Introduction to SMT

Albert Oliveras
Technical University of Catalonia

8th International SAT/SMT/AR Summer School 2019
Lisbon, Portugal
July 3rd, 2019

Overview of the talk

- Motivation
- SMT
- Theories of Interest
- History of SMT
- Eager approach
- Lazy approach
- Optimizations and DPLL(T)
- Theory solvers: difference logic and case splitting
- Combining Theory Solvers
- Limitations and Other Approaches

Introduction

- Originally, automated reasoning \equiv uniform proof-search procedures for FO logic
- Limited success: is FO logic the best compromise between expressivity and efficiency?
- Another trend [Sha02] is to gain efficiency by:
- addressing only (expressive enough) decidable fragments of a certain logic
- incorporate domain-specific reasoning, e.g:
- arithmetic reasoning
- equality
- data structures (arrays, lists, stacks, ...)

Introduction (2)

Examples of this alternative trend:

- SAT: use propositional logic as the formalization language
+ high degree of efficiency
- expressive (all NP-complete) but involved encodings
- SMT: propositional logic + domain-specific reasoning
+ improves the expressivity
- certain (but acceptable) loss of efficiency

> GOAL OF THIS TALK: introduce SMT, with its main techniques

Overview of the talk

- Motivation
- SMIT
- Theories of Interest
- History of SMT
- Eager approach
- Lazy approach
- Optimizations and $\operatorname{DPLL}(T)$
- Theory solvers: difference logic and case splitting
- Combining Theory Solvers
- Limitations and Other Approaches

Need and Applications of SMT

- Some problems are more naturally expressed in other logics than propositional logic, e.g:
- Software verification needs reasoning about equality, arithmetic, data structures, ...
- SMT consists of deciding the satisfiability of a (ground) FO formula with respect to a background theory
- Example (Equality with Uninterpreted Functions - EUF):

$$
g(a)=c \wedge(f(g(a)) \neq f(c) \vee g(a)=d) \wedge c \neq d
$$

- Wide range of applications:
- Predicate abstraction [LNO06]
- Model checking[AMP06]
- Scheduling [BNO^{+}08b]
- Test generation[TdH08]
- ...

Overview of the talk

- Motivation
- SMT
- Theories of Interest
- History of SMT
- Eager approach
- Lazy approach
- Optimizations and DPLL(T)
- Theory solvers: difference logic and case splitting
- Combining Theory Solvers
- Limitations and Other Approaches

Theories of Interest - EUF [BD94, NO80, NO07]

- Equality with Uninterpreted Functions, i.e. " $=$ " is equality
- If background logic is FO with equality, EUF is empty theory
- Consider formula

$$
a *(f(b)+f(c))=d \wedge b *(f(a)+f(c)) \neq d \wedge a=b
$$

- Formula is UNSAT, but no arithmetic resoning is needed
- If we abstract the formula into

$$
h(a, g(f(b), f(c)))=d \wedge h(b, g(f(a), f(c))) \neq d \wedge a=b
$$

it is still UNSAT

- EUF is used to abstract non-supported constructions, e.g:
- Non-linear multiplication
- ALUs in circuits

Theories of Interest - Arithmetic

- Very useful for obvious reasons
- Restricted fragments support more efficient methods:
- Bounds: $x \bowtie k$ with $\bowtie \in\{<,>, \leq, \geq,=\}$
- Difference logic: $x-y \bowtie k$, with $\bowtie \in\{<,>, \leq, \geq,=\}$ [NO05, WIGG05, SM06]
- UTVPI: $\pm x \pm y \bowtie k$, with $\bowtie \in\{<,>, \leq, \geq,=\}$ [LM05]
- Linear arithmetic, e.g: $2 x-3 y+4 z \leq 5$ [DdM06]
- Non-linear arithmetic, e.g: $2 x y+4 x z^{2}-5 y \leq 10$ [BLNM $^{+}$09, ZM10]
- Variables are either reals or integers
- Machine-inspired arithmetic: floating-point arithmetic

Th. of Int.- Arrays[SBDL01, BNO+ 08a, dMB09]

- Two interpreted function symbols read and write
- Theory is axiomatized by:
- $\forall a \forall i \forall v(\operatorname{read}(\operatorname{write}(a, i, v), i)=v)$
- $\forall a \forall i \forall j \forall v(i \neq j \rightarrow \operatorname{read}(w r i t e(a, i, v), j)=\operatorname{read}(a, j))$
- Sometimes extensionality is added:
- $\forall a \forall b((\forall i(\operatorname{read}(a, i)=\operatorname{read}(b, i))) \rightarrow a=b$
- Is the following set of literals satisfiable?

$$
\begin{array}{cc}
\text { write }(a, i, x) \neq b & \operatorname{read}(b, i)=y \\
a=b & \operatorname{read}(\text { write }(b, i, x), j)=y \\
i=j
\end{array}
$$

- Used for:
- Software verification
- Hardware verification (memories)

Th. of Interest - Bit vectors [BCF^{+}07, BB09]

- Constants represent vectors of bits
- Useful both for hardware and software verification
- Different type of operations:
- String-like operations: concat, extract, ...
- Logical operations: bit-wise not, or, and, ...
- Arithmetic operations: add, substract, multiply, ...
- Assume bit-vectors have size 3. Is the formula SAT?

$$
a[0: 1] \neq b[0: 1] \wedge(a \mid b)=c \wedge c[0]=0 \wedge a[1]+b[1]=0
$$

Combina. of theories [NO79, Sh084, BBC^{+}05]

- In practice, theories are not isolated
- Software verifications needs arithmetic, arrays, bitvectors, ...
- Formulas of the following form usually arise:
$a=b+2 \wedge A=\operatorname{write}(B, a+1,4) \wedge(\operatorname{read}(A, b+3)=2 \vee f(a-1) \neq f(b+1))$
- The goal is to combine decision procedures for each theory

SMT in Practice

GOOD NEWS: efficient decision procedures for sets of ground literals exist for various theories of interest

PROBLEM: in practice, we need to deal with:
(1) arbitrary Boolean combinations of literals (\wedge, \vee, \neg)
(DNF conversion is not a solution in practice)
(2) multiple theories
(3) quantifiers

We will only focus on (1) and (2), but techniques for (3) exist.

Overview of the talk

- Motivation
- SMT
- Theories of Interest
- History of SMT
- Eager approach
- Lazy approach
- Optimizations and $\operatorname{DPLL}(T)$
- Theory solvers: difference logic and case splitting
- Combining Theory Solvers
- Limitations and Other Approaches

SMT Prehistory - Late 70's and 80's

- Pioneers:
- R. Boyer, J. Moore, G. Nelson, D. Open, R. Shostak
- Influential results:
- Nelson-Oppen congruence closure procedure [NO80]
- Nelson-Oppen combination method [NO79]
- Shostak combination method [Sho84]
- Influential systems:
- Nqthm prover [BM90] [Boyer, Moore]
- Simplify [DNS05] [Detlefs, Nelson, Saxe]

Beginnings of SMT - Early 2000s

KEY FACT: SAT solvers improved performance
Two ways of exploiting this fact:

- Eager approach: encode SMT into SAT
[Bryant, Lahiri, Pnueli, Seshia, Strichman, Velev, ...]
[PRSS99, SSB02, SLB03, BGV01, BV02]
- Lazy approach: plug SAT solver with a decision procedure [Armando, Barrett, Castellini, Cimatti, Dill, Giunchiglia, deMoura, Ruess, Sebastiani, Stump,...]
[ACG00, dMR02, BDS02a, $\mathrm{ABC}^{+} 02$]

Overview of the talk

- Motivation
- SMT
- Theories of Interest
- Eager approach
- Lazy approach
- Optimizations and $\operatorname{DPLL}(T)$
- Theory solvers: difference logic and case splitting
- Combining Theory Solvers
- Limitations and Other Approaches

Eager approach

- Methodology: translate problem into equisatisfiable propositional formula and use off-the-shelf SAT solver
- Why "eager"?

