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What is SAT?

• SAT is the decision problem for propositional logic
• Well-formed propositional formulas, with variables, logical
connectives: ¬,∧,∨,→,↔, and parenthesis: (, )

• Often restricted to Conjunctive Normal Form (CNF)

• Goal:
Decide whether formula has a satisfying assignment

• SAT is NP-complete [Coo71]

3 / 76



What is SAT?

• SAT is the decision problem for propositional logic
• Well-formed propositional formulas, with variables, logical
connectives: ¬,∧,∨,→,↔, and parenthesis: (, )

• Often restricted to Conjunctive Normal Form (CNF)
• Goal:
Decide whether formula has a satisfying assignment

• SAT is NP-complete [Coo71]

3 / 76



What is SAT?

• SAT is the decision problem for propositional logic
• Well-formed propositional formulas, with variables, logical
connectives: ¬,∧,∨,→,↔, and parenthesis: (, )

• Often restricted to Conjunctive Normal Form (CNF)
• Goal:
Decide whether formula has a satisfying assignment

• SAT is NP-complete [Coo71]

3 / 76



The CDCL SAT disruption

• CDCL SAT solving is a success story of Computer Science

• Conflict-Driven Clause Learning (CDCL)
• (CDCL) SAT has impacted many different fields
• Hundreds (thousands?) of practical applications
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CDCL SAT solver (continued) improvement
[Source: Simon 2015]
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How good are CDCL SAT solvers?

Demos

• Sample SAT of solvers:

1. POSIT: state of the art DPLL SAT solver in 1995
2. GRASP: first CDCL SAT solver, state of the art 1995∼2000
3. Minisat: CDCL SAT solver, state of the art until the late 00s
4. Glucose: modern state of the art CDCL SAT solver
5. ...

• Example 1: model checking example (from IBM)
• Example 2: cooperative path finding (CPF)
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How good are SAT solvers? – an example

• Cooperative pathfinding (CPF)
• N agents on some grid/graph
• Start positions
• Goal positions
• Minimize makespan
• Restricted planning problem

• Concrete example
• Gaming grid
• 1039 vertices
• 1928 edges
• 100 agents

• Formula w/ 2946190 variables!

• Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!
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Grasping the search space ...

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080 (or
≈ 1085)

• Search space with 15775 propositional variables (worst case):

• # of assignments to 15775 variables: > 104748 !
• Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):

• # of assignments to > 2.8× 106 variables: ≫ 10840000 !!
• Obs: SAT solvers at present (but formula dependent)
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SAT can make the difference – propositional abduction
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• Propositional abduction instances [IMM16]

• Implicit hitting set dualization (IHSD)
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SAT can make the difference – axiom pinpointing
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• EL+ medical ontologies [AMM15]

• Minimal unsatisfiability (MUSes) & maximal satisfiability (MCSes) &
Enumeration
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SAT can make the difference – model based diagnosis
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• Model-based diagnosis problem instances [MJIM15]

• Maximum satisfiability (MaxSAT)
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CDCL SAT is ubiquitous in problem solving

Problem
Solving
with SAT

Embeddings

PBO

B&B Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Models

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC
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Problem
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with SAT

Embeddings

PBO

B&B Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Models

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

SAT is the oracles’ oracle:
MaxSAT, QBF, LCG, #SAT, SMT,
ASP, FOL, ...
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What this tutorial covers ...

• Part #0: Basic definitions & notation

• Part #1: Problem solving with SAT oracles
• Minimal unsatisfiability (MUS)
• Maximum satisfiability (MaxSAT)
• Maximal satisfiability (MSS/MCS) Contact me
• Minimal Sets over Monotone Predicates (MSMP) Contact me
• Enumeration problems

• MUSes

• Quantification problems Contact me
• (Approximate) counting problems
• ...

• Part #2: Exploring with SAT oracles
• Brief introduction to PySAT

• Part #3: Research directions
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What this tutorial does not cover ...

• CDCL SAT solvers A. Biere’s talk
• Clause learning; search restarts; watched literals; VSIDS; ...

