
Computing with SAT Oracles

Joao Marques-Silva

SAT/SMT/AR 2019 Summer School

IST, Lisbon, Portugal

July 3-6 2019

Computing with SAT Oracles

Joao Marques-Silva

SAT/SMT/AR 2019 Summer School

IST, Lisbon, Portugal

July 3-6 2019

What is SAT?

• SAT is the decision problem for propositional logic
• Well-formed propositional formulas, with variables, logical
connectives: ¬,∧,∨,→,↔, and parenthesis: (,)

• Often restricted to Conjunctive Normal Form (CNF)

• Goal:
Decide whether formula has a satisfying assignment

• SAT is NP-complete [Coo71]

3 / 76

What is SAT?

• SAT is the decision problem for propositional logic
• Well-formed propositional formulas, with variables, logical
connectives: ¬,∧,∨,→,↔, and parenthesis: (,)

• Often restricted to Conjunctive Normal Form (CNF)
• Goal:
Decide whether formula has a satisfying assignment

• SAT is NP-complete [Coo71]

3 / 76

What is SAT?

• SAT is the decision problem for propositional logic
• Well-formed propositional formulas, with variables, logical
connectives: ¬,∧,∨,→,↔, and parenthesis: (,)

• Often restricted to Conjunctive Normal Form (CNF)
• Goal:
Decide whether formula has a satisfying assignment

• SAT is NP-complete [Coo71]

3 / 76

The CDCL SAT disruption

• CDCL SAT solving is a success story of Computer Science

• Conflict-Driven Clause Learning (CDCL)
• (CDCL) SAT has impacted many different fields
• Hundreds (thousands?) of practical applications

4 / 76

The CDCL SAT disruption

• CDCL SAT solving is a success story of Computer Science
• Conflict-Driven Clause Learning (CDCL)
• (CDCL) SAT has impacted many different fields
• Hundreds (thousands?) of practical applications

4 / 76

CDCL SAT solver (continued) improvement
[Source: Simon 2015]

��

����

�����

�����

�����

�����

��� ��� ��� ���� ���� ���� ���� ���� ���� ����

�
�
�
��
�
��
�
���
�
�
�

�
���

�
�
��
�
�
�
�
�
�
�

���

�����������������
���������������

���������������������
��������������

���������������
��������������

��������������������
��������������

�����������������������
��������������������������

5 / 76

How good are CDCL SAT solvers?

Demos

• Sample SAT of solvers:

1. POSIT: state of the art DPLL SAT solver in 1995
2. GRASP: first CDCL SAT solver, state of the art 1995∼2000
3. Minisat: CDCL SAT solver, state of the art until the late 00s
4. Glucose: modern state of the art CDCL SAT solver
5. ...

• Example 1: model checking example (from IBM)
• Example 2: cooperative path finding (CPF)

6 / 76

How good are CDCL SAT solvers?

Demos

• Sample SAT of solvers:
1. POSIT: state of the art DPLL SAT solver in 1995
2. GRASP: first CDCL SAT solver, state of the art 1995∼2000
3. Minisat: CDCL SAT solver, state of the art until the late 00s
4. Glucose: modern state of the art CDCL SAT solver
5. ...

• Example 1: model checking example (from IBM)
• Example 2: cooperative path finding (CPF)

6 / 76

How good are CDCL SAT solvers?

Demos

• Sample SAT of solvers:
1. POSIT: state of the art DPLL SAT solver in 1995
2. GRASP: first CDCL SAT solver, state of the art 1995∼2000
3. Minisat: CDCL SAT solver, state of the art until the late 00s
4. Glucose: modern state of the art CDCL SAT solver
5. ...

• Example 1: model checking example (from IBM)
• Example 2: cooperative path finding (CPF)

6 / 76

How good are SAT solvers? – an example

• Cooperative pathfinding (CPF)
• N agents on some grid/graph
• Start positions
• Goal positions
• Minimize makespan
• Restricted planning problem

• Concrete example
• Gaming grid
• 1039 vertices
• 1928 edges
• 100 agents

• Formula w/ 2946190 variables!

• Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!

7 / 76

How good are SAT solvers? – an example

• Cooperative pathfinding (CPF)
• N agents on some grid/graph
• Start positions
• Goal positions
• Minimize makespan
• Restricted planning problem

• Concrete example
• Gaming grid
• 1039 vertices
• 1928 edges
• 100 agents

• Formula w/ 2946190 variables!

• Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!

7 / 76

How good are SAT solvers? – an example

• Cooperative pathfinding (CPF)
• N agents on some grid/graph
• Start positions
• Goal positions
• Minimize makespan
• Restricted planning problem

• Concrete example
• Gaming grid
• 1039 vertices
• 1928 edges
• 100 agents

• Formula w/ 2946190 variables!

• Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!

*** t r a c ke r : a pathf inding tool ***
I n i t i a l i z a t i o n . . . CPU Time: 0 .004711
Number of va r i ab l e s : 113315
Tentat ive makespan 1
Number of va r i ab l e s : 226630
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 0 . 7 18 1 12
c Done running SAT solver . . . CPU Time: 0.830099
No solut ion for makespan 1
Elapsed CPU Time: 0 .830112
Tentat ive makespan 2
Number of va r i ab l e s : 339945
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 1 . 2 7 1 1 3
c Done running SAT solver . . . CPU Time: 1 . 2 7 1 1 4
No solut ion for makespan 2
Elapsed CPU Time: 1 . 2 7 1 1 4
. . .
. . .
Tentat ive makespan 24
Number of va r i ab l e s : 2832875
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 1 1 .8653
c Done running SAT solver . . . CPU Time: 1 1 .8653
No solut ion for makespan 24
Elapsed CPU Time: 1 1 .8653
Tentat ive makespan 25
Number of va r i ab l e s : 2946190
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 12 . 3491
c Done running SAT solver . . . CPU Time: 16 .6882
Solut ion found for makespan 25
Elapsed CPU Time: 16 .6995

7 / 76

How good are SAT solvers? – an example

• Cooperative pathfinding (CPF)
• N agents on some grid/graph
• Start positions
• Goal positions
• Minimize makespan
• Restricted planning problem

• Concrete example
• Gaming grid
• 1039 vertices
• 1928 edges
• 100 agents
• Formula w/ 2946190 variables!

• Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!

*** t r a c ke r : a pathf inding tool ***
I n i t i a l i z a t i o n . . . CPU Time: 0 .004711
Number of va r i ab l e s : 113315
Tentat ive makespan 1
Number of va r i ab l e s : 226630
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 0 . 7 18 1 12
c Done running SAT solver . . . CPU Time: 0.830099
No solut ion for makespan 1
Elapsed CPU Time: 0 .830112
Tentat ive makespan 2
Number of va r i ab l e s : 339945
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 1 . 2 7 1 1 3
c Done running SAT solver . . . CPU Time: 1 . 2 7 1 1 4
No solut ion for makespan 2
Elapsed CPU Time: 1 . 2 7 1 1 4
. . .
. . .
Tentat ive makespan 24
Number of va r i ab l e s : 2832875
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 1 1 .8653
c Done running SAT solver . . . CPU Time: 1 1 .8653
No solut ion for makespan 24
Elapsed CPU Time: 1 1 .8653
Tentat ive makespan 25
Number of va r i ab l e s : 2946190
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 12 . 3491
c Done running SAT solver . . . CPU Time: 16 .6882
Solut ion found for makespan 25
Elapsed CPU Time: 16 .6995

7 / 76

How good are SAT solvers? – an example

• Cooperative pathfinding (CPF)
• N agents on some grid/graph
• Start positions
• Goal positions
• Minimize makespan
• Restricted planning problem

• Concrete example
• Gaming grid
• 1039 vertices
• 1928 edges
• 100 agents
• Formula w/ 2946190 variables!

• Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!

*** t r a c ke r : a pathf inding tool ***
I n i t i a l i z a t i o n . . . CPU Time: 0 .004711
Number of va r i ab l e s : 113315
Tentat ive makespan 1
Number of va r i ab l e s : 226630
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 0 . 7 18 1 12
c Done running SAT solver . . . CPU Time: 0.830099
No solut ion for makespan 1
Elapsed CPU Time: 0 .830112
Tentat ive makespan 2
Number of va r i ab l e s : 339945
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 1 . 2 7 1 1 3
c Done running SAT solver . . . CPU Time: 1 . 2 7 1 1 4
No solut ion for makespan 2
Elapsed CPU Time: 1 . 2 7 1 1 4
. . .
. . .
Tentat ive makespan 24
Number of va r i ab l e s : 2832875
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 1 1 .8653
c Done running SAT solver . . . CPU Time: 1 1 .8653
No solut ion for makespan 24
Elapsed CPU Time: 1 1 .8653
Tentat ive makespan 25
Number of va r i ab l e s : 2946190
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 12 . 3491
c Done running SAT solver . . . CPU Time: 16 .6882
Solut ion found for makespan 25
Elapsed CPU Time: 16 .6995

7 / 76

Grasping the search space ...

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080 (or
≈ 1085)

• Search space with 15775 propositional variables (worst case):

• # of assignments to 15775 variables: > 104748 !
• Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):

• # of assignments to > 2.8× 106 variables: ≫ 10840000 !!
• Obs: SAT solvers at present (but formula dependent)

8 / 76

Grasping the search space ...

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080 (or
≈ 1085)

• Search space with 15775 propositional variables (worst case):

• # of assignments to 15775 variables: > 104748 !
• Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):

• # of assignments to > 2.8× 106 variables: ≫ 10840000 !!
• Obs: SAT solvers at present (but formula dependent)

8 / 76

Grasping the search space ...

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080 (or
≈ 1085)

• Search space with 15775 propositional variables (worst case):

• # of assignments to 15775 variables: > 104748 !
• Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):

• # of assignments to > 2.8× 106 variables: ≫ 10840000 !!
• Obs: SAT solvers at present (but formula dependent)

8 / 76

Grasping the search space ...

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080 (or
≈ 1085)

• Search space with 15775 propositional variables (worst case):
• # of assignments to 15775 variables: > 104748 !
• Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):

• # of assignments to > 2.8× 106 variables: ≫ 10840000 !!
• Obs: SAT solvers at present (but formula dependent)

8 / 76

Grasping the search space ...

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080 (or
≈ 1085)

• Search space with 15775 propositional variables (worst case):
• # of assignments to 15775 variables: > 104748 !
• Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):

• # of assignments to > 2.8× 106 variables: ≫ 10840000 !!
• Obs: SAT solvers at present (but formula dependent)

8 / 76

Grasping the search space ...

