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i Agenda

= Languages and Operations
= Knowledge Compilers

= Applications:
= Explaining and Verifying Al Systems
= Probabilistic Reasoning
= Machine Learning
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Knowledge Compilation

i Map

= What's the space of possible target
compilation languages?
= Can it be synthesized in a semantically
systematic way?

= How do the languages compare?
= Succinctness (relative size)
= Operations they support in polytime



Knowledge Compilation

i Map

= For a given application: identify needed
operations

= Choose most succinct language that
supports desired operations

= Compile knowledge base into chosen
language



A Knowledge

iCompiIation MAP

Negation Normal Form
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Decision
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Validity (VA)
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i Propositional Logic

= Literal | X,.—X
s Clause (X Vv Y v —Z)
s ferm (X AYAZ)

= CNF: Conjunctive Normal Form
(XvYVv-ZH)An.AXVvaW)

= DNF: Disjunctive Normal Form
(X AYAZ)v.V(XA=ZAW)




i Propositional Logic

= Truth assignment (TA)
X :true,Y : false,Z :true, W : false

= TA satisfies sentence (model)
(XvYV-Z)An.AXVvaW)

= Following TA is not a model

X :true,Y : false,Z :true, W :true
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i NNF Subsets
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i Determinism
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i NNF Subsets

NNF
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i Flatness

Nested vs Flat languages
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i Simple Conjunction

or
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Simple conjunction implies decomposability




i Simple Disjunction

and

T

or or or

VAVANVAN

X Y /Z -X




i NNF Subsets
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i Prime Implicates (PI)

Resolution 1 that:

X —X)er
(0[ M ), (ﬂ M ) 2 CNF, it must

(ax v ) e CNF
s CNF:

(—AVB)A(=BVCO)A(=CVv D)

s PI:
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i Prime Implicants (IP)

Consensus h that:

(@ NX),(fA—X)
(@A f)

s DNF:
(AAB)v (=B AC)

n IP:
(AANB)V(—BAC)v((AAC)

t must imply a




i NNF Subsets
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i Decision

or
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Binary Decision Diagrams
i (BDDs)

N

and and

Decision implies determinism
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Binary Decision Diagrams
i (BDDs)
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Decision + decomposability = FBDD | Test once property




i NNF Subsets
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Binary Decision Diagrams
i (BDDs)

T
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Decision + decomposability + ordering = OBDD




i NNF Subsets

NNF
/m
d-NNF s-NNF DNNF f-NNF

BDD \mw/

I//v d-DNNF [EQ?

FBDD [EQ? [osocr DNF CNF

SE,EQ SE,E VA.IP, $E.E VA,IP,$E.EQ

OBDD MODS IP PI




i Language Succinctness

[.1 at least as succinct as 1.2

L1 <= L2

S1ze p(n) Size n

L.1 1s more succinct than .2

L1 < 1.2



i Odd Parity Function




i Tractability & Succinctness

NNF
DNNF

d-DNNF

FBDD

OBDD

Space Efficiency (succinctness)

Tractable Operations

decomposability

determinism

decision

ordering

Diagnosis,
Non-mon

Probabilistic
reasoning



i Separating Functions

= OBDD/FBDD:
=« Hidden weighted bit function hwb(x;,..,x,)

= DNNF/DNF:
= 0dd parity function parity(xy,..,X,)
= DNNF/OBDD:
= Distinct integers function distinct(xy,..,X)



i From OBDD to SDD
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i From OBDD to SDD




i From OBDD to SDD

Primes




i From OBDD to SDD




SDD:
i Sentential Decision Diagram
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SDD:
i Sentential Decision Diagram
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i OBDD as SDD

R ® Right-Linear Vtree

alA

/\

cIp] [-clL C D




i X-Partitions: The insight!