• Modeling in propositional logic Contact me
• Cardinality constraints; pseudo-boolean constraints;
circuits; general constraints; etc.

• Many (high-profile) applications Contact me
• Minimal/minimum decision trees/sets [NIPM18, IPNM18]

• ML model explanations as prime implicants [INMS19]

• ...
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0 Basic Definitions
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Preliminaries

• Variables: w, x, y, z,a,b, c, . . .
• Literals: w, x̄, ȳ,a, . . . , but also ¬w,¬y, . . .
• Clauses: disjunction of literals or set of literals
• Formula: conjunction of clauses or set of clauses
• Model (satisfying assignment): partial/total mapping from variables
to {0, 1} that satisfies formula

• Each clause can be satisfied, falsified, but also unit, unresolved
• Formula can be SAT/UNSAT

• Example:

F ≜ (r) ∧ (̄r ∨ s) ∧ (w ∨ a) ∧ (x ∨ b) ∧ (y ∨ z ∨ c) ∧ (b ∨ c ∨ d)

• Example models:

• {r, s, a, b, c, d}
• {r, s, x̄, y, w̄, z, ā, b, c, d}

16 / 76



Preliminaries

• Variables: w, x, y, z,a,b, c, . . .
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Resolution

• Resolution rule: [DP60, Rob65]

(α ∨ x) (β ∨ x̄)
(α ∨ β)

• Complete proof system for propositional logic

• Extensively used with (CDCL) SAT solvers
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Resolution

• Resolution rule: [DP60, Rob65]

(α ∨ x) (β ∨ x̄)
(α ∨ β)

• Complete proof system for propositional logic
(x ∨ a) (x̄ ∨ a) (ȳ ∨ ā) (y ∨ ā)

(a) (ā)

⊥

• Extensively used with (CDCL) SAT solvers
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Unit propagation

F = (r) ∧ (̄r ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)∧
(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

• Unit clause rule: if clause is unit, its sole literal must be satisfied

• Additional definitions:
• Antecedent (or reason) of an implied assignment

• (b̄ ∨ c̄ ∨ d) for d
• Associate assignment with decision levels

• w = 1@ 1, x = 1@ 2, y = 1@ 3, z = 1@ 4

• r = 1@ 0, d = 1@ 4, ...
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(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

• Unit clause rule: if clause is unit, its sole literal must be satisfied

• Additional definitions:
• Antecedent (or reason) of an implied assignment

• (b̄ ∨ c̄ ∨ d) for d
• Associate assignment with decision levels

• w = 1@ 1, x = 1@ 2, y = 1@ 3, z = 1@ 4

• r = 1@ 0, d = 1@ 4, ...

18 / 76



Unit propagation

F = (r) ∧ (̄r ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)∧
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Resolution proofs

• Refutation of unsatisfiable formula by iterated resolution
operations produces resolution proof

• An example:
F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

• Resolution proof:

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

• Modern SAT solvers can generate resolution proofs using clauses
learned by the solver [ZM03]
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Unsatisfiable cores & proof traces

• CNF formula:

F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

Level Dec. Unit Prop.

0 ∅ b̄

c̄

a

⊥

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

Implication graph with conflict
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Unsatisfiable cores & proof traces

• CNF formula:
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Level Dec. Unit Prop.

0 ∅ b̄

c̄

a

⊥

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

Proof trace ⊥: (ā ∨ c) (a ∨ b) (c̄) (b̄)
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Resolution proof follows structure of conflicts

20 / 76



Unsatisfiable cores & proof traces

• CNF formula:

F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

Level Dec. Unit Prop.

0 ∅ b̄

c̄

a

⊥

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

Unsatisfiable subformula (core): (c̄), (b̄), (ā ∨ c), (a ∨ b)
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1 Problem Solving with SAT Oracles
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So what are SAT oracles?