Search uses all theory information from the beginning

- Characteristics:
+ Can use best available SAT solver
- Sophisticated encodings are needed for each theory

Eager approach - Example

Let us consider an EUF formula:

- First step: remove function/ predicate symbols.

Assume we have terms $f(a), f(b)$ and $f(c)$.

- Ackermann reduction:
- Replace them by fresh constants A, B and C
- Add clauses:

$$
\begin{aligned}
& a=b \rightarrow A=B \\
& a=c \rightarrow A=C \\
& b=c \rightarrow B \rightarrow C
\end{aligned}
$$

- Bryant reduction:
- Replace $f(a)$ by A
- Replace $f(b)$ by ite $(b=a, A, B)$
- Replace $f(c)$ by ite $(c=a, A$, ite $(c=b, B, C))$

Now, atoms are equalities between constants

Eager approach - Example (2)

- Second step: encode formula into propositional logic
- Small-domain encoding:
- If there are n different constants, there is a model with size at most n
- $\log n$ bits to encode the value of each constant
- $a=b$ translated using the bits for a and b
- Per-constraint encoding:
- Each atom $a=b$ is replaced by var $P_{a, b}$
- Transitivity constraints are added (e.g. $P_{a, b} \wedge P_{b, c} \rightarrow P_{a, c}$)

This is a very rough overview of an encoding from EUF to SAT. See [PRSS99, SSB02, SLB03, BGV01, BV02] for details.

Overview of the talk

- Motivation
- SMT
- Theories of Interest
- Eager approach
- Lazy approach
- Optimizations and DPLL(T)
- Theory solvers: difference logic and case splitting
- Combining Theory Solvers
- Limitations and Other Approaches

Lazy approach

Methodology:

Example: consider EUF and the CNF

$$
\underbrace{g(a)=c}_{1} \wedge(\underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \vee \underbrace{g(a)=d}_{3}) \wedge \underbrace{c \neq d}_{\overline{4}}
$$

- SAT solver returns model $[1, \overline{2}, \overline{4}]$

Lazy approach

Methodology:

Example: consider EUF and the CNF

$$
\underbrace{g(a)=c}_{1} \wedge(\underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \vee \underbrace{g(a)=d}_{3}) \wedge \underbrace{c \neq d}_{\overline{4}}
$$

- SAT solver returns model $[1, \overline{2}, \overline{4}]$
- Theory solver says T-inconsistent

Lazy approach

Methodology:

Example: consider EUF and the CNF

$$
\underbrace{g(a)=c}_{1} \wedge(\underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \vee \underbrace{g(a)=d}_{3}) \wedge \underbrace{c \neq d}_{\overline{4}}
$$

- SAT solver returns model $[1, \overline{2}, \overline{4}]$
- Theory solver says T-inconsistent
- Send $\{1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4\}$ to $S A T$ solver

Lazy approach

Methodology:

Example: consider EUF and the CNF

$$
\underbrace{g(a)=c}_{1} \wedge(\underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \vee \underbrace{g(a)=d}_{3}) \wedge \underbrace{c \neq d}_{\overline{4}}
$$

- SAT solver returns model $[1, \overline{2}, \overline{4}]$
- Theory solver says T-inconsistent
- Send $\{1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4\}$ to $S A T$ solver
- SAT solver returns model $[1,2,3, \overline{4}]$

Lazy approach

Methodology:

Example: consider EUF and the CNF

$$
\underbrace{g(a)=c}_{1} \wedge(\underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \vee \underbrace{g(a)=d}_{3}) \wedge \underbrace{c \neq d}_{\overline{4}}
$$

- SAT solver returns model $[1, \overline{2}, \overline{4}]$
- Theory solver says T-inconsistent
- Send $\{1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4\}$ to $S A T$ solver
- SAT solver returns model $[1,2,3, \overline{4}]$
- Theory solver says T-inconsistent

Lazy approach

Methodology:

Example: consider EUF and the CNF

$$
\underbrace{g(a)=c}_{1} \wedge(\underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \vee \underbrace{g(a)=d}_{3}) \wedge \underbrace{c \neq d}_{\overline{4}}
$$

- SAT solver returns model $[1, \overline{2}, \overline{4}]$
- Theory solver says T-inconsistent
- Send $\{1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4\}$ to $S A T$ solver
- SAT solver returns model [1, 2, 3, $\overline{4}]$
- Theory solver says T-inconsistent
- SAT solver detects $\{1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4, \overline{1} \vee \overline{2} \vee \overline{3} \vee 4\}$ UNSATISFIABLE

Lazy approach (2)

- Why "lazy"?

Theory information used lazily when checking T-consistency of propositional models

- Characteristics:
+ Modular and flexible
- Theory information does not guide the search

Overview of the talk

- Motivation
- SMT
- Theories of Interest
- Eager approach
- Lazy approach
- Optimizations and DPLL(T)
- Theory solvers: difference logic and case splitting
- Combining Theory Solvers
- Limitations and Other Approaches

Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

- Check T-consistency only of full propositional models

Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

- Check T consistency only of full propesitional models
- Check T-consistency of partial assignment while being built

Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

- Check T consisteney only of full propesitional models
- Check T-consistency of partial assignment while being built
- Given a T-inconsistent assignment M, add $\neg M$ as a clause

Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

- Check T consisteney only of full propesitional models
- Check T-consistency of partial assignment while being built
- Given a T inconsistent assignment M, add $-M$ as a clause
- Given a T-inconsistent assignment M, identify a T-inconsistent subset $M_{0} \subseteq M$ and add $\neg M_{0}$ as a clause

Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

- Check T consistency only of full propesitional models
- Check T-consistency of partial assignment while being built
- Given a T inconsistent assignment M, add $-M$ as a clause
- Given a T-inconsistent assignment M, identify a T-inconsistent subset $M_{0} \subseteq M$ and add $\neg M_{0}$ as a clause
- Upon a T-inconsistency, add clause and restart

Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

- Check T consistency only of full propositional models
- Check T-consistency of partial assignment while being built
- Given $a T$ incensistent assignment M, add $-M$ as a clause
- Given a T-inconsistent assignment M, identify a T-inconsistent subset $M_{0} \subseteq M$ and add $\neg M_{0}$ as a clause
- Upen a T incensistency, add clatuse and restart
- Upon a T-inconsistency, bactrack to some point where the assignment was still T-consistent

Lazy approach - T-propagation

- As pointed out the lazy approach has one drawback:
- Theory information does not guide the search (too lazy)
- How can we improve that? For example:

Assume that $a<b, b<c$ are in our partial assignment M.
If the formula contains $a<c$ we would like to add it to M

- Search guided by T-Solver by finding T-consequences, instead of only validating it as in basic lazy approach.
- Naive implementation::

Add $\neg l$. If T-inconsistent then infer l [ACG00] But for efficient Theory Propagation we need:

- T-Solvers specialized and fast in it.
- fully exploited in conflict analysis
- This approach has been named DPLL(T) [NOT06]

Lazy approach - Important points

Important and benefitial aspects of the lazy approach: (even with the optimizations)

- Everyone does what he/she is good at:
- SAT solver takes care of Boolean information
- Theory solver takes care of theory information
- Theory solver only receives conjunctions of literals
- Modular approach:
- SAT solver and T-solver communicate via a simple API
- SMT for a new theory only requires new T-solver
- SAT solver can be embedded in a lazy SMT system with relatively litte effort

