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SMT Background

Basic SMT Problem

◦ Given a formula Φ in some logical theory T , determine whether Φ is satisfiable
or not.
◦ In addition, if Φ is satisfiable, provide a model of Φ

CDCL(T) Approach

◦ Combine a CDCL-based SAT Solver with a theory solver for T
◦ The theory solver works on conjunctions of literals of T

Our Focus

◦ Quantifier-free theories
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Theory Combination

Many Applications Involve Multiple Theories

x 6 y ∧ 2y 6 x ∧ f (h(x)− h(y)) > f (0)

◦ This formula is unsat
◦ To show this, we need to reason about linear arithmetic and uninterpreted

functions

Combining Decision Procedures for Modularity

◦ We don’t want to write a global decision procedure
◦ We have decision procedures for basic theories
◦ We want to combine them to get a decision procedure for the combined theory.
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Common Base Theories

Uninterpreted functions QF UF

f(f(x)) = a

g(a) 6= f(b)

Arithmetic
QF LRA, QF LIA, . . .

2x+ y > 3

x− y > 1

Bitvectors
QF BV

bvnot(x) + 1 = x

bvuge(x, 0b000..0)

Arrays
QF AX

b = store(a, i, v)

x = select(b, j)

Important: These theories have no non-logical symbol in common

(the only thing they share is equality)
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Purification

If Φ is a formula in theory T1 ∪ T2, we can always transform Φ into two parts

◦ Φ1 is in theory T1

◦ Φ2 is in theory T2

◦ Φ is satisfiable in T1 ∪ T2 iff Φ1 ∧ Φ2 is satisfiable (also in T1 ∪ T2)

This is called purification.

It’s done by introducing new variables to remove mixed terms.
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Purification Example

Formula with mixed terms:

x 6 y ∧ 2y 6 x ∧ f (h(x)− h(y)) > f (0)

Purification: separate the uninterpreted function part and the arithmetic part

QF UF QF LRA

a = h(x)

b = h(y)

d = f(c)

g = f(e)

x 6 y

2y 6 x

c = a− b
e = 0

d > g
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After Purification

Purification of Φ produces formulas Φ1 in T1 and Φ2 in T2

◦ Unsat Case:
If Φ1 is unsat in T1 or Φ2 is unsat in T2 then Φ is unsat in T1 ∪ T2.

◦ Sat Case:
If Φ1 is sat in T1 and Φ2 is sat in T2, is Φ satisfiable in T1 ∪ T2?

– Φ1 has a model M1: M1 |=T1 Φ1

– Φ2 has a model M2: M2 |=T2 Φ2

– Can we construct a model M such that M |=T1∪T2 Φ ?
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Back to Our Example

Formula x 6 y ∧ 2y 6 x ∧ f(h(x)− h(y)) > f(0) is UNSAT

QF UF part is SAT

a = h(x) ∧ b = h(y) ∧ d = f(c) ∧ g = f(e)

Possible model with domain = {α, β}

x α
y β
a α

b β

c α
d β

α β

f β β
h α β

QF LRA part is SAT

x 6 y ∧ 2y 6 x ∧ c = a−b ∧ e = 0 ∧ d > g

Possible model (with domain = R)

x 0
y 0
a 0
b 0

c 0
d 1
e 0
g 0

The two models are not consistent

◦ One says x 6= y, the other says x = y

◦ Their domains have different cardinalities
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Another Example

In QF UF + QF BV:

◦ a, b, c, d, e are vectors of two bits (type bv[2])
◦ f is a function from bv[2] to bv[2]

Formula distinct(f(a), f(b), f(c), f(d), f(e)) is UNSAT

QF UF part

distinct(f(a), f(b), f(c), f(d), f(e))

Satisfiable with models of cardinality
at least 5.

QF BV part

true

Satisfiable, but all models have
cardinality 4.
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Central Problem in Theory Combination

Search for consistent models

◦ Start with Φ in T1 ∪ T2

◦ Purify to get Φ1 in T1 and Φ2 in T2

◦ Search for two models M1 and M2 such that:

M1 |=T1 Φ1 and M2 |=T2 Φ2

M1 and M2 have the same cardinality
M1 and M2 agree on equalities between shared variables

Nelson-Oppen Method

◦ A general framework for solving this problem
◦ Originally proposed by Nelson and Oppen, 1979
◦ Give sufficient conditions for consistent models to exist
◦ Many extensions and variations
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Non-Deterministic Nelson-Oppen (Tinelli & Harandi, 1996)