No summaries

Yes witnesses

NP oracles

SAT Oracles

models

unsat cores
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Computing a model

• Q: How to solve the FSAT problem?
FSAT: Compute a model of a satisfiable CNF formula F , using an NP
oracle

• A possible algorithm:
1. Analyze each variable xi ∈ {x1, . . . , xn} = var(F), in order
2. i← 1 and Fi ≜ F
3. Call NP oracle on Fi ∧ (xi)
4. If answer is yes, then Fi+1 ← Fi ∪ (xi)
5. If answer is no, then Fi+1 ← Fi ∪ (¬xi)
6. i← i+ 1

7. If i ≤ n, then repeat from 3.

• Algorithm needs |var(F)| calls to an NP oracle
• Note: Cannot solve FSAT with logarithmic number of NP oracle calls,
unless P = NP [GF93]

• FSAT is an example of a function problem

• Note: FSAT can be solved with one SAT oracle call
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Beyond decision problems

Answer Problem Type

Yes/No Decision Problems
Some solution Function Problems
All solutions Enumeration Problems
# solutions Counting Problems
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... and beyond NP – decision and function problems

∆p
0 = Σp

0 = P = Πp
0 = ∆p

1

NP = Σp
1 Πp

1 = coNP

PNP = ∆p
2

Σp
2 Πp

2

∆p
3

Σp
3 Πp

3

...

F∆p
0 = FΣp

0 = FP = FΠp
0 = F∆p

1

FNP = FΣp
1 FΠp

1 = coFNP

FPNP = F∆p
2

FΣp
2 FΠp

2

F∆p
3

FΣp
3 FΠp

3

...
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Oracle-based problem solving – simple scenario

Decision 
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries
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Oracle-based problem solving – general setting

Decision 
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries
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Many problems to solve – within FPNP

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems
All solutions Enumeration Problems
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Function Problems on Propositional Formulas

MaxSAT
PBO

MinSAT

Autarkies

Backbones

Prime Implicants

MCSesMUSes Indep. Vars

WBO

MESes

MSSes
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MDSes Implicant Ext.
MFSes
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Many problems to solve – within FPNP

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems
All solutions Enumeration Problems

Function Problems on Propositional Formulas

Optimization Problems

Minimal Sets

MaxSAT
PBO

MinSAT

Autarkies

Backbones

Prime Implicants

MCSesMUSes Indep. Vars

WBO

MESes

MSSes
MNSes

MDSes Implicant Ext.
MFSes

MCFSes

Minimal Models

Prime Implicates
Maximal Models

Implicate Ext.

...

...
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Selection of topics

Problem
Solving
with SAT

Embeddings

PBO

B&B Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Models

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

MaxSAT solvingMUS extraction

MUS enumeration
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Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability
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Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable?

• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?
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Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No
• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?
Minimality
matters!
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Unsatisfiable formulas – MUSes & MCSes

• Given F (⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iff
M⊨ ⊥ and ∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C ⊭ ⊥ and ∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?
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Why it matters?

• Analysis of over-constrained systems
• Model-based diagnosis [Rei87]

• Software fault localization
• Spreadsheet debugging
• Debugging relational specifications (e.g. Alloy)
• Type error debugging
• Axiom pinpointing in description logics
• ...

• Model checking of software & hardware systems
• Inconsistency measurement
• Minimal models; MinCost SAT; ...
• ...

• Find minimal relaxations to recover consistency
• But also minimum relaxations to recover consistency, eg. MaxSAT

• Find minimal explanations of inconsistency
• But also minimum explanations of inconsistency, eg. Smallest MUS
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• Find minimal explanations of inconsistency
• But also minimum explanations of inconsistency, eg. Smallest MUS

Enumeration
required!
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Deletion-based algorithm

Input : Set F
Output: Minimal subsetM
begin
M← F
foreach c ∈M do

if ¬SAT(M\ {c}) then
M←M\ {c} // If ¬SAT(M\ {c}), then c ̸∈ MUS

returnM // FinalM is MUS
end

• Number of oracles calls: O(m) [CD91, BDTW93]
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Deletion-based algorithm

Input : Set F
Output: Minimal subsetM
begin
M← F
foreach c ∈M do

if ¬SAT(M\ {c}) then
M←M\ {c} // Remove c fromM

returnM // FinalM is MUS
end

• Number of oracles calls: O(m) [CD91, BDTW93]

