
Introduction to SMT

Albert Oliveras

Technical University of Catalonia

8th International SAT/SMT/AR Summer School 2019

Lisbon, Portugal

July 3rd, 2019

Introduction to SMT – p. 1

Overview of the talk

Motivation
SMT

Theories of Interest

History of SMT

Eager approach

Lazy approach

Optimizations and DPLL(T)

Theory solvers: difference logic and case splitting

Combining Theory Solvers

Limitations and Other Approaches

Introduction to SMT – p. 2

Introduction

Originally, automated reasoning ≡ uniform proof-search
procedures for FO logic

Limited success: is FO logic the best compromise between
expressivity and efficiency?

Another trend [Sha02] is to gain efficiency by:

addressing only (expressive enough) decidable fragments
of a certain logic

incorporate domain-specific reasoning, e.g:
arithmetic reasoning
equality
data structures (arrays, lists, stacks, ...)

Introduction to SMT – p. 3

Introduction (2)

Examples of this alternative trend:

SAT: use propositional logic as the formalization language

+ high degree of efficiency

- expressive (all NP-complete) but involved encodings

SMT: propositional logic + domain-specific reasoning

+ improves the expressivity

- certain (but acceptable) loss of efficiency

GOAL OF THIS TALK:
introduce SMT, with its main techniques

Introduction to SMT – p. 4

Overview of the talk

Motivation

SMT
Theories of Interest

History of SMT

Eager approach

Lazy approach

Optimizations and DPLL(T)

Theory solvers: difference logic and case splitting

Combining Theory Solvers

Limitations and Other Approaches

Introduction to SMT – p. 4

Need and Applications of SMT

Some problems are more naturally expressed in other logics
than propositional logic, e.g:

Software verification needs reasoning about equality,
arithmetic, data structures, ...

SMT consists of deciding the satisfiability of a (ground) FO
formula with respect to a background theory

Example (Equality with Uninterpreted Functions – EUF):

g(a)=c ∧ (f (g(a)) 6= f (c) ∨ g(a)=d) ∧ c 6=d

Wide range of applications:

Predicate
abstraction [LNO06]

Model checking[AMP06]

Scheduling [BNO+08b]

Test generation[TdH08]

...

Introduction to SMT – p. 5

Overview of the talk

Motivation

SMT

Theories of Interest
History of SMT

Eager approach

Lazy approach

Optimizations and DPLL(T)

Theory solvers: difference logic and case splitting

Combining Theory Solvers

Limitations and Other Approaches

Introduction to SMT – p. 5

Theories of Interest - EUF [BD94, NO80, NO07]

Equality with Uninterpreted Functions, i.e. “=” is equality

If background logic is FO with equality, EUF is empty theory

Consider formula

a∗ (f (b)+ f (c)) = d ∧ b∗ (f (a)+ f (c)) 6= d ∧ a = b

Formula is UNSAT, but no arithmetic resoning is needed

If we abstract the formula into
h(a, g(f (b), f (c))) = d ∧ h(b, g(f (a), f (c))) 6= d ∧ a = b

it is still UNSAT

EUF is used to abstract non-supported constructions, e.g:

Non-linear multiplication

ALUs in circuits

Introduction to SMT – p. 6

Theories of Interest - Arithmetic

Very useful for obvious reasons

Restricted fragments support more efficient methods:

Bounds: x ⊲⊳ k with ⊲⊳∈ {<,>,≤,≥,=}

Difference logic: x− y ⊲⊳ k, with ⊲⊳∈ {<,>,≤,≥,=}
[NO05, WIGG05, SM06]

UTVPI: ±x± y ⊲⊳ k, with ⊲⊳∈ {<,>,≤,≥,=} [LM05]

Linear arithmetic, e.g: 2x−3y+4z ≤ 5 [DdM06]

Non-linear arithmetic, e.g: 2xy+4xz2 −5y ≤ 10

[BLNM+09, ZM10]

Variables are either reals or integers

Machine-inspired arithmetic: floating-point arithmetic
Introduction to SMT – p. 7

Th. of Int.- Arrays[SBDL01, BNO+08a, dMB09]

Two interpreted function symbols read and write

Theory is axiomatized by:

∀a∀i∀v (read(write(a, i,v), i) = v)

∀a∀i∀ j∀v (i 6= j → read(write(a, i,v), j) = read(a, j))

Sometimes extensionality is added:

∀a∀b ((∀i(read(a, i) = read(b, i)))→ a = b

Is the following set of literals satisfiable?

write(a, i,x) 6= b read(b, i) = y read(write(b, i,x), j) = y

a = b i = j

Used for:

Software verification

Hardware verification (memories)

Introduction to SMT – p. 8

Th. of Interest - Bit vectors [BCF+07, BB09]

Constants represent vectors of bits

Useful both for hardware and software verification

Different type of operations:

String-like operations: concat, extract, ...

Logical operations: bit-wise not, or, and, ...

Arithmetic operations: add, substract, multiply, ...

Assume bit-vectors have size 3. Is the formula SAT?

a[0 : 1] 6= b[0 : 1] ∧ (a|b) = c ∧ c[0] = 0 ∧ a[1]+b[1] = 0

Introduction to SMT – p. 9

Combina. of theories [NO79, Sho84, BBC+05]

In practice, theories are not isolated

Software verifications needs arithmetic, arrays, bitvectors, ...

Formulas of the following form usually arise:

a= b+2 ∧ A=write(B,a+1,4) ∧ (read(A,b+3) = 2 ∨ f (a−1) 6= f (b+1))

The goal is to combine decision procedures for each theory

Introduction to SMT – p. 10

SMT in Practice

GOOD NEWS: efficient decision procedures for sets of ground
literals exist for various theories of interest

PROBLEM: in practice, we need to deal with:

(1) arbitrary Boolean combinations of literals (∧,∨,¬)
(DNF conversion is not a solution in practice)

(2) multiple theories

(3) quantifiers

We will only focus on (1) and (2), but techniques for (3) exist.

Introduction to SMT – p. 11

Overview of the talk

Motivation

SMT

Theories of Interest

History of SMT
Eager approach

Lazy approach

Optimizations and DPLL(T)

Theory solvers: difference logic and case splitting

Combining Theory Solvers

Limitations and Other Approaches

Introduction to SMT – p. 11

SMT Prehistory - Late 70’s and 80’s

Pioneers:

R. Boyer, J. Moore, G. Nelson, D. Open, R. Shostak

Influential results:

Nelson-Oppen congruence closure procedure [NO80]

Nelson-Oppen combination method [NO79]

Shostak combination method [Sho84]

Influential systems:

Nqthm prover [BM90] [Boyer, Moore]

Simplify [DNS05] [Detlefs, Nelson, Saxe]

Introduction to SMT – p. 12

Beginnings of SMT - Early 2000s

KEY FACT: SAT solvers improved performance

Two ways of exploiting this fact:

Eager approach: encode SMT into SAT

[Bryant, Lahiri, Pnueli, Seshia, Strichman, Velev, ...]

