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What is SAT?

« SAT is the decision problem for propositional logic

- Well-formed propositional formulas, with variables, logical
connectives: —, A, V, —, ++, and parenthesis: (, )
- Often restricted to Conjunctive Normal Form (CNF)
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What is SAT?

« SAT is the decision problem for propositional logic

- Well-formed propositional formulas, with variables, logical
connectives: —, A, V, —, ++, and parenthesis: (, )
- Often restricted to Conjunctive Normal Form (CNF)

« Goal:
Decide whether formula has a satisfying assignment

« SAT is NP-complete [coo]
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The CDCL SAT disruption

« CDCL SAT solving is a success story of Computer Science

- Conflict-Driven Clause Learning (CDCL)
+ (CDCL) SAT has impacted many different fields
« Hundreds (thousands?) of practical applications
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How good are CDCL SAT solvers?

Demos
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How good are CDCL SAT solvers?

Demos

+ Sample SAT of solvers:

1. POSIT: state of the art DPLL SAT solver in 1995

2. GRASP: first CDCL SAT solver, state of the art 1995~2000

3. Minisat: CDCL SAT solver, state of the art until the late 00s
4. Glucose: modern state of the art CDCL SAT solver
5
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How good are CDCL SAT solvers?

Demos

+ Sample SAT of solvers:
1. POSIT: state of the art DPLL SAT solver in 1995

2. GRASP: first CDCL SAT solver, state of the art 1995~2000

3. Minisat: CDCL SAT solver, state of the art until the late 00s
4, Glucose: modern state of the art CDCL SAT solver
5

« Example 1: model checking example (from IBM)
« Example 2: cooperative path finding (CPF)
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- an example

- Cooperative pathfinding (CPF)
+ N agents on some grid/graph
+ Start positions
+ Goal positions
+ Minimize makespan
+ Restricted planning problem
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How good are solvers? - an example
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+ N agents on some grid/graph
+ Start positions
+ Goal positions
+ Minimize makespan
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+ Concrete example
+ Gaming grid
+ 1039 vertices
+ 1928 edges
- 100 agents

7/76



solvers?

- an example

- Cooperative pathfinding (CPF)
+ N agents on some grid/graph
+ Start positions
+ Goal positions
+ Minimize makespan
+ Restricted planning problem

+ Concrete example
+ Gaming grid
+ 1039 vertices
+ 1928 edges
- 100 agents

*%% tracker: a pathfinding tool #%%

Initialization ... CPU Time: 0.004711

Number of variables: 113315

Tentative makespan 1

Number of variables: 226630

Number of assumptions: 1

c Running SAT solver ... CPU Time: 0.718112

c Done running SAT solver ... CPU Time: 0.830099
No solution for makespan 1

Elapsed CPU Time: 0.830112

Tentative makespan 2

Number of variables: 339945

Number of assumptions: 1

¢ Running SAT solver ... CPU Time: 1.27113

c Done running SAT solver ... CPU Time: 1.27114
No solution for makespan 2

Elapsed CPU Time: 1.27114

Tentative makespan 24

Number of variables: 2832875

Number of assumptions: 1

c Running SAT solver ... CPU Time: 11.8653

c Done running SAT solver ... CPU Time: 11.8653
No solution for makespan 24

Elapsed CPU Time: 11.8653

Tentative makespan 25

Number of variables: 2946190

Number of assumptions: 1

¢ Running SAT solver ... CPU Time: 12.3491

c Done running SAT solver ... CPU Time: 16.6882
Solution found for makespan 25

Elapsed CPU Time: 16.6995
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solvers? — an example

« Cooperative pathfinding (CPF)

N agents on some grid/graph

Start positions

Goal positions

Minimize makespan
Restricted planning problem

+ Concrete example

Gaming grid
1039 vertices
1928 edges
100 agents

Formula w/ 2946190 variables!
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solvers? — an example

« Cooperative pathfinding (CPF)

N agents on some grid/graph

Start positions

Goal positions

Minimize makespan
Restricted planning problem

+ Concrete example

+ Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!

Gaming grid
1039 vertices
1928 edges
100 agents

Formula w/ 2946190 variables!
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Grasping the search space ...

« Number of seconds since the Big Bang: ~ 10'7
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Grasping the search space ...

« Number of seconds since the Big Bang: ~ 10'7

+ Number of fundamental particles in observable universe: ~ 10° (or
~ 10%°)

- Search space with 15775 propositional variables (worst case):

G drd=

- # of assignments to 15775 variables: > 10*7*% 1
+ Obs: SAT solvers in the late 90s (but formula dependent)

- Search space with 2832875 propositional variables (worst case):

- # of assignments to > 2.8 x 10° variables: > 10%4°%° 1
+ Obs: SAT solvers at present (but formula dependent)

8/76



SAT can make the difference - propositional abduction

1800 se. timeout ©

10721 g
TR SN S ; ; ; j
10 1072 107t 100 10! 10 103 10*
Hyper*
- Propositional abduction instances [mme]

« Implicit hitting set dualization (IHSD)
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SAT can make the difference - axiom pinpointing

102k i i i i .
1072 107! 10° 10! 10% 10 10*
EL2MUS
+ ££1 medical ontologies (amnrs]

- Minimal unsatisfiability (MUSes) & maximal satisfiability (MCSes) &

Enumeration
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+ Model-based diagnosis problem instances
+ Maximum satisfiability (MaxSAT)

S
=

[MjIM15]
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CDCL SAT is ubiquitous in problem solving

Planning

Encodings

CEGAR QBF

Counting

Enumeration

Problem
Solving
with SAT

Oracles

MaxSAT

Embeddings

Min. Models

Backbones

B&B Search

Enumeration

OPT SAT

Lazy SMT
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CDCL SAT is ubiquitous in problem solving

Eager SMT B&B Search

Planning Enumeration

Problem

Solving

. with SAT .
Encodings Embeddings OPT SAT

Min. Models Lazy SMT

CEGAR QBF Oracles Backbones

Counting

Enumeration MaxSAT

SAT is the oracles’ oracle:
MaxSAT, QBF, LCG, #SAT, SMT,
ASP, FOL, ...
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What this tutorial covers ...

+ Part #0: Basic definitions & notation
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+ MUSes
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What this tutorial covers ...

+ Part #0: Basic definitions & notation

- Part #1: Problem solving with SAT oracles

+ Minimal unsatisfiability (MUS)
+ Maximum satisfiability (MaxSAT)
(MSS/MCS)
(MSMP)
+ Enumeration problems

+ MUSes

- Part #2: Exploring with SAT oracles
« Brief introduction to PySAT

+ Part #3: Research directions
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What this tutorial does not cover ...

« CDCL SAT solvers A. Biere’s talk
- Clause learning; search restarts; watched literals; VSIDS; ...

+ Modeling in propositional logic Contact me

+ Cardinality constraints; pseudo-boolean constraints;
circuits; general constraints; etc.

« Many (high-profile) applications Contact me

+ Minimal/minimum decision trees/sets [NIPM1S, IPNM1S]
« ML model explanations as prime implicants [INMS19]
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Basic Definitions

0
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Preliminaries

- Variables: w,x,y,z,a,b,c,...

- Literals: w,X,y,a,..., butalso —w,-y,...

« Clauses: disjunction of literals or set of literals

« Formula: conjunction of clauses or set of clauses

- Model (satisfying assignment): partial/total mapping from variables
to {0, 1} that satisfies formula

« Each clause can be satisfied, falsified, but also unit, unresolved
 Formula can be SAT/UNSAT
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Preliminaries

- Variables: w,x,y,z,a,b,c,...

- Literals: w,X,y,a,..., butalso —w,-y,...

