Knowledge Compilation:

!'- Principles and Applications

Adnan Darwiche
Computer Science Department, UCLA

i Agenda

= Languages and Operations
= Knowledge Compilers

= Applications:
= Explaining and Verifying Al Systems
= Probabilistic Reasoning
= Machine Learning

!L Languages & Operations

i Knowledge Compilation

A & okX => —B
—A & okX => B
Compiler
B & okY => —-C
—B & okY => C
Queries

=

Compiled
Structure

—_) =

Evaluator
(Polytime)

i Knowledge Compilation

A & okX => —B
—A & okX => B
Compiler
B & okY => —-C
—B & okY => C
Queries

=

‘)

—_) =

Evaluator
(Polytime)

i Knowledge Compilation

A & okX => —B

—A & okX => B
Compiler
B & okY => —-C

—B & okY => C

Queries

=

Prime Implicates
OBDD

—_) =

Evaluator
(Polytime)

Knowledge Compilation

i Map

= What's the space of possible target
compilation languages?
= Can it be synthesized in a semantically
systematic way?

= How do the languages compare?
= Succinctness (relative size)
= Operations they support in polytime

Knowledge Compilation

i Map

= For a given application: identify needed
operations

= Choose most succinct language that
supports desired operations

= Compile knowledge base into chosen
language

A Knowledge

iCompiIation MAP

Negation Normal Form

Decomposability

Polytime Operations

Determinism

/\ A Smoothness
or

Flatness

Decision
Ordering
an

Consistency (CO)

Validity (VA)

Clausal entailment (CE)
Sentential entailment (SE)
Implicant testing (IP)
Equivalence testing (EQ)
Model Counting (CT)
Model enumeration (ME)

Succinctness

Projection (exist. quantification)
Conditioning
Conjoin, Disjoin, Negate

i Propositional Logic

= Literal | X,.—X
s Clause (X Vv Y v —Z)
s ferm (X AYAZ)

= CNF: Conjunctive Normal Form
(XvYVv-ZH)An.AXVvaW)

= DNF: Disjunctive Normal Form
(X AYAZ)v.V(XA=ZAW)

i Propositional Logic

= Truth assignment (TA)
X :true,Y : false,Z :true, W : false

= TA satisfies sentence (model)
(XvYV-Z)An.AXVvaW)

= Following TA is not a model

X :true,Y : false,Z :true, W :true

i Negation Normal Form
d/l\and

an

and and and and and and and and
—A B — B A C - D D — C

rooted DAG (Circuit)

i Negation Normal Form
- Decomposabilit
/and\/ \ and DetIe)rminisn}l’

Smoothness

Flatness

or Decision

/y% o
and and and and and and and and

i Decomposability
and/or\a

d
AB C.D / \

or or or or

[T

and and and and and and and and

—A B - B A C - D D - C

i NNF Subsets

NNF

\&E, ME

DNNF

i Determinism

or

and///////////\\\\\\\\\\\and

and and and and and and and and

XA PAXX

—A B - B A C - D D - C

i Smoothness

or

and///////////\\\\\\\\\\\and

and and and and and and and and

XA PAXX

—A B - B A C - D D - C

i NNF Subsets

NNF

AE, ME

d-NNF s-NNF DNNF

*\4

ALIP
d-DNNF (102

sd-DNNF

i Flatness

Nested vs Flat languages

or

and and and and

X Y /Z —-X -Y ~/

(XAY AZYWV(ZA-XAAY) V(YAZA=X) V(= XA=Y A7)

i Simple Conjunction

or

and and and and
X Y V4 —X Y 4

Simple conjunction implies decomposability

i Simple Disjunction

and

T

or or or

VAVANVAN

X Y /Z -X

i NNF Subsets

d-NNF

NNF

s-NNF

'\4

ALIP

COyCE, ME

DNNF

d-DNNF

sd-DNNF

/\

EQ?

f-NNF

DNF

CNF

i Prime Implicates (PI)

Resolution 1 that:

X —X)er
(0[M), (ﬂ M) 2 CNF, it must

(ax v) e CNF
s CNF:

(—AVB)A(=BVCO)A(=CVv D)

s PI:
(—AN BYYA(—BVO)YA(—C N D)y
(—ANVCOCHIAN(—AN DYAN(—B N D)

i Prime Implicants (IP)

Consensus h that:

(@ NX),(fA—X)
(@A f)

s DNF:
(AAB)v (=B AC)

n IP:
(AANB)V(—BAC)v((AAC)

t must imply a

i NNF Subsets

NNF
/m
d-NNF s-NNF DNNF f-NNF
\ww/
d-DNNF |52
<d-DNNF DNF CNF
i CO,Cf,ME
VALIP, $E.E VA,IP,$E,EQ

1P Pl

i Decision

or

T~

and and

N N

o, [3: Are decision nodes

i Decision

or

Binary Decision Diagrams
i (BDDs)

N

and and

Decision implies determinism

i NNF Subsets

NNF
/m
d-NNF s-NNF DNNF f-NNF
d-DNNF |£0?
<d-DNNF DNF CNF
i CO,Cf,ME
VALIP, $E.E VA,IP,$E,EQ

1P Pl

Binary Decision Diagrams
i (BDDs)

T

and and

PER

and and apnd and
—|}5> — X2

Decision + decomposability = FBDD | Test once property

i NNF Subsets

NNF
/m
d-NNF s-NNF DNNF f-NNF

BDD \mw/

I//v d-DNNF [EQ?