= Write function f(X,Y) as
h;1(X) g1(Y) + ... + h, (X) gu(Y)

such that:
h,{(X), ..., h(X) is a partition

(mutually exclusive and exhaustive; h; <> false)



i X-Partitions

= X-partition
h1(X) 91(Y) + ... + hp (X) gn(Y)

written as { (Ny,91), --., (Ny,9n) }

= We call h, primes, g, subs




i Compression & Canonicity

= X-partition is compressed if no equal subs

{ (h191), (h295) ..., (hngn) &

= If equal subs g;=g,, compress to:
{ (hy+hy9y), ..., (hnGn) }

= Every function f(X,Y) has a unique
compressed X-partition




i SDD
f=(AAB)vV(BAC)v(CAD)
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SDD

f=(AAB)vV(BAC)v(CAD)
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D

Compressed X-Partition of function f with X = {A,B}

{(AAB,true),(=AArB,C),(=B,C A D)}

C



i OBDDs are SDDs

= When X={X} (single variable), an X-partition
corresponds to a Shannon decomposition

s Primes: | X, X

s Subs:|f | X, f|-X

= X-partition: {(X, f | X),(=X, f |=X)}




i Polytime Apply Operation

s X-partition of AX,Y): [{(»,-g,)-----Cp, a,)}
s X-partition of g(X,Y):|€c7.5).---.(7, 5,3

= X-partition of

fog={(p,Ar.q,05))| p,Ar, = false}

= Result may not be compressed



i SDD vs OBDD

= SDD a strict superset of OBDD:
= Characterized by trees, which include orders
= Branch over sentences, which include literals

= SDDs maintain key properties of OBDDs:

= Canonical when compressed
= Polytime Apply Operation (no compression)

= SDDs: treewidth, OBDD: pathwidth
s SDDs more succinct than OBDDs




original
notation

new
notation




!L Operations



i Knowledge Compilation

KB

Compile>

Queries

=

Compiled
Structure

—_) =

Evaluator
(Polytime)




i Queries

= Consistency (CO)
= Validity (VA)
= Sentential entailment (SE)
= Clausal entailment (CE): KB implies clause
= Implicant testing (IP): term implies KB
= Equivalence testing (EQ)
= Model Counting (CT)
= Model enumeration (ME)



i Transformations

= Projection (existential quantification)
= Conditioning

= Conjoin

= Disjoin

= Negate



!’_ Decomposability



i Example Knowledge Base




i Decomposable
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i Decomposable
A okX /\

and

o /\ / \
/ or or or ~B
~A ~C A C

~0kX ~0kY



i Decomposable




iSatisfiabiIity

oSAT(A or B) iff SAT(A) or SAT(B)
oSAT(A and B) iff SAT(A) and SAT(B)
oSAT(X) is true

oSAT(~X) is true

oSAT(True) is true

oSAT(False) is false




i Satisfiability

/\

and

B /or /or or or ~B
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i Satisfiability




i Clausal Entailment

KB entails LyvL,v..vlL, ?

KB &~L, & ~L, & ... & ~L, SAT?



i Literal Conjoin

and




i Literal Conjoin
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i Literal Conjoin

Conditioning /\and .

or or or ~B

S\

~0kX ~o0kY



i Literal Conjoin

and
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Projection: Existential
i Quantification

Knowledge Base

A=A=B,B=C,C=D

Existentially quantifying B,C
Forgetting B,C
Projecting on A,D

(3BACA)= A= D




Projection: Existential
i Quantification

Formal Definition

IXA =(A| X)v (A]|—X)

oIf Knowledge base is a CNF:
eClose under resolution
eRemove all clauses that mention X



Projection: Existential
i Quantification
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Projection: Existential
i Quantification

(A3x(AAT)

=(AAD) [ X)V((AAT)[=X)
=(A[X)AT X))V ((A]X)AT| X))
=(AANT | X)V(AAT |—=X))
=AA(T|X)v ' |—=X))

= A A (JXT)

~o0kX true



i Minimum Cardinality

A & okX => ~B
~A & okX => B
B & okY => ~C
~B & okY => C

okX | okY A B C

true true true | false | true 1
true false true | false | false 3




i Minimum Cardinality




Minimizing:
i Requires Smoothness
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!'_ Determinism



i Determinism
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i Counting Models
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i Counting Graph
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i Counting Models
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i Counting Models
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i Counting Graph

S={A, — B} v
|

false false true true C - D D — C



i Determinism

Query d-DNNF
CO: Consistency Yes

VA: Validity Yes

CE: Clausal entailment Yes

SE: Sentential entailment

IP: Implicant testing Yes

EQ: Equivalence testing ?

MC: Model Counting Yes

ME: Model enumeration Yes




i OBDDS and SDDs

Query OBDD
CO: Consistency Yes
VA: Validity Yes
CE: Clausal entailment Yes
SE: Sentential entailment Yes
IP: Implicant testing Yes
EQ: Equivalence testing Yes
MC: Model Counting Yes
ME: Model enumeration Yes
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