’L Knowledge Compilers

Adnan Darwiche
Computer Science Department, UCLA

i Building Compilers

= To-down approaches:
= Based on exhaustive search

= Bottom-up approaches:
= Based on transformations

i SAT by DPLL Search

SAT?

*Unit resolution
*Conflict-directed backtracking
*Clause learning

*Branching heuristics

*Restarts

ifmse

Terminating condition for recursion:

SAT?

empty set (satisfied), or empty clause (contradiction)

i The Language of Search

Exhaustive
DPLL

—

&

Knowledge
Compiler

i Trace of DPLL

XVvY

(&

)

i Exhaustive DPLL

Run to Exhaustion

-

XVvY

(&

)

i Trace of DPLL: a Formula

1

i Trace of DPLL: a Formula

Equivalent to

ioinal CNF and and
origina
armd and and

N /N /NN

0-Y Y-Z -Z-Y Y
Tractable
(e.g., count models)

1

i Dealing with Redundancy

L.evel One: Do not
record redundant
portions of trace

Level Two: Try not

to solve equivalent
subproblems

i Dealing with Redundancy

i Dealing with Redundancy
Bienply ettt

existing node \

i This is an OBDD!

i This is an OBDD!

NNF + decision, decomposability, ordering

A Non-traditional OBDD
i Compiler

/ \ Exhaustive DPLL,
Fixed variable order,

XvY Unique nodes

Xv=YVv—Z | (Compile

L)

New complexity guarantees

i FBDD

~ D Exhaustive DPLL,
Dynamic variable order,
XvY Unique nodes

XVaYyvVv—Z >C0mpile

L /

NNF + decision, decomposability

i Dealing with Redundancy

= Level One: Unique nodes (done)

= Level Two: Avoid redundant
compilation (searches)

i Redundant Compilation

X5V X6

X4 \V4 —|X5 \V4 X6

0//,,
X1VX3VX4VX5 1 0°
XZ \V4 X3
X1 \V4 XZ \V4 —|X3 1 1

X5 V X X5 V X

X4 V X5 V X X4 V X5 V X

Formula Caching: complexity guarantees

i Beyond BDDs...

Plain DPLLL. =—> FBDD

Fixed Variable

Ordering : OBDD

Decomposition
i (Component Analysis)

Solve disjoint
subproblems

independently
) d-DNNF

Combine as
AND node

Deterministic
Decomposable

Negation Norm Form

(d-DNNF)

AvBvC
AvDVE

—Av —-BvC
—Av-DVE

BvC

Deterministic
Decomposable or

Negation Norm Form / \

and and

(d-DNNF) /\ N

i Decomposition Strategies

= Static (c2d)

= Hypergraph partitioning pre-compilation

= Strategy captured using a dtree (decomposition tree)
= Dynamic (Dsharp/Cachet)

= Dynamic variable orderings
= Lazy detection of decompositions

= Mixed (D4)
= Hypergraph partitioning during compilation
= Done selectively (using dtrees)

i The Language of Search

Fixed Variable

Ordering — OBDD

Plain DPLL —> FBDD

Allowing

Decomposition d-DNNF

Limitation of DPLL:
i General determinism

or
Decision nodes ar{ \an d
(Decision-DNNF) N /N
—X X
Deterministic nodes P

(d-DNNF) AN
and and
/\ /N

Beyond DPLL:
Decomposability (D) without

i determinism (d)

r
DNNF: 9
CO, CE, ME,
exist quantification and

[

or 143 a}]d

X X

i Bottom-up Compilation

i Bottom-up Compilation

CNF: (x +y) (y + 2)

Variable order: x, y, z

i Bottom-up Compilation

CNF: (x +y) (y + 2)

Variable order: x, y, z

Apply:

combines two OBDDs
using Boolean operators

i Bottom-up Compilation

CNF: (x +y) (y + 2)

Variable order: x, y, z

Apply:

combines two OBDDs
using Boolean operators

i Bottom-up Compilation

CNF: (x +y) (y + 2)

Variable order: x, y, z

Apply:

combines two OBDDs
using Boolean operators

',
'
’
Iy,
Iy
7

i Bottom-up Compilation

CNF: (x +y) (y + 2)

Variable order: x, y, z

Apply:

combines two OBDDs
using Boolean operators

',
'
’
Iy,
Iy
7

i Bottom-up Compilation

CNF: (x +y) (y + 2)

Variable order: x, y, z

Apply:

combines two OBDDs
using Boolean operators

i Bottom-up Compilation

(x) Final OBDD
CNF: (x +y) (y + 2) ’

Variable order: X, y, z O X)) X+y
(Y y+z

Apply: Py

combines two OBDDs P &

using Boolean operators

l,l ”’

/ P

Iy _-
@

i Bottom-up Compilation

(x) Final OBDD

CNF: (x +y) (y + 2)

Variable order: x, y, z

DEAD
NODES

Apply:

combines two OBDDs
using Boolean operators

i Bottom-up Compilation

= Requires:

= Apply (conjoin, disjoin, etc)

=« Garbage collection of dead nodes
= Challenges:

= Good variable order
= Good schedule of Apply operations

= uf100-08 (32 models):
= 176 nodes in final OBDD under MINCE variable order
= 30,640,582 intermediate nodes using CUDD package

i Canonicity in Compilation

= OBDDs are canonical
variable order 2 unique OBDD

(reduced OBDDs)

s SDDs are canonical
vtree - unique SDD

(trimmed and compressed SDDs)

i Vtrees Matter!