« Clauses: disjunction of literals or set of literals

« Formula: conjunction of clauses or set of clauses

- Model (satisfying assignment): partial/total mapping from variables
to {0, 1} that satisfies formula

« Each clause can be satisfied, falsified, but also unit, unresolved
 Formula can be SAT/UNSAT

« Example:
FEMNAFVS)A@WVa)AXVD)AFVZVC)A(DVEV)

« Example models:
° {r7 s7 a7 b7 C7 d}
° {r,S,)?,y,W,Z,a,b,C,d}
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+ Resolution rule: [DP6O, Rob6s]

(aVx) (BVX)
(aVp)

« Complete proof system for propositional logic
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« Resolution rule: [DP60, Robes]
(a0 VX) (BVX)
(Vv B)
« Complete proof system for propositional logic
(x v a) (xva) (yva (vva
(a)

« Extensively used with (CDCL) SAT solvers
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Unit propagation

F = (NDA(rvs)A
(an) (xvavb)a
(yvzve)a(bvevad)
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Unit propagation
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- Decisions / Variable Branchings:
w=1x=1L,y=1z=1
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Unit propagation

F = (NA(rvs)A
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Unit propagation

Level Dec. Unit Prop.
0 0 f———> s
F () A (FVs)A ) . .
(an) (xvavb)a l
(yvzve)A(bvevd) 2 x—— b
- Decisions / Variable Branchings: ’ y\
w=1x=1L,y=1z=1

4 Z———>C—> d

« Unit clause rule: if clause is unit, its sole literal must be satisfied
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Unit propagation

Level Dec. Unit Prop.
0 [0} f———> s
F = (NA(rvs)A
_ 1 w——a
(an) (xvavb)a l
(yvzveoa(bvevd) 2 x—> b
- Decisions / Variable Branchings: ’ y\
w=1x=1L,y=1z=1
4 Z—>Cc——>

« Unit clause rule: if clause is unit, its sole literal must be satisfied

- Additional definitions:
- Antecedent (or reason) of an implied assignment
- (bvecvd)ford
+ Associate assignment with decision levels
cw=1Q@1,x=1@2,y=1@3,z=1Q4
+ r=1Q0,d=1Q4, ..

18/76



Resolution proofs

- Refutation of unsatisfiable formula by iterated resolution
operations produces resolution proof

< An example:
F=@Ab)A@vc)a(avb)A(avd)a(avd)

* Resolution proof:

(aVb) @V c)
N/
(©) (bVvc)
] N/
(b) (b)
N/

« Modern SAT solvers can generate resolution proofs using clauses
learned by the solver (zM03]
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Unsatisfiable cores & proof traces

« CNF formula:

F = @©nAb)a(@avea(avb)a(avd)a(avad)

Level Dec. Unit Prop.

0 0 b—>

- «—09o

Implication graph with conflict
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Unsatisfiable cores & proof traces

« CNF formula:

F = @©nAb)a(@avea(avb)a(avd)a(avad)

Level Dec. Unit Prop.

0 0 b—>

- «—09o

Proof trace L: (avc) (avb) (¢) (b)
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Unsatisfiable cores & proof traces

« CNF formula:

F = @©nAb)a(@avea(avb)a(avd)a(avad)

Level Dec. Unit Prop. (aVvb) (ave)
- N/
0 8 p—0 © (bvo)
l N/
_ (b) (b)
——
: N/
1

Resolution proof follows structure of conflicts
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Unsatisfiable cores & proof traces

« CNF formula:

F = @©nAb)a(@avea(avb)a(avd)a(avad)

Level Dec. Unit Prop. (aVvb) (ave)
- N/
0 8 p—0 © (bvo)
l N/
_ (b) (b)
——
: N/
1

Unsatisfiable subformula (core): (¢), (b), (aV c),(aV b)
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Problem Solving with SAT Oracles
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So what are SAT oracles?

SAT Oracles

NP oracles

Yes witnesses

No summaries
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So what are SAT oracles?

SAT Oracles

NP oracles

models Yes witnesses

No summaries unsat cores
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Computing a model

+ 0: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula , using an NP
oracle
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Computing a model

+ 0: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula F, using an NP
oracle
- A possible algorithm:
1. Analyze each variable x; € {x1,...,xn} = var(F), in order
2. i+ land F; &2 F
3. Call NP oracle on Fj A (x;)
4. If answer is yes, then 7, ; < F; U (X))
5. If answer is no, then i, | « F; U (—x;)
6. i+ i+1
7. If i < n, then repeat from 3.
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Computing a model

+ 0: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula F, using an NP
oracle
- A possible algorithm:
1. Analyze each variable x; € {x1,...,xn} = var(F), in order
2. i+ land F; &2 F
Call NP oracle on Fj A (x;)
If answer is yes, then Fj 1 < F; U (x;)
If answer is no, then F, | «+ F; U (—x;)
i+ i+1
7. If i < n, then repeat from 3.

NI

« Algorithm needs |var(F)| calls to an NP oracle

+ Note: Cannot solve FSAT with logarithmic number of NP oracle calls,
unless P = NP (GF93]

- FSAT is an example of a function problem
+ Note: FSAT can be solved with one SAT oracle call

23/76



Beyond decision problems

Answer Problem Type
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Answer Problem Type
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Beyond decision problems

Answer Problem Type
Yes/No Decision Problems
Some solution Function Problems

All solutions Enumeration Problems
# solutions
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Beyond decision problems

Answer Problem Type
Yes/No Decision Problems
Some solution Function Problems

All solutions Enumeration Problems
# solutions Counting Problems
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... and beyond NP - decision and function problems

A

ul
A

m

NP = ¥P 19 = coNP FNP = Fxf FII? = coFNP

N N

Af =3 =P =TIf = A? FA§ = FZ§ = FP = FII§ = FA}
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Oracle-based problem solving - simple scenario

Bounded # of
calls / queries

Poly-time Yes/No + Decision
Algorithm Witness Procedure

SAT, SMT, CSP, ...
Solver / Oracle
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Oracle-based problem solving - general setting

Bounded # of
calls / queries

Pely-time Yes/No + Decision
Algorithm Witness Procedure

SAT, SMT, CSP, ...
Solver / Oracle
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Many problems to solve — within FP"

Answer Problem Type
Yes/No Decision Problems
Some solution Function Problems

All solutions Enumeration Problems
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Many problems to solve — within FP"

Answer Problem Type
Yes/No Decision Problems
Some solution Function Problems

All solutions Enumeration Problems

3
Function Problems on Propositional Formulas

MaxSAT MinSAT
PBO WBO

Minimal Models . .
Prime Implicants

Maximal Models Autarkies
Backbones Prime Implicates
MUSes MCSes MESes Indep. Vars
WFSes MSSes MDSes Implicant Ext.
MNSes Implicate Ext.
MCFSes
~ J
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Many problems to solve — within FP"

Problem Type
Decision Problems
Function Problems

Enumeration Problems

Answer
Yes/No
Some solution
All solutions

p
Function Problems on Propositional Formulas

.7 Optimization Problems 3
MinSAT |

g mTEiEEE Prime Implicants
,/ Maximal Models Autarkies \\
U Backbones Prime Implicates |
| |
|\ MUSes MCSes MESes Indep. Vars ,'

\\ FSes MSSes MDSes Implicant Ext. /

\ MNSes Implicate Ext. /
Sq MCFSes 7

.- -~ - -----=----=--=-=-=-=-=-=-- J
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Selection of topics

Eager SMT B&B Search

Planning Enumeration

Problem

Solving

ith SAT
Encodings e Embeddings OPT SAT

Min. Models Lazy ST

CEGAR QBF Oracles Backbones

Counting

MUS enumeration

Enumeration MaxSAT

MUS extraction MaxSAT solving
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Minimal Unsatisfiability
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Analyzing inconsistency - timetabling

Subject Day Time Room
Intro Prog Mon  9:00-10:00  6.2.46
Intro Al Tue  10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon  9:00-10:00  6.2.46
Calculus Tue 10:00-11:00 8.2.37
Adv Calculus Mon  9:00-10:00 8.2.06
... (hundreds of consistent constraints)

+ Set of constraints consistent / satisfiable?
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Analyzing inconsistency - timetabling

Subject Day Time Room
Intro Prog Mon  9:00-10:00  6.2.46
Intro Al Tue  10:00-11:00 8.2.37

Databases Tue  11:00-12:00 8.2.37
... (hundreds of consistent constraints)

Adv Calculus Mon  9:00-10:00 8.2.06
... (hundreds of consistent constraints)

« Set of constraints consistent / satisfiable? No
+ Minimal subset of constraints that is inconsistent / unsatisfiable?

