \vee \bar{b})\}
$$

which is satisfiable

Quiz - what happens in this case?

$$
\begin{aligned}
\mathcal{B} & =\{(\bar{a} \vee b),(\bar{a} \vee c)\} \\
\mathcal{S} & =\left\{\left(a \vee \overline{s_{1}}\right),\left(\bar{b} \vee \bar{c} \vee \overline{s_{2}}\right),\left(a \vee \bar{c} \vee \overline{s_{3}}\right),\left(a \vee \bar{b} \vee \overline{s_{4}}\right)\right\}
\end{aligned}
$$

- Given assumptions $\left\{s_{1}=1, s_{2}=1, s_{3}=1, s_{4}=1\right\}$?

Quiz - what happens in this case?

$$
\begin{aligned}
& \mathcal{B}=\{(\bar{a} \vee b),(\bar{a} \vee c)\} \\
& \mathcal{S}=\left\{\left(a \vee \overline{s_{1}}\right),\left(\bar{b} \vee \bar{c} \vee \overline{s_{2}}\right),\left(a \vee \bar{c} \vee \overline{s_{3}}\right),\left(a \vee \bar{b} \vee \overline{s_{4}}\right)\right\}
\end{aligned}
$$

- Given assumptions $\left\{s_{1}=1, s_{2}=1, s_{3}=1, s_{4}=1\right\}$?

Quiz - what happens in this case?

$$
\begin{aligned}
& \mathcal{B}=\{(\bar{a} \vee b),(\bar{a} \vee c)\} \\
& \mathcal{S}=\left\{\left(a \vee \overline{s_{1}}\right),\left(\bar{b} \vee \bar{c} \vee \overline{s_{2}}\right),\left(a \vee \bar{c} \vee \overline{s_{3}}\right),\left(a \vee \bar{b} \vee \overline{s_{4}}\right)\right\}
\end{aligned}
$$

- Given assumptions $\left\{s_{1}=1, s_{2}=1, s_{3}=1, s_{4}=1\right\}$?

- Unsatisfiable core: $1^{\text {st }}$ and $2^{\text {nd }}$ clauses of \mathcal{S}, given \mathcal{B}

Overview of PySAT

Overview of PySAT

- Open source, available on github

Overview of PySAT

- Open source, available on github
- Comprehensive list of SAT solvers
- Comprehensive list of cardinality encodings
- Fairly comprehensive documentation
- Several use cases

Available solvers

Solver	Version
Glucose	3.0
Glucose	4.1
Lingeling	bbc-9230380-160707
Minicard	1.2
Minisat	2.2 release
Minisat	GitHub version
MapleCM	SAT competition 2018
Maplesat	MapleCOMSPS_LRB
\ldots	\ldots

- Solvers can either be used incrementally or non-incrementally
- Tools can use multiple solvers, e.g. for hitting set dualization or CEGAR-based QBF solving
- URL: https:
//pysathq.github.io/docs/html/api/solvers.html

Formula manipulation

> Features
> CNF \& Weighted CNF (WCNF)
> Read formulas from file/string
> Write formulas to file
> Append clauses to formula
> Negate CNF formulas
> Translate between CNF and WCNF
> ID manager

- URL: https:
//pysathq.github.io/docs/html/api/formula.html

Available cardinality encodings

Name	Type
pairwise	AtMost1
bitwise	AtMost1
ladder	AtMost1
sequential counter	AtMostk
sorting network	AtMostk
cardinality network	AtMostk
totalizer	AtMostk
mtotalizer	AtMostk
kmtotalizer	AtMostk

- Also AtLeastK and EqualsK constraints
- URL:
https://pysathq.github.io/docs/html/api/card.html

Installation \& info

- Installation:
\$ [sudo] pip2|pip3 install python-sat
- Website: https://pysathq.github.io/

Basic interface - Python3 shell

```
>>> from pysat.card import *
>> am1 = CardEnc.atmost(lits =[1, -2, 3], encoding=EncType.pairwise)
>>> print(am1.clauses)
[[-1, 2], [-1, -3], [2, -3]]
>>>
>>> from pysat.solvers import Solver
>>> with Solver(name='m22', bootstrap_with=am1.clauses) as s:
... if s.solve(assumptions=[1, 2, 3]) == False:
    print(s.get_core())
[3, 1]
```