Assumptions

◦ Two theories T1 and T2 that share no non-logical symbol and are stably infinite
◦ Φ is a conjunction of literals of T1 ∪ T2

◦ Φ is purified to Φ1 in T1 and Φ2 in T2

Stably Infinite Theories

◦ A theory T is stably infinite if every formula that’s satisfiable in T has an infinite
model
◦ Examples: QF UF and QF LRA are stably infinite, QF BV is not
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Variable Arrangements

Definition

◦ Let V be the set of all variables that are shared by Φ1 and Φ2

◦ An arrangement of V is a conjunction of variable equalities and disequalities
that define a partition of V

Example

◦ If V = {x0, x1, x2, x3} and we partition V into three
subsets {x0, x1}, {x2}, and {x3} then the corresponding arrangement is

x0 = x1 ∧ x0 6= x2 ∧ x1 6= x2 ∧ x0 6= x3 ∧ x1 6= x3 ∧ x2 6= x3
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Non-Deterministic Nelson-Oppen (continued)

Procedure

◦ Guess a partition of the variables V and let A be the corresponding
arrangement
◦ Check whether Φ1 ∧ A is satisfiable in T1 and Φ2 ∧ A is satisfiable in T2

Theorem

◦ If Φ1 ∧ A is satisfiable in T1 and Φ2 ∧ A is satisfiable in T2 then
Φ is satisfiable in T1 ∪ T2.

Why this works (informally)

◦ T1 and T2 are stably infinite. This implies that they have models of the same
infinite cardinality.
◦ The arrangement A forces the two models to agree on equalities between

shared variables.
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Issues

How do we find the right arrangement?

◦ The number of possible partitions of a set of n variables is known as Bell’s
number (Bn)
◦ This grows very fast with n (e.g., B11 is 27644437)
◦ We can’t possibly try them all

How do we handle theories that are not stably infinite?
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The Nelson-Oppen Method (Nelson & Oppen, 1979)

Φ1 Φ2

x_i = x_j

x_k = x_j

Method

◦ The theory solvers propagate implied equalities between shared variables.
◦ If both sides are satisfiable and no-more equalities can be propagated,

then Φ is satisfiable.
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Nelson-Oppen Example

Input

QF UF QF LRA

a = h(x)

b = h(y)

d = f(c)

g = f(e)

x 6 y

2y 6 x

c = a− b
e = 0

d > g
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Nelson-Oppen Example

QF LRA deduces and propagates x = y

QF UF QF LRA

a = h(x)

b = h(y)

d = f(c)

g = f(e)

x = y

x 6 y

2y 6 x

c = a− b
e = 0

d > g

x = y
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Nelson-Oppen Example

QF UF propagates a = b

QF UF QF LRA

a = h(x)

b = h(y)

d = f(c)

g = f(e)

x = y

a = b

x 6 y

2y 6 x

c = a− b
e = 0

d > g

x = y

a = b
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Nelson-Oppen Example

QF LRA propagates e = c

QF UF QF LRA

a = h(x)

b = h(y)

d = f(c)

g = f(e)

x = y

a = c

e = c

x 6 y

2y 6 x

c = a− b
e = 0

d > g

x = y

a = c

e = c
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Nelson-Oppen Example

QF UF propagates d = g

QF UF QF LRA

a = h(x)

b = h(y)

d = f(c)

g = f(e)

x = y

a = b

e = c

d = g

x 6 y

2y 6 x

c = a− b
e = 0

d > g

x = y

a = b

e = c

d = g
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Nelson-Oppen Example

QF LRA concludes unsat

QF UF QF LRA

a = h(x)

b = h(y)

d = f(c)

g = f(e)

x = y

a = b

e = c

d = g

x 6 y

2y 6 x

c = a− b
e = 0

d > g

x = y

a = b

e = c

d = g
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Properties of Nelson-Oppen

Soundness and Completeness

◦ propagating implied equalities is sufficient for some theories but not others
◦ the theories for which this is sufficient are called convex theories
◦ for these theories, the method is sound and complete

Termination

◦ obvious if the number of shared variables is fixed
◦ this is usually the case
◦ some theory solvers (e.g., arrays) may dynamically add more variables but this

can be bounded
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Convex Theories

Definition

◦ T is convex if, for every set of literals Γ, and every disjunction of variable
equalities x1 = y1 ∨ . . . ∨ xn = yn, such that

Γ |= x1 = y1 ∨ . . . ∨ xn = yn,

we have
Γ |= xi = yi

for some index i.