-+ Minimal subset of constraints whose removal makes remaining
constraints consistent?

Minimality

+ How to compute these minimal sets? .
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Unsatisfiable formulas - MUSes & MCSes

« Given F (F 1), M C Fis a Minimal Unsatisfiable Subset (MUS) iff
ME 1 and VM/QM.,M/# 1

(‘\Xl Vv ‘\XQ) A\ (X1) A (Xg)/\(‘!Xg V ‘|X4) A (X3) N (X4) A (X5 \/X6)
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MUSes and MCSes are (subset-)minimal sets
MUSes and minimal hitting sets of MCSes and vice-versa ireis, ssos)

Easy to see why
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Unsatisfiable formulas - MUSes & MCSes

« Given F (F 1), M C Fis a Minimal Unsatisfiable Subset (MUS) iff
ME 1 and vM’ngM/}é 1

(‘\Xl V ‘\XQ) A (X1) N (Xg)

« Given F (F L),C C Fis aMinimal Correction Subset (MCS) iff
f\C}L‘Lanch/gc,}"\C/h 1.8 =F\CisMSS

A (X1) A (X2) A (X3) A (X)) A (X5 V Xe)
+  MUSes and MCSes are (subset-)minimal sets

MUSes and minimal hitting sets of MCSes and vice-versa ireis, ssos)

Easy to see why

- How to compute MUSes & MCSes efficiently with SAT oracles?
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Why it matter:

- Analysis of over-constrained systems

+ Model-based diagnosis [Reig7]
- Software fault localization
+ Spreadsheet debugging
- Debugging relational specifications (e.g. Alloy)
- Type error debugging
+ Axiom pinpointing in description logics

+ Model checking of software & hardware systems
+ Inconsistency measurement
+ Minimal models; MinCost SAT; ...

« Find minimal relaxations to recover consistency
+ But also minimum relaxations to recover consistency, eg. MaxSAT

- Find minimal explanations of inconsistency
+ But also minimum explanations of inconsistency, eg. Smallest MUS
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+ Model-based diagnosis [Reig7]
- Software fault localization
+ Spreadsheet debugging
- Debugging relational specifications (e.g. Alloy)
- Type error debugging
+ Axiom pinpointing in description logics

+ Model checking of software & hardware systems Enumeration

+ Inconsistency measurement
+ Minimal models; MinCost SAT; ...

required!

« Find minimal relaxations to recover consistency
+ But also minimum relaxations to recover consistency, eg. MaxSAT

- Find minimal explanations of inconsistency
+ But also minimum explanations of inconsistency, eg. Smallest MUS
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Deletion-based algorithm

Input :Set F
Output: Minimal subset M
begin

M F

foreach c € M do

if ~SAT(M \ {c}) then
L L M +— M\ {c} /] If =SAT(M \ {c}), then c € MUS

return M [/ Final M is MUS

end

« Number of oracles calls: O(m) [coo1, BDTWo3]
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Deletion-based algorithm

Monotonicity

Input :Set F onotor

Output: Minimal subset M 'mPllle &

begin essential!
M~ F

foreach c € M do
if -=SAT(M \ {c}) then
LM<—M\{C} /| Remove ¢ from M

return M // Final M is MUS
end

« Number of oracles calls: O(m) [coo1, BDTWo3]
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Deletion - MUS example

C1 G2 C3 Cy Cs Ce C7
(X VX)) (X)) (X2) (TXsV Xa)  (Xs)  (Xa) (X5 V Xe)

M M\ {c} —SAT(M\{c}) Outcome
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Deletion - MUS example

C1 Co C3 Ca Cs Ce C7
(X1 V=X2) (X)) (X2) (=XsV—Xs) (X3) (Xa) (X5VXe)
M M\ {c} —SAT(M\{c}) Outcome
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Deletion - MUS example

C1

Co C3 Ca Cs Ce C7

(ﬁXl Vv ﬁXQ)

(X1) (X2) (X3V-=Xs) (X3) (Xa) (X5V Xg)

M M\ {c} —SAT(M\{c}) Outcome
C1..C7  C2..Ct 1 Drop c:
C2..C7  C3..C7 1 Drop c2
C3..C7  C4..C7 1 Drop c3
C4..C7  C5..C7 0] Keep ¢4
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Deletion - MUS example

C1 C2 C3 Cq Cs Ce Cr
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Deletion - MUS example

C1 G2 C3 Cy Cs Ce C7
(X VX)) (X)) (X2) (TXsV Xa)  (Xs)  (Xa) (X5 V Xe)

M M\ {c} —SAT(M\{c}) Outcome

C1..C7  C2..Ct 1 Drop c:
C2..C7  C3..C7 1 Drop c2
C3..C7  C4..C7 1 Drop c3
C4..C7  C5..C7 0] Keep ¢4
C4..C7  C4CeC7 0 Keep ¢s
C4..C7  C4C5Cr 0 Keep c¢
C4..C7  C4..Co 1 Drop ¢~

« MUS: {cy4, C5,C6}
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Many MUS algorithms

+ Formula F with m clauses k the size of largest minimal subset

Algorithm

Oracle Calls Reference

Insertion-based
MCS_MUS
Deletion-based
Linear insertion
Dichotomic
QuickXplain
Progression

- Note: Lower bound in FPHP

O(k+ Rk log(F
O(Rlog(1+ 2

O(k
O(k

[dSNP88, vMW08]
[BK15]

(m [cD91, BDTWY3]

3

O(k log(

[HLSBO6]

[Junos]

m)
m)
)
(m) [MSL11, BLM12]
)
)
)

)
)
)

[M)B13]

and upper bound in FPN?

[cT95]

« Oracle calls correspond to testing unsatisfiability with SAT solver

- Practical optimizations: clause set trimming; clause set refinement;
redundancy removal; (recursive) model rotation
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MUS Enumeration
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How to enumerate MUSes?
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How to enumerate MUSes?

1. Standard solution:
Exploit HS duality between MCSes and MUSes [Reig7, L08]

MCSes are MHSes of MUSes and vice-versa

+ Enumerate all MCSes and then enumerate all MHSes of the MCSes, i.e.

compute all the MUSes
 Problematic if too many MCSes, and we want the MUSes

« And, often we want to enumerate the MUSes
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How to enumerate MUSes?

1. Standard solution:
Exploit HS duality between MCSes and MUSes [Reig7, L08]

MCSes are MHSes of MUSes and vice-versa

+ Enumerate all MCSes and then enumerate all MHSes of the MCSes, i.e.

compute all the MUSes
 Problematic if too many MCSes, and we want the MUSes

« And, often we want to enumerate the MUSes

2. Exploit recent advances in 2QBF solving

3. Implicit hitting set dualization [LPMM16]
+ Most effective if MUSes provided to user on-demand
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How to enumerate MUSes, preferably?