Basic interface - Python3 script

```
#!/usr/local/bin/python3
from sys import argv
from pysat.formula import CNF
from pysat.solvers import Glucose3, Solver
formula = CNF()
formula.append([-1, 2, 4])
formula.append([1, -2, 5])
formula.append([ -1, -2, 6])
formula.append([1, 2, 7])
g = Glucose3(bootstrap_with=formula.clauses)
if g.solve(assumptions=[-4, -5, -6, -7]) == False:
    print("Core: ", g.get_core())
```


Example: naive (deletion) MUS extraction

```
Input : Set \mathcal{F}
Output: Minimal subset \mathcal{M}
begin
    M}\leftarrow\mathcal{F
        foreach c\in\mathcal{M do}
            if }\neg\operatorname{SAT}(\mathcal{M}\{c})\mathrm{ then
                M}\leftarrow\mathcal{M}\{c}\quad/| If \negSAT(\mathcal{M}\{c}), then c\not\inMU
        return M
        // Final M is MUS
end
```

- Number of predicate tests: $\mathcal{O}(m)$

Naive MUS extraction I

```
def main():
    cnf = CNF(from_file=argv[1]) # create a CNF object from file
        (rnv, assumps) = add_assumps(cnf)
        oracle = Solver(name='g3', bootstrap_with=cnf.clauses)
        mus = find_mus(assumps, oracle)
        mus = [ref - rnv for ref in mus]
        print("MUS: ", mus)
if __name__== "__main__":
    main()
```


Naive MUS extraction II

```
def add_assumps(cnf):
    rnv = topv = cnf.nv
    assumps = [] # list of assumptions to use
    for i in range(len(cnf.clauses)):
        topv += 1
        assumps.append(topv) # register literal
        cnf.clauses[i].append(-topv) # extend clause with literal
    cnf.nv = cnf.nv + len(assumps) # update # of vars
    return rnv, assumps
def main():
    cnf = CNF(from_file=argv[1]) # create a CNF object from file
    (rnv, assumps) = add_assumps(cnf)
    oracle = Solver(name='g3', bootstrap_with=cnf.clauses)
    mus = find_mus(assumps, oracle)
    mus = [ref - rnv for ref in mus]
    print("MUS: ", mus)
if __name__== "__main__":
    main()
```


Naive MUS extraction III

```
from sys import argv
from pysat.formula import CNF
from pysat.solvers import Solver
def find_mus(assmp, oracle):
    i = 0
    while i < len(assmp):
    ts = assmp[:i] + assmp[(i+1):]
    if not oracle.solve(assumptions=ts):
        assmp = ts
        else:
        i += 1
    return assmp
```


Naive MUS extraction III

```
from sys import argv
from pysat.formula import CNF
from pysat.solvers import Solver
def find_mus(assmp, oracle):
    i = 0
    while i < len(assmp):
        ts = assmp[:i] + assmp[(i+1):]
        if not oracle.solve(assumptions=ts):
            assmp = ts
        else:
            i += 1
return assmp
```

Demo

A less naive MUS extractor

```
def clset_refine(assmp, oracle):
    assmp = sorted(assmp)
    while True:
            oracle.solve (assumptions=assmp)
            ts = sorted(oracle.get_core())
            if ts == assmp:
            break
            assmp = ts
    return assmp
# ...
def main():
        cnf = CNF(from_file=argv[1]) # create a CNF object from file
        (rnv, assumps) = add_assumps(cnf)
        oracle = Solver(name='g3', bootstrap_with=cnf.clauses)
        assumps = clset_refine(assumps, oracle)
        mus = find_mus(assumps, oracle)
        mus = [ref - rnv for ref in mus]
    print("MUS: ", mus)
if __name__== " __main__":
    main()
```


3
 A Glimpse of the Future

What next?

- Oracle-based computing
- Problems beyond NP: optimization, quantification, enumeration, (approximate) counting, decision

What next?