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080 (or
≈ 1085)

• Search space with 15775 propositional variables (worst case):
• # of assignments to 15775 variables: > 104748 !
• Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):
• # of assignments to > 2.8× 106 variables: ≫ 10840000 !!
• Obs: SAT solvers at present (but formula dependent)

8 / 76

SAT can make the difference – propositional abduction

10−3 10−2 10−1 100 101 102 103 104

Hyper?

10−3

10−2

10−1

100

101

102

103

104

A
bH

S+

1800 sec. timeout

18
00

se
c.

tim
eo

ut

• Propositional abduction instances [IMM16]

• Implicit hitting set dualization (IHSD)
9 / 76

SAT can make the difference – axiom pinpointing

10−2 10−1 100 101 102 103 104

EL2MUS

10−2

10−1

100

101

102

103

104

E
L

+
SA

T

3600 sec. timeout

36
00

se
c.

tim
eo

ut

• EL+ medical ontologies [AMM15]

• Minimal unsatisfiability (MUSes) & maximal satisfiability (MCSes) &
Enumeration

10 / 76

SAT can make the difference – model based diagnosis

10−2 10−1 100 101 102 103

wboinc

10−2

10−1

100

101

102

103

sc
ry

pt
o

600 sec. timeout

60
0

se
c.

tim
eo

ut

• Model-based diagnosis problem instances [MJIM15]

• Maximum satisfiability (MaxSAT)
11 / 76

CDCL SAT is ubiquitous in problem solving

Problem
Solving
with SAT

Embeddings

PBO

B&B Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Models

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

12 / 76

CDCL SAT is ubiquitous in problem solving

Problem
Solving
with SAT

Embeddings

PBO

B&B Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Models

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

SAT is the oracles’ oracle:
MaxSAT, QBF, LCG, #SAT, SMT,
ASP, FOL, ...

12 / 76

What this tutorial covers ...

• Part #0: Basic definitions & notation

• Part #1: Problem solving with SAT oracles
• Minimal unsatisfiability (MUS)
• Maximum satisfiability (MaxSAT)
• Maximal satisfiability (MSS/MCS) Contact me
• Minimal Sets over Monotone Predicates (MSMP) Contact me
• Enumeration problems

• MUSes

• Quantification problems Contact me
• (Approximate) counting problems
• ...

• Part #2: Exploring with SAT oracles
• Brief introduction to PySAT

• Part #3: Research directions

13 / 76

What this tutorial covers ...

• Part #0: Basic definitions & notation

• Part #1: Problem solving with SAT oracles
• Minimal unsatisfiability (MUS)
• Maximum satisfiability (MaxSAT)
• Maximal satisfiability (MSS/MCS) Contact me
• Minimal Sets over Monotone Predicates (MSMP) Contact me
• Enumeration problems

• MUSes

• Quantification problems Contact me
• (Approximate) counting problems
• ...

• Part #2: Exploring with SAT oracles
• Brief introduction to PySAT

• Part #3: Research directions

13 / 76

What this tutorial covers ...

• Part #0: Basic definitions & notation

• Part #1: Problem solving with SAT oracles
• Minimal unsatisfiability (MUS)
• Maximum satisfiability (MaxSAT)
• Maximal satisfiability (MSS/MCS) Contact me
• Minimal Sets over Monotone Predicates (MSMP) Contact me
• Enumeration problems

• MUSes

• Quantification problems Contact me
• (Approximate) counting problems
• ...

• Part #2: Exploring with SAT oracles
• Brief introduction to PySAT

• Part #3: Research directions

13 / 76

What this tutorial covers ...

• Part #0: Basic definitions & notation

• Part #1: Problem solving with SAT oracles
• Minimal unsatisfiability (MUS)
• Maximum satisfiability (MaxSAT)
• Maximal satisfiability (MSS/MCS) Contact me
• Minimal Sets over Monotone Predicates (MSMP) Contact me
• Enumeration problems

• MUSes

• Quantification problems Contact me
• (Approximate) counting problems
• ...

• Part #2: Exploring with SAT oracles
• Brief introduction to PySAT

• Part #3: Research directions

13 / 76

What this tutorial does not cover ...

• CDCL SAT solvers A. Biere’s talk
• Clause learning; search restarts; watched literals; VSIDS; ...

• Modeling in propositional logic Contact me
• Cardinality constraints; pseudo-boolean constraints;
circuits; general constraints; etc.

• Many (high-profile) applications Contact me
• Minimal/minimum decision trees/sets [NIPM18, IPNM18]

• ML model explanations as prime implicants [INMS19]

• ...

14 / 76

0 Basic Definitions

15 / 76

Preliminaries

• Variables: w, x, y, z,a,b, c, . . .
• Literals: w, x̄, ȳ,a, . . . , but also ¬w,¬y, . . .
• Clauses: disjunction of literals or set of literals
• Formula: conjunction of clauses or set of clauses
• Model (satisfying assignment): partial/total mapping from variables
to {0, 1} that satisfies formula

• Each clause can be satisfied, falsified, but also unit, unresolved
• Formula can be SAT/UNSAT

• Example:

F ≜ (r) ∧ (̄r ∨ s) ∧ (w ∨ a) ∧ (x ∨ b) ∧ (y ∨ z ∨ c) ∧ (b ∨ c ∨ d)

• Example models:

• {r, s, a, b, c, d}
• {r, s, x̄, y, w̄, z, ā, b, c, d}

16 / 76

Preliminaries

• Variables: w, x, y, z,a,b, c, . . .
• Literals: w, x̄, ȳ,a, . . . , but also ¬w,¬y, . . .
• Clauses: disjunction of literals or set of literals
• Formula: conjunction of clauses or set of clauses
• Model (satisfying assignment): partial/total mapping from variables
to {0, 1} that satisfies formula

• Each clause can be satisfied, falsified, but also unit, unresolved
• Formula can be SAT/UNSAT
• Example:

F ≜ (r) ∧ (̄r ∨ s) ∧ (w ∨ a) ∧ (x ∨ b) ∧ (y ∨ z ∨ c) ∧ (b ∨ c ∨ d)

• Example models:

• {r, s, a, b, c, d}
• {r, s, x̄, y, w̄, z, ā, b, c, d}

16 / 76

Preliminaries

• Variables: w, x, y, z,a,b, c, . . .
• Literals: w, x̄, ȳ,a, . . . , but also ¬w,¬y, . . .
• Clauses: disjunction of literals or set of literals
• Formula: conjunction of clauses or set of clauses
• Model (satisfying assignment): partial/total mapping from variables
to {0, 1} that satisfies formula

• Each clause can be satisfied, falsified, but also unit, unresolved
• Formula can be SAT/UNSAT
• Example:

F ≜ (r) ∧ (̄r ∨ s) ∧ (w ∨ a) ∧ (x ∨ b) ∧ (y ∨ z ∨ c) ∧ (b ∨ c ∨ d)

• Example models:
• {r, s, a, b, c, d}

• {r, s, x̄, y, w̄, z, ā, b, c, d}

16 / 76

Preliminaries

• Variables: w, x, y, z,a,b, c, . . .
• Literals: w, x̄, ȳ,a, . . . , but also ¬w,¬y, . . .
• Clauses: disjunction of literals or set of literals
• Formula: conjunction of clauses or set of clauses
• Model (satisfying assignment): partial/total mapping from variables
to {0, 1} that satisfies formula

• Each clause can be satisfied, falsified, but also unit, unresolved
• Formula can be SAT/UNSAT
• Example:

F ≜ (r) ∧ (̄r ∨ s) ∧ (w ∨ a) ∧ (x ∨ b) ∧ (y ∨ z ∨ c) ∧ (b ∨ c ∨ d)

• Example models:
• {r, s, a, b, c, d}
• {r, s, x̄, y, w̄, z, ā, b, c, d}

16 / 76

Resolution

• Resolution rule: [DP60, Rob65]

(α ∨ x) (β ∨ x̄)
(α ∨ β)

• Complete proof system for propositional logic

• Extensively used with (CDCL) SAT solvers

17 / 76

Resolution

• Resolution rule: [DP60, Rob65]

(α ∨ x) (β ∨ x̄)
(α ∨ β)

• Complete proof system for propositional logic
(x ∨ a) (x̄ ∨ a) (ȳ ∨ ā) (y ∨ ā)

(a) (ā)

⊥

• Extensively used with (CDCL) SAT solvers

17 / 76

Unit propagation

F = (r) ∧ (̄r ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)∧
(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

• Unit clause rule: if clause is unit, its sole literal must be satisfied

• Additional definitions:
• Antecedent (or reason) of an implied assignment

• (b̄ ∨ c̄ ∨ d) for d
• Associate assignment with decision levels

• w = 1@ 1, x = 1@ 2, y = 1@ 3, z = 1@ 4

• r = 1@ 0, d = 1@ 4, ...

18 / 76

Unit propagation

F = (r) ∧ (̄r ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)∧
(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

• Unit clause rule: if clause is unit, its sole literal must be satisfied

• Additional definitions:
• Antecedent (or reason) of an implied assignment

• (b̄ ∨ c̄ ∨ d) for d
• Associate assignment with decision levels

• w = 1@ 1, x = 1@ 2, y = 1@ 3, z = 1@ 4

• r = 1@ 0, d = 1@ 4, ...

18 / 76

Unit propagation

F = (r) ∧ (̄r ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)∧
(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

• Unit clause rule: if clause is unit, its sole literal must be satisfied

• Additional definitions:
• Antecedent (or reason) of an implied assignment

• (b̄ ∨ c̄ ∨ d) for d
• Associate assignment with decision levels

• w = 1@ 1, x = 1@ 2, y = 1@ 3, z = 1@ 4

• r = 1@ 0, d = 1@ 4, ...

18 / 76

Unit propagation

F = (r) ∧ (̄r ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)∧
(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

Level Dec. Unit Prop.

0

1

2

3

4

∅

w

x

y

z

a

b

c d

r s

• Unit clause rule: if clause is unit, its sole literal must be satisfied

• Additional definitions:
• Antecedent (or reason) of an implied assignment

• (b̄ ∨ c̄ ∨ d) for d
• Associate assignment with decision levels

• w = 1@ 1, x = 1@ 2, y = 1@ 3, z = 1@ 4

• r = 1@ 0, d = 1@ 4, ...

18 / 76

Unit propagation

F = (r) ∧ (̄r ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)∧
(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

Level Dec. Unit Prop.