In a nutshell:

$$
\operatorname{DPLL}(T)=\operatorname{DPLL}(X)+T \text {-Solver }
$$

- $\operatorname{DPLL}(X)$:
- Very similar to a SAT solver, enumerates Boolean models
- Not allowed: pure literal, blocked literal detection, ...
- Desirable: partial model detection
- T-Solver:
- Checks consistency of conjunctions of literals
- Computes theory propagations
- Produces explanations of inconsistency/T-propagation
- Should be incremental and backtrackable

DPLL(T) - Example

Consider again EUF and the formula:

$$
\begin{array}{r}
\underbrace{g(a)=c}_{1} \wedge(\underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \vee \underbrace{g(a)=d}_{3}) \wedge \underbrace{c \neq d}_{\overline{4}} \\
\emptyset \| 1, \overline{2} \vee 3, \overline{4} \Rightarrow \quad \text { (UnitPropagate) }
\end{array}
$$

DPLL(T) - Example

Consider again EUF and the formula:

$$
\begin{array}{r}
\underbrace{g(a)=c}_{1} \wedge(\underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \vee \underbrace{g(a)=d}_{3}) \wedge \underbrace{c \neq d}_{\overline{4}} \\
\emptyset \| 1, \overline{2} \vee 3, \overline{4} \Rightarrow \text { (UnitPropagate) } \\
1 \| 1, \overline{2} \vee 3, \overline{4} \Rightarrow \text { (UnitPropagate) }
\end{array}
$$

DPLL(T) - Example

Consider again EUF and the formula:

$$
\begin{array}{r}
\underbrace{g(a)=c}_{1} \wedge(\underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \vee \underbrace{g(a)=d}_{3}) \wedge \underbrace{c \neq d}_{\overline{4}} \\
\emptyset \| 1, \overline{2} \vee 3, \overline{4} \Rightarrow \quad \text { (UnitPropagate) } \\
1 \| 1, \overline{2} \vee 3, \overline{4} \Rightarrow \text { (UnitPropagate) } \\
1 \overline{4} \| 1, \overline{2} \vee 3, \overline{4} \Rightarrow \text { (T-Propagate) }
\end{array}
$$

DPLL(T) - Example

Consider again EUF and the formula:

$$
\begin{array}{r}
\underbrace{g(a)=c}_{1} \wedge(\underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \vee \underbrace{g(a)=d}_{3}) \wedge \underbrace{c \neq d}_{\overline{4}} \\
\emptyset \| 1, \overline{2} \vee 3, \overline{4} \Rightarrow \quad \text { (UnitPropagate) } \\
1 \| 1, \overline{2} \vee 3, \overline{4} \Rightarrow \text { (UnitPropagate) } \\
1 \overline{4} \| 1, \overline{2} \vee 3, \overline{4} \Rightarrow(\text { T-Propagate }) \\
1 \overline{4} 2 \| 1, \overline{2} \vee 3, \overline{4} \Rightarrow \text { (T-Propagate) }
\end{array}
$$

DPLL(T) - Example

Consider again EUF and the formula:

$$
\begin{aligned}
\underbrace{g(a)=c}_{1} & \wedge(\underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \vee \underbrace{g(a)=d}_{3}) \wedge \underbrace{c \neq d}_{\overline{4}} \\
\emptyset \| 1, \overline{2} \vee 3, \overline{4} \Rightarrow & \text { (UnitPropagate) } \\
1 \| 1, \overline{2} \vee 3, \overline{4} \Rightarrow & \text { (UnitPropagate) } \\
1 \overline{4} \| 1, \overline{2} \vee 3, \overline{4} \Rightarrow & \text { (T-Propagate) } \\
1 \overline{4} 2 \| 1, \overline{2} \vee 3, \overline{4} \Rightarrow & \text { (T-Propagate) } \\
1 \overline{4} 2 \overline{3} \| 1, \overline{2} \vee 3, \overline{4} \Rightarrow & \text { (Fail) }
\end{aligned}
$$

DPLL(T) - Example

Consider again EUF and the formula:

$$
\begin{array}{r}
\underbrace{g(a)=c}_{1} \wedge(\underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \vee \underbrace{g(a)=d}_{3}) \wedge \underbrace{c \neq d}_{\overline{4}} \\
\emptyset \| 1, \overline{2} \vee 3, \overline{4} \Rightarrow \text { (UnitPropagate) } \\
1 \| 1, \overline{2} \vee 3, \overline{4} \Rightarrow \text { (UnitPropagate) } \\
1 \overline{4} \| 1, \overline{2} \vee 3, \overline{4} \Rightarrow \text { (T-Propagate) } \\
1 \overline{4} 2 \| 1, \overline{2} \vee 3, \overline{4} \Rightarrow \text { (T-Propagate) } \\
1 \overline{4} 2 \overline{3} \| 1, \overline{2} \vee 3, \overline{4} \Rightarrow \text { (Fail) } \\
U N S A T
\end{array}
$$

DPLL(T) - Overall algorithm

High-levew view gives the same algorithm as a CDCL SAT solver:

```
while(true) {
while (propagate_gives_conflict()){
    if (decision_level==0) return UNSAT;
    else analyze_conflict();
}
restart_if_applicable();
remove_lemmas_if_applicable();
if (!decide()) returns SAT; // All vars assigned
}
```

Differences are in:

- propagate_gives_conflict
- analyze_conflict

DPLL(T) - Propagation

propagate_gives_conflict() returns Bool
do
// unit propagate
if (unit_prop_gives_conflict()) then return true
// check T-consistency of the model
if (solver.is_model_inconsistent()) then return true
// theory propagate
solver.theory_propagate()
\} while (someTheoryPropagation)
return false

DPLL(T) - Propagation (2)

- Three operations:
- Unit propagation (SAT solver)
- Consistency checks (T-solver)
- Theory propagation (T-solver)
- Cheap operations are computed first
- If theory is expensive, calls to T-solver are sometimes skipped
- For completeness, only necessary to call T-solver at the leaves (i.e. when we have a full propositional model)
- Theory propagation is not necessary for completeness

DPLL(T) - Conflict Analysis

Remember conflict analysis in SAT solvers:

```
\(C:=\) conflicting clause
while \(C\) contains more than one lit of last DL
    \(l:=\) last literal assigned in \(C\)
    \(C\) : =Resolution ( \(C\), reason \((l)\) )
end while
// let \(C=C^{\prime} v\) where \(l\) is UIP
backjump (maxDL (C'))
add 1 to the model with reason \(C\)
learn(C)
```


DPLL(T) - Conflict Analysis (2)

Conflict analysis in $\operatorname{DPLL}(T)$:

```
if boolean conflict then \(C\) := conflicting clause
else \(C:=\neg(\) solver.explain_inconsistency() )
while \(C\) contains more than one lit of last DL
\[
\begin{aligned}
& l:=\text { last literal assigned in } C \\
& C:=\text { Resolution }(C, \text { reason }(l))
\end{aligned}
\]
```

end while

```
// let C = C' v l where l is UIP
backjump(maxDL(C'))
add l to the model with reason C
learn(C)
```


DPLL(T) - Conflict Analysis (3)

What does explain_inconsistency return?

- A (small) conjuntion of literals $l_{1} \wedge \ldots \wedge l_{n}$ such that:
- They were in the model when T-inconsistency was found
- It is T-inconsistent

What is now reason (l) ?