- Oracle-based computing
- Problems beyond NP: optimization, quantification, enumeration, (approximate) counting, decision
- Arms race for proof systems stronger than resolution/clause learning
- Extended Resolution (and equivalent)
- Cutting Planes (CP)
- MaxSAT-inspired proof systems

What next?

- Oracle-based computing
- Problems beyond NP: optimization, quantification, enumeration, (approximate) counting, decision
- Arms race for proof systems stronger than resolution/clause learning
- Extended Resolution (and equivalent)
- Cutting Planes (CP)
- MaxSAT-inspired proof systems
- Verification of ML models with SAT/SMT

What next?

- Oracle-based computing
- Problems beyond NP: optimization, quantification, enumeration, (approximate) counting, decision
- Arms race for proof systems stronger than resolution/clause learning
- Extended Resolution (and equivalent)
- Cutting Planes (CP)
- MaxSAT-inspired proof systems
- Verification of ML models with SAT/SMT
- Scalable explainable AI/ML
- Deep NNs operate as black-boxes
- Often important to provide small/intuitive explanations for predictions made

What next?

- Oracle-based computing
- Problems beyond NP: optimization, quantification, enumeration, (approximate) counting, decision
- Arms race for proof systems stronger than resolution/clause learning
- Extended Resolution (and equivalent)
- Cutting Planes (CP)
- MaxSAT-inspired proof systems
- Verification of ML models with SAT/SMT
- Scalable explainable AI/ML
- Deep NNs operate as black-boxes
- Often important to provide small/intuitive explanations for predictions made

Some final notes

- SAT is a low-level, but very powerful problem solving paradigm
- PySAT suggests a way to tackle this drawback, but there are others
- There is an ongoing revolution on problem solving with SAT (and SMT) oracles
- E.g. QBF, model-based diagnosis, explainability, theorem proving, program synthesis, ...
- The use of SAT oracles is impacting problem solving for many different complexity classes
- With well-known representative problems, e.g. QBF, \#SAT, etc.

Some final notes

- SAT is a low-level, but very powerful problem solving paradigm
- PySAT suggests a way to tackle this drawback, but there are others
- There is an ongoing revolution on problem solving with SAT (and SMT) oracles
- E.g. QBF, model-based diagnosis, explainability, theorem proving, program synthesis, ...
- The use of SAT oracles is impacting problem solving for many different complexity classes
- With well-known representative problems, e.g. QBF, \#SAT, etc.
- Many fascinating research topics out there !
- Connections with ML seem unavoidable

Sample of tools

- PySAT
- SAT solvers:
- MiniSat
- Glucose
- MaxSAT solvers:
- RC2
- MSCG
- OpenWBO
- MaxHS
- MUS extractors:
- MUSer
- MCS extractors:
- mcsXL
- LBX
- MCSIS
- Many other tools available from the ReasonLab server

Questions?

References i

[ABGL12] Carlos Ansótegui, Maria Luisa Bonet, Joel Gabàs, and Jordi Levy. Improving SAT-based weighted MaxSAT solvers.
In CP, pages 86-101, 2012.
[ABL09] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy.
Solving (weighted) partial MaxSAT through satisfiability testing.
In SAT, pages 427-440, 2009.
[ABL10] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy.
A new algorithm for weighted partial MaxSAT.
In AAAI, 2010.
[ABL13] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy.
SAT-based MaxSAT algorithms.
Artif. Intell., 196:77-105, 2013.
[AMM15] M. Fareed Arif, Carlos Mencía, and Joao Marques-Silva. Efficient MUS enumeration of horn formulae with applications to axiom pinpointing.
In SAT, volume 9340 of Lecture Notes in Computer Science, pages 324-342.
Springer, 2015.