= A vtree can have a significant impact
on the size of an SDD

s Good vtrees can be obtained either

« Statically: by analyzing the Boolean function
structure before compilation

= Dynamically: by searching for an appropriate
vtree during compilation

variables
X={XNXX.X}
Y={NhhY¥.NKn}

variables
X={XNXX.X}
Y={NhhY¥.NKn}

Xl [Xalp] [Xaly] [2Xal] [Xafy] Xl [Xaly] [SXaly) [2Xal] [Xafg) [Py [Xaly] (2%l [Xafg] [Xafa) [2Xal4]
EYalYa] [Ya[o] [Ya]Ya] [oYa]y) 2Yals) [Yalo] | 2Yal] [Yalp) N\ [2Yaly) [Yals] [Ya]r] [2Yald]

14
12 Y

4
X4 11

/Y
A\
/
A\

2
X, Y,

/\
/\ L

[2Xaly| [Xala] [Xa]r] [Xa]r]

¥

T~

=
(=)
(=)

9 Y, [{=Ys) [T Y] 2] L]
/\
1
X5 8 [(Xs]y| [Xs]a] [Xs)r] [Xs]]

\
\1/
(=)
()

6 Y [t [alYe] [[T fl=Ye]

[=Xa [y [(Xa]o] [Xe]r] [2Xa)y]

o
U'l/
j

o,
s

[=Xa[T] XafYs] [=Xa[L] [X1]Y4]

Vtree Search:

’L Minimizing SDD Size

i Dissecting Variable Orders

AN N AN
AN A A AN

CCCCCC

AN A AN

ABCD ABCD ABCD ABCD ABCD

i Vtrees Matter!

= The choice of a vtree can lead to exponential
difference in the size of an SDD

= The choice of a dissection can also lead to
exponential differences in the size of an SDD

i Searching Over Vtrees

= Double search problem:
= Find variable order
= Find dissection
= [ree operations:
= Rotation (left, right)
= Swapping
= Can enumerate all vtrees

i Tree Rotations

a Right Rotate(a)[>
X)4 <Left Rotate (a)

i Rotation Preserves Order

a Right Rotate(a)[> b
X ¥ <Left Rotate (a) 1

i Enumerating Dissections

s Rotations can enumerate all dissection of
a given variable order

= Systematic methods exist for this purpose
= See, e.g., Knuth's

Art of Computer Programming, Volume 4, Fascicle 4: Generating All Trees

i Swapping Changes Order

swap(a)>
<swap(a)
X, Y Y, X

i Rotate + Swap

AV AV~ A
AT T R A AV
A A A /\

ABCD ABCD ACBD ACBD

i The SDD Package

3

5
2\ 11D} |y
/3\ D 3 3

AN

i The SDD Package

\ I
A A,

A

A-C| [RA|T A|C| |PA

The

!L Fragment Abstraction

i Vtree Fragments

root

left-linear fragment

i Vtree Fragments

root

right-linear fragment

= mimwv
< * \@

/

\

<

\

/B

\B

/

/
JANEAN

/\

\

€ lrotate € swap { rrotate <swap € lrotate

o \@

/

\

/\

/A

A A A A A
ACCACRA AT AT A
Ereax?,"é‘fé’vtio?,?eéi?o°“s. s
NACANN A
ACCACCAAT AT A

i Greedy Vtree Search

= [raverse vtree bottom-up

= [ry enumerating 12 vtrees
of left-linear fragment

= [ry enumerating 12 vtrees
of right-linear fragment

= 24 vtrees in total a B
= Greedily accept best vtree
= Prune parts of search space

X

i The SDD Package

Opportunities
= Vvtree search algorithms
= Triggers for vtree search Y

= Static methods for
constructing vtrees a

= Heuristics for scheduling
Apply operations

i The SDD Package

= http://reasoning.cs.ucla.edu/sdd
s Written in C
= Available as open-source

= Code for compiling CNFs/DNFs into SDDs
(includes heuristic for scheduling Apply)

= Two manuals: beginner and advanced

UCEA

Automated Reas@ning Group

CACM Oct. 2018 - Human-
Level Intelligence or Animal...

Association for Computing Ma...
2.7K views * 4 months ago

The Three Eras

P al
Imnleh] logic

Machine uamlngq
l'nodeli 'wu‘lo‘u nro bality

Neural Networks
(functicns). neural networks
Ergnetrog

From Numbers to Decisions

N

EREDER) {3
Ll ==

N

Logic, Probability & Learning

Adnan Darwiche — On Al
Education

UCLA Automated Reasoning G...
1.4K views * 5 months ago

Learning and Reasoning with Bayesian Networks

Adnan Darwiche — Explaining
and Verifying Al Systems

UCLA Automated Reasoning G...
464 views * 4 months ago

P PLAY ALL

Lectures by Adnan Darwiche for his UCLA course on Bayesian Networks.

Ta. Course Overview with a Historical Perspective on Al
UCLA Automated Reasoning Group * 2.2K views * 1 year ago

Adnan Darwiche's UCLA course: Learning and Reasoning with Bayesian Networks.

Adnan Darwiche - On the
Role of Logic in Probabilisti...

UCLA Automated Reasoning G...
2K views * 1 year ago

Subscribe!

Adnan Darwiche — On Model-
Based versus Model-Blind...

UCR School of Public Policy
3.3Kviews * 1 year ago

/'\ /'\

j

ABCD

¢7‘—‘\-1>

ABCD

Bottom-Up Knowledge Compilers

A
Wy 2 e
Tk i

ACBD /%