- If l was unit propagated, reason is the clause that propagated it
- If l was T-propagated?
- $\quad T$-solver has to provide an explanation for l, i.e. a (small) set of literals l_{1}, \ldots, l_{n} such that:
- They were in the model when l was T-propagated
- $l_{1} \wedge \ldots \wedge l_{n} \models_{T} l$
- Then reason (l) is $\neg l_{1} \vee \ldots \vee \neg l_{n} \vee l$

DPLL(T) - Conflict Analysis (4)

Let M be of the form $\ldots, c=b, \ldots$ and let F contain

$$
h(a)=h(c) \vee p \quad a=b \vee \neg p \vee a=d \quad a \neq d \vee a=b
$$

Take the following sequence:

1. Decide $h(a) \neq h(c)$
2. UnitPropagate p (due to clause $h(a)=h(c) \vee p$)
3. T-Propagate $a \neq b$ (since $h(a) \neq h(c)$ and $c=b$)
4. UnitPropagate $a=d$ (due to clause $a=b \vee \neg p \vee a=d$)
5. Conflicting clause $a \neq d \vee a=b$
$\operatorname{Explain}(a \neq b)$ is $\{h(a) \neq h(c), c=b\}$

$$
\frac{h(a)=h(c) \vee \mathbf{p} \frac{h(a)=h(c) \vee c \neq b \vee \mathbf{a} \neq \mathbf{b}}{h(a)=h(c) \vee c \neq b \vee \neg \mathbf{p}} \quad \frac{a=b \vee \neg p \vee \mathbf{a}=\mathbf{d} \quad \mathbf{a} \neq \mathbf{d} \vee \neg \neg=b}{}}{h(a)=h(c) \vee c \neq b}
$$

Overview of the talk

- Motivation
- SMT
- Theories of Interest
- Eager approach
- Lazy approach
- Optimizations and $\operatorname{DPLL}(T)$
- T-solvers: difference logic
- Combining Theory Solvers
- Limitations and Other Approaches

Difference logic

- Literals in Difference Logic are of the form $a-b \bowtie k$, where
- $\bowtie \in\{\leq, \geq,<,>,=, \neq\}$
- a and b are integer/real variables
- k is an integer/real
- At the formula level, $a=b$ is replaced by p and $p \leftrightarrow a \leq b \wedge b \leq a$ is added
- If domain is \mathbb{Z} then $a-b<k$ is replaced by $a-b \leq k-1$
- If domain is \mathbb{R} then $a-b<k$ is replaced by $a-b \leq k-\delta$
- δ is a sufficiently small real
- δ is not computed but used symbolically
(i.e. numbers are pairs (k, δ)
- Hence we can assume all literals are $a-b \leq k$

Difference Logic - Remarks

- Note that any solution to a set of DL literals can be shifted (i.e. if σ is a solution then $\sigma^{\prime}(x)=\sigma(x)+k$ also is a solution)
- This allows one to process bounds $x \leq k$
- Introduce fresh variable zero
- Convert all bounds $x \leq k$ into $x-z e r o \leq k$
- Given a solution σ, shift it so that $\sigma($ zero $)=0$
- If we allow (dis)equalities as literals, then:
- If domain is \mathbb{R} consistency check is polynomial
- If domain is \mathbb{Z} consistency check is NP-hard (k-colorability)
- $1 \leq c_{i} \leq k$ with $i=1 \ldots$.. \#verts encodes k colors available
- $c_{i} \neq c_{j}$ if i and j adjacents encode proper assignment

Difference Logic as a Graph Problem

- Given $M=\{a-b \leq 2, b-c \leq 3, c-a \leq-7\}$, construct weighted graph $\mathcal{G}(M)$

- Theorem:
M is T-inconsistent iff $\mathcal{G}(M)$ has a negative cycle

Difference Logic as a Graph Problem (2)

Theorem:

M is T-inconsistent iff $\mathcal{G}(M)$ has a negative cycle $\Leftarrow)$

Any negative cycle $a_{1} \xrightarrow{k_{1}} a_{2} \xrightarrow{k_{2}} a_{3} \longrightarrow \ldots \longrightarrow a_{n} \xrightarrow{k_{n}} a_{1}$ corresponds to a set of literals:

$$
\begin{aligned}
& a_{1}-a_{2} \leq k_{1} \\
& a_{2}-a_{3} \leq k_{2} \\
& \cdots \\
& a_{n}-a_{1} \leq k_{n}
\end{aligned}
$$

If we add them all, we get $0 \leq k_{1}+k_{2}+\ldots+k_{n}$, which is inconsistent since neg. cycle implies $k_{1}+k_{2}+\ldots+k_{n}<0$

Difference Logic as a Graph Problem (3)

Theorem:

M is T-inconsistent iff $\mathcal{G}(M)$ has a negative cycle
$\Rightarrow)$
Let us assume that there is no negative cycle.

1. Consider additional vertex o with edges $o \xrightarrow{0} v$ to all verts. v
2. For each variable x, let $\sigma(x)=-\operatorname{dist}(o, x)$
[exists because there is no negative cycle]
3. σ is a model of M

- If $\sigma \not \models x-y \leq k$ then $-\operatorname{dist}(o, x)+\operatorname{dist}(o, y)>k$
- Hence, $\operatorname{dist}(o, y)>\operatorname{dist}(o, x)+k$
- But $k=$ weight $(x \longrightarrow y)$!!!

Bellman-Ford: negative cycle detection

```
forall }v\inV\mathrm{ do }d[v]:=\infty\mathrm{ endfor
forall }i=1\mathrm{ to }|V|-1 d
    forall (u,v) \inE do
        if d[v] > d[u] + weight (u,v) then
            d[v]:= d[u] + weight(u,v)
            p[v]:= u
        endif
    endfor
endfor
```

forall $(u, v) \in E$ do
if $d[v]>d[u]+$ weight (u, v) then
Negative cycle detected
Cycle reconstructed following p
endif
endfor

Consistency checks

- Consistency checks can be performed using Bellman-Ford in time $(O(|V| \cdot|E|))$
- Other more efficient variants exists
- Incrementality easy:
- Upon arrival of new literal $a \stackrel{k}{\longrightarrow} b$ process graph from u
- Solutions can be kept after backtracking
- Inconsistency explanations are negative cycles (irredundant but not minimal explanations)

Theory propagation

- Addition of $a \xrightarrow{k} b$ entails $c-d \leq k^{\prime}$ only if

$$
\underbrace{c \longrightarrow * \overbrace{\overbrace{l}^{k} b}^{\text {shortest }} \longrightarrow *}_{\text {shortest }} d
$$

- Given a solution σ, each edge $a \xrightarrow{k} b$ (i.e. $a-b \leq k$) has its reduced cost $k-\sigma(a)+\sigma(b) \geq 0$
- Shortest path computation more efficient using reduced costs, since they are non-negative [Dijkstra's algorithm]
- Theory propagation \approx shortest-path computations
- Explanations are the shortest paths

Overview of the talk

- Motivation
- SMT
- Theories of Interest
- Eager approach
- Lazy approach
- Optimizations and $\operatorname{DPLL}(T)$
. T-solvers: case splitting
- Combining Theory Solvers
- Limitations and Other Approaches

Case Reasoning in Theory Solvers

- For certain theories, consistency checking requires case reasoning.
- Example: consider the theory of arrays and the set of literals
$\operatorname{read}($ write $(A, i, x), j) \neq x \quad \operatorname{read}(w r i t e(A, i, x), j) \neq \operatorname{read}(A, j)$
Two cases:
- $i=j$. LHS rewrites into $x \neq x$!!!
- $i \neq j$. RHS rewrites into $\operatorname{read}(A, j) \neq \operatorname{read}(A, j)$!!!