0

1

2

3

4

∅

w

x

y

z

a

b

c d

r s

• Unit clause rule: if clause is unit, its sole literal must be satisfied

• Additional definitions:
• Antecedent (or reason) of an implied assignment

• (b̄ ∨ c̄ ∨ d) for d
• Associate assignment with decision levels

• w = 1@ 1, x = 1@ 2, y = 1@ 3, z = 1@ 4

• r = 1@ 0, d = 1@ 4, ...
18 / 76

Resolution proofs

• Refutation of unsatisfiable formula by iterated resolution
operations produces resolution proof

• An example:
F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

• Resolution proof:

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

• Modern SAT solvers can generate resolution proofs using clauses
learned by the solver [ZM03]

19 / 76

Unsatisfiable cores & proof traces

• CNF formula:

F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

Level Dec. Unit Prop.

0 ∅ b̄

c̄

a

⊥

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

Implication graph with conflict

20 / 76

Unsatisfiable cores & proof traces

• CNF formula:

F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

Level Dec. Unit Prop.

0 ∅ b̄

c̄

a

⊥

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

Proof trace ⊥: (ā ∨ c) (a ∨ b) (c̄) (b̄)

20 / 76

Unsatisfiable cores & proof traces

• CNF formula:

F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

Level Dec. Unit Prop.

0 ∅ b̄

c̄

a

⊥

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

Resolution proof follows structure of conflicts

20 / 76

Unsatisfiable cores & proof traces

• CNF formula:

F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

Level Dec. Unit Prop.

0 ∅ b̄

c̄

a

⊥

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

Unsatisfiable subformula (core): (c̄), (b̄), (ā ∨ c), (a ∨ b)

20 / 76

1 Problem Solving with SAT Oracles

21 / 76

So what are SAT oracles?

No summaries

Yes witnesses

NP oracles

SAT Oracles

models

unsat cores

22 / 76

So what are SAT oracles?

No summaries

Yes witnesses

NP oracles

SAT Oracles

models

unsat cores

22 / 76

Computing a model

• Q: How to solve the FSAT problem?
FSAT: Compute a model of a satisfiable CNF formula F , using an NP
oracle

• A possible algorithm:
1. Analyze each variable xi ∈ {x1, . . . , xn} = var(F), in order
2. i← 1 and Fi ≜ F
3. Call NP oracle on Fi ∧ (xi)
4. If answer is yes, then Fi+1 ← Fi ∪ (xi)
5. If answer is no, then Fi+1 ← Fi ∪ (¬xi)
6. i← i+ 1

7. If i ≤ n, then repeat from 3.

• Algorithm needs |var(F)| calls to an NP oracle
• Note: Cannot solve FSAT with logarithmic number of NP oracle calls,
unless P = NP [GF93]

• FSAT is an example of a function problem

• Note: FSAT can be solved with one SAT oracle call

23 / 76

Computing a model

• Q: How to solve the FSAT problem?
FSAT: Compute a model of a satisfiable CNF formula F , using an NP
oracle

• A possible algorithm:
1. Analyze each variable xi ∈ {x1, . . . , xn} = var(F), in order
2. i← 1 and Fi ≜ F
3. Call NP oracle on Fi ∧ (xi)
4. If answer is yes, then Fi+1 ← Fi ∪ (xi)
5. If answer is no, then Fi+1 ← Fi ∪ (¬xi)
6. i← i+ 1

7. If i ≤ n, then repeat from 3.

• Algorithm needs |var(F)| calls to an NP oracle
• Note: Cannot solve FSAT with logarithmic number of NP oracle calls,
unless P = NP [GF93]

• FSAT is an example of a function problem

• Note: FSAT can be solved with one SAT oracle call

23 / 76

Computing a model

• Q: How to solve the FSAT problem?
FSAT: Compute a model of a satisfiable CNF formula F , using an NP
oracle

• A possible algorithm:
1. Analyze each variable xi ∈ {x1, . . . , xn} = var(F), in order
2. i← 1 and Fi ≜ F
3. Call NP oracle on Fi ∧ (xi)
4. If answer is yes, then Fi+1 ← Fi ∪ (xi)
5. If answer is no, then Fi+1 ← Fi ∪ (¬xi)
6. i← i+ 1

7. If i ≤ n, then repeat from 3.

• Algorithm needs |var(F)| calls to an NP oracle

• Note: Cannot solve FSAT with logarithmic number of NP oracle calls,
unless P = NP [GF93]

• FSAT is an example of a function problem

• Note: FSAT can be solved with one SAT oracle call

23 / 76

Computing a model

• Q: How to solve the FSAT problem?
FSAT: Compute a model of a satisfiable CNF formula F , using an NP
oracle

• A possible algorithm:
1. Analyze each variable xi ∈ {x1, . . . , xn} = var(F), in order
2. i← 1 and Fi ≜ F
3. Call NP oracle on Fi ∧ (xi)
4. If answer is yes, then Fi+1 ← Fi ∪ (xi)
5. If answer is no, then Fi+1 ← Fi ∪ (¬xi)
6. i← i+ 1

7. If i ≤ n, then repeat from 3.

• Algorithm needs |var(F)| calls to an NP oracle
• Note: Cannot solve FSAT with logarithmic number of NP oracle calls,
unless P = NP [GF93]

• FSAT is an example of a function problem

• Note: FSAT can be solved with one SAT oracle call

23 / 76

Computing a model

• Q: How to solve the FSAT problem?
FSAT: Compute a model of a satisfiable CNF formula F , using an NP
oracle

• A possible algorithm:
1. Analyze each variable xi ∈ {x1, . . . , xn} = var(F), in order
2. i← 1 and Fi ≜ F
3. Call NP oracle on Fi ∧ (xi)
4. If answer is yes, then Fi+1 ← Fi ∪ (xi)
5. If answer is no, then Fi+1 ← Fi ∪ (¬xi)
6. i← i+ 1

7. If i ≤ n, then repeat from 3.

• Algorithm needs |var(F)| calls to an NP oracle
• Note: Cannot solve FSAT with logarithmic number of NP oracle calls,
unless P = NP [GF93]

• FSAT is an example of a function problem
• Note: FSAT can be solved with one SAT oracle call

23 / 76

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems
Some solution Function Problems
All solutions Enumeration Problems
solutions Counting Problems

24 / 76

Beyond decision problems

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems
All solutions Enumeration Problems
solutions Counting Problems

24 / 76

Beyond decision problems

Answer Problem Type
Yes/No Decision Problems

Some solution

Function Problems
All solutions Enumeration Problems
solutions Counting Problems

24 / 76

Beyond decision problems

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems
solutions Counting Problems

24 / 76

Beyond decision problems

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems
All solutions

Enumeration Problems
solutions Counting Problems

24 / 76

Beyond decision problems

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems
All solutions Enumeration Problems

solutions Counting Problems

24 / 76

Beyond decision problems

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems
All solutions Enumeration Problems
solutions

Counting Problems

24 / 76

Beyond decision problems

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems
All solutions Enumeration Problems
solutions Counting Problems

24 / 76

... and beyond NP – decision and function problems

∆p
0 = Σp

0 = P = Πp
0 = ∆p

1

NP = Σp
1 Πp

1 = coNP

PNP = ∆p
2

Σp
2 Πp

2

∆p
3

Σp
3 Πp

3

...

F∆p
0 = FΣp

0 = FP = FΠp
0 = F∆p

1

FNP = FΣp
1 FΠp

1 = coFNP

FPNP = F∆p
2

FΣp
2 FΠp

2

F∆p
3

FΣp
3 FΠp

3

...

25 / 76

Oracle-based problem solving – simple scenario

Decision
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries

26 / 76

Oracle-based problem solving – general setting

Decision
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries

27 / 76

Many problems to solve – within FPNP

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems
All solutions Enumeration Problems

28 / 76

Many problems to solve – within FPNP

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems
All solutions Enumeration Problems

Function Problems on Propositional Formulas

MaxSAT
PBO

MinSAT

Autarkies

Backbones

Prime Implicants

MCSesMUSes Indep. Vars

WBO

MESes

MSSes
MNSes

MDSes Implicant Ext.
MFSes

MCFSes

Minimal Models

Prime Implicates
Maximal Models

Implicate Ext.

...

...

28 / 76

Many problems to solve – within FPNP

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems
All solutions Enumeration Problems

Function Problems on Propositional Formulas

Optimization Problems

Minimal Sets

MaxSAT
PBO

MinSAT

Autarkies

Backbones

Prime Implicants

MCSesMUSes Indep. Vars

WBO

MESes

MSSes
MNSes

MDSes Implicant Ext.
MFSes

MCFSes

Minimal Models

Prime Implicates
Maximal Models

Implicate Ext.

...

...

28 / 76

Selection of topics

Problem
Solving
with SAT

Embeddings

PBO

B&B Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Models

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

MaxSAT solvingMUS extraction

MUS enumeration

29 / 76

Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability

30 / 76

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable?

• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?

31 / 76

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No

• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?

31 / 76

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No
• Minimal subset of constraints that is inconsistent / unsatisfiable?

• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?

31 / 76

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No
• Minimal subset of constraints that is inconsistent / unsatisfiable?

• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?

31 / 76

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No
• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?

31 / 76

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No
• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?

31 / 76

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No
• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?
31 / 76

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No
• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining
constraints consistent?

• How to compute these minimal sets?
Minimality
matters!

31 / 76

Unsatisfiable formulas – MUSes & MCSes

• Given F (⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iff
M⊨ ⊥ and ∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C ⊭ ⊥ and ∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?

32 / 76

Unsatisfiable formulas – MUSes & MCSes

• Given F (⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iff
M⊨ ⊥ and ∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C ⊭ ⊥ and ∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?

32 / 76

Unsatisfiable formulas – MUSes & MCSes

• Given F (⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iff
M⊨ ⊥ and ∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C ⊭ ⊥ and ∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?

32 / 76

Unsatisfiable formulas – MUSes & MCSes

• Given F (⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iff
M⊨ ⊥ and ∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C ⊭ ⊥ and ∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?

32 / 76

Unsatisfiable formulas – MUSes & MCSes

• Given F (⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iff
M⊨ ⊥ and ∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C ⊭ ⊥ and ∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?

32 / 76

Unsatisfiable formulas – MUSes & MCSes

• Given F (⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iff
M⊨ ⊥ and ∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff
F \ C ⊭ ⊥ and ∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?

32 / 76

Why it matters?

• Analysis of over-constrained systems
• Model-based diagnosis [Rei87]

• Software fault localization
• Spreadsheet debugging
• Debugging relational specifications (e.g. Alloy)
• Type error debugging
• Axiom pinpointing in description logics
• ...

• Model checking of software & hardware systems
• Inconsistency measurement
• Minimal models; MinCost SAT; ...
• ...

• Find minimal relaxations to recover consistency
• But also minimum relaxations to recover consistency, eg. MaxSAT

• Find minimal explanations of inconsistency
• But also minimum explanations of inconsistency, eg. Smallest MUS

33 / 76

Why it matters?