[PRSS99, SSB02, SLB03, BGV01, BV02]

Lazy approach: plug SAT solver with a decision procedure

[Armando, Barrett, Castellini, Cimatti, Dill, Giunchiglia,
deMoura, Ruess, Sebastiani, Stump,...]

[ACG00, dMR02, BDS02a, ABC+02]

Introduction to SMT – p. 13

Overview of the talk

Motivation

SMT

Theories of Interest

Eager approach
Lazy approach

Optimizations and DPLL(T)

Theory solvers: difference logic and case splitting

Combining Theory Solvers

Limitations and Other Approaches

Introduction to SMT – p. 13

Eager approach

Methodology: translate problem into equisatisfiable
propositional formula and use off-the-shelf SAT solver

Why “eager”?
Search uses all theory information from the beginning

Characteristics:

+ Can use best available SAT solver

- Sophisticated encodings are needed for each theory

Introduction to SMT – p. 14

Eager approach – Example

Let us consider an EUF formula:

First step: remove function/predicate symbols.

Assume we have terms f (a), f (b) and f (c).

Ackermann reduction:

Replace them by fresh constants A, B and C

Add clauses:
a=b → A = B

a=c → A =C

b=c → B =C

Bryant reduction:

Replace f (a) by A

Replace f (b) by ite(b = a,A,B)
Replace f (c) by ite(c = a,A, ite(c = b,B,C))

Now, atoms are equalities between constants

Introduction to SMT – p. 15

Eager approach – Example (2)

Second step: encode formula into propositional logic

Small-domain encoding:
If there are n different constants, there is a model with
size at most n

logn bits to encode the value of each constant
a=b translated using the bits for a and b

Per-constraint encoding:
Each atom a=b is replaced by var Pa,b

Transitivity constraints are added (e.g. Pa,b ∧Pb,c → Pa,c)

This is a very rough overview of an encoding from EUF to SAT.

See [PRSS99, SSB02, SLB03, BGV01, BV02] for details.

Introduction to SMT – p. 16

Overview of the talk

Motivation

SMT

Theories of Interest

Eager approach

Lazy approach
Optimizations and DPLL(T)

Theory solvers: difference logic and case splitting

Combining Theory Solvers

Limitations and Other Approaches

Introduction to SMT – p. 16

Lazy approach

Methodology:

Example: consider EUF and the CNF

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

SAT solver returns model [1, 2, 4]

Introduction to SMT – p. 17

Lazy approach

Methodology:

Example: consider EUF and the CNF

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

SAT solver returns model [1, 2, 4]

Theory solver says T -inconsistent

Introduction to SMT – p. 17

Lazy approach

Methodology:

Example: consider EUF and the CNF

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

SAT solver returns model [1, 2, 4]

Theory solver says T -inconsistent

Send {1, 2∨3, 4, 1∨2∨4} to SAT solver

Introduction to SMT – p. 17

Lazy approach

Methodology:

Example: consider EUF and the CNF

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

SAT solver returns model [1, 2, 4]

Theory solver says T -inconsistent

Send {1, 2∨3, 4, 1∨2∨4} to SAT solver

SAT solver returns model [1, 2, 3, 4]

Introduction to SMT – p. 17

Lazy approach

Methodology:

Example: consider EUF and the CNF

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

SAT solver returns model [1, 2, 4]

Theory solver says T -inconsistent

Send {1, 2∨3, 4, 1∨2∨4} to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says T -inconsistent

Introduction to SMT – p. 17

Lazy approach

Methodology:

Example: consider EUF and the CNF

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

SAT solver returns model [1, 2, 4]

Theory solver says T -inconsistent

Send {1, 2∨3, 4, 1∨2∨4} to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says T -inconsistent

SAT solver detects {1, 2∨3, 4, 1∨2∨4, 1∨2∨3∨4}
UNSATISFIABLE

Introduction to SMT – p. 17

Lazy approach (2)

Why “lazy”?

Theory information used lazily when checking T -consistency
of propositional models

Characteristics:

+ Modular and flexible

- Theory information does not guide the search

Introduction to SMT – p. 18

Overview of the talk

Motivation

SMT

Theories of Interest

Eager approach

Lazy approach

Optimizations and DPLL(T)
Theory solvers: difference logic and case splitting

Combining Theory Solvers

Limitations and Other Approaches

Introduction to SMT – p. 18

Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

Check T -consistency only of full propositional models

Introduction to SMT – p. 19

Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

Check T -consistency only of full propositional models

Check T -consistency of partial assignment while being built

Introduction to SMT – p. 19

Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

Check T -consistency only of full propositional models

Check T -consistency of partial assignment while being built

Given a T -inconsistent assignment M, add ¬M as a clause

Introduction to SMT – p. 19

Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

Check T -consistency only of full propositional models

Check T -consistency of partial assignment while being built

Given a T -inconsistent assignment M, add ¬M as a clause

Given a T -inconsistent assignment M, identify a T -inconsistent
subset M0 ⊆ M and add ¬M0 as a clause

Introduction to SMT – p. 19

Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

Check T -consistency only of full propositional models

Check T -consistency of partial assignment while being built

Given a T -inconsistent assignment M, add ¬M as a clause

Given a T -inconsistent assignment M, identify a T -inconsistent
subset M0 ⊆ M and add ¬M0 as a clause

Upon a T -inconsistency, add clause and restart

Introduction to SMT – p. 19

Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

Check T -consistency only of full propositional models

Check T -consistency of partial assignment while being built

Given a T -inconsistent assignment M, add ¬M as a clause

Given a T -inconsistent assignment M, identify a T -inconsistent
subset M0 ⊆ M and add ¬M0 as a clause

Upon a T -inconsistency, add clause and restart

Upon a T -inconsistency, bactrack to some point where the
assignment was still T -consistent

Introduction to SMT – p. 19

Lazy approach - T -propagation

As pointed out the lazy approach has one drawback:

Theory information does not guide the search (too lazy)

How can we improve that? For example:

Assume that a < b, b < c are in our partial assignment M.

If the formula contains a < c we would like to add it to M

Search guided by T -Solver by finding T-consequences,
instead of only validating it as in basic lazy approach.

Naive implementation::
Add ¬l. If T -inconsistent then infer l [ACG00]
But for efficient Theory Propagation we need:

- T -Solvers specialized and fast in it.
- fully exploited in conflict analysis

This approach has been named DPLL(T) [NOT06]

Introduction to SMT – p. 20

Lazy approach - Important points

Important and benefitial aspects of the lazy approach:
(even with the optimizations)

Everyone does what he/she is good at:

SAT solver takes care of Boolean information

Theory solver takes care of theory information

Theory solver only receives conjunctions of literals

Modular approach:

SAT solver and T -solver communicate via a simple API

SMT for a new theory only requires new T -solver

SAT solver can be embedded in a lazy SMT system with
relatively litte effort

Introduction to SMT – p. 21

DPLL(T)

In a nutshell:
DPLL(T) = DPLL(X) + T -Solver

DPLL(X):

Very similar to a SAT solver, enumerates Boolean models

Not allowed: pure literal, blocked literal detection, ...