CONCLUSION: T-inconsistent

Case Reasoning in Theory Solvers (2)

- A complete T-solver reasons by cases via internal case splitting and backtracking mechanisms.
- An alternative is to lift case splitting and backtracking from the T-solver to the SAT engine.
- Basic idea: encode case splits as sets of clauses and send them as needed to the SAT engine for it to split on them.
- Possible benefits:
- All case-splitting is coordinated by the SAT engine
- Only have to implement case-splitting infrastructure in one place
- Can learn a wider class of lemmas (more details later)

Case Reasoning in Theory Solvers (3)

- Basic idea: encode case splits as a set of clauses and send them as needed to the SAT engine
- Example:
- Assume model contains literal $s=\underbrace{\operatorname{read}(\text { write }(A, i, t), j)}_{s^{\prime}}$
- $\operatorname{DPLL}(X)$ asks: "is it T-satisfiable"?
- T-solver says: "I do not know yet, but it will be helpful that you consider these theory lemmas:"

$$
\begin{gathered}
s=s^{\prime} \wedge i=j \longrightarrow s=t \\
s=s^{\prime} \wedge i \neq j \longrightarrow s=\operatorname{read}(A, j)
\end{gathered}
$$

- We need certain completeness conditions (e.g. once all lits from a certain subset \mathcal{L} has been decided, the T-solver should YES/NO)

Overview of the talk

- Motivation
- SMT
- Theories of Interest
- Eager approach
- Lazy approach
- Optimizations and $\operatorname{DPLL}(T)$
- Theory solvers: difference logic and case splitting . Combining Theory Solvers
- Limitations and Other Approaches

Need for combination

- In software verification, formulas like the following one arise:
$a=b+2 \wedge A=\operatorname{write}(B, a+1,4) \wedge(\operatorname{read}(A, b+3)=2 \vee f(a-1) \neq f(b+1))$
- Here reasoning is needed over
- The theory of linear arithmetic $\left(\mathbb{T}_{L A}\right)$
- The theory of arrays $\left(\mathbb{T}_{A}\right)$
- The theory of uninterpreted functions $\left(\mathbb{T}_{E U F}\right)$
- Remember that T-solvers only deal with conjunctions of lits.
- Given T-solvers for the three individual theories, can we combine them to obtain one for $\left(\mathbb{T}_{L A} \cup \mathbb{T}_{A} \cup \mathbb{T}_{E U F}\right)$?
- Under certain conditions the Nelson-Oppen combination method gives a positive answer

Motivating example - Convex case

Consider the following set of literals:

$$
\begin{aligned}
f(f(x)-f(y)) & =a \\
f(0) & =a+2 \\
x & =y
\end{aligned}
$$

There are two theories involved: $\mathbb{T}_{L A(\mathbb{R})}$ and $\mathbb{T}_{E U F}$
FIRST STEP: purify each literal so that it belongs to a single theory

$$
\begin{aligned}
f(f(x)-f(y))=a \quad \Longrightarrow \quad f\left(e_{1}\right) & =a \\
e_{1} & =f(x)-f(y)
\end{aligned} \begin{aligned}
f\left(e_{1}\right) & =a \\
e_{1} & =e_{2}-e_{3} \\
e_{2} & =f(x) \\
e_{3} & =f(y)
\end{aligned}
$$

Motivating example - Convex case

Consider the following set of literals:

$$
\begin{aligned}
f(f(x)-f(y)) & =a \\
f(0) & =a+2 \\
x & =y
\end{aligned}
$$

There are two theories involved: $\mathbb{T}_{L A(\mathbb{R})}$ and $\mathbb{T}_{E U F}$
FIRST STEP: purify each literal so that it belongs to a single theory

$$
\begin{aligned}
& f(0)=a+2 \Longrightarrow f\left(e_{4}\right)=a+2 \Longrightarrow f\left(e_{4}\right)=e_{5} \\
& e_{4}=0 \quad e_{4}=0 \\
& e_{5}=a+2
\end{aligned}
$$

Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

\[

\]

The two solvers only share constants: $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, a$
To merge the two models into a single one, the solvers have to agree on equalities between shared constants (interface equalities)

This can be done by exchanging entailed interface equalities

Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

EUF		Arithmetic		
$f\left(e_{1}\right)$	$=$	a	$e_{2}-e_{3}$	$=$
$f(x)$	$=$	e_{2}	e_{4}	$=$
$f(y)$	$=$	e_{3}	e_{5}	$=$
$f\left(e_{4}\right)$	$=$	e_{5}	e_{2}	$=$
x	$=$			e_{3}
x				

The two solvers only share constants: $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, a$

- EUF-Solver says SAT
- Ari-Solver says SAT
- $E U F \models e_{2}=e_{3}$

Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

\[

\]

The two solvers only share constants: $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, a$

- EUF-Solver says SAT
- Ari-Solver says SAT
- $A r i \models e_{1}=e_{4}$

Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

EUF			Arithmetic	
$f\left(e_{1}\right)$	$=$	a	$e_{2}-e_{3}$	$=$
$f(x)$	$=e_{2}$	e_{4}	e_{1}	
$f(y)$	$=$	e_{3}	e_{5}	$=$
$f\left(e_{4}\right)$	$=e_{5}$	e_{2}	$=$	e_{3}
x	$=$	a	$=$	e_{5}
e_{1}	$=$	e_{4}		

The two solvers only share constants: $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, a$

- EUF-Solver says SAT
- Ari-Solver says SAT
- $E U F \models a=e_{5}$

Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

EUF			Arithmetic	
$f\left(e_{1}\right)$	$=$	a	$e_{2}-e_{3}$	$=$
$f(x)$	$=e_{2}$	e_{4}	e_{1}	
$f(y)$	$=$	e_{3}	e_{5}	$=$
$f\left(e_{4}\right)$	$=e_{5}$	e_{2}	$=$	e_{3}
x	$=$	a	$=$	e_{5}
e_{1}	$=$	e_{4}		

The two solvers only share constants: $\quad e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, a$

- EUF-Solver says SAT
- Ari-Solver says UNSAT
- Hence the original set of lits was UNSAT

Nelson-Oppen - The convex case

- A theory T is stably-infinite iff every T-satisfiable quantifier-free formula has an infinite model
- A theory T is convex iff
$S \models_{T} a_{1}=b_{1} \vee \ldots \vee a_{n}=b_{n} \Longrightarrow S \models a_{i}=b_{i}$ for some i

Deterministic Nelson-Oppen: [NO79, TH96, MZ02]

- Given two signature-disjoint, stably-infinite and convex theories T_{1} and T_{2}
- Given a set of literals S over the signature of $T_{1} \cup T_{2}$
- The ($T_{1} \cup T_{2}$)-satisfiability of S can be checked with the following algorithm:

Nelson-Oppen - The convex case (2)

Deterministic Nelson-Oppen

1. Purify S and split it into $S_{1} \cup S_{2}$.

Let \mathcal{E} the set of interface equalities between S_{1} and S_{2}
2. If S_{1} is T_{1}-unsatisfiable then UNSAT
3. If S_{2} is T_{2}-unsatisfiable then UNSAT
4. If $S_{1} \models_{T_{1}} x=y$ with $x=y \in \mathcal{E} \backslash S_{2}$ then

$$
S_{2}:=S_{2} \cup\{x=y\} \text { and goto } 3
$$

5. If $S_{2} \models_{T_{2}} x=y$ with $x=y \in \mathcal{E} \backslash S_{1}$ then

$$
S_{1}:=S_{1} \cup\{x=y\} \text { and goto } 2
$$

6. Report SAT

Motivating example - Non-convex case

Consider the following UNSATISFIABLE set of literals:

$$
\begin{aligned}
1 \leq & x \leq 2 \\
f(1) & =a \\
f(x) & =b \\
a & =b+2 \\
f(2) & =f(1)+3
\end{aligned}
$$

There are two theories involved: $\mathbb{T}_{L A(\mathbb{Z})}$ and $\mathbb{T}_{E U F}$
FIRST STEP: purify each literal so that it belongs to a single theory

$$
\begin{aligned}
f(1)=a \Longrightarrow f\left(e_{1}\right) & =a \\
e_{1} & =1
\end{aligned}
$$