Monotonicity
implicit &
essential!
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Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}
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Many MUS algorithms

• Formula F with m clauses k the size of largest minimal subset

Algorithm Oracle Calls Reference
Insertion-based O(km) [dSNP88, vMW08]

MCS_MUS O(km) [BK15]

Deletion-based O(m) [CD91, BDTW93]

Linear insertion O(m) [MSL11, BLM12]

Dichotomic O(k log(m)) [HLSB06]

QuickXplain O(k+ k log(mk )) [Jun04]

Progression O(k log(1 + m
k )) [MJB13]

• Note: Lower bound in FPNP|| and upper bound in FPNP [CT95]

• Oracle calls correspond to testing unsatisfiability with SAT solver

• Practical optimizations: clause set trimming; clause set refinement;
redundancy removal; (recursive) model rotation
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Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability
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How to enumerate MUSes?

1. Standard solution:
Exploit HS duality between MCSes and MUSes [Rei87, LS08]

MCSes are MHSes of MUSes and vice-versa
• Enumerate all MCSes and then enumerate all MHSes of the MCSes, i.e.
compute all the MUSes

• Problematic if too many MCSes, and we want the MUSes
• And, often we want to enumerate the MUSes

2. Exploit recent advances in 2QBF solving

3. Implicit hitting set dualization [LPMM16]

• Most effective if MUSes provided to user on-demand
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How to enumerate MUSes, preferably?

Formulas P and N Formula F 0

Select subset of F

Block MCS/MUS

1. Keep sets representing computed MUSes (set N ) and MCSes (set P)

2. Compute minimal hitting set (MHS) H of N , subject to P
• Must not repeat MUSes
• Must not repeat MCSes
• Maximize clauses picked, i.e. prefer to check satisfiability on as many clauses as
possible

• If unsatisfiable: no more MUSes/MCSes to enumerate

3. Target set: F ′, i.e. F minus clauses from H
4. Run SAT oracle on F ′

• If F ′ unsatisfiable: extract new MUS
• Otherwise, H is already an MCS of F

5. Repeat loop
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MARCO/eMUS algorithm

Input: CNF formula F
1 begin
2 I← {pi | ci ∈ F}
3 (P,N )← (∅, ∅)
4 while true do
5 (st,H)← MinHittingSet(N ,P)
6 if not st then return
7 F ′ ← {ci |pi ∈ I ∧ pi ̸∈ H}
8 if not SAT(F ′) then
9 M← ComputeMUS(F ′)

10 ReportMUS (M)

11 N ← N ∪ {¬pi | ci ∈M}
12 else
13 P ← P ∪ {pi |pi ∈ H}

14 end
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An example

MinHS (N ) F ′ MUS/MCS
p1p2p3p4p5p6p7 S/U

1111111 U ¬p1 ∨ ¬p2 ∨ ¬p3
0111111 U ¬p6 ∨ ¬p7
0111101 S p1 ∨ p6
1011101 U ¬p1 ∨ ¬p4 ∨ ¬p5
1101010 S p3 ∨ p5 ∨ p7
1010110 S p2 ∨ p4 ∨ p7
1100101 S p3 ∨ p4 ∨ p6
0111110 S p1 ∨ p7
1101001 S p3 ∨ p5 ∨ p6
1010101 S p2 ∨ p4 ∨ p6
1011001 S p2 ∨ p5 ∨ p6
1100110 S p3 ∨ p4 ∨ p7
1011010 S p2 ∨ p5 ∨ p7

c1 = p

c2 = ¬p ∨ r

c3 = ¬r

c4 = ¬p ∨ q c5 = ¬q

c6 = s
c7 = ¬s
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Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability
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Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of the
formula

• The MaxSAT solution is one of the smallest cost MCSes

• Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17]
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MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No

Yes
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Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

• Must satisfy hard clauses, if any
• Compute set of satisfied soft clauses with maximum cost

• Without weights, cost of each falsified soft clause is 1

• Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)