• Analysis of over-constrained systems
• Model-based diagnosis [Rei87]

• Software fault localization
• Spreadsheet debugging
• Debugging relational specifications (e.g. Alloy)
• Type error debugging
• Axiom pinpointing in description logics
• ...

• Model checking of software & hardware systems
• Inconsistency measurement
• Minimal models; MinCost SAT; ...
• ...

• Find minimal relaxations to recover consistency
• But also minimum relaxations to recover consistency, eg. MaxSAT

• Find minimal explanations of inconsistency
• But also minimum explanations of inconsistency, eg. Smallest MUS

Enumeration
required!

33 / 76

Deletion-based algorithm

Input : Set F
Output: Minimal subsetM
begin
M← F
foreach c ∈M do

if ¬SAT(M\ {c}) then
M←M\ {c} // If ¬SAT(M\ {c}), then c ̸∈ MUS

returnM // FinalM is MUS
end

• Number of oracles calls: O(m) [CD91, BDTW93]

34 / 76

Deletion-based algorithm

Input : Set F
Output: Minimal subsetM
begin
M← F
foreach c ∈M do

if ¬SAT(M\ {c}) then
M←M\ {c} // Remove c fromM

returnM // FinalM is MUS
end

• Number of oracles calls: O(m) [CD91, BDTW93]

Monotonicity
implicit &
essential!

34 / 76

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

35 / 76

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1

c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

35 / 76

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2

c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

35 / 76

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3

c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

35 / 76

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4

c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

35 / 76

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5

c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

35 / 76

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6

c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

35 / 76

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

35 / 76

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

35 / 76

Many MUS algorithms

• Formula F with m clauses k the size of largest minimal subset

Algorithm Oracle Calls Reference
Insertion-based O(km) [dSNP88, vMW08]

MCS_MUS O(km) [BK15]

Deletion-based O(m) [CD91, BDTW93]

Linear insertion O(m) [MSL11, BLM12]

Dichotomic O(k log(m)) [HLSB06]

QuickXplain O(k+ k log(mk)) [Jun04]

Progression O(k log(1 + m
k)) [MJB13]

• Note: Lower bound in FPNP|| and upper bound in FPNP [CT95]

• Oracle calls correspond to testing unsatisfiability with SAT solver

• Practical optimizations: clause set trimming; clause set refinement;
redundancy removal; (recursive) model rotation

36 / 76

Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability

37 / 76

How to enumerate MUSes?

1. Standard solution:
Exploit HS duality between MCSes and MUSes [Rei87, LS08]

MCSes are MHSes of MUSes and vice-versa
• Enumerate all MCSes and then enumerate all MHSes of the MCSes, i.e.
compute all the MUSes

• Problematic if too many MCSes, and we want the MUSes
• And, often we want to enumerate the MUSes

2. Exploit recent advances in 2QBF solving

3. Implicit hitting set dualization [LPMM16]

• Most effective if MUSes provided to user on-demand

38 / 76

How to enumerate MUSes?

1. Standard solution:
Exploit HS duality between MCSes and MUSes [Rei87, LS08]

MCSes are MHSes of MUSes and vice-versa
• Enumerate all MCSes and then enumerate all MHSes of the MCSes, i.e.
compute all the MUSes

• Problematic if too many MCSes, and we want the MUSes
• And, often we want to enumerate the MUSes

2. Exploit recent advances in 2QBF solving

3. Implicit hitting set dualization [LPMM16]

• Most effective if MUSes provided to user on-demand

38 / 76

How to enumerate MUSes?

1. Standard solution:
Exploit HS duality between MCSes and MUSes [Rei87, LS08]

MCSes are MHSes of MUSes and vice-versa
• Enumerate all MCSes and then enumerate all MHSes of the MCSes, i.e.
compute all the MUSes

• Problematic if too many MCSes, and we want the MUSes
• And, often we want to enumerate the MUSes

2. Exploit recent advances in 2QBF solving

3. Implicit hitting set dualization [LPMM16]

• Most effective if MUSes provided to user on-demand

38 / 76

How to enumerate MUSes?

1. Standard solution:
Exploit HS duality between MCSes and MUSes [Rei87, LS08]

MCSes are MHSes of MUSes and vice-versa
• Enumerate all MCSes and then enumerate all MHSes of the MCSes, i.e.
compute all the MUSes

• Problematic if too many MCSes, and we want the MUSes
• And, often we want to enumerate the MUSes

2. Exploit recent advances in 2QBF solving

3. Implicit hitting set dualization [LPMM16]

• Most effective if MUSes provided to user on-demand

38 / 76

How to enumerate MUSes, preferably?

Formulas P and N Formula F 0

Select subset of F

Block MCS/MUS

1. Keep sets representing computed MUSes (set N) and MCSes (set P)

2. Compute minimal hitting set (MHS) H of N , subject to P
• Must not repeat MUSes
• Must not repeat MCSes
• Maximize clauses picked, i.e. prefer to check satisfiability on as many clauses as
possible

• If unsatisfiable: no more MUSes/MCSes to enumerate

3. Target set: F ′, i.e. F minus clauses from H
4. Run SAT oracle on F ′

• If F ′ unsatisfiable: extract new MUS
• Otherwise, H is already an MCS of F

5. Repeat loop

39 / 76

How to enumerate MUSes, preferably?

Formulas P and N Formula F 0

Select subset of F

Block MCS/MUS

1. Keep sets representing computed MUSes (set N) and MCSes (set P)
2. Compute minimal hitting set (MHS) H of N , subject to P

• Must not repeat MUSes
• Must not repeat MCSes
• Maximize clauses picked, i.e. prefer to check satisfiability on as many clauses as
possible

• If unsatisfiable: no more MUSes/MCSes to enumerate

3. Target set: F ′, i.e. F minus clauses from H
4. Run SAT oracle on F ′

• If F ′ unsatisfiable: extract new MUS
• Otherwise, H is already an MCS of F

5. Repeat loop

39 / 76

How to enumerate MUSes, preferably?

Formulas P and N Formula F 0

Select subset of F

Block MCS/MUS

1. Keep sets representing computed MUSes (set N) and MCSes (set P)
2. Compute minimal hitting set (MHS) H of N , subject to P

• Must not repeat MUSes
• Must not repeat MCSes
• Maximize clauses picked, i.e. prefer to check satisfiability on as many clauses as
possible

• If unsatisfiable: no more MUSes/MCSes to enumerate

3. Target set: F ′, i.e. F minus clauses from H

4. Run SAT oracle on F ′

• If F ′ unsatisfiable: extract new MUS
• Otherwise, H is already an MCS of F

5. Repeat loop

39 / 76

How to enumerate MUSes, preferably?

Formulas P and N Formula F 0

Select subset of F

Block MCS/MUS

1. Keep sets representing computed MUSes (set N) and MCSes (set P)
2. Compute minimal hitting set (MHS) H of N , subject to P

• Must not repeat MUSes
• Must not repeat MCSes
• Maximize clauses picked, i.e. prefer to check satisfiability on as many clauses as
possible

• If unsatisfiable: no more MUSes/MCSes to enumerate

3. Target set: F ′, i.e. F minus clauses from H
4. Run SAT oracle on F ′

• If F ′ unsatisfiable: extract new MUS
• Otherwise, H is already an MCS of F

5. Repeat loop

39 / 76

How to enumerate MUSes, preferably?

Formulas P and N Formula F 0

Select subset of F

Block MCS/MUS

1. Keep sets representing computed MUSes (set N) and MCSes (set P)
2. Compute minimal hitting set (MHS) H of N , subject to P

• Must not repeat MUSes
• Must not repeat MCSes
• Maximize clauses picked, i.e. prefer to check satisfiability on as many clauses as
possible

• If unsatisfiable: no more MUSes/MCSes to enumerate

3. Target set: F ′, i.e. F minus clauses from H
4. Run SAT oracle on F ′

• If F ′ unsatisfiable: extract new MUS
• Otherwise, H is already an MCS of F

5. Repeat loop
39 / 76

MARCO/eMUS algorithm

Input: CNF formula F
1 begin
2 I← {pi | ci ∈ F}
3 (P,N)← (∅, ∅)
4 while true do
5 (st,H)← MinHittingSet(N ,P)
6 if not st then return
7 F ′ ← {ci |pi ∈ I ∧ pi ̸∈ H}
8 if not SAT(F ′) then
9 M← ComputeMUS(F ′)

10 ReportMUS (M)

11 N ← N ∪ {¬pi | ci ∈M}
12 else
13 P ← P ∪ {pi |pi ∈ H}

14 end

40 / 76

An example

MinHS (N) F ′ MUS/MCS
p1p2p3p4p5p6p7 S/U

1111111 U ¬p1 ∨ ¬p2 ∨ ¬p3
0111111 U ¬p6 ∨ ¬p7
0111101 S p1 ∨ p6
1011101 U ¬p1 ∨ ¬p4 ∨ ¬p5
1101010 S p3 ∨ p5 ∨ p7
1010110 S p2 ∨ p4 ∨ p7
1100101 S p3 ∨ p4 ∨ p6
0111110 S p1 ∨ p7
1101001 S p3 ∨ p5 ∨ p6
1010101 S p2 ∨ p4 ∨ p6
1011001 S p2 ∨ p5 ∨ p6
1100110 S p3 ∨ p4 ∨ p7
1011010 S p2 ∨ p5 ∨ p7

c1 = p

c2 = ¬p ∨ r

c3 = ¬r

c4 = ¬p ∨ q c5 = ¬q

c6 = s
c7 = ¬s

41 / 76

An example

MinHS (N) F ′ MUS/MCS
p1p2p3p4p5p6p7 S/U

1111111 U ¬p1 ∨ ¬p2 ∨ ¬p3
0111111 U ¬p6 ∨ ¬p7
0111101 S p1 ∨ p6
1011101 U ¬p1 ∨ ¬p4 ∨ ¬p5
1101010 S p3 ∨ p5 ∨ p7
1010110 S p2 ∨ p4 ∨ p7
1100101 S p3 ∨ p4 ∨ p6
0111110 S p1 ∨ p7
1101001 S p3 ∨ p5 ∨ p6
1010101 S p2 ∨ p4 ∨ p6
1011001 S p2 ∨ p5 ∨ p6
1100110 S p3 ∨ p4 ∨ p7
1011010 S p2 ∨ p5 ∨ p7