References if

[BBI+18] Maria Luisa Bonet, Sam Buss, Alexey Ignatiev, Joao Marques-Silva, and António Morgado.
MaxSAT resolution with the dual rail encoding.
In AAAI, pages 6565-6572. AAAI Press, 2018.
[BDTW93] R. R. Bakker, F. Dikker, F. Tempelman, and P. M. Wognum.
Diagnosing and solving over-determined constraint satisfaction problems.
In IJCAI, pages 276-281, 1993.
[BK15] Fahiem Bacchus and George Katsirelos.
Using minimal correction sets to more efficiently compute minimal unsatisfiable sets.
In CAV (2), volume 9207 of Lecture Notes in Computer Science, pages 70-86.
Springer, 2015.
[BLM12] Anton Belov, Inês Lynce, and Joao Marques-Silva.
Towards efficient MUS extraction.
AI Commun., 25(2):97-116, 2012.
[BP10] Daniel Le Berre and Anne Parrain.
The Sat4j library, release 2.2.
JSAT, 7(2-3):59-6, 2010.

References iif

[BS05] James Bailey and Peter J. Stuckey. Discovery of minimal unsatisfiable subsets of constraints using hitting set dualization.
In PADL, pages 174-186, 2005.
[CD91] John W. Chinneck and Erik W. Dravnieks.
Locating minimal infeasible constraint sets in linear programs.
INFORMS Journal on Computing, 3(2):157-168, 1991.
[Coo71] Stephen A. Cook.
The complexity of theorem-proving procedures.
In STOC, pages 151-158. ACM, 1971.
[CT95] Zhi-Zhong Chen and Seinosuke Toda.
The complexity of selecting maximal solutions.
Inf. Comput., 119(2):231-239, 1995.
[DB11] Jessica Davies and Fahiem Bacchus.
Solving MAXSAT by solving a sequence of simpler SAT instances.
In CP, pages 225-239, 2011.

References iv

[DB13a] Jessica Davies and Fahiem Bacchus. Exploiting the power of MIP solvers in MAXSAT.
In SAT, pages 166-181, 2013.
[DB13b] Jessica Davies and Fahiem Bacchus.
Postponing optimization to speed up MAXSAT solving.
In CP, pages 247-262, 2013.
[DP60] Martin Davis and Hilary Putnam.
A computing procedure for quantification theory.
J. ACM, 7(3):201-215, 1960.
[dSNP88] J. L. de Siqueira N. and Jean-Francois Puget.
Explanation-based generalisation of failures.
In ECAI, pages 339-344, 1988.
[ES03] Niklas Eén and Niklas Sörensson.
An extensible SAT-solver.
In SAT, pages 502-518, 2003.

References \mathbf{v}

[FM06] Zhaohui Fu and Sharad Malik.
On solving the partial MAX-SAT problem.
In SAT, volume 4121 of Lecture Notes in Computer Science, pages 252-265.
Springer, 2006.
[GF93] Georg Gottlob and Christian G. Fermüller.
Removing redundancy from a clause.
Artif. Intell., 61(2):263-289, 1993.
[HLSB06] Fred Hemery, Christophe Lecoutre, Lakhdar Sais, and Frédéric Boussemart. Extracting MUCs from constraint networks.
In ECAI, pages 113-117, 2006.
[HMM11] Federico Heras, António Morgado, and Joao Marques-Silva.
Core-guided binary search algorithms for maximum satisfiability.
In AAAI. AAAI Press, 2011.
[IMM+14] Alexey Ignatiev, António Morgado, Vasco M. Manquinho, Inês Lynce, and Joao Marques-Silva.
Progression in maximum satisfiability.
In ECAI, volume 263 of Frontiers in Artificial Intelligence and Applications, pages 453-458. IOS Press, 2014.

References vi

[IMM16] Alexey Ignatiev, António Morgado, and Joao Marques-Silva. Propositional abduction with implicit hitting sets.
In ECAI, volume 285 of Frontiers in Artificial Intelligence and Applications, pages 1327-1335. IOS Press, 2016.
[IMM17] Alexey Ignatiev, António Morgado, and Joao Marques-Silva. On tackling the limits of resolution in SAT solving.
In SAT, volume 10491 of Lecture Notes in Computer Science, pages 164-183.
Springer, 2017.
[IMM18] Alexey Ignatiev, António Morgado, and Joao Marques-Silva. PySAT: A python toolkit for prototyping with SAT oracles. In SAT, volume 10929 of Lecture Notes in Computer Science, pages 428-437. Springer, 2018.
[INMS19] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. Abduction-based explanations for machine learning models.
In AAAI, 2019.