Examples

◦ QF UF and QF LRA are convex
◦ QF LIA, QF BV, and QF AX are not convex
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Non-Convex Examples

QF LIA: linear arithmetic over the integers

0 6 x ∧ x 6 y ∧ y 6 z ∧ z 6 1 |= x = y ∨ y = z

QF AX: array theory

b = store(a, i, v) ∧ x = select(b, j) ∧ y = select(a, j) |= x = v ∨ x = y
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More on Nelson-Oppen

Can be extended to non-convex theories

◦ the theory solvers propagate disjunctions of equalities

Finding Implied Equalities

◦ For QF UF, decision procedures based on congruence closure give implied
equalities for free.
◦ It’s harder and more expensive for other theories (e.g., linear arithmetic).
◦ It gets worse for non-convex theories.

Delayed Theory Combination

◦ Attempt to construct an arrangement lazily in the CDCL(T) framework
◦ Create interface equalities and let the SAT solver do the search
◦ Different heuristics to decide when and what equalities to create
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Model-Based Theory Combination

Models are available

◦ The theory solvers for T1 and T2 produce models when Φ1 and Φ2 are sat:

M1 |=T1 Φ1 and M2 |=T2 Φ2

◦ The Nelson-Oppen methods do not use these models

Model-based theory combination

◦ Make use of the models M1 and M2:
– if M1 and M2 are consistent, done
– optionally, attempt to modify M1 and M2 to make them consistent
– if that fails, add constraints to cause CDCL(T) to backtrack and search for

other models
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Combining a Theory with QF UF

Very Common Case

◦ One theory is QF UF and the other is either an arithmetic theory or QF BV

QF UF has good properties

◦ Deciding satisfiability is cheap (fast congruence closure algorithms)
◦ These algorithms give the implied equalities for free
◦ It’s stably infinite

Model-Based Combination With QF UF

◦ Works with an arbitrary theory T (non-convex, non-stably infinite)
◦ Main components:

– congruence closure
– interface lemmas
– model mutation and reconciliation
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Congruence Closure

Key problem in QF UF

◦ Given a finite set of terms and some equalities between them

t1 = u1, . . . , tm = um

find all the implied equalities

Congruence Closure Algorithms

◦ Construct an equivalence relation ∼ between terms such that
– If ti = ui is an original equality then ti ∼ ui
– ∼ is closed under the congruence rule:

v1 ∼ w1, ..., vk ∼ wk ⇒ f (v1, . . . , vk) ∼ f (w1, . . . , wk)

◦ The ∼ relation contains all the implied equalities:

t1 = u1, . . . , tn = un ⇒ t = u iff t ∼ u
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Congruence Closure Example

Terms: a, b, f (a), f (f (a)), f (f (f (a)), f (b)

Initial Equalities: f (f (a)) = a, f (a) = b

Equivalence Relation

◦ Initially
{a, f (f (a))} {b, f (a)} {f (b)} {f (f (f (a))}
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Congruence Closure Example

Terms: a, b, f (a), f (f (a)), f (f (f (a)), f (b)

Initial Equalities: f (f (a)) = a, f (a) = b

Equivalence Relation

◦ Congruence: f (a) = f (f (f (a))

{a, f (f (a))} {b, f (a), f (f (f (a)))} {f (b)}
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Congruence Closure Example

Terms: a, b, f (a), f (f (a)), f (f (f (a)), f (b)

Initial Equalities: f (f (a)) = a, f (a) = b

Equivalence Relation

◦ Congruence: f (b) = f (f (a))

{a, f (f (a)), f (b)} {b, f (a), f (f (f (a)))}
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Congruence Closure Example

Terms: a, b, f (a), f (f (a)), f (f (f (a)), f (b)

Initial Equalities: f (f (a)) = a, f (a) = b

Equivalence Relation

◦ Done
{a, f (f (a)), f (b)} {b, f (a), f (f (f (a)))}
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Checking Satisifiability in QF UF

A QF UF formula can be written as a conjunction of equalities and disequalities:

(t1 = u1 ∧ . . . ∧ tn = un) ∧ (v1 6= w1 ∧ . . . ∧ vm 6= wm)

To check satisfiability

◦ compute the congruence closure ∼ of the equalities
◦ if vi ∼ wi for some i then return UNSAT else return SAT

Example

◦ Formula: f (f (a)) = a ∧ f (a) = b ∧ b 6= f (f (f (a))

◦ Congruence closure: {a, f (f (a)), f (b)} {b, f (a), f (f (f (a)))}
◦ So the formula is UNSAT
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Building Models in QF UF