Desirable: partial model detection

T -Solver:

Checks consistency of conjunctions of literals

Computes theory propagations

Produces explanations of inconsistency/T -propagation

Should be incremental and backtrackable

Introduction to SMT – p. 22

DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

Introduction to SMT – p. 23

DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (UnitPropagate)

Introduction to SMT – p. 23

DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 4 || 1, 2∨3, 4 ⇒ (T-Propagate)

Introduction to SMT – p. 23

DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 4 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 4 2 || 1, 2∨3, 4 ⇒ (T-Propagate)

Introduction to SMT – p. 23

DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 4 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 4 2 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 4 2 3 || 1, 2∨3, 4 ⇒ (Fail)

Introduction to SMT – p. 23

DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 4 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 4 2 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 4 2 3 || 1, 2∨3, 4 ⇒ (Fail)

UNSAT

Introduction to SMT – p. 23

DPLL(T) - Overall algorithm

High-levew view gives the same algorithm as a CDCL SAT solver:

while(true){

while (propagate_gives_conflict()){

if (decision_level==0) return UNSAT;

else analyze_conflict();

}

restart_if_applicable();

remove_lemmas_if_applicable();

if (!decide()) returns SAT; // All vars assigned

}

Differences are in:

propagate_gives_conflict

analyze_conflict

Introduction to SMT – p. 24

DPLL(T) - Propagation

propagate_gives_conflict() returns Bool

do {

// unit propagate

if (unit_prop_gives_conflict()) then return true

// check T-consistency of the model

if (solver.is_model_inconsistent()) then return true

// theory propagate

solver.theory_propagate()

} while (someTheoryPropagation)

return false

Introduction to SMT – p. 25

DPLL(T) - Propagation (2)

Three operations:

Unit propagation (SAT solver)

Consistency checks (T -solver)

Theory propagation (T -solver)

Cheap operations are computed first

If theory is expensive, calls to T -solver are sometimes skipped

For completeness, only necessary to call T -solver at the leaves
(i.e. when we have a full propositional model)

Theory propagation is not necessary for completeness

Introduction to SMT – p. 26

DPLL(T) - Conflict Analysis

Remember conflict analysis in SAT solvers:

C:= conflicting clause

while C contains more than one lit of last DL

l:=last literal assigned in C

C:=Resolution(C,reason(l))

end while

// let C = C’ v l where l is UIP

backjump(maxDL(C’))

add l to the model with reason C

learn(C)

Introduction to SMT – p. 27

DPLL(T) - Conflict Analysis (2)

Conflict analysis in DPLL(T):

if boolean conflict then C:= conflicting clause

else C:=¬(solver.explain_inconsistency())

while C contains more than one lit of last DL

l:=last literal assigned in C

C:=Resolution(C,reason(l))

end while

// let C = C’ v l where l is UIP

backjump(maxDL(C’))

add l to the model with reason C

learn(C)

Introduction to SMT – p. 28

DPLL(T) - Conflict Analysis (3)

What does explain_inconsistency return?

A (small) conjuntion of literals l1 ∧ . . .∧ ln such that:

They were in the model when T -inconsistency was found

It is T -inconsistent

What is now reason(l)?

If l was unit propagated, reason is the clause that propagated it

If l was T -propagated?

T -solver has to provide an explanation for l, i.e.
a (small) set of literals l1, . . . , ln such that:

They were in the model when l was T -propagated
l1 ∧ . . .∧ ln |=T l

Then reason(l) is ¬l1 ∨ . . .∨¬ln ∨ l

Introduction to SMT – p. 29

DPLL(T) - Conflict Analysis (4)

Let M be of the form . . . ,c=b, . . . and let F contain

h(a)=h(c) ∨ p a=b ∨ ¬p ∨ a=d a 6=d ∨ a=b

Take the following sequence:

1. Decide h(a) 6=h(c)

2. UnitPropagate p (due to clause h(a)=h(c) ∨ p)

3. T-Propagate a 6=b (since h(a) 6=h(c) and c=b)

4. UnitPropagate a=d (due to clause a=b ∨ ¬p ∨ a=d)

5. Conflicting clause a 6=d ∨ a=b

Explain(a 6=b) is {h(a) 6=h(c),c=b}
❄

h(a)=h(c)∨p

h(a)=h(c)∨ c 6=b∨a 6=b

a=b∨¬p∨a=d a 6=d∨a=b

a=b∨¬p

h(a)=h(c)∨ c 6=b∨¬p

h(a)=h(c) ∨ c 6=b

Introduction to SMT – p. 30

Overview of the talk

Motivation

SMT

Theories of Interest

Eager approach

Lazy approach

Optimizations and DPLL(T)

T -solvers: difference logic
Combining Theory Solvers

Limitations and Other Approaches

Introduction to SMT – p. 30

Difference logic

Literals in Difference Logic are of the form a−b ⊲⊳ k, where

⊲⊳∈ {≤, ≥, <, >, =, 6=}

a and b are integer/real variables

k is an integer/real

At the formula level,
a=b is replaced by p and p ↔ a ≤ b ∧ b ≤ a is added

If domain is Z then a−b < k is replaced by a−b ≤ k−1

If domain is R then a−b < k is replaced by a−b ≤ k−δ

δ is a sufficiently small real

δ is not computed but used symbolically

(i.e. numbers are pairs (k,δ)

Hence we can assume all literals are a−b ≤ k

Introduction to SMT – p. 31

Difference Logic - Remarks

Note that any solution to a set of DL literals can be shifted

(i.e. if σ is a solution then σ′(x) = σ(x)+ k also is a solution)

This allows one to process bounds x ≤ k

Introduce fresh variable zero

Convert all bounds x ≤ k into x− zero ≤ k

Given a solution σ, shift it so that σ(zero) = 0

If we allow (dis)equalities as literals, then:

If domain is R consistency check is polynomial

If domain is Z consistency check is NP-hard
(k-colorability)

1 ≤ ci ≤ k with i = 1 . . .#verts encodes k colors available
ci 6= c j if i and j adjacents encode proper assignment

Introduction to SMT – p. 32

Difference Logic as a Graph Problem

Given M = {a−b ≤ 2, b−c ≤ 3, c−a ≤−7}, construct weighted

graph G(M)

a
2

3−7

b

c

Theorem:

M is T -inconsistent iff G(M) has a negative cycle

Introduction to SMT – p. 33

Difference Logic as a Graph Problem (2)

Theorem:

M is T -inconsistent iff G(M) has a negative cycle

⇐)

Any negative cycle a1
k1−→ a2

k2−→ a3 −→ . . .−→ an
kn−→ a1

corresponds to a set of literals:

a1 −a2 ≤ k1

a2 −a3 ≤ k2

. . .

an −a1 ≤ kn

If we add them all, we get 0 ≤ k1 + k2 + . . .+ kn, which is
inconsistent since neg. cycle implies k1 + k2 + . . .+ kn < 0

Introduction to SMT – p. 34

Difference Logic as a Graph Problem (3)

Theorem:

M is T -inconsistent iff G(M) has a negative cycle

⇒)
Let us assume that there is no negative cycle.