Formulas P and N Formula F’
Select subset of F

<

Block MCS/MUS

1. Keep sets representing computed MUSes (set ) and MCSes (set P)
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<

Block MCS/MUS

1. Keep sets representing computed MUSes (set ) and MCSes (set P)
2. Compute minimal hitting set (MHS) H of A/, subject to P
+ Must not repeat MUSes
» Must not repeat MCSes
+ Maximize clauses picked, i.e. prefer to check satisfiability on as many clauses as
possible
« If unsatisfiable: no more MUSes/MCSes to enumerate
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How to enumerate MUSes, preferably?

Formulas P and N Formula F’
Select subset of F

<

Block MCS/MUS

1. Keep sets representing computed MUSes (set A/) and MCSes (set P)
2. Compute minimal hitting set (MHS) H of A/, subject to P
+ Must not repeat MUSes
» Must not repeat MCSes
+ Maximize clauses picked, i.e. prefer to check satisfiability on as many clauses as
possible
« If unsatisfiable: no more MUSes/MCSes to enumerate
3. Target set: 7/, i.e. F minus clauses from H
4. Run SAT oracle on 7’
« If 7 unsatisfiable: extract new MUS
+ Otherwise, H is already an MCS of *

5. Repeat loop
39/76



MARCO/eMUS algorithm

Input: CNF formula 7
1 begin
2 I {pilceF)
3 (P,N) < (0,0)
4 while true do
5 (st,H) < MinHittingSet(\N, P)
6 if not st then return
7 F' < A{ci|pi€ I Ap; ¢ H}
8 if not SAT(F’) then
9 M + ComputeMUS(F")

10 ReportMUS (M)

n N +— N U{-p;|cie M}
12 else

13 L'P(—PU{D,“D(EH}

1% end
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An example

P1p2P3PapPspsp7 | SIU

1111111 U [ =p1V —p2V-ps
0111111 U —pe V —p7
0111101 S p1V pes
1011101 U [ =p1V-psV-ps
1101010 S ps V ps V pr
1010110 S p2V psaV pr
1100101 S pP3 V paV ps
0111110 S p1V pr
1101001 S p3 V Ps V pg
1010101 S p2V paV pg
1011001 S p2 V ps V Ps
1100110 S p3 V paV pr
1011010 S pa V ps V pr
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An example

P1p2P3PapPspsp7 | SIU

U | =p1V—p2V —ps
0111111 U —ps V —pr
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0111110 S p1V pr
1101001 5 ps V ps V Ps
1010101 S p2V paV pg
1011001 S p2 V ps V Ps
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1011010 S p2 V ps V pr
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An example
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1101001 S pP3 V Pps V pe C3 = —r
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1011010 S p2 V ps V pr
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An example

P1p2P3PapPspsp7 | SIU
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Maximum Satisfiability

42/76



X6 V X2 —Xg V Xo X9 V X1 —X1

—Xg V Xg Xg V —Xg X2 V X4 X4 V X5

X7V X5 X7 V X5 —X5 V X3 —X3

- Given unsatisfiable formula, find largest subset of clauses that is
satisfiable
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Recap MaxSAT

—Xg V Xo —Xo V X1 —X1
—Xg V Xg Xg V —Xg X2 V X4
X7 V X5 X5 V X3 —X3

- Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

« A Minimal Correction Subset (MCS) is an irreducible relaxation of the
formula
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formula
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Recap MaxSAT

Xg V Xo —Xg V Xo —Xo V X1 —X1
—Xg V Xg Xg V —Xg X2 V X4 —Xq V X5
X7V X5 X7V X5 —X5 V X3 —X3

- Given unsatisfiable formula, find largest subset of clauses that is
satisfiable
« A Minimal Correction Subset (MCS) is an irreducible relaxation of the
formula
« The MaxSAT solution is one of the smallest cost MCSes
+ Note: Clauses can have weights & there can be hard clauses

- Many practical applications [sz6n77]
43/76



MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?

Yes
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MaxSAT problem(s)

Hard Clauses?
No Yes
Weights? Plain Partial
Yes Weighted Weighted Partial

+ Must satisfy hard clauses, if any
- Compute set of satisfied soft clauses with maximum cost
+ Without weights, cost of each falsified soft clause is 1

- Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)
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MaxSAT problem(s)

Hard Clauses?
No Yes
Weights? Plain Partial
Yes Weighted Weighted Partial

+ Must satisfy hard clauses, if any
- Compute set of satisfied soft clauses with maximum cost
+ Without weights, cost of each falsified soft clause is 1

- Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)

- Note: goal is to compute set of satisfied (or falsified) clauses;
not just the cost!

4476



Issues with MaxSAT

« Unit propagation is unsound for MaxSAT
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Issues with MaxSAT

« Unit propagation is unsound for MaxSAT
- Formula with all clauses soft:

{(X)7 (_‘X\/y1), (_‘X\/yQ)v (ﬂyl % ﬂZ)v (_‘y2 \ —\Z), (Z)}
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Issues with MaxSAT

« Unit propagation is unsound for MaxSAT
- Formula with all clauses soft:

{(X)7 (_‘X\/y1), (_‘X\/yQ)v (ﬂyl % ﬂZ)v (_‘y2 \ —\Z), (Z)}

+ After unit propagation:

{(X)7 (“X\/yl), (‘\X\/)/g), (ﬂyl V ﬂZ)v (_‘y2 \ —\Z), (Z)}

+ Is 2 the MaxSAT solution??
+ No! Enough to either falsify (x) or (z)
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Issues with MaxSAT

« Unit propagation is unsound for MaxSAT
- Formula with all clauses soft:

{(X)7 (_‘X\/yl)a (_‘X\/yQ)v (ﬂyl \ ﬂZ)v (_‘y2 \ —\Z), (Z)}
+ After unit propagation:

{(X)7 (“X\/yl), (‘\X\/)/g), (ﬂyl V ﬂZ)v (_‘y2 \ —\2)7 (Z)}

+ Is 2 the MaxSAT solution??
+ No! Enough to either falsify (x) or (z)
« Cannot use unit propagation

- Cannot learn clauses (using unit propagation)
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Issues with MaxSAT

« Unit propagation is unsound for MaxSAT
- Formula with all clauses soft:

{00, (=x v y1), (X Vy2), (-y1 V =2), (Y2 V -2), (2)}

+ After unit propagation:
{(), (=xVy1), (=X Vy2), (-y1 V =2), (=2 V —2), (2)}
+ Is 2 the MaxSAT solution??
+ No! Enough to either falsify (x) or (z)
« Cannot use unit propagation
- Cannot learn clauses (using unit propagation)
+ Need to solve MaxSAT using different techniques
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Many MaxSAT approaches

Relax cls given
models

Iterative
MHS & SAT

No unit prop; No

Branch [
%, Bl cl. learning
cgllu?geezlj Iterative All cls relaxed
MaxSAT Al-
gorithms
i Relax cls given
Iterative .
MHS Core Guided  nsat cores
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Many MaxSAT approaches

No unit prop; No

Branch X
& Bound cl. learning
Relax cls given Model _
i Guded hamEie All cls relaxed
MaxSAT Al-
gorithms
Iterative ewiive ; Relax cls given
MHS & SAT MHS Core Guided  nsat cores

- For practical (industrial) instances: core-guided & iterative MHS
approaches are the most effective [MaxsAT14]
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Core-guided solver performance - partial

Number x of instances solved in y seconds
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Core-guided solver performance - weighted partial