Motivating example - Non-convex case

Consider the following UNSATISFIABLE set of literals:

$$
\begin{aligned}
1 \leq & x \leq 2 \\
f(1) & =a \\
f(x) & =b \\
a & =b+2 \\
f(2) & =f(1)+3
\end{aligned}
$$

There are two theories involved: $\mathbb{T}_{L A(\mathbb{Z})}$ and $\mathbb{T}_{E U F}$
FIRST STEP: purify each literal so that it belongs to a single theory

$$
\begin{aligned}
f(2)=f(1)+3 \Longrightarrow e_{2} & =2 \\
f\left(e_{2}\right) & =e_{3} \\
f\left(e_{1}\right) & =e_{4} \\
e_{3} & =e_{4}+3
\end{aligned}
$$

Motivating example - Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic			EUF		
1	\leq	x	$f\left(e_{1}\right)$	$=$	a
x	\leq	2	$f(x)$	$=$	b
e_{1}	$=$	1	$f\left(e_{2}\right)$	$=$	e_{3}
a	$=$	$b+2$	$f\left(e_{1}\right)$	$=$	e_{4}
e_{2}	$=$	2			
e_{3}	$=$	$e_{4}+3$			
a	$=$	e_{4}			

The two solvers only share constants: $\quad x, e_{1}, a, b, e_{2}, e_{3}, e_{4}$

- Ari-Solver says SAT
- EUF-Solver says SAT
- $E U F \models a=e_{4}$

Motivating example - Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic			EUF		
1	\leq	x	$f\left(e_{1}\right)$	$=$	a
x	\leq	2	$f(x)$	$=$	b
e_{1}	$=$	1	$f\left(e_{2}\right)$	$=$	e_{3}
a	$=$	$b+2$	$f\left(e_{1}\right)$	$=$	e_{4}
e_{2}	$=$	2			
e_{3}	$=$	$e_{4}+3$			
a	$=$	e_{4}			

The two solvers only share constants: $\quad x, e_{1}, a, b, e_{2}, e_{3}, e_{4}$

- Ari-Solver says SAT
- EUF-Solver says SAT
- No theory entails any other interface equality, but...

Motivating example - Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic			EUF		
1	\leq	x	$f\left(e_{1}\right)$	$=$	a
x	\leq	2	$f(x)$	$=$	b
e_{1}	$=$	1	$f\left(e_{2}\right)$	$=$	e_{3}
a	$=$	$b+2$	$f\left(e_{1}\right)$	$=$	e_{4}
e_{2}	$=$	2			
e_{3}	$=$	$e_{4}+3$			
a	$=$	e_{4}			

The two solvers only share constants: $\quad x, e_{1}, a, b, e_{2}, e_{3}, e_{4}$

- Ari-Solver says SAT
- EUF-Solver says SAT
- $\operatorname{Ari} \models_{T} x=e_{1} \vee x=e_{2}$. Let's consider both cases.

Motivating example - Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

\[

\]

- Ari-Solver says SAT
- EUF-Solver says SAT
- $E U F \models_{T} a=b$, that when sent to Ari makes it UNSAT

Motivating example - Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

\[

\]

Let's try now with $x=e_{2}$

Motivating example - Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

\[

\]

- Ari-Solver says SAT
- EUF-Solver says SAT
- $E U F \models_{T} b=e_{3}$, that when sent to Ari makes it UNSAT

Motivating example - Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

\[

\]

Since both $x=e_{1}$ and $x=e_{2}$ are UNSAT, the set of literals is UNSAT

Nelson-Oppen - The non-convex case

- In the previous example Deterministic NO does not work
- This was because $T_{L A(\mathbb{Z})}$ is not convex:

$$
\begin{aligned}
S_{L A(\mathbb{Z})} \models & T_{L A(\mathbb{Z})} x=e_{1} \vee x=e_{2}, \text { but } \\
& S_{L A(\mathbb{Z})} \not \models_{L A(\mathbb{Z})} x=e_{1} \text { and } \\
& S_{L A(\mathbb{Z})} \not \models_{L A(\mathbb{Z})} x=e_{2}
\end{aligned}
$$

- However, there is a version of NO for non-convex theories
- Given a set constants \mathcal{C}, an arrangement \mathcal{A} over \mathcal{C} is:
- A set of equalities and disequalites between constants in \mathcal{C}
- For each $x, y \in \mathcal{C}$ either $x=y \in \mathcal{A}$ or $x \neq y \in \mathcal{A}$

Nelson-Oppen - The non-convex case (2)

Non-deterministic Nelson-Oppen: [NO79, TH96, MZ02]

- Given two signature-disjoint, stably-infinite theories T_{1} and T_{2}
- Given a set of literals S over the signature of $T_{1} \cup T_{2}$
- The $\left(T_{1} \cup T_{2}\right)$-satisfiability of S can be checked via:

1. Purify S and split it into $S_{1} \cup S_{2}$

Let C be the set of shared constants
2. For every arrangement \mathcal{A} over \mathcal{C} do

If $\left(S_{1} \cup \mathcal{A}\right)$ is T_{1}-satisfiable and $\left(S_{2} \cup \mathscr{A}\right)$ is T_{2}-satisfiable report SAT
3. Report UNSAT

Overview of the talk

- Motivation
- SMT
- Theories of Interest
- Eager approach
- Lazy approach
- Optimizations and $\operatorname{DPLL}(T)$
- Theory solvers: difference logic and case splitting
- Combining Theory Solvers
- Limitations and Other Approaches

Eager vs Lazy Approach

REMEMBER....

Important and benefitial aspects of the lazy approach: (even with the optimizations)

- Everyone does what he/she is good at:
- SAT solver takes care of Boolean information
- Theory solver takes care of theory information
- Theory solver only receives conjunctions of literals
- Modular approach:
- SAT solver and T-solver communicate via a simple API
- SMT for a new theory only requires new T-solver
- SAT solver can be embedded in a lazy SMT system with very few new lines of code

Eager vs Lazy Approach (2)

- The Lazy Approach idea (SAT Solver + Theory Reasoner) can be applied to other extensions of SAT:
- Cardinality constraints (e.g. $x_{1}+x_{2}+\ldots+x_{7} \leq 4$)
- Pseudo-Boolean constraints (e.g.
$\left.7 x_{1}+4 x_{2}+3 x_{3}+5 x_{4} \leq 10\right)$
- ...
- Also sophisticated encodings exist for these constraints (Eager Approach)
- Lazy approach seems to dominate, but can we claim that it is always the best option?

Eager vs Lazy Approach (3)

Consider the problem with no SAT clauses and two constraints:

$$
\begin{aligned}
& x_{1}+\ldots+x_{n} \leq n / 2 \\
& x_{1}+\ldots+x_{n}>n / 2
\end{aligned}
$$

Let us see how a (very) Lazy Approach would behave:

- Problem is obviously unsatisfiable
- Inconsistency explanations are of the form:

Eager vs Lazy Approach (3)

Consider the problem with no SAT clauses and two constraints:

$$
\begin{aligned}
& x_{1}+\ldots+x_{n} \leq n / 2 \\
& x_{1}+\ldots+x_{n}>n / 2
\end{aligned}
$$

Let us see how a (very) Lazy Approach would behave:

- Problem is obviously unsatisfiable
- Inconsistency explanations are of the form:

$$
\begin{gathered}
\neg x_{i_{1}} \vee \ldots \vee \neg x_{i_{n / 2+1}} \\
x_{i_{1}} \vee \ldots \vee x_{i_{n / 2}}
\end{gathered}
$$

Eager vs Lazy Approach (3)

Consider the problem with no SAT clauses and two constraints:

$$
\begin{aligned}
& x_{1}+\ldots+x_{n} \leq n / 2 \\
& x_{1}+\ldots+x_{n}>n / 2
\end{aligned}
$$

Let us see how a (very) Lazy Approach would behave:

- Problem is obviously unsatisfiable
- Inconsistency explanations are of the form:

$$
\begin{gathered}
\neg x_{i_{1}} \vee \ldots \vee \neg x_{i_{n / 2+1}} \\
x_{i_{1}} \vee \ldots \vee x_{i_{n / 2}}
\end{gathered}
$$

- All $\binom{n}{\frac{n}{2}+1}+\binom{n}{n / 2}$ explanations are needed to produce an unsatisfiable subset of clauses

Eager vs Lazy Approach (3)

Consider the problem with no SAT clauses and two constraints:

$$
\begin{aligned}
& x_{1}+\ldots+x_{n} \leq n / 2 \\
& x_{1}+\ldots+x_{n}>n / 2
\end{aligned}
$$

Let us see how a (very) Lazy Approach would behave:

- Problem is obviously unsatisfiable
- Inconsistency explanations are of the form:

$$
\begin{gathered}
\neg x_{i_{1}} \vee \ldots \vee \neg x_{i_{n / 2+1}} \\
x_{i_{1}} \vee \ldots \vee x_{i_{n / 2}}
\end{gathered}
$$

- All $\binom{n}{\frac{n}{2}+1}+\binom{n}{n / 2}$ explanations are needed to produce an unsatisfiable subset of clauses
- Hence, runtime is exponential in n.

Eager vs Lazy approach (4)

What has happened?

- Lazy approach = lazily encoding (parts of) the theory into SAT
- Sometimes, only parts of the theory need to be encoded
- But in this example the whole constraint is encoded into SAT...
- ...and the encoding used is a very naive one
- Best here is a good SAT encoding with auxiliary variables

The diamonds example

$$
a_{n}<a_{o} \wedge \bigwedge_{k=0}^{n-1}\left(\left(a_{k}<b_{k} \wedge b_{k}<a_{k+1}\right) \vee\left(a_{k}<c_{k} \wedge c_{k}<a_{k+1}\right)\right)
$$

With these literals, only exponential refutations exist.
Introducing $a_{0}<a_{1}, a_{1}<a_{2}, \ldots$ allows linear refutations.

Other approaches

Previous examples show limitations of (DPLL (T))
There are more technical limitations out of the scope of this talk Research on model-based procedures tries to address these issues:

- Linear Real Arithmetic
- Generalizing DPLL to Richer Logics [MKS09]
- Conflict Resolution [KTV09]
- Natural Domain SMT [Cot10]
- Linear Integer Arithmetic
- Cutting to the Chase [JdM13]
- Non-Linear Real Arithmetic
- Solving Non-Linear Arithmetic [JM12]
- General Framework
- Model-Constructing Satisfiability Calculus [JM13]
- Satisfiability Modulo Theories and Assignments[BGS17]

References

[ABC $\left.{ }^{+} 02\right] \quad$ G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani. A SAT-Based Approach for Solving Formulas over Boolean and Linear Mathematical Propositions. In A. Voronkov, editor, 18th International Conference on Automated Deduction, CADE'02, volume 2392 of Lecture Notes in Conference Science, pages 195-210. Springer, 2002.
[ACG00] A. Armando, C. Castellini, and E. Giunchiglia. SAT-Based Procedures for Temporal Reasoning. In S. Biundo and M. Fox, editors, 5th European Conference on Planning, ECP'99, volume 1809 of Lecture Notes in Computer Science, pages 97-108. Springer, 2000.
[AMP06] A. Armando, J. Mantovani, and L. Platania. Bounded Model Checking of Software Using SMT Solvers Instead of SAT Solvers. In A. Valmari, editor, 13th International SPIN Workshop, SPIN'06, volume 3925 of Lecture Notes in Computer Science, pages 146-162. Springer, 2006.
[BB09] R. Brummayer and A. Biere. Boolector: An Efficient SMT Solver for Bit-Vectors and Arrays. In S. Kowalewski and A. Philippou, editors, 15th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS'05, volume 5505 of Lecture Notes in Computer Science, pages 174-177. Springer, 2009.

References

$\left[B B C^{+}\right.$05] M. Bozzano, R. Bruttomesso, A. Cimatti, T. A. Junttila, S. Ranise, P. van Rossum, and R. Sebastiani. Efficient Satisfiability Modulo Theories via Delayed Theory Combination. In K. Etessami and S. Rajamani, editors, 17th International Conference on Computer Aided Verification, CAV'05, volume 3576 of Lecture Notes in Computer Science, pages 335-349. Springer, 2005.
[BCF^{+}07] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, Ziyad Hanna, Alexander Nadel, Amit Palti, and Roberto Sebastiani. A Lazy and Layered SMT(BV) Solver for Hard Industrial Verification Problems. In W. Damm and H. Hermanns, editors, 19th International Conference on Computer Aided Verification, CAV'07, volume 4590 of Lecture Notes in Computer Science, pages 547-560. Springer, 2007.
[BD94] J. R. Burch and D. L. Dill. Automatic Verification of Pipelined Microprocessor Control. In D. L. Dill, editor, 6th International Conference on Computer Aided Verification, CAV'94, volume 818 of Lecture Notes in Computer Science, pages 68-80. Springer, 1994.
[BDS02a] C. Barrett, D. Dill, and A. Stump. Checking Satisfiability of First-Order Formulas by Incremental Translation into SAT. In E. Brinksma and K. G. Larsen, editors, 14th International Conference on Computer Aided Verification, CAV'02, volume 2404 of Lecture Notes in Computer Science, pages 236-249. Springer, 2002.

References

[BDS02b] C. Barrett, D. Dill, and A. Stump. Checking Satisfiability of First-Order Formulas by Incremental Translation into SAT. In E. Brinksma and K. G. Larsen, editors, 14th International Conference on Computer Aided Verification, CAV'02, volume 2404 of Lecture Notes in Computer Science, pages 236-249. Springer, 2002.
[BGS17] M. P. Bonacina, S. Graham-Lengrand and N. Shankar. Satisfiability Modulo Theories and Assignments In L. de Moura, 26th International Conference on Automated Deduction, CADE 2017, volume 10395 of Lecture Notes in Computer Science, pages 42-59. Springer, 2017.
[BGV01] R. E. Bryant, S. M. German, and M. N. Velev. Processor Verification Using Efficient Reductions of the Logic of Uninterpreted Functions to Propositional Logic. ACM Transactions on Computational Logic, TOCL, 2(1):93-134, 2001.
[BLNM ${ }^{+}$09] C. Borralleras, S. Lucas, R. Navarro-Marset, E. Rodríguez-Carbonell, and A. Rubio. Solving Non-linear Polynomial Arithmetic via SAT Modulo Linear Arithmetic. In R. A. Schmidt, editor, 22nd International Conference on Automated Deduction , CADE-22, volume 5663 of Lecture Notes in Computer Science, pages 294-305. Springer, 2009.
[BM90] R. S. Boyer and J. S. Moore. A Theorem Prover for a Computational Logic. In Mark E. Stickel, editor, 10th International Conference on Automated Deduction, CADE'90, volume 449 of Lecture Notes in Computer Science, pages 1-15. Springer, 1990.