1. Consider additional vertex o with edges o
0

−→ v to all verts. v

2. For each variable x, let σ(x) = −dist(o,x)
[exists because there is no negative cycle]

3. σ is a model of M

If σ 6|= x− y ≤ k then −dist(o,x)+dist(o,y) > k

Hence, dist(o,y) > dist(o,x)+ k

But k = weight(x −→ y)!!!

Introduction to SMT – p. 35

Bellman-Ford: negative cycle detection

forall v ∈V do d[v] := ∞ endfor

forall i = 1 to |V |−1 do

forall (u,v) ∈ E do

if d[v] > d[u] + weight(u,v) then

d[v]:= d[u] + weight(u,v)

p[v]:= u

endif

endfor

endfor

forall (u,v) ∈ E do

if d[v] > d[u]+weight(u,v) then

Negative cycle detected

Cycle reconstructed following p

endif

endfor

Introduction to SMT – p. 36

Consistency checks

Consistency checks can be performed using Bellman-Ford in

time (O(|V | · |E|))

Other more efficient variants exists

Incrementality easy:

Upon arrival of new literal a
k

−→ b process graph from u

Solutions can be kept after backtracking

Inconsistency explanations are negative cycles
(irredundant but not minimal explanations)

Introduction to SMT – p. 37

Theory propagation

Addition of a
k

−→ b entails c−d ≤ k′ only if

c −→∗ a
k

−→ b
︸ ︷︷ ︸

shortest

−→∗ d

shortest
︷ ︸︸ ︷

Given a solution σ, each edge a
k

−→ b (i.e. a−b ≤ k) has its

reduced cost k−σ(a)+σ(b) ≥ 0

Shortest path computation more efficient using reduced costs,
since they are non-negative [Dijkstra’s algorithm]

Theory propagation ≈ shortest-path computations

Explanations are the shortest paths

Introduction to SMT – p. 38

Overview of the talk

Motivation

SMT

Theories of Interest

Eager approach

Lazy approach

Optimizations and DPLL(T)

T -solvers: case splitting
Combining Theory Solvers

Limitations and Other Approaches

Introduction to SMT – p. 38

Case Reasoning in Theory Solvers

For certain theories, consistency checking requires case
reasoning.

Example: consider the theory of arrays and the set of literals

read(write(A, i,x), j) 6= x read(write(A, i,x), j) 6= read(A, j)

Two cases:

i = j. LHS rewrites into x 6= x !!!

i 6= j. RHS rewrites into read(A, j) 6= read(A, j) !!!

CONCLUSION: T -inconsistent

Introduction to SMT – p. 39

Case Reasoning in Theory Solvers (2)

A complete T-solver reasons by cases via internal case splitting
and backtracking mechanisms.

An alternative is to lift case splitting and backtracking from
the T-solver to the SAT engine.

Basic idea: encode case splits as sets of clauses and send them
as needed to the SAT engine for it to split on them.

Possible benefits:

All case-splitting is coordinated by the SAT engine

Only have to implement case-splitting infrastructure in
one place

Can learn a wider class of lemmas (more details later)

Introduction to SMT – p. 40

Case Reasoning in Theory Solvers (3)

Basic idea: encode case splits as a set of clauses and send them
as needed to the SAT engine

Example:

Assume model contains literal s = read(write(A, i, t), j)
︸ ︷︷ ︸

s′

DPLL(X) asks: “is it T -satisfiable”?

T -solver says: “I do not know yet, but it will be helpful
that you consider these theory lemmas:”

s= s′ ∧ i= j −→ s= t

s= s′ ∧ i 6= j −→ s= read(A, j)

We need certain completeness conditions (e.g. once all lits
from a certain subset L has been decided, the T -solver should
YES/NO)

Introduction to SMT – p. 41

Overview of the talk

Motivation

SMT

Theories of Interest

Eager approach

Lazy approach

Optimizations and DPLL(T)

Theory solvers: difference logic and case splitting

Combining Theory Solvers

Limitations and Other Approaches

Introduction to SMT – p. 41

Need for combination

In software verification, formulas like the following one arise:

a=b+ 2 ∧ A=write(B,a+ 1,4) ∧ (read(A,b+ 3)=2 ∨ f (a−1) 6= f (b+ 1))

Here reasoning is needed over

The theory of linear arithmetic (TLA)

The theory of arrays (TA)

The theory of uninterpreted functions (TEUF)

Remember that T -solvers only deal with conjunctions of lits.

Given T -solvers for the three individual theories,
can we combine them to obtain one for (TLA ∪TA ∪TEUF)?

Under certain conditions the Nelson-Oppen combination
method gives a positive answer

Introduction to SMT – p. 42

Motivating example - Convex case

Consider the following set of literals:

f (f (x)− f (y)) = a

f (0) = a+2

x = y

There are two theories involved: TLA(R) and TEUF

FIRST STEP: purify each literal so that it belongs to a single theory

f (f (x)− f (y)) = a =⇒ f (e1) = a =⇒ f (e1) = a

e1 = f (x)− f (y) e1 = e2 − e3

e2 = f (x)

e3 = f (y)

Introduction to SMT – p. 43

Motivating example - Convex case

Consider the following set of literals:

f (f (x)− f (y)) = a

f (0) = a+2

x = y

There are two theories involved: TLA(R) and TEUF

FIRST STEP: purify each literal so that it belongs to a single theory

f (0) = a+2 =⇒ f (e4) = a+2 =⇒ f (e4) = e5

e4 = 0 e4 = 0

e5 = a+2

Introduction to SMT – p. 44

Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

EUF Arithmetic

f (e1) = a e2 − e3 = e1

f (x) = e2 e4 = 0

f (y) = e3 e5 = a+2

f (e4) = e5

x = y

The two solvers only share constants: e1,e2,e3,e4,e5,a

To merge the two models into a single one, the solvers have to agree
on equalities between shared constants (interface equalities)

This can be done by exchanging entailed interface equalities

Introduction to SMT – p. 45

Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

EUF Arithmetic

f (e1) = a e2 − e3 = e1

f (x) = e2 e4 = 0

f (y) = e3 e5 = a+2

f (e4) = e5 e2 = e3

x = y

The two solvers only share constants: e1,e2,e3,e4,e5,a

EUF-Solver says SAT

Ari-Solver says SAT

EUF |= e2=e3

Introduction to SMT – p. 46

Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

EUF Arithmetic

f (e1) = a e2 − e3 = e1

f (x) = e2 e4 = 0

f (y) = e3 e5 = a+2

f (e4) = e5 e2 = e3

x = y

e1 = e4

The two solvers only share constants: e1,e2,e3,e4,e5,a

EUF-Solver says SAT

Ari-Solver says SAT

Ari |= e1=e4

Introduction to SMT – p. 47

Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

EUF Arithmetic

f (e1) = a e2 − e3 = e1

f (x) = e2 e4 = 0

f (y) = e3 e5 = a+2

f (e4) = e5 e2 = e3

x = y a = e5

e1 = e4

The two solvers only share constants: e1,e2,e3,e4,e5,a

EUF-Solver says SAT

Ari-Solver says SAT

EUF |= a=e5

Introduction to SMT – p. 48

Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

EUF Arithmetic

f (e1) = a e2 − e3 = e1

f (x) = e2 e4 = 0

f (y) = e3 e5 = a+2

f (e4) = e5 e2 = e3

x = y a = e5

e1 = e4

The two solvers only share constants: e1,e2,e3,e4,e5,a

EUF-Solver says SAT

Ari-Solver says UNSAT

Hence the original set of lits was UNSAT

Introduction to SMT – p. 49

Nelson-Oppen – The convex case

A theory T is stably-infinite iff every T -satisfiable
quantifier-free formula has an infinite model