Number x of instances solved in y seconds
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Source: [MaxSAT 2014 organizers]
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Maximum Satisfiability
Iterative SAT Solving
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Basic MaxSAT with iterative SAT solving

X V X2 —Xg V Xo —X2 V X1 —X1
—Xg V Xg Xg V —Xg Xo V Xy —X4 V X5
X7V X5 —X7 V X5 X5 V X3 —X3

Example CNF formula
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Basic MaxSAT with iterative SAT solving

X V X2V —Xg V XaVIy —Xo V X1 VI3

—Xg V Xg\VI5 Xe V —XgVIg Xo V X4VI7

X7V X5V g —X7 V X5VI10 X5 V X3VI11
i1:21 ri <12

Relax all clauses; Set UB = 12 + 1

—X1Vry

—X4 V X5\VIg

—X3VIi2
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Basic MaxSAT with iterative SAT solving

X6 V Xa VI —Xe V Xa\VIg —Xg V X1VI3 X1 VIy

—Xg V XgVI5 Xe V —XgVIg Xo V XqVI7 —X4 V X5VIg

X7V X5V'Ig —X7 V X5VI10 —X5 V X3VI11 —X3VI12
flil ri<12

Formula is SAT; E.g. allx; =0and r; = r; = rg = 1 (i.e. cost = 3)
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Basic MaxSAT with iterative SAT solving

Xe V XaVI —Xe V X2V —X2 V X1VI3

—Xe V Xg\VI5 Xe V —XgVIg X2 V XaVI7

X7V X5VIg —X7 V X5VI10 —X5 V X3VI11
il:21 ri <2

Refine UB =3

—X1Vry

—X4 V X5\VIg

—X3VIi2
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Basic MaxSAT with iterative SAT solving

Xe V X2V —Xg V X2V Io —Xo V X1 VI3 —X1VIy
—Xg V XgVTI;5 Xg V —Xg Vg Xo V XqVI7 X4 V X5VIg
X7 V X5Vl X7 VX5Vl X5 VX3V —X3Vri2
12 .
=1 li <2
Formulais SAT; Eg.x1 = X2 = 1;Xx3 = ... =xgs =0and ry = ry = 1 (i.e. cost = 2)
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Basic MaxSAT with iterative SAT solving

Xe V Xo VI —Xg V Xa VI —X3 V X1 VI3

—Xe V Xg\VI5 Xe V 7XgVIg Xo V X4 VI

X7V X5V g —X7 V X5VI0 X5 V X3VIy
i1:21 ri<l1

Refine UB = 2

—X1Vry

—X4 V X5\VIg

—X3VIi2
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Basic MaxSAT with iterative SAT solving

Xe V Xa\VIq —Xg V X2 VI —Xo V X1 VI3 —X1VIy

—Xg V XgVIs X V —XgVIg Xo V X4 VI7 —X4 V X5VIg

X7 V X5V X7 VX5Vl  —X5 VX3Vl —X3VI2
o<

Formula is UNSAT; terminate
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Basic MaxSAT with iterative SAT solving

Xe V Xo VI —Xg V Xa VI —X3 V X1 VI3

—Xe V Xg\VI5 Xe V 7XgVIg Xo V X4 VI

X7V X5V g —X7 V X5VI0 X5 V X3VIy
i1:21 ri<l1

MaxSAT solution is last satisfied UB: UB = 2

—X1Vry

—X4 V X5\VIg

—X3VIi2
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Basic MaxSAT with iterative SAT solving

Xe V Xo VI —Xg V Xa VI —X3 V X1 VI3

—Xe V Xg\VI5 Xe V 7XgVIg Xo V X4 VI

X7V X5V g —X7 V X5VI0 X5 V X3VIy
i1:21 ri<l1

MaxSAT solution is last satisfied UB: UB = 2

AtMostk/PB constraints over
all relaxation variables

—X1Vry

—X4 V X5\VIg

—X3VIi2

All (possibly many)
soft clauses relaxed
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Maximum Satisfiability

Core-Guided Algorithms
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MSU3 core-guided algorithm

X V X2 —Xg V Xo —X2 V X1 —X1
—Xg V Xg Xg V —Xg Xo V Xy —X4 V X5
X7V X5 X7 V X5 —X5 V X3 —X3

Example CNF formula
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MSU3 core-guided algorithm

X V X2 —Xg V Xo X2 V X1 —X1
—Xg V Xg Xg V —Xg X2 V Xy =X V X5
X7V X5 X7 V X5 —X5 V X3 —X3

Formula is UNSAT; OPT < |¢| — 1; Get unsat core
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MSU3 core-guided algorithm

X6 \V Xo —Xg V X2 =X V X1 VI —X1 VI
—Xg V Xg X6 V —Xg Xa V X4 VI3 —X4 V X5\VIy
X7V X5 —X7 V X5 —X5 V X3\/Is —X3VIg
?:1 <l

Add relaxation variables and AtMostR, R = 1, constraint
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MSU3 core-guided algorithm
@ —Xg V Xo —Xo V X1VI

—Xg V Xg Xg V —Xg Xo V X4 VI3 —X4 V X5VTIy

—X1Vry

—X7 V X5 —X5 V X3VTr5 —X3Vrg

Formula is (again) UNSAT; OPT < |¢| — 2; Get unsat core
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MSU3 core-guided algorithm

X V XaVI7 —Xg V XaVIg —X2 V X1 VI —X1 VI
—Xg V Xg Xe V —Xg Xo V X4 VI3 —X4 V X5Vl
X7V X5VIg —X7 V X5VI10 —X5 V X3VIs5 X3Vl
,’1:01 rp <2

Add new relaxation variables and update AtMostk, k=2, constraint
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MSU3 core-guided algorithm

Xe V XaV Iy —Xg V Xo Vg —Xo V X1 VI —X1 Iy

—Xg V X3 X V —Xg Xo V X4\VI3 —Xa V X5V I4
X7V X5Vrg X7 V X5V I10 —X5 V X3VTr5 —X3Vrg
2’121 ri <2

Instance is now SAT
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MSU3 core-guided algorithm

X V XaVI7 —Xg V XaVIg —X2 V X1 VI —X1 VI
—Xg V Xg Xe V —Xg Xo V X4 VI3 —X4 V X5Vl
X7V X5Vrg X7V X5VI1o —X5 V X3VTI;5 —X3Vrg
,’1:01 I < 2

MaxSAT solutionis || —Z =12 -2 =10
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MSU3 core-guided algorithm

X V XaVI7 —Xg V XaVIg —X2 V X1 VI —X1 VI
—Xg V Xg Xe V —Xg Xo V X4 VI3 —X4 V X5Vl
X7V X5Vrg X7V X5VI1o —X5 V X3VTI;5 —X3Vrg
,’1:01 I < 2

MaxSAT solutionis || —Z =12 -2 =10

AtMostRk/PB Relaxed soft clauses

constraints used become hard
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MSU3 core-guided algorithm

X V XaVI7 —Xg V XaVIg —X2 V X1 VI —X1 VI
—Xg V Xg Xe V —Xg Xo V X4 VI3 —X4 V X5Vl
X7V X5Vrg -1X7 V X5VI10 —X5 V X3VTI;5 —X3Vrg
,’1:01 I < 2

MaxSAT solutionis || —Z =12"-2 =10

AtMostRk/PB Some clauses Relaxed soft clauses

constraints used not relaxed become hard
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Maximum Satisfiability

Minimum Hitting Sets
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HS approach for MaxSAT

C1 = Xg V X2 Co = X V X2 C3 = X2 V X1 Cqs = —X1

Cs = Xg V X3 Ce = X6 V X3 C7 = X2V X4 Cs = X4 VX5

Cog = X7V X5 Cio = X7V X5 Ci1 = X5 V X3 Ci2 = X3
K=0

+ Find MHS of K:
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HS approach for MaxSAT