c1 = p

c2 = ¬p ∨ r

c3 = ¬r

c4 = ¬p ∨ q c5 = ¬q

c6 = s
c7 = ¬s

41 / 76

An example

MinHS (N) F ′ MUS/MCS
p1p2p3p4p5p6p7 S/U

1111111 U ¬p1 ∨ ¬p2 ∨ ¬p3
0111111 U ¬p6 ∨ ¬p7
0111101 S p1 ∨ p6
1011101 U ¬p1 ∨ ¬p4 ∨ ¬p5
1101010 S p3 ∨ p5 ∨ p7
1010110 S p2 ∨ p4 ∨ p7
1100101 S p3 ∨ p4 ∨ p6
0111110 S p1 ∨ p7
1101001 S p3 ∨ p5 ∨ p6
1010101 S p2 ∨ p4 ∨ p6
1011001 S p2 ∨ p5 ∨ p6
1100110 S p3 ∨ p4 ∨ p7
1011010 S p2 ∨ p5 ∨ p7

c1 = p

c2 = ¬p ∨ r

c3 = ¬r

c4 = ¬p ∨ q c5 = ¬q

c6 = s
c7 = ¬s

41 / 76

An example

MinHS (N) F ′ MUS/MCS
p1p2p3p4p5p6p7 S/U

1111111 U ¬p1 ∨ ¬p2 ∨ ¬p3
0111111 U ¬p6 ∨ ¬p7
0111101 S p1 ∨ p6
1011101 U ¬p1 ∨ ¬p4 ∨ ¬p5
1101010 S p3 ∨ p5 ∨ p7
1010110 S p2 ∨ p4 ∨ p7
1100101 S p3 ∨ p4 ∨ p6
0111110 S p1 ∨ p7
1101001 S p3 ∨ p5 ∨ p6
1010101 S p2 ∨ p4 ∨ p6
1011001 S p2 ∨ p5 ∨ p6
1100110 S p3 ∨ p4 ∨ p7
1011010 S p2 ∨ p5 ∨ p7

c1 = p

c2 = ¬p ∨ r

c3 = ¬r

c4 = ¬p ∨ q c5 = ¬q

c6 = s
c7 = ¬s

41 / 76

An example

MinHS (N) F ′ MUS/MCS
p1p2p3p4p5p6p7 S/U

1111111 U ¬p1 ∨ ¬p2 ∨ ¬p3
0111111 U ¬p6 ∨ ¬p7
0111101 S p1 ∨ p6
1011101 U ¬p1 ∨ ¬p4 ∨ ¬p5
1101010 S p3 ∨ p5 ∨ p7
1010110 S p2 ∨ p4 ∨ p7
1100101 S p3 ∨ p4 ∨ p6
0111110 S p1 ∨ p7
1101001 S p3 ∨ p5 ∨ p6
1010101 S p2 ∨ p4 ∨ p6
1011001 S p2 ∨ p5 ∨ p6
1100110 S p3 ∨ p4 ∨ p7
1011010 S p2 ∨ p5 ∨ p7

c1 = p

c2 = ¬p ∨ r

c3 = ¬r

c4 = ¬p ∨ q c5 = ¬q

c6 = s
c7 = ¬s

41 / 76

An example

MinHS (N) F ′ MUS/MCS
p1p2p3p4p5p6p7 S/U

1111111 U ¬p1 ∨ ¬p2 ∨ ¬p3
0111111 U ¬p6 ∨ ¬p7
0111101 S p1 ∨ p6
1011101 U ¬p1 ∨ ¬p4 ∨ ¬p5
1101010 S p3 ∨ p5 ∨ p7
1010110 S p2 ∨ p4 ∨ p7
1100101 S p3 ∨ p4 ∨ p6
0111110 S p1 ∨ p7
1101001 S p3 ∨ p5 ∨ p6
1010101 S p2 ∨ p4 ∨ p6
1011001 S p2 ∨ p5 ∨ p6
1100110 S p3 ∨ p4 ∨ p7
1011010 S p2 ∨ p5 ∨ p7

c1 = p

c2 = ¬p ∨ r

c3 = ¬r

c4 = ¬p ∨ q c5 = ¬q

c6 = s
c7 = ¬s

41 / 76

An example

MinHS (N) F ′ MUS/MCS
p1p2p3p4p5p6p7 S/U

1111111 U ¬p1 ∨ ¬p2 ∨ ¬p3
0111111 U ¬p6 ∨ ¬p7
0111101 S p1 ∨ p6
1011101 U ¬p1 ∨ ¬p4 ∨ ¬p5
1101010 S p3 ∨ p5 ∨ p7
1010110 S p2 ∨ p4 ∨ p7
1100101 S p3 ∨ p4 ∨ p6
0111110 S p1 ∨ p7
1101001 S p3 ∨ p5 ∨ p6
1010101 S p2 ∨ p4 ∨ p6
1011001 S p2 ∨ p5 ∨ p6
1100110 S p3 ∨ p4 ∨ p7
1011010 S p2 ∨ p5 ∨ p7

c1 = p

c2 = ¬p ∨ r

c3 = ¬r

c4 = ¬p ∨ q c5 = ¬q

c6 = s
c7 = ¬s

41 / 76

Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability

42 / 76

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of the
formula

• The MaxSAT solution is one of the smallest cost MCSes

• Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17]

43 / 76

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of the
formula

• The MaxSAT solution is one of the smallest cost MCSes

• Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17]

43 / 76

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of the
formula

• The MaxSAT solution is one of the smallest MCSes

• Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17]

43 / 76

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of the
formula

• The MaxSAT solution is one of the smallest MCSes
• Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17]

43 / 76

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of the
formula

• The MaxSAT solution is one of the smallest cost MCSes
• Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17]

43 / 76

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of the
formula

• The MaxSAT solution is one of the smallest cost MCSes
• Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17]

43 / 76

MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No

Yes

44 / 76

MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

44 / 76

MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

• Must satisfy hard clauses, if any
• Compute set of satisfied soft clauses with maximum cost

• Without weights, cost of each falsified soft clause is 1

• Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)

• Note: goal is to compute set of satisfied (or falsified) clauses;
not just the cost !

44 / 76

MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

• Must satisfy hard clauses, if any
• Compute set of satisfied soft clauses with maximum cost

• Without weights, cost of each falsified soft clause is 1

• Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)

• Note: goal is to compute set of satisfied (or falsified) clauses;
not just the cost !

44 / 76

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT

• Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• Is 2 the MaxSAT solution??
• No! Enough to either falsify (x) or (z)

• Cannot use unit propagation
• Cannot learn clauses (using unit propagation)
• Need to solve MaxSAT using different techniques

45 / 76

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
• Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• Is 2 the MaxSAT solution??
• No! Enough to either falsify (x) or (z)

• Cannot use unit propagation
• Cannot learn clauses (using unit propagation)
• Need to solve MaxSAT using different techniques

45 / 76

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
• Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• Is 2 the MaxSAT solution??
• No! Enough to either falsify (x) or (z)

• Cannot use unit propagation
• Cannot learn clauses (using unit propagation)
• Need to solve MaxSAT using different techniques

45 / 76

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
• Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• Is 2 the MaxSAT solution??

• No! Enough to either falsify (x) or (z)
• Cannot use unit propagation
• Cannot learn clauses (using unit propagation)
• Need to solve MaxSAT using different techniques

45 / 76

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
• Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• Is 2 the MaxSAT solution??
• No! Enough to either falsify (x) or (z)

• Cannot use unit propagation
• Cannot learn clauses (using unit propagation)
• Need to solve MaxSAT using different techniques

45 / 76

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
• Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• Is 2 the MaxSAT solution??
• No! Enough to either falsify (x) or (z)

• Cannot use unit propagation

• Cannot learn clauses (using unit propagation)
• Need to solve MaxSAT using different techniques

45 / 76

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
• Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• Is 2 the MaxSAT solution??
• No! Enough to either falsify (x) or (z)

• Cannot use unit propagation
• Cannot learn clauses (using unit propagation)

• Need to solve MaxSAT using different techniques

45 / 76

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
• Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• Is 2 the MaxSAT solution??
• No! Enough to either falsify (x) or (z)

• Cannot use unit propagation
• Cannot learn clauses (using unit propagation)
• Need to solve MaxSAT using different techniques

45 / 76

Many MaxSAT approaches

MaxSAT Al-
gorithms

Branch
& Bound

Iterative

Core GuidedIterative
MHS

Model
Guided

No unit prop; No
cl. learning

All cls relaxed

Relax cls given
unsat cores

Iterative
MHS & SAT

Relax cls given
models

• For practical (industrial) instances: core-guided & iterative MHS
approaches are the most effective [MaxSAT14]

46 / 76

Many MaxSAT approaches

MaxSAT Al-
gorithms

Branch
& Bound

Iterative

Core GuidedIterative
MHS

Model
Guided

No unit prop; No
cl. learning

All cls relaxed

Relax cls given
unsat cores

Iterative
MHS & SAT

Relax cls given
models

• For practical (industrial) instances: core-guided & iterative MHS
approaches are the most effective [MaxSAT14]

46 / 76

Core-guided solver performance – partial

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of instances

Number x of instances solved in y seconds

Open-WBO-In
QMaxSAT2-mt-13

QMaxSat-g2-12
QMaxSat0.4-11

QMaxSat-10

Source: [MaxSAT 2014 organizers]
47 / 76

Core-guided solver performance – weighted partial

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of instances

Number x of instances solved in y seconds

Eva500a
WPM1-2013

WPM1-11
pwbo2.1-12

wbo-1.4a-wcnf-10

Source: [MaxSAT 2014 organizers]
48 / 76

Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability

Iterative SAT Solving

Core-Guided Algorithms

Minimum Hitting Sets

49 / 76

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 12

Example CNF formula

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

50 / 76

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 12

Relax all clauses; Set UB = 12 + 1

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

50 / 76

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 12

Formula is SAT; E.g. all xi = 0 and r1 = r7 = r9 = 1 (i.e. cost = 3)

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

50 / 76

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 2

Refine UB = 3

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

50 / 76

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 2

Formula is SAT; E.g. x1 = x2 = 1; x3 = ... = x8 = 0 and r4 = r9 = 1 (i.e. cost = 2)

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

50 / 76

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 1

Refine UB = 2

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

50 / 76

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 1

Formula is UNSAT; terminate

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

50 / 76

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 1

MaxSAT solution is last satisfied UB: UB = 2

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

50 / 76

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 1

MaxSAT solution is last satisfied UB: UB = 2

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

50 / 76

Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability

Iterative SAT Solving

Core-Guided Algorithms

Minimum Hitting Sets

51 / 76

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Example CNF formula

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

52 / 76

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Formula is UNSAT; OPT ≤ |φ| − 1; Get unsat core

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

52 / 76

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑6
i=1 ri ≤ 1

Add relaxation variables and AtMostk, k = 1, constraint

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

52 / 76

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑6
i=1 ri ≤ 1

Formula is (again) UNSAT; OPT ≤ |φ| − 2; Get unsat core

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

52 / 76

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑10
i=1 ri ≤ 2

Add new relaxation variables and update AtMostk, k=2, constraint

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

52 / 76

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑10
i=1 ri ≤ 2

Instance is now SAT

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

52 / 76

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑10
i=1 ri ≤ 2

MaxSAT solution is |φ| − I = 12− 2 = 10

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

52 / 76

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑10
i=1 ri ≤ 2

MaxSAT solution is |φ| − I = 12− 2 = 10

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

52 / 76

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑10
i=1 ri ≤ 2

MaxSAT solution is |φ| − I = 12− 2 = 10

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

52 / 76

Outline

Minimal Unsatisfiability

MUS Enumeration

Maximum Satisfiability

Iterative SAT Solving

Core-Guided Algorithms

Minimum Hitting Sets

53 / 76

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K:

• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}

54 / 76

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅

• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}

54 / 76

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅

• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}

54 / 76

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅

• SAT(F \ ∅)? No

• Core of F : {c1, c2, c3, c4}

54 / 76

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅

• SAT(F \ ∅)? No

• Core of F : {c1, c2, c3, c4}

54 / 76

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: ∅

• SAT(F \ ∅)? No

• Core of F : {c1, c2, c3, c4}. Update K

54 / 76

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K:

• SAT(F \ {c1})?