A theory T is convex iff
S |=T a1=b1 ∨ . . .∨an=bn =⇒ S |= ai=bi for some i

Deterministic Nelson-Oppen: [NO79, TH96, MZ02]

Given two signature-disjoint, stably-infinite and convex
theories T1 and T2

Given a set of literals S over the signature of T1 ∪T2

The (T1 ∪T2)-satisfiability of S can be checked with the
following algorithm:

Introduction to SMT – p. 50

Nelson-Oppen – The convex case (2)

Deterministic Nelson-Oppen

1. Purify S and split it into S1 ∪S2.
Let E the set of interface equalities between S1 and S2

2. If S1 is T1-unsatisfiable then UNSAT

3. If S2 is T2-unsatisfiable then UNSAT

4. If S1 |=T1
x=y with x=y ∈ E \S2 then

S2 := S2 ∪{x=y} and goto 3

5. If S2 |=T2
x=y with x=y ∈ E \S1 then

S1 := S1 ∪{x=y} and goto 2

6. Report SAT

Introduction to SMT – p. 51

Motivating example – Non-convex case

Consider the following UNSATISFIABLE set of literals:

1 ≤ x ≤ 2

f (1) = a

f (x) = b

a = b+2

f (2) = f (1)+3

There are two theories involved: TLA(Z) and TEUF

FIRST STEP: purify each literal so that it belongs to a single theory

f (1) = a =⇒ f (e1) = a

e1 = 1

Introduction to SMT – p. 52

Motivating example – Non-convex case

Consider the following UNSATISFIABLE set of literals:

1 ≤ x ≤ 2

f (1) = a

f (x) = b

a = b+2

f (2) = f (1)+3

There are two theories involved: TLA(Z) and TEUF

FIRST STEP: purify each literal so that it belongs to a single theory

f (2) = f (1)+3 =⇒ e2 = 2

f (e2) = e3

f (e1) = e4

e3 = e4 +3

Introduction to SMT – p. 53

Motivating example – Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic EUF

1 ≤ x f (e1) = a

x ≤ 2 f (x) = b

e1 = 1 f (e2) = e3

a = b+2 f (e1) = e4

e2 = 2

e3 = e4 +3

a = e4

The two solvers only share constants: x,e1,a,b,e2,e3,e4

Ari-Solver says SAT

EUF-Solver says SAT

EUF |= a=e4

Introduction to SMT – p. 54

Motivating example – Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic EUF

1 ≤ x f (e1) = a

x ≤ 2 f (x) = b

e1 = 1 f (e2) = e3

a = b+2 f (e1) = e4

e2 = 2

e3 = e4 +3

a = e4

The two solvers only share constants: x,e1,a,b,e2,e3,e4

Ari-Solver says SAT

EUF-Solver says SAT

No theory entails any other interface equality, but...

Introduction to SMT – p. 55

Motivating example – Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic EUF

1 ≤ x f (e1) = a

x ≤ 2 f (x) = b

e1 = 1 f (e2) = e3

a = b+2 f (e1) = e4

e2 = 2

e3 = e4 +3

a = e4

The two solvers only share constants: x,e1,a,b,e2,e3,e4

Ari-Solver says SAT

EUF-Solver says SAT

Ari |=T x = e1 ∨ x = e2. Let’s consider both cases.

Introduction to SMT – p. 56

Motivating example – Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic EUF

1 ≤ x f (e1) = a

x ≤ 2 f (x) = b

e1 = 1 f (e2) = e3

a = b+2 f (e1) = e4

e2 = 2 x = e1

e3 = e4 +3

a = e4

x = e1

Ari-Solver says SAT

EUF-Solver says SAT

EUF |=T a=b, that when sent to Ari makes it UNSAT

Introduction to SMT – p. 57

Motivating example – Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic EUF

1 ≤ x f (e1) = a

x ≤ 2 f (x) = b

e1 = 1 f (e2) = e3

a = b+2 f (e1) = e4

e2 = 2

e3 = e4 +3

a = e4

Let’s try now with x=e2

Introduction to SMT – p. 58

Motivating example – Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic EUF

1 ≤ x f (e1) = a

x ≤ 2 f (x) = b

e1 = 1 f (e2) = e3

a = b+2 f (e1) = e4

e2 = 2 x = e2

e3 = e4 +3

a = e4

x = e2

Ari-Solver says SAT

EUF-Solver says SAT

EUF |=T b=e3, that when sent to Ari makes it UNSAT

Introduction to SMT – p. 59

Motivating example – Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic EUF

1 ≤ x f (e1) = a

x ≤ 2 f (x) = b

e1 = 1 f (e2) = e3

a = b+2 f (e1) = e4

e2 = 2 x = e2

e3 = e4 +3

a = e4

x = e2

Since both x=e1 and x = e2 are UNSAT, the set of literals is UNSAT

Introduction to SMT – p. 60

Nelson-Oppen - The non-convex case

In the previous example Deterministic NO does not work

This was because TLA(Z) is not convex:

SLA(Z) |=TLA(Z)
x=e1 ∨ x=e2, but

SLA(Z) 6|=TLA(Z)
x=e1 and

SLA(Z) 6|=TLA(Z)
x=e2

However, there is a version of NO for non-convex theories

Given a set constants C , an arrangement A over C is:

A set of equalities and disequalites between constants in C

For each x,y ∈ C either x=y ∈ A or x 6= y ∈ A

Introduction to SMT – p. 61

Nelson-Oppen – The non-convex case (2)

Non-deterministic Nelson-Oppen: [NO79, TH96, MZ02]

Given two signature-disjoint, stably-infinite theories T1 and T2

Given a set of literals S over the signature of T1 ∪T2

The (T1 ∪T2)-satisfiability of S can be checked via:

1. Purify S and split it into S1 ∪S2

Let C be the set of shared constants

2. For every arrangement A over C do

If (S1 ∪A) is T1-satisfiable and (S2 ∪A) is T2-satisfiable
report SAT

3. Report UNSAT

Introduction to SMT – p. 62

Overview of the talk

Motivation

SMT

Theories of Interest

Eager approach

Lazy approach

Optimizations and DPLL(T)

Theory solvers: difference logic and case splitting

Combining Theory Solvers

Limitations and Other
Approaches

Introduction to SMT – p. 62

Eager vs Lazy Approach

REMEMBER....
Important and benefitial aspects of the lazy approach:

(even with the optimizations)

Everyone does what he/she is good at:

SAT solver takes care of Boolean information

Theory solver takes care of theory information

Theory solver only receives conjunctions of literals

Modular approach:

SAT solver and T -solver communicate via a simple API

SMT for a new theory only requires new T -solver

SAT solver can be embedded in a lazy SMT system with
very few new lines of code

Introduction to SMT – p. 63

Eager vs Lazy Approach (2)

The Lazy Approach idea (SAT Solver + Theory Reasoner) can be
applied to other extensions of SAT:

Cardinality constraints (e.g. x1 + x2 + . . .+ x7 ≤ 4)

Pseudo-Boolean constraints (e.g.
7x1 +4x2 +3x3 +5x4 ≤ 10)

...