• Note: goal is to compute set of satisfied (or falsified) clauses;
not just the cost !
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Issues with MaxSAT

• Unit propagation is unsound for MaxSAT

• Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• Is 2 the MaxSAT solution??
• No! Enough to either falsify (x) or (z)

• Cannot use unit propagation
• Cannot learn clauses (using unit propagation)
• Need to solve MaxSAT using different techniques
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Many MaxSAT approaches

MaxSAT Al-
gorithms

Branch
& Bound

Iterative

Core GuidedIterative
MHS

Model
Guided

No unit prop; No
cl. learning

All cls relaxed

Relax cls given
unsat cores

Iterative
MHS & SAT

Relax cls given
models

• For practical (industrial) instances: core-guided & iterative MHS
approaches are the most effective [MaxSAT14]
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Core-guided solver performance – partial
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Core-guided solver performance – weighted partial
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Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 12

Example CNF formula

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed
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AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed
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MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Example CNF formula

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed
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¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Formula is UNSAT; OPT ≤ |φ| − 1; Get unsat core

AtMostk/PB
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Relaxed soft clauses
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x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑6
i=1 ri ≤ 1

Add relaxation variables and AtMostk, k = 1, constraint

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed
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MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑10
i=1 ri ≤ 2

Add new relaxation variables and update AtMostk, k=2, constraint

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed
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MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑10
i=1 ri ≤ 2

Instance is now SAT

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed
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MSU3 core-guided algorithm
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x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑10
i=1 ri ≤ 2

MaxSAT solution is |φ| − I = 12− 2 = 10

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed
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MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K:

• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}
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MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1
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c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K:

• SAT(F \ {c4, c9})?

• Terminate & return 2
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MaxSAT solving with SAT oracles – a sample

• A sample of recent algorithms:
Algorithm # Oracle Queries Reference
Linear search SU Exponential*** [BP10]

Binary search Linear* [FM06]

FM/WMSU1/WPM1 Exponential** [FM06, MP08, MMSP09, ABL09, ABGL12]

WPM2 Exponential** [ABL10, ABL13]

Bin-Core-Dis Linear [HMM11, MHM12]

Iterative MHS Exponential [DB11, DB13a, DB13b]

* O(logm) queries with SAT oracle, for (partial) unweighted MaxSAT
** Weighted case; depends on computed cores
*** On # bits of problem instance (due to weights)

• But also additional recent work:
• Progression [IMM+14]

• Soft cardinality constraints (OLL) [MDM14, MIM14]

• Recent implementation (RC2, using PySAT) won 2018 MaxSAT Evaluation
• MaxSAT resolution [NB14]

• ... 55 / 76



2 Exploring With SAT Oracles
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Incremental SAT solving

• SAT solver often called multiple times on related formulas

• It helps to make incremental changes & remember already learned
clauses (that still hold)

• Most often used solution: [ES03]

• Use activation/selector/indicator variables
Given clause Added to SAT solver

ci ci ∨ si
• To activate clause: add assumption si = 1

• To deactivate clause: add assumption si = 0 (optional)
• To remove clause: add unit (si)
• Any learned clause contains explanation given working assumptions
(more next)
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An example

B = {(a ∨ b), (a ∨ c)}
S = {(a ∨ s1), (b ∨ c ∨ s2), (a ∨ c ∨ s3), (a ∨ b ∨ s4)}

• Background knowledge B: final clauses, i.e. no indicator variables
• Soft clauses S : add indicator variables {s1, s2, s3, s4}

• E.g. given assumptions {s1 = 1, s2 = 0, s3 = 0, s4 = 1}, SAT solver
handles formula:

F = {(a ∨ b), (a ∨ c), (a), (a ∨ b)}

which is satisfiable
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Quiz – what happens in this case?

B = {(a ∨ b), (a ∨ c)}
S = {(a ∨ s1), (b ∨ c ∨ s2), (a ∨ c ∨ s3), (a ∨ b ∨ s4)}

• Given assumptions {s1 = 1, s2 = 1, s3 = 1, s4 = 1}?