FBDD [EQ? [osocr DNF CNF

d/'l CO’C ’ME
SE.E VA,IP, $E.E VA,IP,$E,EQ

MODS 1P Pl

Binary Decision Diagrams
i (BDDs)

T

and and

PER

and and apnd and
ﬁ>{>

Decision + decomposability + ordering = OBDD

i NNF Subsets

NNF
/m
d-NNF s-NNF DNNF f-NNF

BDD \mw/

I//v d-DNNF [EQ?

FBDD [EQ? [osocr DNF CNF

SE,EQ SE,E VA.IP, $E.E VA,IP,$E.EQ

OBDD MODS IP PI

i Language Succinctness

[.1 at least as succinct as 1.2

L1 <= L2

S1ze p(n) Size n

L.1 1s more succinct than .2

L1 < 1.2

i Odd Parity Function

i Tractability & Succinctness

NNF
DNNF

d-DNNF

FBDD

OBDD

Space Efficiency (succinctness)

Tractable Operations

decomposability

determinism

decision

ordering

Diagnosis,
Non-mon

Probabilistic
reasoning

i Separating Functions

= OBDD/FBDD:
=« Hidden weighted bit function hwb(x;,..,x,)

= DNNF/DNF:
= 0dd parity function parity(xy,..,X,)
= DNNF/OBDD:
= Distinct integers function distinct(xy,..,X)

i From OBDD to SDD

i From OBDD to SDD

i From OBDD to SDD

i From OBDD to SDD

i From OBDD to SDD

Primes

i From OBDD to SDD

SDD:
i Sentential Decision Diagram

SDD:
i Sentential Decision Diagram

*
ANB —-AAB -B

s

SDD:
i Sentential Decision Diagram

& @ \Vtree
T| |e|C| |-Ble / \
o |

*
ANB —-AAB -B

A4 /1 N\

Bla| |-B|L| |B|-4| |D|c| |-DlL| B A D

i OBDD as SDD

R ® Right-Linear Vtree

alA

/\

cIp] [-clL C D

i X-Partitions: The insight!

= Write function f(X,Y) as
h;1(X) g1(Y) + ... + h, (X) gu(Y)

such that:
h,{(X), ..., h(X) is a partition

(mutually exclusive and exhaustive; h; <> false)

i X-Partitions

= X-partition
h1(X) 91(Y) + ... + hp (X) gn(Y)

written as { (Ny,91), --., (Ny,9n) }

= We call h, primes, g, subs

i Compression & Canonicity

= X-partition is compressed if no equal subs

{ (h191), (h295) ..., (hngn) &

= If equal subs g;=g,, compress to:
{ (hy+hy9y), ..., (hnGn) }

= Every function f(X,Y) has a unique
compressed X-partition

i SDD
f=(AAB)vV(BAC)v(CAD)

29 A/

@ vtree

SDD

f=(AAB)vV(BAC)v(CAD)

—B

C

=D

1

B

vtree

/\

/

A

\

D

Compressed X-Partition of function f with X = {A,B}

{(AAB,true),(=AArB,C),(=B,C A D)}

C

i OBDDs are SDDs

= When X={X} (single variable), an X-partition
corresponds to a Shannon decomposition

s Primes: | X, X

s Subs:|f | X, f|-X

= X-partition: {(X, f | X),(=X, f |=X)}

i Polytime Apply Operation

s X-partition of AX,Y): [{(»,-g,)-----Cp, a,)}
s X-partition of g(X,Y):|€c7.5).---.(7, 5,3

= X-partition of

fog={(p,Ar.q,05))| p,Ar, = false}

= Result may not be compressed

i SDD vs OBDD

= SDD a strict superset of OBDD:
= Characterized by trees, which include orders
= Branch over sentences, which include literals

= SDDs maintain key properties of OBDDs:

= Canonical when compressed
= Polytime Apply Operation (no compression)

= SDDs: treewidth, OBDD: pathwidth
s SDDs more succinct than OBDDs

original
notation

new
notation

!L Operations

i Knowledge Compilation

KB

Compile>

Queries

=

Compiled
Structure

—_) =

Evaluator
(Polytime)

i Queries

= Consistency (CO)
= Validity (VA)
= Sentential entailment (SE)
= Clausal entailment (CE): KB implies clause
= Implicant testing (IP): term implies KB
= Equivalence testing (EQ)
= Model Counting (CT)
= Model enumeration (ME)

i Transformations

= Projection (existential quantification)
= Conditioning

= Conjoin

= Disjoin

= Negate

!’_ Decomposability

i Example Knowledge Base

i Decomposable

/\

and

R

B or or Or or ~B

AN/

i Decomposable
A okX /\

and

o /\ / \
/ or or or ~B
~A ~C A C

~0kX ~0kY

i Decomposable

iSatisfiabiIity

oSAT(A or B) iff SAT(A) or SAT(B)
oSAT(A and B) iff SAT(A) and SAT(B)
oSAT(X) is true

oSAT(~X) is true

oSAT(True) is true

oSAT(False) is false

i Satisfiability

/\

and

B /or /or or or ~B

~0kX ~o0kY

i Satisfiability

i Clausal Entailment

KB entails LyvL,v..vlL, ?