Also sophisticated encodings exist for these constraints (Eager
Approach)

Lazy approach seems to dominate, but can we claim that it is
always the best option?

Introduction to SMT – p. 64

Eager vs Lazy Approach (3)

Consider the problem with no SAT clauses and two constraints:

x1 + . . .+ xn ≤ n/2

x1 + . . .+ xn > n/2

Let us see how a (very) Lazy Approach would behave:

Problem is obviously unsatisfiable

Inconsistency explanations are of the form:

Introduction to SMT – p. 65

Eager vs Lazy Approach (3)

Consider the problem with no SAT clauses and two constraints:

x1 + . . .+ xn ≤ n/2

x1 + . . .+ xn > n/2

Let us see how a (very) Lazy Approach would behave:

Problem is obviously unsatisfiable

Inconsistency explanations are of the form:

¬xi1 ∨ . . .∨¬xin/2+1

xi1 ∨ . . .∨ xin/2

Introduction to SMT – p. 65

Eager vs Lazy Approach (3)

Consider the problem with no SAT clauses and two constraints:

x1 + . . .+ xn ≤ n/2

x1 + . . .+ xn > n/2

Let us see how a (very) Lazy Approach would behave:

Problem is obviously unsatisfiable

Inconsistency explanations are of the form:

¬xi1 ∨ . . .∨¬xin/2+1

xi1 ∨ . . .∨ xin/2

All (n
n
2+1)+ (n

n/2) explanations are needed to produce an

unsatisfiable subset of clauses

Introduction to SMT – p. 65

Eager vs Lazy Approach (3)

Consider the problem with no SAT clauses and two constraints:

x1 + . . .+ xn ≤ n/2

x1 + . . .+ xn > n/2

Let us see how a (very) Lazy Approach would behave:

Problem is obviously unsatisfiable

Inconsistency explanations are of the form:

¬xi1 ∨ . . .∨¬xin/2+1

xi1 ∨ . . .∨ xin/2

All (n
n
2+1)+ (n

n/2) explanations are needed to produce an

unsatisfiable subset of clauses

Hence, runtime is exponential in n.

Introduction to SMT – p. 65

Eager vs Lazy approach (4)

What has happened?

Lazy approach = lazily encoding (parts of) the theory into SAT

Sometimes, only parts of the theory need to be encoded

But in this example the whole constraint is encoded into SAT...

...and the encoding used is a very naive one

Best here is a good SAT encoding with auxiliary variables

 100

 1000

 10000

 100000

 1e+06

 1e+07

 16 18 20 22 24 26

N
um

be
r

of
 c

on
fli

ct
s

Size (n)

SAT Encoding
SMT

Introduction to SMT – p. 66

The diamonds example

a a a a

b b bb

c c c c

a0

0

0 1 2 3

1 3 4

1 2 3

2

an < ao ∧
n−1∧

k=0

((ak < bk ∧ bk < ak+1) ∨ (ak < ck ∧ ck < ak+1))

With these literals, only exponential refutations exist.

Introducing a0 < a1, a1 < a2, . . . allows linear refutations.

Introduction to SMT – p. 67

Other approaches

Previous examples show limitations of (DPLL(T))
There are more technical limitations out of the scope of this talk
Research on model-based procedures tries to address these issues:

Linear Real Arithmetic

Generalizing DPLL to Richer Logics [MKS09]

Conflict Resolution [KTV09]

Natural Domain SMT [Cot10]

Linear Integer Arithmetic

Cutting to the Chase [JdM13]

Non-Linear Real Arithmetic

Solving Non-Linear Arithmetic [JM12]

General Framework

Model-Constructing Satisfiability Calculus [JM13]

Satisfiability Modulo Theories and Assignments[BGS17]

Introduction to SMT – p. 68

References

[ABC+02] G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani. A

SAT-Based Approach for Solving Formulas over Boolean and Linear

Mathematical Propositions. In A. Voronkov, editor, 18th International

Conference on Automated Deduction, CADE’02, volume 2392 of Lecture Notes in

Conference Science, pages 195–210. Springer, 2002.

[ACG00] A. Armando, C. Castellini, and E. Giunchiglia. SAT-Based Procedures for

Temporal Reasoning. In S. Biundo and M. Fox, editors, 5th European Conference

on Planning, ECP’99, volume 1809 of Lecture Notes in Computer Science, pages

97–108. Springer, 2000.

[AMP06] A. Armando, J. Mantovani, and L. Platania. Bounded Model Checking of

Software Using SMT Solvers Instead of SAT Solvers. In A. Valmari, editor, 13th

International SPIN Workshop, SPIN’06, volume 3925 of Lecture Notes in Computer

Science, pages 146–162. Springer, 2006.

[BB09] R. Brummayer and A. Biere. Boolector: An Efficient SMT Solver for Bit-Vectors

and Arrays. In S. Kowalewski and A. Philippou, editors, 15th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems,

TACAS’05, volume 5505 of Lecture Notes in Computer Science, pages 174–177.

Springer, 2009.

Introduction to SMT – p. 68

References

[BBC+05] M. Bozzano, R. Bruttomesso, A. Cimatti, T. A. Junttila, S. Ranise, P. van

Rossum, and R. Sebastiani. Efficient Satisfiability Modulo Theories via

Delayed Theory Combination. In K. Etessami and S. Rajamani, editors, 17th

International Conference on Computer Aided Verification, CAV’05, volume 3576 of

Lecture Notes in Computer Science, pages 335–349. Springer, 2005.

[BCF+07] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio,

Ziyad Hanna, Alexander Nadel, Amit Palti, and Roberto Sebastiani. A Lazy

and Layered SMT(BV) Solver for Hard Industrial Verification Problems. In

W. Damm and H. Hermanns, editors, 19th International Conference on Computer

Aided Verification, CAV’07, volume 4590 of Lecture Notes in Computer Science,

pages 547–560. Springer, 2007.

[BD94] J. R. Burch and D. L. Dill. Automatic Verification of Pipelined Microprocessor

Control. In D. L. Dill, editor, 6th International Conference on Computer Aided

Verification, CAV’94, volume 818 of Lecture Notes in Computer Science, pages

68–80. Springer, 1994.

[BDS02a] C. Barrett, D. Dill, and A. Stump. Checking Satisfiability of First-Order

Formulas by Incremental Translation into SAT. In E. Brinksma and K. G.

Larsen, editors, 14th International Conference on Computer Aided Verification,

CAV’02, volume 2404 of Lecture Notes in Computer Science, pages 236–249.

Springer, 2002.

Introduction to SMT – p. 68

References

[BDS02b] C. Barrett, D. Dill, and A. Stump. Checking Satisfiability of First-Order

Formulas by Incremental Translation into SAT. In E. Brinksma and K. G.