• Core of F : {c9, c10, c11, c12}

54 / 76

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}

• SAT(F \ {c1})?

• Core of F : {c9, c10, c11, c12}

54 / 76

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}

• SAT(F \ {c1})?

• Core of F : {c9, c10, c11, c12}

54 / 76

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}

• SAT(F \ {c1})? No

• Core of F : {c9, c10, c11, c12}

54 / 76

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}

• SAT(F \ {c1})? No

• Core of F : {c9, c10, c11, c12}

54 / 76

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1}

• SAT(F \ {c1})? No

• Core of F : {c9, c10, c11, c12}. Update K

54 / 76

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K:

• SAT(F \ {c1, c9})?

• Core of F : {c3, c4, c7, c8, c11, c12}

54 / 76

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}

• SAT(F \ {c1, c9})?

• Core of F : {c3, c4, c7, c8, c11, c12}

54 / 76

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}

• SAT(F \ {c1, c9})?

• Core of F : {c3, c4, c7, c8, c11, c12}

54 / 76

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}

• SAT(F \ {c1, c9})? No

• Core of F : {c3, c4, c7, c8, c11, c12}

54 / 76

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}

• SAT(F \ {c1, c9})? No

• Core of F : {c3, c4, c7, c8, c11, c12}

54 / 76

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c1, c9}

• SAT(F \ {c1, c9})? No

• Core of F : {c3, c4, c7, c8, c11, c12}. Update K

54 / 76

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K:

• SAT(F \ {c4, c9})?

• Terminate & return 2

54 / 76

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}

• SAT(F \ {c4, c9})?

• Terminate & return 2

54 / 76

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}

• SAT(F \ {c4, c9})?

• Terminate & return 2

54 / 76

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}

• SAT(F \ {c4, c9})? Yes

• Terminate & return 2

54 / 76

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}

• SAT(F \ {c4, c9})? Yes

• Terminate & return 2

54 / 76

MaxSAT solving with SAT oracles – a sample

• A sample of recent algorithms:
Algorithm # Oracle Queries Reference
Linear search SU Exponential*** [BP10]

Binary search Linear* [FM06]

FM/WMSU1/WPM1 Exponential** [FM06, MP08, MMSP09, ABL09, ABGL12]

WPM2 Exponential** [ABL10, ABL13]

Bin-Core-Dis Linear [HMM11, MHM12]

Iterative MHS Exponential [DB11, DB13a, DB13b]

* O(logm) queries with SAT oracle, for (partial) unweighted MaxSAT
** Weighted case; depends on computed cores
*** On # bits of problem instance (due to weights)

• But also additional recent work:
• Progression [IMM+14]

• Soft cardinality constraints (OLL) [MDM14, MIM14]

• Recent implementation (RC2, using PySAT) won 2018 MaxSAT Evaluation
• MaxSAT resolution [NB14]

• ... 55 / 76

2 Exploring With SAT Oracles

56 / 76

Incremental SAT solving

• SAT solver often called multiple times on related formulas

• It helps to make incremental changes & remember already learned
clauses (that still hold)

• Most often used solution: [ES03]

• Use activation/selector/indicator variables
Given clause Added to SAT solver

ci ci ∨ si
• To activate clause: add assumption si = 1

• To deactivate clause: add assumption si = 0 (optional)
• To remove clause: add unit (si)
• Any learned clause contains explanation given working assumptions
(more next)

57 / 76

Incremental SAT solving

• SAT solver often called multiple times on related formulas

• It helps to make incremental changes & remember already learned
clauses (that still hold)

• Most often used solution: [ES03]

• Use activation/selector/indicator variables
Given clause Added to SAT solver

ci ci ∨ si
• To activate clause: add assumption si = 1

• To deactivate clause: add assumption si = 0 (optional)
• To remove clause: add unit (si)
• Any learned clause contains explanation given working assumptions
(more next)

57 / 76

Incremental SAT solving

• SAT solver often called multiple times on related formulas

• It helps to make incremental changes & remember already learned
clauses (that still hold)

• Most often used solution: [ES03]

• Use activation/selector/indicator variables
Given clause Added to SAT solver

ci ci ∨ si

• To activate clause: add assumption si = 1

• To deactivate clause: add assumption si = 0 (optional)
• To remove clause: add unit (si)
• Any learned clause contains explanation given working assumptions
(more next)

57 / 76

Incremental SAT solving

• SAT solver often called multiple times on related formulas

• It helps to make incremental changes & remember already learned
clauses (that still hold)

• Most often used solution: [ES03]

• Use activation/selector/indicator variables
Given clause Added to SAT solver

ci ci ∨ si
• To activate clause: add assumption si = 1

• To deactivate clause: add assumption si = 0 (optional)
• To remove clause: add unit (si)
• Any learned clause contains explanation given working assumptions
(more next)

57 / 76

Incremental SAT solving

• SAT solver often called multiple times on related formulas

• It helps to make incremental changes & remember already learned
clauses (that still hold)

• Most often used solution: [ES03]

• Use activation/selector/indicator variables
Given clause Added to SAT solver

ci ci ∨ si
• To activate clause: add assumption si = 1

• To deactivate clause: add assumption si = 0 (optional)

• To remove clause: add unit (si)
• Any learned clause contains explanation given working assumptions
(more next)

57 / 76

Incremental SAT solving

• SAT solver often called multiple times on related formulas

• It helps to make incremental changes & remember already learned
clauses (that still hold)

• Most often used solution: [ES03]

• Use activation/selector/indicator variables
Given clause Added to SAT solver

ci ci ∨ si
• To activate clause: add assumption si = 1

• To deactivate clause: add assumption si = 0 (optional)
• To remove clause: add unit (si)

• Any learned clause contains explanation given working assumptions
(more next)

57 / 76

Incremental SAT solving

• SAT solver often called multiple times on related formulas

• It helps to make incremental changes & remember already learned
clauses (that still hold)

• Most often used solution: [ES03]

• Use activation/selector/indicator variables
Given clause Added to SAT solver

ci ci ∨ si
• To activate clause: add assumption si = 1

• To deactivate clause: add assumption si = 0 (optional)
• To remove clause: add unit (si)
• Any learned clause contains explanation given working assumptions
(more next)

57 / 76

An example

B = {(a ∨ b), (a ∨ c)}
S = {(a ∨ s1), (b ∨ c ∨ s2), (a ∨ c ∨ s3), (a ∨ b ∨ s4)}

• Background knowledge B: final clauses, i.e. no indicator variables
• Soft clauses S : add indicator variables {s1, s2, s3, s4}

• E.g. given assumptions {s1 = 1, s2 = 0, s3 = 0, s4 = 1}, SAT solver
handles formula:

F = {(a ∨ b), (a ∨ c), (a), (a ∨ b)}

which is satisfiable

58 / 76

An example

B = {(a ∨ b), (a ∨ c)}
S = {(a ∨ s1), (b ∨ c ∨ s2), (a ∨ c ∨ s3), (a ∨ b ∨ s4)}

• Background knowledge B: final clauses, i.e. no indicator variables
• Soft clauses S : add indicator variables {s1, s2, s3, s4}
• E.g. given assumptions {s1 = 1, s2 = 0, s3 = 0, s4 = 1}, SAT solver
handles formula:

F = {(a ∨ b), (a ∨ c), (a), (a ∨ b)}

which is satisfiable

58 / 76

Quiz – what happens in this case?

B = {(a ∨ b), (a ∨ c)}
S = {(a ∨ s1), (b ∨ c ∨ s2), (a ∨ c ∨ s3), (a ∨ b ∨ s4)}

• Given assumptions {s1 = 1, s2 = 1, s3 = 1, s4 = 1}?

(a ∨ b) (a ∨ s1) (a ∨ c) (b ∨ c ∨ s2)

(b ∨ s1) (c ∨ s1)

(c̄ ∨ s1 ∨ s2)

(s1 ∨ s2)

• Unsatisfiable core: 1st and 2nd clauses of S , given B

59 / 76

Quiz – what happens in this case?

B = {(a ∨ b), (a ∨ c)}
S = {(a ∨ s1), (b ∨ c ∨ s2), (a ∨ c ∨ s3), (a ∨ b ∨ s4)}

• Given assumptions {s1 = 1, s2 = 1, s3 = 1, s4 = 1}?

(a ∨ b) (a ∨ s1) (a ∨ c) (b ∨ c ∨ s2)

(b ∨ s1) (c ∨ s1)

(c̄ ∨ s1 ∨ s2)

(s1 ∨ s2)

• Unsatisfiable core: 1st and 2nd clauses of S , given B

59 / 76

Quiz – what happens in this case?

B = {(a ∨ b), (a ∨ c)}
S = {(a ∨ s1), (b ∨ c ∨ s2), (a ∨ c ∨ s3), (a ∨ b ∨ s4)}

• Given assumptions {s1 = 1, s2 = 1, s3 = 1, s4 = 1}?

