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i Building Compilers

= To-down approaches:
= Based on exhaustive search

= Bottom-up approaches:
= Based on transformations



i SAT by DPLL Search

SAT?

*Unit resolution
*Conflict-directed backtracking
*Clause learning

*Branching heuristics

*Restarts

ifmse

Terminating condition for recursion:

SAT?

empty set (satisfied), or empty clause (contradiction)



i The Language of Search
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i Trace of DPLL
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i Exhaustive DPLL
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i Trace of DPLL: a Formula
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i Trace of DPLL: a Formula
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i Dealing with Redundancy

L.evel One: Do not
record redundant
portions of trace

Level Two: Try not

to solve equivalent
subproblems




i Dealing with Redundancy
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i This is an OBDD!




i This is an OBDD!

NNF + decision, decomposability, ordering




A Non-traditional OBDD
i Compiler

/ \ Exhaustive DPLL,
Fixed variable order,

XvY Unique nodes
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New complexity guarantees




i FBDD

~ D Exhaustive DPLL,
Dynamic variable order,
XvY Unique nodes
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NNF + decision, decomposability




i Dealing with Redundancy

= Level One: Unique nodes (done)

= Level Two: Avoid redundant
compilation (searches)



i Redundant Compilation
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Formula Caching: complexity guarantees




i Beyond BDDs...

Plain DPLLL. =—>  FBDD

Fixed Variable

Ordering : OBDD



Decomposition
i (Component Analysis)

Solve disjoint
subproblems

independently
) d-DNNF

Combine as
AND node



Deterministic
Decomposable

Negation Norm Form

(d-DNNF)
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i Decomposition Strategies

= Static (c2d)

= Hypergraph partitioning pre-compilation

= Strategy captured using a dtree (decomposition tree)
= Dynamic (Dsharp/Cachet)

= Dynamic variable orderings
= Lazy detection of decompositions

= Mixed (D4)
= Hypergraph partitioning during compilation
= Done selectively (using dtrees)



i The Language of Search

Fixed Variable

Ordering — OBDD

Plain DPLL —> FBDD

Allowing

Decomposition d-DNNF



Limitation of DPLL:
i General determinism
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Beyond DPLL:
Decomposability (D) without

i determinism (d)
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i Bottom-up Compilation




i Bottom-up Compilation

CNF: (x +y) (y + 2)

Variable order: x, y, z
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i Bottom-up Compilation

(x) Final OBDD
CNF: (x +y) (y + 2) ’

Variable order: X, y, z O X)) X+y
(Y y+z

Apply: Py

combines two OBDDs P &

using Boolean operators
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i Bottom-up Compilation

(x) Final OBDD

CNF: (x +y) (y + 2)

Variable order: x, y, z

DEAD
NODES

Apply:

combines two OBDDs
using Boolean operators




i Bottom-up Compilation

= Requires:

= Apply (conjoin, disjoin, etc)

=« Garbage collection of dead nodes
= Challenges:

= Good variable order
= Good schedule of Apply operations

= uf100-08 (32 models):
= 176 nodes in final OBDD under MINCE variable order
= 30,640,582 intermediate nodes using CUDD package



i Canonicity in Compilation

= OBDDs are canonical
variable order 2 unique OBDD

(reduced OBDDs)

s SDDs are canonical
vtree - unique SDD

(trimmed and compressed SDDs)



i Vtrees Matter!

= A vtree can have a significant impact
on the size of an SDD

s Good vtrees can be obtained either

« Statically: by analyzing the Boolean function
structure before compilation

= Dynamically: by searching for an appropriate
vtree during compilation
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Vtree Search:

’L Minimizing SDD Size



i Dissecting Variable Orders
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i Vtrees Matter!

= The choice of a vtree can lead to exponential
difference in the size of an SDD

= The choice of a dissection can also lead to
exponential differences in the size of an SDD



i Searching Over Vtrees

= Double search problem:
= Find variable order
= Find dissection
= [ree operations:
= Rotation (left, right)
= Swapping
= Can enumerate all vtrees



i Tree Rotations

a Right Rotate(a)[>
X )4 <Left Rotate (a)




i Rotation Preserves Order

a Right Rotate(a)[> b
X ¥ <Left Rotate (a) 1




i Enumerating Dissections

s Rotations can enumerate all dissection of
a given variable order

= Systematic methods exist for this purpose
= See, e.g., Knuth's

Art of Computer Programming, Volume 4, Fascicle 4: Generating All Trees






i Swapping Changes Order

swap(a)>
<swap(a)
X, Y Y, X




i Rotate + Swap
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i The SDD Package
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i The SDD Package
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The

!L Fragment Abstraction




i Vtree Fragments

root

left-linear fragment




i Vtree Fragments

root

right-linear fragment
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i Greedy Vtree Search

= [raverse vtree bottom-up

= [ry enumerating 12 vtrees
of left-linear fragment

= [ry enumerating 12 vtrees
of right-linear fragment

= 24 vtrees in total a B
= Greedily accept best vtree
= Prune parts of search space

X



i The SDD Package

Opportunities
= Vvtree search algorithms
= Triggers for vtree search Y

= Static methods for
constructing vtrees a

= Heuristics for scheduling
Apply operations



i The SDD Package

= http://reasoning.cs.ucla.edu/sdd
s Written in C
= Available as open-source

= Code for compiling CNFs/DNFs into SDDs
(includes heuristic for scheduling Apply)

= Two manuals: beginner and advanced
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