Larsen, editors, 14th International Conference on Computer Aided Verification,

CAV’02, volume 2404 of Lecture Notes in Computer Science, pages 236–249.

Springer, 2002.

[BGS17] M. P. Bonacina, S. Graham-Lengrand and N. Shankar. Satisfiability Modulo

Theories and Assignments In L. de Moura, 26th International Conference on

Automated Deduction, CADE 2017, volume 10395 of Lecture Notes in Computer

Science, pages 42–59. Springer, 2017.

[BGV01] R. E. Bryant, S. M. German, and M. N. Velev. Processor Verification Using

Efficient Reductions of the Logic of Uninterpreted Functions to Propositional

Logic. ACM Transactions on Computational Logic, TOCL, 2(1):93–134, 2001.

[BLNM+09] C. Borralleras, S. Lucas, R. Navarro-Marset, E. Rodríguez-Carbonell, and

A. Rubio. Solving Non-linear Polynomial Arithmetic via SAT Modulo Linear

Arithmetic. In R. A. Schmidt, editor, 22nd International Conference on Automated

Deduction , CADE-22, volume 5663 of Lecture Notes in Computer Science, pages

294–305. Springer, 2009.

[BM90] R. S. Boyer and J. S. Moore. A Theorem Prover for a Computational Logic. In

Mark E. Stickel, editor, 10th International Conference on Automated Deduction,

CADE’90, volume 449 of Lecture Notes in Computer Science, pages 1–15.

Springer, 1990.

[BNO+08a] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio.

Introduction to SMT – p. 68

References

[BNO+08b] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio.

The barcelogic smt solver. In Computer-aided Verification (CAV), volume 5123 of

Lecture Notes in Computer Science, pages 294–298, 2008.

[BV02] R. E. Bryant and M. N. Velev. Boolean Satisfiability with Transitivity

Constraints. ACM Transactions on Computational Logic, TOCL, 3(4):604–627,

2002.

[Cot10] S. Cotton. Natural Domain SMT: A Preliminary Assessment. In K. Chatterjee

and T. A. Henzinger, Formal Modeling and Analysis of Timed Systems -

FORMATS 2010, volume 6246 of Lecture Notes in Computer Science, pages

77–91. Springer, 2010.

[DdM06] B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In

T. Ball and R. B. Jones, editors, 18th International Conference on Computer Aided

Verification, CAV’06, volume 4144 of Lecture Notes in Computer Science, pages

81–94. Springer, 2006.

[dMB09] L. de Moura and N. Bjørner. Generalized, efficient array decision procedures.

In 9th International Conference on Formal Methods in Computer-Aided Design,

FMCAD 2009, pages 45–52. IEEE, 2009.

[dMR02] L. de Moura and H. Rueß. Lemmas on Demand for Satisfiability Solvers. In

5th International Conference on Theory and Applications of Satisfiability Testing,

SAT’02, pages 244–251, 2002.
Introduction to SMT – p. 68

References

[DNS05] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program

checking. Journal of the ACM, JACM, 52(3):365–473, 2005.

[FORS01] J. Filliâtre, S. Owre, H. Rueß, and Natarajan Shankar. ICS: Integrated

Canonization and Solving (Tool presentation). In G. Berry, H. Comon, and

A. Finkel, editors, 13th International Conference on Computer Aided Verification,

CAV’01, volume 2102 of Lecture Notes in Computer Science, pages 246–249.

Springer, 2001.

[JdM13] D. Jovanovic and L. de Moura. Cutting to the Case - Solving Linear Integer

Arithmetic. Journal of Automated Reasoning, 51(1):79–108, 2013.

[JM12] D. Jovanovic and L. de Moura. Solving Non-linear Arithmetic. In B. Gramlich,

D. Miller and U. Sattler, 6th International Conference on Automated Reasoning,

IJCAR, 2012, volume 7364 of Lecture Notes in Computer Science, pages 339–354.

Springer, 2012.

[JM13] D. Jovanovic and L. de Moura. A Model-Constructing Satisfiability Calculus

In R. Giacobazzi, J. Berdine and I. Mastroeni. 14th International Conference on

Verification, Model Checking and Abstract Interpretation, VMCAI 2013, volume

7737 of Lecture Notes in Computer Science, pages 1–12. Springer, 2013.

[KTV09] K. Korovin, N. Tsiskaridze and A. Voronkov. Conflict Resolution. In I. P. Gent,

Principles and Practice of Constraint Programming - CP 2009, volume 5732 of

Lecture Notes in Computer Science, pages 509–523. Springer, 2009.
Introduction to SMT – p. 68

References

[LM05] S. K. Lahiri and M. Musuvathi. An Efficient Decision Procedure for UTVPI

Constraints. In B. Gramlich, editor, 5th International Workshop on Frontiers of

Combining Systems, FroCos’05, volume 3717 of Lecture Notes in Computer Science,

pages 168–183. Springer, 2005.

[LNO06] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT Techniques for Fast

Predicate Abstraction. In T. Ball and R. B. Jones, editors, 18th International

Conference on Computer Aided Verification, CAV’06, volume 4144 of Lecture Notes

in Computer Science, pages 413–426. Springer, 2006.

[LS04] S. K. Lahiri and S. A. Seshia. The UCLID Decision Procedure. In R. Alur and

D. Peled, editors, 16th International Conference on Computer Aided Verification,

CAV’04, volume 3114 of Lecture Notes in Computer Science, pages 475–478.

Springer, 2004.

[MKS09] K. McMillan, A. Kuehlmann and M. Sagiv. Generalizing DPLL to Richer

Logics. In A. Bouajani and O. Maler, 21st International Conference on Computer

Aided Verification, CAV’09, volume 25643 of Lecture Notes in Computer Science,

pages 462–476. Springer, 2009.

[MZ02] Z. Manna and C. G. Zarba. Combining Decision Procedures. In B. K.

Aichernig and T. S. E. Maibaum, editors, 10th Anniversary Colloquium of

UNU/IIST, volume 2757 of Lecture Notes in Computer Science, pages 381–422.

Springer, 2002.
Introduction to SMT – p. 68

References

[NO79] G. Nelson and D. C. Oppen. Simplification by Cooperating Decision

Procedures. ACM Transactions on Programming Languages and Systems,

TOPLAS, 1(2):245–257, 1979.

[NO80] G. Nelson and D. C. Oppen. Fast Decision Procedures Based on Congruence

Closure. Journal of the ACM, JACM, 27(2):356–364, 1980.

[NO05] R. Nieuwenhuis and A. Oliveras. DPLL(T) with Exhaustive Theory

Propagation and its Application to Difference Logic. In K. Etessami and

S. Rajamani, editors, 17th International Conference on Computer Aided

Verification, CAV’05, volume 3576 of Lecture Notes in Computer Science, pages

321–334. Springer, 2005.

[NO07] R. Nieuwenhuis and A. Oliveras. Fast Congruence Closure and Extensions.

Information and Computation, IC, 2005(4):557–580, 2007.

[NOT06] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo

Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to

DPLL(T). Journal of the ACM, 53(6):937–977, November 2006.