(a ∨ b) (a ∨ s1) (a ∨ c) (b ∨ c ∨ s2)

(b ∨ s1) (c ∨ s1)

(c̄ ∨ s1 ∨ s2)

(s1 ∨ s2)

• Unsatisfiable core: 1st and 2nd clauses of S , given B

59 / 76

Overview of PySAT

[IMM18]

PySAT modules

solvers
module

cardenc
module

formula
module

PySAT API

• Open source, available on github
• Comprehensive list of SAT solvers
• Comprehensive list of cardinality encodings
• Fairly comprehensive documentation
• Several use cases

60 / 76

Overview of PySAT

[IMM18]

PySAT modules

solvers
module

cardenc
module

formula
module

PySAT API

• Open source, available on github

• Comprehensive list of SAT solvers
• Comprehensive list of cardinality encodings
• Fairly comprehensive documentation
• Several use cases

60 / 76

Overview of PySAT

[IMM18]

PySAT modules

solvers
module

cardenc
module

formula
module

PySAT API

• Open source, available on github
• Comprehensive list of SAT solvers
• Comprehensive list of cardinality encodings
• Fairly comprehensive documentation
• Several use cases

60 / 76

Available solvers

Solver Version
Glucose 3.0
Glucose 4.1
Lingeling bbc-9230380-160707
Minicard 1.2
Minisat 2.2 release
Minisat GitHub version
MapleCM SAT competition 2018
Maplesat MapleCOMSPS_LRB

... ...

• Solvers can either be used incrementally or non-incrementally
• Tools can use multiple solvers, e.g. for hitting set dualization or
CEGAR-based QBF solving

• URL: https:
//pysathq.github.io/docs/html/api/solvers.html

61 / 76

https://pysathq.github.io/docs/html/api/solvers.html
https://pysathq.github.io/docs/html/api/solvers.html

Formula manipulation

Features
CNF & Weighted CNF (WCNF)
Read formulas from file/string
Write formulas to file
Append clauses to formula
Negate CNF formulas
Translate between CNF and WCNF
ID manager

• URL: https:
//pysathq.github.io/docs/html/api/formula.html

62 / 76

https://pysathq.github.io/docs/html/api/formula.html
https://pysathq.github.io/docs/html/api/formula.html

Available cardinality encodings

Name Type
pairwise AtMost1
bitwise AtMost1
ladder AtMost1

sequential counter AtMostk
sorting network AtMostk

cardinality network AtMostk
totalizer AtMostk
mtotalizer AtMostk
kmtotalizer AtMostk

• Also AtLeastK and EqualsK constraints

• URL:
https://pysathq.github.io/docs/html/api/card.html

63 / 76

https://pysathq.github.io/docs/html/api/card.html

Installation & info

• Installation:
$ [sudo] pip2|pip3 install python-sat

• Website: https://pysathq.github.io/

64 / 76

https://pysathq.github.io/

Basic interface – Python3 shell

>>> from pysat . card import *
>>> am1 = CardEnc . atmost (l i t s = [1 , −2, 3] , encoding=EncType . pairwise)
>>> pr int (am1 . clauses)
[[−1 , 2] , [−1 , −3] , [2 , −3]]
>>>
>>> from pysat . so lvers import Solver
>>> with Solver (name= ’m22 ’ , bootstrap_with =am1 . clauses) as s :
. . . i f s . solve (assumptions = [1 , 2 , 3]) == False :
. . . pr int (s . get_core ())
[3 , 1]

65 / 76

Basic interface – Python3 script

! / usr/ loca l /bin/python3
from sys import argv

from pysat . formula import CNF
from pysat . so lvers import Glucose3 , Solver

formula = CNF ()
formula . append([−1 , 2 , 4])
formula . append ([1 , −2, 5])
formula . append([−1 , −2, 6])
formula . append ([1 , 2 , 7])

g = Glucose3 (bootstrap_with = formula . clauses)

i f g . solve (assumptions=[−4 , −5, −6, −7]) == False :
pr int (” Core : ” , g . get_core ())

66 / 76

Example: naive (deletion) MUS extraction

Input : Set F
Output: Minimal subsetM
begin
M← F
foreach c ∈M do

if ¬SAT(M\ {c}) then
M←M\ {c} // If ¬SAT(M\ {c}), then c ̸∈ MUS

returnM // FinalM is MUS
end

• Number of predicate tests: O(m) [CD91, BDTW93]

67 / 76

Naive MUS extraction I

def main () :
cnf = CNF (f rom_f i le =argv [1]) # create a CNF object from f i l e
(rnv , assumps) = add_assumps (cnf)

oracle = Solver (name= ’ g3 ’ , bootstrap_with = cnf . clauses)

mus = find_mus (assumps , oracle)
mus = [re f − rnv for re f in mus]
pr int (”MUS : ” , mus)

i f __name__== ” __main__ ” :
main ()

68 / 76

Naive MUS extraction II

def add_assumps (cnf) :
rnv = topv = cnf . nv
assumps = [] # l i s t of assumptions to use
for i in range (len (cnf . clauses)) :

topv += 1
assumps . append (topv) # r eg i s t e r l i t e r a l
cnf . clauses [i] . append(−topv) # extend clause with l i t e r a l

cnf . nv = cnf . nv + len (assumps) # update # of vars
return rnv , assumps

def main () :
cnf = CNF (f rom_f i le =argv [1]) # create a CNF object from f i l e
(rnv , assumps) = add_assumps (cnf)

oracle = Solver (name= ’ g3 ’ , bootstrap_with = cnf . clauses)

mus = find_mus (assumps , oracle)
mus = [re f − rnv for re f in mus]
pr int (”MUS : ” , mus)

i f __name__== ” __main__ ” :
main ()

69 / 76

Naive MUS extraction III

from sys import argv

from pysat . formula import CNF
from pysat . so lvers import Solver

def find_mus (assmp , oracle) :
i = 0
while i < len (assmp) :

t s = assmp [: i] + assmp [(i + 1) :]
i f not oracle . solve (assumptions= ts) :

assmp = ts
else :

i += 1
return assmp

70 / 76

Naive MUS extraction III

from sys import argv

from pysat . formula import CNF
from pysat . so lvers import Solver

def find_mus (assmp , oracle) :
i = 0
while i < len (assmp) :

t s = assmp [: i] + assmp [(i + 1) :]
i f not oracle . solve (assumptions= ts) :

assmp = ts
else :

i += 1
return assmp

Demo

70 / 76

A less naive MUS extractor

def c l se t _ re f i ne (assmp , oracle) :
assmp = sorted (assmp)
while True :

oracle . solve (assumptions=assmp)
ts = sorted (oracle . get_core ())
i f t s == assmp :

break
assmp = ts

return assmp
. . .

def main () :
cnf = CNF (f rom_f i le =argv [1]) # create a CNF object from f i l e
(rnv , assumps) = add_assumps (cnf)

oracle = Solver (name= ’ g3 ’ , bootstrap_with = cnf . clauses)

assumps = c l se t _ re f i ne (assumps , oracle)
mus = find_mus (assumps , oracle)
mus = [re f − rnv for re f in mus]
pr int (”MUS : ” , mus)

i f __name__== ” __main__ ” :
main ()

71 / 76

3 A Glimpse of the Future

72 / 76

What next?

• Oracle-based computing
• Problems beyond NP: optimization, quantification, enumeration,
(approximate) counting, decision

• Arms race for proof systems stronger than resolution/clause
learning

• Extended Resolution (and equivalent)
• Cutting Planes (CP)
• MaxSAT-inspired proof systems [IMM17, BBI+18]

• Verification of ML models with SAT/SMT

• Scalable explainable AI/ML
• Deep NNs operate as black-boxes
• Often important to provide small/intuitive explanations for
predictions made

• ...

73 / 76

What next?

• Oracle-based computing
• Problems beyond NP: optimization, quantification, enumeration,
(approximate) counting, decision

• Arms race for proof systems stronger than resolution/clause
learning

• Extended Resolution (and equivalent)
• Cutting Planes (CP)
• MaxSAT-inspired proof systems [IMM17, BBI+18]

• Verification of ML models with SAT/SMT

• Scalable explainable AI/ML
• Deep NNs operate as black-boxes
• Often important to provide small/intuitive explanations for
predictions made

• ...

73 / 76

What next?

• Oracle-based computing
• Problems beyond NP: optimization, quantification, enumeration,
(approximate) counting, decision

• Arms race for proof systems stronger than resolution/clause
learning

• Extended Resolution (and equivalent)
• Cutting Planes (CP)
• MaxSAT-inspired proof systems [IMM17, BBI+18]

• Verification of ML models with SAT/SMT

• Scalable explainable AI/ML
• Deep NNs operate as black-boxes
• Often important to provide small/intuitive explanations for
predictions made

• ...

73 / 76

What next?

• Oracle-based computing
• Problems beyond NP: optimization, quantification, enumeration,
(approximate) counting, decision

• Arms race for proof systems stronger than resolution/clause
learning

• Extended Resolution (and equivalent)
• Cutting Planes (CP)
• MaxSAT-inspired proof systems [IMM17, BBI+18]

• Verification of ML models with SAT/SMT

• Scalable explainable AI/ML
• Deep NNs operate as black-boxes
• Often important to provide small/intuitive explanations for
predictions made

• ...

73 / 76

What next?

• Oracle-based computing
• Problems beyond NP: optimization, quantification, enumeration,
(approximate) counting, decision

• Arms race for proof systems stronger than resolution/clause
learning

• Extended Resolution (and equivalent)
• Cutting Planes (CP)
• MaxSAT-inspired proof systems [IMM17, BBI+18]

• Verification of ML models with SAT/SMT

• Scalable explainable AI/ML
• Deep NNs operate as black-boxes
• Often important to provide small/intuitive explanations for
predictions made

• ...
73 / 76

Some final notes

• SAT is a low-level, but very powerful problem solving paradigm
• PySAT suggests a way to tackle this drawback, but there are others

• There is an ongoing revolution on problem solving with SAT (and
SMT) oracles

• E.g. QBF, model-based diagnosis, explainability, theorem proving,
program synthesis, ...

• The use of SAT oracles is impacting problem solving for many
different complexity classes

• With well-known representative problems, e.g. QBF, #SAT, etc.

• Many fascinating research topics out there !
• Connections with ML seem unavoidable

74 / 76

Some final notes

• SAT is a low-level, but very powerful problem solving paradigm
• PySAT suggests a way to tackle this drawback, but there are others

• There is an ongoing revolution on problem solving with SAT (and
SMT) oracles

• E.g. QBF, model-based diagnosis, explainability, theorem proving,
program synthesis, ...

• The use of SAT oracles is impacting problem solving for many
different complexity classes

• With well-known representative problems, e.g. QBF, #SAT, etc.