(a ∨ b) (a ∨ s1) (a ∨ c) (b ∨ c ∨ s2)

(b ∨ s1) (c ∨ s1)

(c̄ ∨ s1 ∨ s2)

(s1 ∨ s2)

• Unsatisfiable core: 1st and 2nd clauses of S , given B
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Overview of PySAT

[IMM18]

PySAT modules

solvers
module

cardenc
module

formula
module

PySAT API

• Open source, available on github
• Comprehensive list of SAT solvers
• Comprehensive list of cardinality encodings
• Fairly comprehensive documentation
• Several use cases
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Available solvers

Solver Version
Glucose 3.0
Glucose 4.1
Lingeling bbc-9230380-160707
Minicard 1.2
Minisat 2.2 release
Minisat GitHub version
MapleCM SAT competition 2018
Maplesat MapleCOMSPS_LRB

... ...

• Solvers can either be used incrementally or non-incrementally
• Tools can use multiple solvers, e.g. for hitting set dualization or
CEGAR-based QBF solving

• URL: https:
//pysathq.github.io/docs/html/api/solvers.html
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Formula manipulation

Features
CNF & Weighted CNF (WCNF)
Read formulas from file/string
Write formulas to file
Append clauses to formula
Negate CNF formulas
Translate between CNF and WCNF
ID manager

• URL: https:
//pysathq.github.io/docs/html/api/formula.html
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Available cardinality encodings

Name Type
pairwise AtMost1
bitwise AtMost1
ladder AtMost1

sequential counter AtMostk
sorting network AtMostk

cardinality network AtMostk
totalizer AtMostk
mtotalizer AtMostk
kmtotalizer AtMostk

• Also AtLeastK and EqualsK constraints

• URL:
https://pysathq.github.io/docs/html/api/card.html
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Installation & info

• Installation:
$ [sudo] pip2|pip3 install python-sat

• Website: https://pysathq.github.io/
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Basic interface – Python3 shell

>>> from pysat . card import *
>>> am1 = CardEnc . atmost ( l i t s = [ 1 , −2, 3 ] , encoding=EncType . pairwise )
>>> pr int ( am1 . clauses )
[[−1 , 2 ] , [−1 , −3] , [ 2 , −3]]
>>>
>>> from pysat . so lvers import Solver
>>> with Solver (name= ’m22 ’ , bootstrap_with =am1 . clauses ) as s :
. . . i f s . solve ( assumptions = [ 1 , 2 , 3 ] ) == False :
. . . pr int ( s . get_core ( ) )
[ 3 , 1 ]
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Basic interface – Python3 script

# ! / usr/ loca l /bin/python3
from sys import argv

from pysat . formula import CNF
from pysat . so lvers import Glucose3 , Solver

formula = CNF ( )
formula . append([−1 , 2 , 4 ] )
formula . append ( [ 1 , −2, 5 ] )
formula . append([−1 , −2, 6 ] )
formula . append ( [ 1 , 2 , 7 ] )

g = Glucose3 ( bootstrap_with = formula . clauses )

i f g . solve ( assumptions=[−4 , −5, −6, −7]) == False :
pr int ( ” Core : ” , g . get_core ( ) )
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Example: naive (deletion) MUS extraction

Input : Set F
Output: Minimal subsetM
begin
M← F
foreach c ∈M do

if ¬SAT(M\ {c}) then
M←M\ {c} // If ¬SAT(M\ {c}), then c ̸∈ MUS

returnM // FinalM is MUS
end

• Number of predicate tests: O(m) [CD91, BDTW93]
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Naive MUS extraction I

def main ( ) :
cnf = CNF ( f rom_f i le =argv [ 1 ] ) # create a CNF object from f i l e
( rnv , assumps ) = add_assumps ( cnf )

oracle = Solver (name= ’ g3 ’ , bootstrap_with = cnf . clauses )

mus = find_mus ( assumps , oracle )
mus = [ re f − rnv for re f in mus]
pr int ( ”MUS : ” , mus)