C1 = Xg V X2 Co = —Xg V X2 C3 = X2 V X1 Cqy = X1
Cs = Xg V Xg Ce = Xg V —Xg C7 = X2 V X4 Cs = X4 V X5
Cg = X7V X5 Cio = X7V X5 Ci1 = X5 V X3 Ci2 = X3
K=0
+ Find MHS of K: 0)

« SAT(F\ 0)?
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HS approach for MaxSAT

C1 = Xg V X2 Co = —Xg V X2 C3 = X2 V X1 Cqy = X1
Cs = Xg V Xg Ce = Xg V —Xg C7 = X2 V X4 Cs = X4 V X5
Cg = X7V X5 Cio = X7V X5 Ci1 = X5 V X3 Ci2 = X3
K=0
+ Find MHS of K: 0)

+ SAT(F \ 0)? No

54/76



HS approach for MaxSAT

C1 = Xg V X2 Co = —Xg V X2 C3 = X2 V X1 Cqy = X1
Cs = Xg V Xg Ce = Xg V —Xg C7 = X2 V X4 Cs = X4 V X5
Cg = X7V X5 Cio = X7V X5 Ci1 = X5 V X3 Ci2 = X3
K=0
+ Find MHS of K: 0)

+ SAT(F \ 0)? No

- Core of F: {c1,Co,C3,C4}
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HS approach for MaxSAT

C1 = Xg V X2 Co = —Xg V X2 C3 = X2 V X1 Cqy = X1
Cs = Xg V X3 Ce = X6 V X3 C7 = X2V X4 Cs = X4 VX5
Cog = X7V X5 Cio = X7V X5 Ci1 = X5 V X3 Ci2 = X3

K ={{c1,c2,c3,ca}}
+ Find MHS of KC: ()

+ SAT(F \ 0)? No
+ Core of F: {c1,C2,C3,Ca}. Update K
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HS approach for MaxSAT

C1 = Xg V X2 Co = —Xg V X2 C3 = X2 V X1 Cqy = X1
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Cog = X7V X5 Cio = X7V X5 Ci1 = X5 V X3 Ci2 = X3
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HS approach for MaxSAT

C1 = Xg V X2 Co = —Xg V X2 C3 = X2 V X1 Cqy = X1
Cs = Xg V X3 Ce = X6 V X3 C7 = X2V X4 Cs = X4 VX5
Cog = X7V X5 Cio = X7V X5 Ci1 = X5 V X3 Ci2 = X3

K ={{c1,c2,c3,c4}}

+ Find MHS of K: E.g. {c: }
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HS approach for MaxSAT

C1 = Xg V X2 Co = —Xg V X2 C3 = X2 V X1 Cqy = X1
Cs = Xg V X3 Ce = X6 V X3 C7 = X2V X4 Cs = X4 VX5
Cog = X7V X5 Cio = X7V X5 Ci1 = X5 V X3 Ci2 = X3

K ={{c1,c2,c3,c4}}

+ Find MHS of K: E.g. {c: }
« SAT(F\ {c1})?
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HS approach for MaxSAT

C1 = Xg V X2 Co = —Xg V X2 C3 = X2 V X1 Cqy = X1
Cs = Xg V X3 Ce = X6 V X3 C7 = X2V X4 Cs = X4 VX5
Cog = X7V X5 Cio = X7V X5 Ci1 = X5 V X3 Ci2 = X3

K ={{c1,c2,c3,c4}}

+ Find MHS of K: E.g. {c: }
- SAT(F \ {c1})? No
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HS approach for MaxSAT

C1 = Xg V X2 Co = —Xg V X2 C3 = X2 V X1 Cqy = X1
Cs = Xg V X3 Ce = X6 V X3 C7 = X2V X4 Cs = X4 VX5
Cog = X7V X5 Cio = X7V X5 Ci1 = X5 V X3 Ci2 = X3

K ={{c1,c2,c3,ca}}
- Find MHS of K: E.g. {1}

- SAT(F \ {c1})? No

+ Core of F: {co, C10,C11,C12}
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HS approach for MaxSAT

C1 = Xg V X2 Co = —Xg V X2 C3 = X2 V X1 Cqy = X1
Cs = Xg V X3 Ce = X6 V X3 C7 = X2V X4 Cs = X4 VX5
Cog = X7V X5 Cio = X7V X5 Ci1 = X5 V X3 Ci2 = X3

K = {{c1,¢c2,¢3,¢4},{Co,C10,C11,C12}}
+ Find MHS of K: E.g. {c: }

« SAT(F\ {c1})? No
+ Core of F: {co, C10,C11,C12}. Update K
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HS approach for MaxSAT

C1 = Xg V X2 Co = —Xg V X2 C3 = X2 V X1 Cqy = X1
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Cog = X7V X5 Cio = X7V X5 Ci1 = X5 V X3 Ci2 = X3
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HS approach for MaxSAT

C1 = Xg V X2 Co = —Xg V X2 C3 = X2 V X1 Cqy = X1
Cs = Xg V X3 Ce = X6 V X3 C7 = X2V X4 Cs = X4 VX5
Cog = X7V X5 Cio = X7V X5 Ci1 = X5 V X3 Ci2 = X3

K = {{c1,c2,¢c3,¢a},{Co, C10,C11,C12}}

+ Find MHS of K: E.g. {ci.co}

54/76



HS approach for MaxSAT

C1 = Xg V X2 Co = —Xg V X2 C3 = X2 V X1 Cqy = X1
Cs = Xg V X3 Ce = X6 V X3 C7 = X2V X4 Cs = X4 VX5
Cog = X7V X5 Cio = X7V X5 Ci1 = X5 V X3 Ci2 = X3

K = {{c1,c2,¢c3,¢a},{Co, C10,C11,C12}}

+ Find MHS of K: E.g. {ci.co}
. SAT(]:\ {Cl,Cg})?
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HS approach for MaxSAT

C1 = Xg V X2 Co = —Xg V X2 C3 = X2 V X1 Cqy = X1
Cs = Xg V X3 Ce = X6 V X3 C7 = X2V X4 Cs = X4 VX5
Cog = X7V X5 Cio = X7V X5 Ci1 = X5 V X3 Ci2 = X3

K = {{c1,c2,¢c3,¢a},{Co, C10,C11,C12}}

+ Find MHS of K: E.g. {ci.co}
* SAT(F \ {c1,¢9})? No
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HS approach for MaxSAT

C1 = Xg V X2 Co = —Xg V X2 C3 = X2 V X1 Cqy = X1
Cs = Xg V X3 Ce = X6 V X3 C7 = X2V X4 Cs = X4 VX5
Cog = X7V X5 Cio = X7V X5 Ci1 = X5 V X3 Ci2 = X3

K = {{c1,¢c2,¢3,¢4},{Co,C10,C11,C12}}
+ Find MHS of K: E.g. {ci.co}

* SAT(F \ {c1,¢9})? No

+ Core of F: {cs, C4,C7,C8,C11,C12}
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HS approach for MaxSAT

C1 = Xg V X2 Co = —Xg V X2 C3 = X2 V X1 Cqy = X1
Cs = Xg V X3 Ce = X6 V X3 C7 = X2V X4 Cs = X4 VX5
Cog = X7V X5 Cio = X7V X5 Ci1 = X5 V X3 Ci2 = X3

K = {{c1,c2,¢c3,cs},{cg,C10,C11,C12}, {C3,C4,C7,C8,C11,C12}}
+ Find MHS of K: E.g. {ci.co}