References vii

[IPNM18] Alexey Ignatiev, Filipe Pereira, Nina Narodytska, and João Marques-Silva. A SAT-based approach to learn explainable decision sets.
In IJCAR, volume 10900 of Lecture Notes in Computer Science, pages 627-645. Springer, 2018.
[Jun04] Ulrich Junker.
QUICKXPLAIN: preferred explanations and relaxations for over-constrained problems.
In AAAI, pages 167-172, 2004.
[LPMM16] Mark H. Liffiton, Alessandro Previti, Ammar Malik, and Joao Marques-Silva. Fast, flexible MUS enumeration.
Constraints, 21(2):223-250, 2016.
[LS08] Mark H. Liffiton and Karem A. Sakallah.
Algorithms for computing minimal unsatisfiable subsets of constraints.
J. Autom. Reasoning, 40(1):1-33, 2008.
[MDM14] António Morgado, Carmine Dodaro, and Joao Marques-Silva. Core-guided MaxSAT with soft cardinality constraints.
In CP, volume 8656 of Lecture Notes in Computer Science, pages 564-573. Springer, 2014.

References viif

[MHM12] António Morgado, Federico Heras, and João Marques-Silva. Improvements to core-guided binary search for MaxSAT. In SAT, volume 7317 of Lecture Notes in Computer Science, pages 284-297. Springer, 2012.
[MIM14] António Morgado, Alexey Ignatiev, and João Marques-Silva. MSCG: robust core-guided MaxSAT solving. JSAT, 9:129-134, 2014.
[MJB13] Joao Marques-Silva, Mikolás Janota, and Anton Belov. Minimal sets over monotone predicates in boolean formulae. In CAV, volume 8044 of Lecture Notes in Computer Science, pages 592-607. Springer, 2013.
[MJIM15] Joao Marques-Silva, Mikolás Janota, Alexey Ignatiev, and António Morgado. Efficient model based diagnosis with maximum satisfiability. In IJCAI, pages 1966-1972. AAAI Press, 2015.
[MMSP09] Vasco M. Manquinho, Joao Marques-Silva, and Jordi Planes. Algorithms for weighted boolean optimization.
In SAT, volume 5584 of Lecture Notes in Computer Science, pages 495-508. Springer, 2009.

References ix

[MP08] Joao Marques-Silva and Jordi Planes.
Algorithms for maximum satisfiability using unsatisfiable cores.
In DATE, pages 408-413. ACM, 2008.
[MSL11] Joao Marques-Silva and Inês Lynce.
On improving MUS extraction algorithms.
In SAT, volume 6695 of Lecture Notes in Computer Science, pages 159-173.
Springer, 2011.
[NB14] Nina Narodytska and Fahiem Bacchus.
Maximum satisfiability using core-guided maxsat resolution.
In AAAI, pages 2717-2723. AAAI Press, 2014.
[NIPM18] Nina Narodytska, Alexey Ignatiev, Filipe Pereira, and Joao Marques-Silva.
Learning optimal decision trees with SAT.
In IJCAI, pages 1362-1368, 2018.
[Rei87] Raymond Reiter.
A theory of diagnosis from first principles.
Artif. Intell., 32(1):57-95, 1987.

References x

[Rob65] John Alan Robinson.
A machine-oriented logic based on the resolution principle.
J. ACM, 12(1):23-41, 1965.
[SZGN17] Xujie Si, Xin Zhang, Radu Grigore, and Mayur Naik.
Maximum satisfiability in software analysis: Applications and techniques.
In CAV, pages 68-94, 2017.
[vMW08] Hans van Maaren and Siert Wieringa.
Finding guaranteed MUSes fast.
In SAT, pages 291-304, 2008.
[ZM03] Lintao Zhang and Sharad Malik.
Validating SAT solvers using an independent resolution-based checker:
Practical implementations and other applications.
In DATE, pages 10880-10885. IEEE Computer Society, 2003.