References

[BNO^{+}08b] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio. The barcelogic smt solver. In Computer-aided Verification (CAV), volume 5123 of Lecture Notes in Computer Science, pages 294-298, 2008.
[BV02] R. E. Bryant and M. N. Velev. Boolean Satisfiability with Transitivity Constraints. ACM Transactions on Computational Logic, TOCL, 3(4):604-627, 2002.
[Cot10] S. Cotton. Natural Domain SMT: A Preliminary Assessment. In K. Chatterjee and T. A. Henzinger, Formal Modeling and Analysis of Timed Systems FORMATS 2010, volume 6246 of Lecture Notes in Computer Science, pages 77-91. Springer, 2010.
[DdM06] B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In T. Ball and R. B. Jones, editors, 18th International Conference on Computer Aided Verification, CAV'06, volume 4144 of Lecture Notes in Computer Science, pages 81-94. Springer, 2006.
[dMB09] L. de Moura and N. Bjørner. Generalized, efficient array decision procedures. In 9th International Conference on Formal Methods in Computer-Aided Design, FMCAD 2009, pages 45-52. IEEE, 2009.
[dMR02] L. de Moura and H. Rueß. Lemmas on Demand for Satisfiability Solvers. In 5th International Conference on Theory and Applications of Satisfiability Testing, SAT'02, pages 244-251, 2002.

References

[DNS05] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program checking. Journal of the ACM, JACM, 52(3):365-473, 2005.
[FORS01] J. Filliâtre, S. Owre, H. Rueß, and Natarajan Shankar. ICS: Integrated Canonization and Solving (Tool presentation). In G. Berry, H. Comon, and A. Finkel, editors, 13th International Conference on Computer Aided Verification, CAV'01, volume 2102 of Lecture Notes in Computer Science, pages 246-249. Springer, 2001.
[JdM13] D. Jovanovic and L. de Moura. Cutting to the Case - Solving Linear Integer Arithmetic. Journal of Automated Reasoning, 51(1):79-108, 2013.
[JM12] D. Jovanovic and L. de Moura. Solving Non-linear Arithmetic. In B. Gramlich, D. Miller and U. Sattler, 6th International Conference on Automated Reasoning, IJCAR, 2012, volume 7364 of Lecture Notes in Computer Science, pages 339-354. Springer, 2012.
[JM13] D. Jovanovic and L. de Moura. A Model-Constructing Satisfiability Calculus In R. Giacobazzi, J. Berdine and I. Mastroeni. 14th International Conference on Verification, Model Checking and Abstract Interpretation, VMCAI 2013, volume 7737 of Lecture Notes in Computer Science, pages 1-12. Springer, 2013.
[KTV09] K. Korovin, N. Tsiskaridze and A. Voronkov. Conflict Resolution. In I. P. Gent, Principles and Practice of Constraint Programming - CP 2009, volume 5732 of Lecture Notes in Computer Science, pages 509-523. Springer, 2009.

References

[LM05] S. K. Lahiri and M. Musuvathi. An Efficient Decision Procedure for UTVPI Constraints. In B. Gramlich, editor, 5th International Workshop on Frontiers of Combining Systems, FroCos'05, volume 3717 of Lecture Notes in Computer Science, pages 168-183. Springer, 2005.
[LNO06] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT Techniques for Fast Predicate Abstraction. In T. Ball and R. B. Jones, editors, 18th International Conference on Computer Aided Verification, CAV'06, volume 4144 of Lecture Notes in Computer Science, pages 413-426. Springer, 2006.
[LS04] S. K. Lahiri and S. A. Seshia. The UCLID Decision Procedure. In R. Alur and D. Peled, editors, 16 th International Conference on Computer Aided Verification, CAV'04, volume 3114 of Lecture Notes in Computer Science, pages 475-478. Springer, 2004.
[MKS09] K. McMillan, A. Kuehlmann and M. Sagiv. Generalizing DPLL to Richer Logics. In A. Bouajani and O. Maler, 21st International Conference on Computer Aided Verification, CAV'09, volume 25643 of Lecture Notes in Computer Science, pages 462-476. Springer, 2009.
[MZ02] Z. Manna and C. G. Zarba. Combining Decision Procedures. In B. K. Aichernig and T. S. E. Maibaum, editors, 10th Anniversary Colloquium of UNU/IIST, volume 2757 of Lecture Notes in Computer Science, pages 381-422. Springer, 2002.

References

[NO79] G. Nelson and D. C. Oppen. Simplification by Cooperating Decision Procedures. ACM Transactions on Programming Languages and Systems, TOPLAS, 1(2):245-257, 1979.
[NO80] G. Nelson and D. C. Oppen. Fast Decision Procedures Based on Congruence Closure. Journal of the ACM, JACM, 27(2):356-364, 1980.
[NO05] R. Nieuwenhuis and A. Oliveras. DPLL(T) with Exhaustive Theory Propagation and its Application to Difference Logic. In K. Etessami and S. Rajamani, editors, 17th International Conference on Computer Aided Verification, CAV'05, volume 3576 of Lecture Notes in Computer Science, pages 321-334. Springer, 2005.
[NO07] R. Nieuwenhuis and A. Oliveras. Fast Congruence Closure and Extensions. Information and Computation, IC, 2005(4):557-580, 2007.
[NOT06] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM, 53(6):937-977, November 2006.
[PRSS99] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding Equality Formulas by Small Domains Instantiations. In N. Halbwachs and D. Peled, editors, 11th International Conference on Computer Aided Verification, CAV'99, volume 1633 of Lecture Notes in Computer Science, pages 455-469. Springer, 1999.

References

[SBDL01] A. Stump, C. W. Barrett, D. L. Dill, and J. R. Levitt. A Decision Procedure for an Extensional Theory of Arrays. In 16th Annual IEEE Symposium on Logic in Computer Science, LICS'01, pages 29-37. IEEE Computer Society, 2001.
[Sha02] N. Shankar. Little Engines of Proof. In L. H. Eriksson and P. A. Lindsay, editors, International Symposium of Formal Methods Europe, FME'02, volume 2391 of Lecture Notes in Computer Science, pages 1-20. Springer, 2002.
[Sho84] Robert E. Shostak. Deciding combinations of theories. Journal of the ACM, 31(1):1-12, January 1984.
[SLB03] S. Seshia, S. K. Lahiri, and R. E. Bryant. A Hybrid SAT-Based Decision Procedure for Separation Logic wit h Uninterpreted Functions. In 40th Design Automation Conference, DAC'03, pages 425-430. ACM Press, 2003.
[SM06] S.Cotton and O. Maler. Fast and Flexible Difference Constraint Propagation for DPLL(T). In A. Biere and C. P. Gomes, editors, 9th International Conference on Theory and Applications of Satisfiability Testing, SAT'06, volume 4121 of Lecture Notes in Computer Science, pages 170-183. Springer, 2006.
[SSB02] O. Strichman, S. A. Seshia, and R. E. Bryant. Deciding Separation Formulas with SAT. In E. Brinksma and K. G. Larsen, editors, 14th International Conference on Computer Aided Verification, CAV'02, volume 2404 of Lecture Notes in Computer Science, pages 209-222. Springer, 2002.

References

[TdH08] N. Tillmann and J. de Halleux. Pex-White Box Test Generation for .NET. In B. Beckert and R. Hähnle, editors, 2nd International Conference on Tests and Proofs, TAP'08, volume 4966 of Lecture Notes in Computer Science, pages 134-153. Springer, 2008.
[TH96] C. Tinelli and M. T. Harandi. A new correctness proof of the Nelson-Oppen combination procedure. In Procs. Frontiers of Combining Systems (FroCoS), Applied Logic, pages 103-120. Kluwer Academic Publishers, March 1996.
[WIGG05] C. Wang, F. Ivancic, M. K. Ganai, and A. Gupta. Deciding Separation Logic Formulae by SAT and Incremental Negative Cycle Elimination. In G. Sutcliffe and A. Voronkov, editors, 12h International Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR'05, volume 3835 of Lecture Notes in Computer Science, pages 322-336. Springer, 2005.
[ZM10] H. Zankl and A. Middeldorp. Satisfiability of Non-linear (Ir)rational Arithmetic. In Edmund M. Clarke and Andrei Voronkov, editors, 16th International Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR'10, volume 6355 of Lecture Notes in Computer Science, pages 481-500. Springer, 2010.