* SAT(F \ {c1,¢9})? No

+ Core of F: {cs, c4,C7,Cs,C11,C12}. Update K

54/76



HS approach for MaxSAT

C1 = Xg V X2 Co = —Xg V X2 C3 = X2 V X1 Cqy = X1
Cs = Xg V X3 Ce = X6 V X3 C7 = X2V X4 Cs = X4 VX5
Cog = X7V X5 Cio = X7V X5 Ci1 = X5 V X3 Ci2 = X3

K = {{c1,c2,¢c3,cs},{cg,C10,C11,C12}, {C3,C4,C7,C8,C11,C12}}

+ Find MHS of K:
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HS approach for MaxSAT

C1 = Xg V X2 Co = —Xg V X2 C3 = X2 V X1 Cqy = X1
Cs = Xg V X3 Ce = X6 V X3 C7 = X2V X4 Cs = X4 VX5
Cog = X7V X5 Cio = X7V X5 Ci1 = X5 V X3 Ci2 = X3

K = {{c1,c2,¢c3,cs},{cg,C10,C11,C12}, {C3,C4,C7,C8,C11,C12}}

+ Find MHS of K: E.g. {c1,Co}
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HS approach for MaxSAT

C1 = Xg V X2 Co = —Xg V X2 C3 = X2 V X1 Cqy = X1
Cs = Xg V X3 Ce = X6 V X3 C7 = X2V X4 Cs = X4 VX5
Cog = X7V X5 Cio = X7V X5 Ci1 = X5 V X3 Ci2 = X3

K = {{c1,c2,¢c3,cs},{cg,C10,C11,C12}, {C3,C4,C7,C8,C11,C12}}

+ Find MHS of K: E.g. {c1,Co}
. SAT(]:\ {C4,C9})?
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HS approach for MaxSAT

C1 = X6 V X2 Co = —Xg V X2 C3 = X2 V X1 Cs = X1
Cs = Xg V X3 Ce = X V —Xg C7 = X2 V X4 Cgs = X4 V X5
Co = X7V X5 Cio = —X7 V X5 C11 = —X5 V X3 Ci2 = X3

K = {{c1,c2,¢c3,cs},{cg,C10,C11,C12}, {C3,C4,C7,C8,C11,C12}}

+ Find MHS of K: E.g. {c1,Co}
* SAT(F \ {c4,C9})? Yes
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HS approach for MaxSAT

C1 = X6 V X2 Co = —Xg V X2 C3 = X2 V X1 Cs = X1
Cs = Xg V X3 Ce = X V —Xg C7 = X2 V X4 Cgs = X4 V X5
Co = X7V X5 Cio = —X7 V X5 C11 = —X5 V X3 Ci2 = X3

K = {{c1,c2,¢c3,cs},{cg,C10,C11,C12}, {C3,C4,C7,C8,C11,C12}}

+ Find MHS of K: E.g. {c1,Co}
* SAT(F \ {c4,C9})? Yes

+ Terminate & return 2
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MaxSAT solving with SAT oracles - a sample

« A sample of recent algorithms:

Algorithm # Oracle Queries Reference
Linear search SU Exponential*** [8P10]
Binary search Linear* [FMo6]
FM/WMSU1/WPM1  Exponential** [FM06, MPOS, MMSP09, ABLO9, ABGL12]
WPM2 Exponential** [ABL10, ABL13]
Bin-Core-Dis Linear [HMM11, MHM12]
Iterative MHS Exponential [DB11, DB13a, DB13b]

* O(log m) queries with SAT oracle, for (partial) unweighted MaxSAT
** Weighted case; depends on computed cores
*** On # bits of problem instance (due to weights)
« But also additional recent work:
+ Progression (MMt 14]
- Soft cardinality constraints (OLL) [MDM14, MIM14]
+ Recent implementation (RC2, using PySAT) won 2018 MaxSAT Evaluation
+ MaxSAT resolution (NB1]

55/76



Exploring With SAT Oracles
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Incremental SAT solving

« SAT solver often called multiple times on related formulas

« It helps to make incremental changes & remember already learned
clauses (that still hold)
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« SAT solver often called multiple times on related formulas

« It helps to make incremental changes & remember already learned
clauses (that still hold)

+ Most often used solution: [Es03]
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Incremental SAT solving

« SAT solver often called multiple times on related formulas

« It helps to make incremental changes & remember already learned
clauses (that still hold)

+ Most often used solution: [£503]
+ Use activation/selector/indicator variables
Given clause | Added to SAT solver
G ‘ ¢ VS;
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Incremental SAT solving

« SAT solver often called multiple times on related formulas

« It helps to make incremental changes & remember already learned
clauses (that still hold)

+ Most often used solution: [£s03]
+ Use activation/selector/indicator variables
Given clause | Added to SAT solver
G ‘ ¢ VS;
- To activate clause: add assumptions; = 1
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Incremental SAT solving

« SAT solver often called multiple times on related formulas

« It helps to make incremental changes & remember already learned
clauses (that still hold)

+ Most often used solution: [£s03]
+ Use activation/selector/indicator variables
Given clause | Added to SAT solver
G ‘ ¢ VS;
- To activate clause: add assumptions; = 1
+ To deactivate clause: add assumption s; = 0 (optional)
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Incremental SAT solving

« SAT solver often called multiple times on related formulas

« It helps to make incremental changes & remember already learned
clauses (that still hold)

- Most often used solution: [Eso3]
+ Use activation/selector/indicator variables
Given clause | Added to SAT solver
G ‘ ¢ VS;
- To activate clause: add assumptions; = 1
+ To deactivate clause: add assumption s; = 0 (optional)
« To remove clause: add unit (5;)
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Incremental SAT solving

« SAT solver often called multiple times on related formulas

« It helps to make incremental changes & remember already learned
clauses (that still hold)

+ Most often used solution: [ES03]

+ Use activation/selector/indicator variables
Given clause | Added to SAT solver

G ‘ ¢ VS;
- To activate clause: add assumptions; = 1
+ To deactivate clause: add assumption s; = 0 (optional)

« To remove clause: add unit (5;)

« Any learned clause contains explanation given working assumptions
(more next)
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={(@vb),(avaoy}
{ i

={(aVv5s),(bvtVvsy),(aveVvss),(avbvs)}

« Background knowledge B: final clauses, i.e. no indicator variables
- Soft clauses S: add indicator variables {s,S2,53,54}
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={(@vb),(avaoy}
{ i

={(aVv5s),(bvtVvsy),(aveVvss),(avbvs)}

« Background knowledge B: final clauses, i.e. no indicator variables
- Soft clauses S: add indicator variables {s,S2,53,54}

- E.g. given assumptions {s; = 1,55 = 0,53 = 0,54 = 1}, SAT solver
handles formula:

F={(@vb),(@vc),a),(avb)}

which is satisfiable
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Quiz - what happens in this case?

={(@vb),(avaoy}
{ i

={(aVv5s),(bvtVvsy),(aveVvss),(avbvs)}

- Given assumptions {s; = 1,5, = 1,55 = 1,54 = 1}?
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={(aVv5s),(bvtVvsy),(aveVvss),(avbvs)}

- Given assumptions {s; = 1,5, = 1,55 = 1,54 = 1}?

(avb) (avsy) (@ve) (bvevs)

~

(bvs)  (cvsi)

y
(CVSIVSy)
|
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Quiz - what happens in this case?

={(@vb),(avaoy}
{ i

={(aVv5s),(bvtVvsy),(aveVvss),(avbvs)}

- Given assumptions {s; = 1,5, = 1,55 = 1,54 = 1}?