• Many fascinating research topics out there !
• Connections with ML seem unavoidable

74 / 76

Sample of tools

• PySAT
• SAT solvers:

• MiniSat
• Glucose

• MaxSAT solvers:
• RC2
• MSCG
• OpenWBO
• MaxHS

• MUS extractors:
• MUSer

• MCS extractors:
• mcsXL
• LBX
• MCSls

• Many other tools available from the ReasonLab server
75 / 76

https://pysathq.github.io/
https://github.com/niklasso/minisat
http://www.labri.fr/perso/lsimon/glucose/
https://reason.di.fc.ul.pt/wiki/doku.php?id=rc2
https://reason.di.fc.ul.pt/wiki/doku.php?id=mscg
http://sat.inesc-id.pt/open-wbo/
http://www.maxhs.org
https://reason.di.fc.ul.pt/wiki/doku.php?id=muser
https://reason.di.fc.ul.pt/wiki/doku.php?id=mcsxl
https://reason.di.fc.ul.pt/wiki/doku.php?id=lbx
https://reason.di.fc.ul.pt/wiki/doku.php?id=mcsls
https://reason.di.fc.ul.pt/wiki/doku.php?id=soft

Questions?

76 / 76

References i

[ABGL12] Carlos Ansótegui, Maria Luisa Bonet, Joel Gabàs, and Jordi Levy.
Improving SAT-based weighted MaxSAT solvers.
In CP, pages 86–101, 2012.

[ABL09] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy.
Solving (weighted) partial MaxSAT through satisfiability testing.
In SAT, pages 427–440, 2009.

[ABL10] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy.
A new algorithm for weighted partial MaxSAT.
In AAAI, 2010.

[ABL13] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy.
SAT-based MaxSAT algorithms.
Artif. Intell., 196:77–105, 2013.

[AMM15] M. Fareed Arif, Carlos Mencía, and Joao Marques-Silva.
Efficient MUS enumeration of horn formulae with applications to axiom
pinpointing.
In SAT, volume 9340 of Lecture Notes in Computer Science, pages 324–342.
Springer, 2015.

77 / 76

References ii

[BBI+18] Maria Luisa Bonet, Sam Buss, Alexey Ignatiev, Joao Marques-Silva, and António
Morgado.
MaxSAT resolution with the dual rail encoding.
In AAAI, pages 6565–6572. AAAI Press, 2018.

[BDTW93] R. R. Bakker, F. Dikker, F. Tempelman, and P. M. Wognum.
Diagnosing and solving over-determined constraint satisfaction problems.
In IJCAI, pages 276–281, 1993.

[BK15] Fahiem Bacchus and George Katsirelos.
Using minimal correction sets to more efficiently compute minimal
unsatisfiable sets.
In CAV (2), volume 9207 of Lecture Notes in Computer Science, pages 70–86.
Springer, 2015.

[BLM12] Anton Belov, Inês Lynce, and Joao Marques-Silva.
Towards efficient MUS extraction.
AI Commun., 25(2):97–116, 2012.

[BP10] Daniel Le Berre and Anne Parrain.
The Sat4j library, release 2.2.
JSAT, 7(2-3):59–6, 2010.

78 / 76

References iii

[BS05] James Bailey and Peter J. Stuckey.
Discovery of minimal unsatisfiable subsets of constraints using hitting set
dualization.
In PADL, pages 174–186, 2005.

[CD91] John W. Chinneck and Erik W. Dravnieks.
Locating minimal infeasible constraint sets in linear programs.
INFORMS Journal on Computing, 3(2):157–168, 1991.

[Coo71] Stephen A. Cook.
The complexity of theorem-proving procedures.
In STOC, pages 151–158. ACM, 1971.

[CT95] Zhi-Zhong Chen and Seinosuke Toda.
The complexity of selecting maximal solutions.
Inf. Comput., 119(2):231–239, 1995.

[DB11] Jessica Davies and Fahiem Bacchus.
Solving MAXSAT by solving a sequence of simpler SAT instances.
In CP, pages 225–239, 2011.

79 / 76

References iv

[DB13a] Jessica Davies and Fahiem Bacchus.
Exploiting the power of MIP solvers in MAXSAT.
In SAT, pages 166–181, 2013.

[DB13b] Jessica Davies and Fahiem Bacchus.
Postponing optimization to speed up MAXSAT solving.
In CP, pages 247–262, 2013.

[DP60] Martin Davis and Hilary Putnam.
A computing procedure for quantification theory.
J. ACM, 7(3):201–215, 1960.

[dSNP88] J. L. de Siqueira N. and Jean-Francois Puget.
Explanation-based generalisation of failures.
In ECAI, pages 339–344, 1988.

[ES03] Niklas Eén and Niklas Sörensson.
An extensible SAT-solver.
In SAT, pages 502–518, 2003.

80 / 76

References v

[FM06] Zhaohui Fu and Sharad Malik.
On solving the partial MAX-SAT problem.
In SAT, volume 4121 of Lecture Notes in Computer Science, pages 252–265.
Springer, 2006.

[GF93] Georg Gottlob and Christian G. Fermüller.
Removing redundancy from a clause.
Artif. Intell., 61(2):263–289, 1993.

[HLSB06] Fred Hemery, Christophe Lecoutre, Lakhdar Sais, and Frédéric Boussemart.
Extracting MUCs from constraint networks.
In ECAI, pages 113–117, 2006.

[HMM11] Federico Heras, António Morgado, and Joao Marques-Silva.
Core-guided binary search algorithms for maximum satisfiability.
In AAAI. AAAI Press, 2011.

[IMM+14] Alexey Ignatiev, António Morgado, Vasco M. Manquinho, Inês Lynce, and Joao
Marques-Silva.
Progression in maximum satisfiability.
In ECAI, volume 263 of Frontiers in Artificial Intelligence and Applications, pages
453–458. IOS Press, 2014.

81 / 76

References vi

[IMM16] Alexey Ignatiev, António Morgado, and Joao Marques-Silva.
Propositional abduction with implicit hitting sets.
In ECAI, volume 285 of Frontiers in Artificial Intelligence and Applications, pages
1327–1335. IOS Press, 2016.

[IMM17] Alexey Ignatiev, António Morgado, and Joao Marques-Silva.
On tackling the limits of resolution in SAT solving.
In SAT, volume 10491 of Lecture Notes in Computer Science, pages 164–183.
Springer, 2017.

[IMM18] Alexey Ignatiev, António Morgado, and Joao Marques-Silva.
PySAT: A python toolkit for prototyping with SAT oracles.
In SAT, volume 10929 of Lecture Notes in Computer Science, pages 428–437.
Springer, 2018.

[INMS19] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
Abduction-based explanations for machine learning models.
In AAAI, 2019.

82 / 76

References vii

[IPNM18] Alexey Ignatiev, Filipe Pereira, Nina Narodytska, and João Marques-Silva.
A SAT-based approach to learn explainable decision sets.
In IJCAR, volume 10900 of Lecture Notes in Computer Science, pages 627–645.
Springer, 2018.

[Jun04] Ulrich Junker.
QUICKXPLAIN: preferred explanations and relaxations for over-constrained
problems.
In AAAI, pages 167–172, 2004.

[LPMM16] Mark H. Liffiton, Alessandro Previti, Ammar Malik, and Joao Marques-Silva.
Fast, flexible MUS enumeration.
Constraints, 21(2):223–250, 2016.

[LS08] Mark H. Liffiton and Karem A. Sakallah.
Algorithms for computing minimal unsatisfiable subsets of constraints.
J. Autom. Reasoning, 40(1):1–33, 2008.

[MDM14] António Morgado, Carmine Dodaro, and Joao Marques-Silva.
Core-guided MaxSAT with soft cardinality constraints.
In CP, volume 8656 of Lecture Notes in Computer Science, pages 564–573.
Springer, 2014.

83 / 76

References viii

[MHM12] António Morgado, Federico Heras, and João Marques-Silva.
Improvements to core-guided binary search for MaxSAT.
In SAT, volume 7317 of Lecture Notes in Computer Science, pages 284–297.
Springer, 2012.

[MIM14] António Morgado, Alexey Ignatiev, and João Marques-Silva.
MSCG: robust core-guided MaxSAT solving.
JSAT, 9:129–134, 2014.

[MJB13] Joao Marques-Silva, Mikolás Janota, and Anton Belov.
Minimal sets over monotone predicates in boolean formulae.
In CAV, volume 8044 of Lecture Notes in Computer Science, pages 592–607.
Springer, 2013.

[MJIM15] Joao Marques-Silva, Mikolás Janota, Alexey Ignatiev, and António Morgado.
Efficient model based diagnosis with maximum satisfiability.
In IJCAI, pages 1966–1972. AAAI Press, 2015.

[MMSP09] Vasco M. Manquinho, Joao Marques-Silva, and Jordi Planes.
Algorithms for weighted boolean optimization.
In SAT, volume 5584 of Lecture Notes in Computer Science, pages 495–508.
Springer, 2009.

84 / 76

References ix

[MP08] Joao Marques-Silva and Jordi Planes.
Algorithms for maximum satisfiability using unsatisfiable cores.
In DATE, pages 408–413. ACM, 2008.

[MSL11] Joao Marques-Silva and Inês Lynce.
On improving MUS extraction algorithms.
In SAT, volume 6695 of Lecture Notes in Computer Science, pages 159–173.
Springer, 2011.

[NB14] Nina Narodytska and Fahiem Bacchus.
Maximum satisfiability using core-guided maxsat resolution.
In AAAI, pages 2717–2723. AAAI Press, 2014.

[NIPM18] Nina Narodytska, Alexey Ignatiev, Filipe Pereira, and Joao Marques-Silva.
Learning optimal decision trees with SAT.
In IJCAI, pages 1362–1368, 2018.

[Rei87] Raymond Reiter.
A theory of diagnosis from first principles.
Artif. Intell., 32(1):57–95, 1987.

85 / 76

References x

[Rob65] John Alan Robinson.
A machine-oriented logic based on the resolution principle.
J. ACM, 12(1):23–41, 1965.

[SZGN17] Xujie Si, Xin Zhang, Radu Grigore, and Mayur Naik.
Maximum satisfiability in software analysis: Applications and techniques.
In CAV, pages 68–94, 2017.

[vMW08] Hans van Maaren and Siert Wieringa.
Finding guaranteed MUSes fast.
In SAT, pages 291–304, 2008.

[ZM03] Lintao Zhang and Sharad Malik.
Validating SAT solvers using an independent resolution-based checker:
Practical implementations and other applications.
In DATE, pages 10880–10885. IEEE Computer Society, 2003.

86 / 76

	Basic Definitions
	Problem Solving with SAT Oracles
	Minimal Unsatisfiability
	MUS Enumeration
	Maximum Satisfiability
	Iterative SAT Solving
	Core-Guided Algorithms
	Minimum Hitting Sets

	Exploring With SAT Oracles
	A Glimpse of the Future