From A Congruence Closure

◦ Basic idea: one element in the domain per equivalence class in the
congruence closure
◦ We can always ensure that every term t is interpreted as its class

representative

Example

◦ Formula: f (b) = a ∧ b = f (a) ∧ a 6= f (c)

◦ Congruence closure: {a, f (b)} {b, f (a)} {c} {f (c))}
◦ Model:

domain = {α, β, γ, δ}
a α

b β

c γ

α β γ δ

f β α δ α

33



Computer Science Laboratory, SRI International

Flexibility in QF UF Models

Enlarging the domain

◦ Let Φ be a satisfiable QF UF formula and M a model of Φ

◦ For any cardinal κ > |M |, we can construct a new model M ′ of cardinality κ
that satisfies Φ

◦ This implies that QF UF is stably infinite

Shrinking the domain

◦ We can sometimes make the domain smaller by modifying the congruence
closure
◦ Previous example: Φ is f (b) = a ∧ b = f (a) ∧ a 6= f (c)

– Congruence closure: {a, f (b)} {b, f (a)} {c} {f (c)}
◦ We could merge {f (c)} and {b, f (a)} to get a new relation ∼′

{a, f (b)} {b, f (a), f (c)} {c}

◦ A model built from ∼′ still satisfies Φ
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Basic Model-Based Combination With QF UF

Assumptions
◦ A formula Φ in QF UF ∪ T
◦ After purification: Φ1 in QF UF and Φ2 in T
◦ V denotes the set of variables shared by Φ1 and Φ2

◦ ∼ is the equivalence relation computed by congruence closure from Φ1

Procedure
◦ If Φ1 is not satisfiable, return UNSAT
◦ Get all equalities implied by Φ1

◦ Let H be the set of implied equalities that are between variables of V
◦ Check whether Φ2 ∧H is satisfiable in T ; if not return UNSAT
◦ Otherwise, get a model M for Φ2 ∧H.
◦ If M does not conflict with relation ∼ return SAT
◦ Otherwise, add interface lemmas to force backtracking
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Properties

Conflicts

◦ M conflicts with E if there are two shared variables x and y such that

M |= x = y but x 6∼ y

◦ conflicts in the other direction are not possible (since M |= H)

If there are no conflicts

◦ M and ∼ agree on equalities between shared variables
◦ We can extend M by adding an interpretation for all the uninterpreted functions

in the QF UF part
◦ We get a new model M ′ that satisfies Φ2 and Φ1
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Interface Lemmas

Interface lemma for x and y

◦ A formula that encodes “x = y in T ”⇒ “x = y in QF UF”
◦ The exact formulation depends on the implementation and theory involved
◦ Examples

– T is QF LRA: we add the clause x = y ∨ x > y ∨ y > x

– T is QF BV: we add the clause ¬(bveq x y) ∨ x = y

in these clauses, (x = y) must be an atom handled by the QF UF solver

If M conflicts with ∼ on x = y, this lemma forces the SMT solver to backtrack and
search for different models
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Improvements

Model Mutation (de Moura & Bjørner, 2007)

◦ Exploit flexibility in the Simplex-based arithmetic solver.
◦ There may be many solutions to a set of linear arithmetic constraints.
◦ Mutation: modify the Simplex model to give distinct values to distinct interface

variables.
◦ This reduces the risk of accidental conflicts
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Improvements (continued)

Model Reconciliation

◦ Exploit flexibility in QF UF to eliminate conflicts while keeping M fixed
◦ If x and y are in conflict: M |= x = y and x 6∼ y

◦ To try to resolve this conflict:
– tentatively merge the equivalence classes of x and y
– propagate the consequences by congruence closure
– accept the merge unless if makes the QF UF part unsat or it would

propagate new equalities to theory T
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Conclusion

Combining decision procedures and theories is central to SMT

Nelson-Oppen is the most common framework for this

◦ Another method due to Shostak has lost popularity

Nelson-Oppen method has limitations

◦ require stably infinite, convex theories
◦ propagating equalities can be expensive

Model-based theory combination methods overcome these limitations

◦ well-suited for the common case: QF UF + T
◦ model mutation or reconciliation can eliminate conflicts
◦ search for consistent models use dynamic lemmas and backtracking
◦ more efficient in practice
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Related Topics

More on theory combination

◦ Extensions of Nelson-Oppen to theories that are not stably infinite
◦ Theory combination in MC-SAT (an alternative to CDCL(T))
◦ Combination of theories that share logical symbols

Model-based techniques in SMT

◦ array solvers
◦ model-based instantiation for problems with quantifiers
◦ model-based projection
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