i f __name__== ” __main__ ” :
main ( )
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Naive MUS extraction II

def add_assumps ( cnf ) :
rnv = topv = cnf . nv
assumps = [ ] # l i s t of assumptions to use
for i in range ( len ( cnf . clauses ) ) :

topv += 1
assumps . append ( topv ) # r eg i s t e r l i t e r a l
cnf . clauses [ i ] . append(−topv ) # extend clause with l i t e r a l

cnf . nv = cnf . nv + len ( assumps ) # update # of vars
return rnv , assumps

def main ( ) :
cnf = CNF ( f rom_f i le =argv [ 1 ] ) # create a CNF object from f i l e
( rnv , assumps ) = add_assumps ( cnf )

oracle = Solver (name= ’ g3 ’ , bootstrap_with = cnf . clauses )

mus = find_mus ( assumps , oracle )
mus = [ re f − rnv for re f in mus]
pr int ( ”MUS : ” , mus)

i f __name__== ” __main__ ” :
main ( )
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Naive MUS extraction III

from sys import argv

from pysat . formula import CNF
from pysat . so lvers import Solver

def find_mus ( assmp , oracle ) :
i = 0
while i < len ( assmp ) :

t s = assmp [ : i ] + assmp [ ( i + 1 ) : ]
i f not oracle . solve ( assumptions= ts ) :

assmp = ts
else :

i += 1
return assmp

70 / 76



Naive MUS extraction III

from sys import argv

from pysat . formula import CNF
from pysat . so lvers import Solver

def find_mus ( assmp , oracle ) :
i = 0
while i < len ( assmp ) :

t s = assmp [ : i ] + assmp [ ( i + 1 ) : ]
i f not oracle . solve ( assumptions= ts ) :

assmp = ts
else :

i += 1
return assmp

Demo
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A less naive MUS extractor

def c l se t _ re f i ne ( assmp , oracle ) :
assmp = sorted ( assmp )
while True :

oracle . solve ( assumptions=assmp )
ts = sorted ( oracle . get_core ( ) )
i f t s == assmp :

break
assmp = ts

return assmp
# . . .

def main ( ) :
cnf = CNF ( f rom_f i le =argv [ 1 ] ) # create a CNF object from f i l e
( rnv , assumps ) = add_assumps ( cnf )

oracle = Solver (name= ’ g3 ’ , bootstrap_with = cnf . clauses )

assumps = c l se t _ re f i ne ( assumps , oracle )
mus = find_mus ( assumps , oracle )
mus = [ re f − rnv for re f in mus]
pr int ( ”MUS : ” , mus)

i f __name__== ” __main__ ” :
main ( )
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3 A Glimpse of the Future
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What next?

• Oracle-based computing
• Problems beyond NP: optimization, quantification, enumeration,
(approximate) counting, decision

• Arms race for proof systems stronger than resolution/clause
learning

• Extended Resolution (and equivalent)
• Cutting Planes (CP)
• MaxSAT-inspired proof systems [IMM17, BBI+18]

• Verification of ML models with SAT/SMT

• Scalable explainable AI/ML
• Deep NNs operate as black-boxes
• Often important to provide small/intuitive explanations for
predictions made

• ...
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Some final notes

• SAT is a low-level, but very powerful problem solving paradigm
• PySAT suggests a way to tackle this drawback, but there are others

• There is an ongoing revolution on problem solving with SAT (and
SMT) oracles

• E.g. QBF, model-based diagnosis, explainability, theorem proving,
program synthesis, ...

• The use of SAT oracles is impacting problem solving for many
different complexity classes

• With well-known representative problems, e.g. QBF, #SAT, etc.

• Many fascinating research topics out there !
• Connections with ML seem unavoidable
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Sample of tools

• PySAT
• SAT solvers:

• MiniSat
• Glucose

• MaxSAT solvers:
• RC2
• MSCG
• OpenWBO
• MaxHS

• MUS extractors:
• MUSer

• MCS extractors:
• mcsXL
• LBX
• MCSls

• Many other tools available from the ReasonLab server
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Questions?
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