[PRSS99] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding Equality

Formulas by Small Domains Instantiations. In N. Halbwachs and D. Peled,

editors, 11th International Conference on Computer Aided Verification, CAV’99,

volume 1633 of Lecture Notes in Computer Science, pages 455–469. Springer,

1999.
Introduction to SMT – p. 68

References

[SBDL01] A. Stump, C. W. Barrett, D. L. Dill, and J. R. Levitt. A Decision Procedure for

an Extensional Theory of Arrays. In 16th Annual IEEE Symposium on Logic in

Computer Science, LICS’01, pages 29–37. IEEE Computer Society, 2001.

[Sha02] N. Shankar. Little Engines of Proof. In L. H. Eriksson and P. A. Lindsay,

editors, International Symposium of Formal Methods Europe, FME’02, volume

2391 of Lecture Notes in Computer Science, pages 1–20. Springer, 2002.

[Sho84] Robert E. Shostak. Deciding combinations of theories. Journal of the ACM,

31(1):1–12, January 1984.

[SLB03] S. Seshia, S. K. Lahiri, and R. E. Bryant. A Hybrid SAT-Based Decision

Procedure for Separation Logic wit h Uninterpreted Functions. In 40th Design

Automation Conference, DAC’03, pages 425–430. ACM Press, 2003.

[SM06] S.Cotton and O. Maler. Fast and Flexible Difference Constraint Propagation

for DPLL(T). In A. Biere and C. P. Gomes, editors, 9th International Conference

on Theory and Applications of Satisfiability Testing, SAT’06, volume 4121 of

Lecture Notes in Computer Science, pages 170–183. Springer, 2006.

[SSB02] O. Strichman, S. A. Seshia, and R. E. Bryant. Deciding Separation Formulas

with SAT. In E. Brinksma and K. G. Larsen, editors, 14th International

Conference on Computer Aided Verification, CAV’02, volume 2404 of Lecture Notes

in Computer Science, pages 209–222. Springer, 2002.

Introduction to SMT – p. 68

References

[TdH08] N. Tillmann and J. de Halleux. Pex-White Box Test Generation for .NET. In

B. Beckert and R. Hähnle, editors, 2nd International Conference on Tests and

Proofs, TAP’08, volume 4966 of Lecture Notes in Computer Science, pages

134–153. Springer, 2008.

[TH96] C. Tinelli and M. T. Harandi. A new correctness proof of the Nelson–Oppen

combination procedure. In Procs. Frontiers of Combining Systems (FroCoS),

Applied Logic, pages 103–120. Kluwer Academic Publishers, March 1996.

[WIGG05] C. Wang, F. Ivancic, M. K. Ganai, and A. Gupta. Deciding Separation Logic

Formulae by SAT and Incremental Negative Cycle Elimination. In G. Sutcliffe

and A. Voronkov, editors, 12h International Conference on Logic for Programming,

Artificial Intelligence and Reasoning, LPAR’05, volume 3835 of Lecture Notes in

Computer Science, pages 322–336. Springer, 2005.

[ZM10] H. Zankl and A. Middeldorp. Satisfiability of Non-linear (Ir)rational

Arithmetic. In Edmund M. Clarke and Andrei Voronkov, editors, 16th

International Conference on Logic for Programming, Artificial Intelligence and

Reasoning, LPAR’10, volume 6355 of Lecture Notes in Computer Science, pages

481–500. Springer, 2010.

Introduction to SMT – p. 68

	Overview of the talk
	Introduction
	Introduction (2)
	Overview of the talk
	Need and Applications of SMT
	Overview of the talk
	Theories of Interest - EUF~lila {cite {BurchDill1994CAV,NelsonOppen1980JACM,NieuwenhuisOliveras2007IC}}
	Theories of Interest - Arithmetic
	Th. of Int.- Arrays{lila {cite {Stumpetal2001LICS,Bofilletal2008FMCAD,deMouraBjorner2009FMCAD}}}
	Th. of Interest - Bit vectorslila {~cite {Bruttomessoetal2007CAV,BrummayerBiere2009TACAS}}
	Combina. of theories lila {cite {NelsonOppen1979TOPLAS,Shostak1984JACM,Bozzanoetal2005CAV}}
	SMT in Practice
	Overview of the talk
	SMT Prehistory - Late 70's and 80's
	Beginnings of SMT - Early 2000s
	Overview of the talk
	Eager approach
	Eager approach -- Example
	Eager approach -- Example (2)
	Overview of the talk
	Lazy approach
	Lazy approach
	Lazy approach
	Lazy approach
	Lazy approach
	Lazy approach

	Lazy approach (2)
	Overview of the talk
	Lazy approach - Optimizations
	Lazy approach - Optimizations
	Lazy approach - Optimizations
	Lazy approach - Optimizations
	Lazy approach - Optimizations
	Lazy approach - Optimizations

	Lazy approach - T-propagation
	Lazy approach - Important points
	dpllt
	 dpllt ; - ; Example
	 dpllt ; - ; Example
	 dpllt ; - ; Example
	 dpllt ; - ; Example
	 dpllt ; - ; Example
	 dpllt ; - ; Example

	DPLL(T)
- Overall algorithm
	DPLL(T)
- Propagation
	DPLL(T)
- Propagation (2)
	DPLL(T)
- Conflict Analysis
	DPLL(T)
- Conflict Analysis (2)
	DPLL(T)
- Conflict Analysis (3)
	DPLL(T)
- Conflict Analysis (4)
	Overview of the talk
	Difference logic
	Difference Logic - Remarks
	Difference Logic as a Graph Problem
	Difference Logic as a Graph Problem (2)
	Difference Logic as a Graph Problem (3)
	Bellman-Ford: negative cycle detection
	Consistency checks
	Theory propagation
	Overview of the talk
	Case Reasoning in Theory Solvers
	Case Reasoning in Theory Solvers (2)
	Case Reasoning in Theory Solvers (3)
	Overview of the talk
	Need for combination
	Motivating example - Convex case
	Motivating example - Convex case
	Motivating example - Convex case (2)
	Motivating example - Convex case (2)
	Motivating example - Convex case (2)
	Motivating example - Convex case (2)
	Motivating example - Convex case (2)
	Nelson-Oppen -- The convex case
	 Nelson-Oppen -- The convex case (2)
	Motivating example -- Non-convex case
	Motivating example -- Non-convex case
	Motivating example -- Non-convex case(2)
	Motivating example -- Non-convex case(2)
	Motivating example -- Non-convex case(2)
	Motivating example -- Non-convex case(2)
	Motivating example -- Non-convex case(2)
	Motivating example -- Non-convex case(2)
	Motivating example -- Non-convex case(2)
	Nelson-Oppen - The non-convex case
	Nelson-Oppen -- The non-convex case (2)
	Overview of the talk
	Eager vs Lazy Approach
	Eager vs Lazy Approach (2)
	Eager vs Lazy Approach (3)
	Eager vs Lazy Approach (3)
	Eager vs Lazy Approach (3)
	Eager vs Lazy Approach (3)

	Eager vs Lazy approach (4)
	The diamonds example
	Other approaches
	References
	References
	References
	References
	References
	References
	References
	References
	References