(avb) (avsy) (@ve) (bvevs)

~

(bvs)  (cvsi)

y
(CVSIVSy)
|

(51V5,)

- Unsatisfiable core: 15t and 2" clauses of S, given B
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Overview of PySAT

[IMm18]

cardenc solvers formula
module module module

O O O O o

OO OO O
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Overview of PySAT

[IMm18]

O O O O o

OO OO O

« Open source, available on github

- Comprehensive list of SAT solvers

- Comprehensive list of cardinality encodings
« Fairly comprehensive documentation

- Several use cases
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Available solvers

Solver Version
Glucose 3.0

Glucose 4.1
Lingeling bbc-9230380-160707
Minicard 1.2

Minisat 2.2 release
Minisat GitHub version

MapleCM  SAT competition 2018
Maplesat ~ MapleCOMSPS_LRB

« Solvers can either be used incrementally or non-incrementally

« Tools can use multiple solvers, e.g. for hitting set dualization or
CEGAR-based QBF solving

« URL: https:
//pysathq.github.io/docs/html/api/solvers.html

61/76


https://pysathq.github.io/docs/html/api/solvers.html
https://pysathq.github.io/docs/html/api/solvers.html

Formula manipulation

Features

CNF & Weighted CNF (WCNF)
Read formulas from file/string
Write formulas to file

Append clauses to formula
Negate CNF formulas

Translate between CNF and WCNF
ID manager

« URL: https:
//pysathq.github.io/docs/html/api/formula.html
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Available cardinality encodings

Name Type
pairwise AtMost1
bitwise AtMost1
ladder AtMost1

sequential counter  AtMostk
sorting network AtMostk
cardinality network  AtMostk

totalizer AtMostk
mtotalizer AtMostk
kmtotalizer AtMostk

« Also AtlLeastK and Equalsk constraints

+ URL:
https://pysathqg.github.io/docs/html/api/card.html
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Installation & info

« Installation:
$ [sudo] pip2lpip3 install python-sat

- Website: https://pysathqg.github.io/
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Basic interface - Python3 shell

>>> from pysat.card import =

>>> am1 = CardEnc.atmost(lits=[1, —2, 3], encoding=EncType.pairwise)
>>> print(ami.clauses)

[[—1, 21, [—-1, =31, [2, -3]]

>>> from pysat.solvers import Solver

>>> with Solver(name='m22’, bootstrap_with=am1.clauses) as s:
if s.solve(assumptions=[1, 2, 3]) == False:
print(s.get_core())

[3, 1]
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Basic interface - Python3 script

#!/usr/local/bin/python3
from sys import argv

from pysat.formula import CNF
from pysat.solvers import Glucose3, Solver

formula

formula.
.append([1, —2, 5])
formula.
formula.

formula

= CNF()
append([—1, 2, 4])

append([—1, -2, 6])
append([1, 2, 7])

g = Glucose3(bootstrap_with=formula.clauses)

if g.solve(assumptions=[—4, —5, —6, —7]) == False:

print(”Core:

”

, g.get_core())
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Example: naive (deletion) MUS extraction

Input :Set F
Output: Minimal subset M
begin

M~ F

foreach c € M do

if ~SAT(M \ {c}) then
L L M +— M\ {c} /] If =SAT(M \ {c}), then c € MUS

return M /[ Final M is MUS

end

- Number of predicate tests: O(m) {091, BOTWS3]
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Naive MUS extraction |

def main():
cnf = CNF(from_file=argv[1]) # create a CNF object from file

(rnv, assumps) = add_assumps(cnf)

oracle = Solver(name="g3’, bootstrap_with=cnf.clauses)

mus = find_mus(assumps, oracle)
mus = [ref — rnv for ref in mus]

print(”"MUS: ", mus)
if __name__== "__main__":
main ()
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Naive MUS extraction Il

def add_assumps(cnf):

rnv = topv cnf.nv
assumps = [] # list of assumptions to use
for i in range(len(cnf.clauses)):
topv += 1
assumps.append(topv) # register literal
cnf.clauses[i].append(—topv) # extend clause with literal
cnf.nv = cnf.nv + len(assumps) # update # of vars

return rnv, assumps

def main():
cnf = CNF(from_file=argv[1]) # create a CNF object from file
(rnv, assumps) = add_assumps(cnf)

oracle = Solver(name="g3’, bootstrap_with=cnf.clauses)

mus = find_mus(assumps, oracle)
mus = [ref — rnv for ref in mus]

print(”"MUS: ", mus)
if __name__== "__main__":
main ()
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Naive MUS extraction Ill

from sys import argv

from pysat.formula import CNF
from pysat.solvers import Solver

def find_mus(assmp, oracle):
i =0
while i < len(assmp):
ts = assmp[:i] + assmp[(i+1):]
if not oracle.solve(assumptions=ts):
assmp = ts
else:
i+= 1
return assmp
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Naive MUS extraction Ill

from sys import argv

from pysat.formula import CNF
from pysat.solvers import Solver

def find_mus(assmp, oracle):
i =0
while i < len(assmp):
ts = assmp[:i] + assmp[(i+1):]
if not oracle.solve(assumptions=ts):
assmp = ts
else:
i+= 1
return assmp

Demo
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A less naive MUS extractor

def

clset_refine (assmp, oracle):

assmp = sorted (assmp)

while True:
oracle.solve (assumptions=assmp)
ts = sorted(oracle.get_core())

if ts == assmp:
break
assmp = ts
return assmp
#
def main():
cnf = CNF(from_file=argv[1]) # create a CNF object from file
(rnv, assumps) = add_assumps(cnf)
oracle = Solver(name='g3’', bootstrap_with=cnf.clauses)
assumps = clset_refine (assumps, oracle)
mus = find_mus(assumps, oracle)
mus = [ref — rnv for ref in mus]
print(”"MUS: ", mus)
if __name__== "__main__":
main ()
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What next?

- Oracle-based computing

- Problems beyond NP: optimization, quantification, enumeration,
(approximate) counting, decision
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Some final notes

 SAT is a low-level, but very powerful problem solving paradigm
« PySAT suggests a way to tackle this drawback, but there are others

- There is an ongoing revolution on problem solving with SAT (and
SMT) oracles

- E.g. QBF, model-based diagnosis, explainability, theorem proving,
program synthesis, ...

+ The use of SAT oracles is impacting problem solving for many
different complexity classes

« With well-known representative problems, e.g. QBF, #SAT, etc.
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Some final notes

 SAT is a low-level, but very powerful problem solving paradigm
« PySAT suggests a way to tackle this drawback, but there are others

- There is an ongoing revolution on problem solving with SAT (and
SMT) oracles

- E.g. QBF, model-based diagnosis, explainability, theorem proving,
program synthesis, ...

+ The use of SAT oracles is impacting problem solving for many
different complexity classes

« With well-known representative problems, e.g. QBF, #SAT, etc.

+ Many fascinating research topics out there!
+ Connections with ML seem unavoidable

74|76



Sample of tools

- PySAT
« SAT solvers:
+ MiniSat
* Glucose
« MaxSAT solvers:
« RC2
« MSCG

+ OpenWBO
+ MaxHS

« MUS extractors:
« MUSer

« MCS extractors:
* mcsXL
. LBX
+ MCSls

-+ Many other tools available from the ReasonlLab server
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https://reason.di.fc.ul.pt/wiki/doku.php?id=mscg
http://sat.inesc-id.pt/open-wbo/
http://www.maxhs.org
https://reason.di.fc.ul.pt/wiki/doku.php?id=muser
https://reason.di.fc.ul.pt/wiki/doku.php?id=mcsxl
https://reason.di.fc.ul.pt/wiki/doku.php?id=lbx
https://reason.di.fc.ul.pt/wiki/doku.php?id=mcsls
https://reason.di.fc.ul.pt/wiki/doku.php?id=soft
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Questions
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