KB &~L, & ~L, & ... & ~L, SAT?

i Literal Conjoin

and

i Literal Conjoin

/\ A

and

/\ R

or or or ~B

\& &

~0kX ~o0kY

i Literal Conjoin

Conditioning /\and .

or or or ~B

S\

~0kX ~o0kY

i Literal Conjoin

and
or A\
/ \ A

and and
B /or /or or or ~B
false ~C true C

~0kX ~o0kY

A ~C okX okY

and

NS -
/mky

oxr
/////\\\\\
and and
or oOr
/ /
false true true false

false false

Projection: Existential
i Quantification

Knowledge Base

A=A=B,B=C,C=D

Existentially quantifying B,C
Forgetting B,C
Projecting on A,D

(3BACA)= A= D

Projection: Existential
i Quantification

Formal Definition

IXA =(A| X)v (A]|—X)

oIf Knowledge base is a CNF:
eClose under resolution
eRemove all clauses that mention X

Projection: Existential
i Quantification

/\

and

/\ R

/ or Or or ~B
SO 5 2/ (S

~okX @

Projection: Existential
i Quantification

(A3x(AAT)

=(AAD) [X)V((AAT)[=X)
=(A[X)AT X))V ((A]X)AT| X))
=(AANT | X)V(AAT |—=X))
=AA(T|X)v ' |—=X))

= A A (JXT)

~o0kX true

i Minimum Cardinality

A & okX => ~B
~A & okX => B
B & okY => ~C
~B & okY => C

okX | okY A B C

true true true | false | true 1
true false true | false | false 3

i Minimum Cardinality

Minimizing:
i Requires Smoothness

1
or
andl/ \an(}
1 /\ 0 0 1
or or or or
}nd %nd and an(} }nd and anZd anld

—-A B - B A C - D D - C

izing
orl
1'///////////\\\\\\\\\\\an(}
0 1

2 1
an(} }nd and and and

A C - D D - C

1
or
andl/ \an(}
1 /\ 0 0 1
oF or oF or

1 2 1 0 2 1

and and and an(} and and and and

—-A B - B A C - D D - C

/and\ and
/OX></\AM
and and and and and and

and and and and and and

!'_ Determinism

i Determinism

or

and///////////\\\\\\\\\\\and

and and and and and and and and

XA PAXX

—A B - B A C - D D - C

i Counting Models

or

amd— T and

and and and and and and and and

XA PXOCX

—-A B - B A C - D D - C

i Counting Graph

8

*4/+\ x4

/\ 0 /\
2, + 2 z

i Counting Models

S={A, — B} or
and///////////’\\\\\\\\\\\\and

) T N\

and and and and and and and and

XA PXOCX

—-A B - B A C - D D - C

i Counting Models

S={A, — B} or
and////////////\\\\\\\\\\\\and

) T N\

and and and and and and and and

XA PROCX

false false true true C - D D — C

i Counting Graph

S={A, — B} v
|

false false true true C - D D — C

i Determinism

Query d-DNNF
CO: Consistency Yes

VA: Validity Yes

CE: Clausal entailment Yes

SE: Sentential entailment

IP: Implicant testing Yes

EQ: Equivalence testing ?

MC: Model Counting Yes

ME: Model enumeration Yes

i OBDDS and SDDs

Query OBDD
CO: Consistency Yes
VA: Validity Yes
CE: Clausal entailment Yes
SE: Sentential entailment Yes
IP: Implicant testing Yes
EQ: Equivalence testing Yes
MC: Model Counting Yes
ME: Model enumeration Yes

A Knowledge

iCompiIation MAP

Negation Normal Form

Decomposability

Polytime Operations

Determinism

/\ A Smoothness
or

Flatness

Decision
Ordering
an

Consistency (CO)

Validity (VA)

Clausal entailment (CE)
Sentential entailment (SE)
Implicant testing (IP)
Equivalence testing (EQ)
Model Counting (CT)
Model enumeration (ME)

Succinctness

Projection (exist. quantification)
Conditioning
Conjoin, Disjoin, Negate

UCEA

Automated Reas@ning Group

The Three Eras From Numbers to Decisions Logic, Probability & Learning
P " _and mthmn Eivn, Bmvn e |
Imlllel‘ﬂ logi // 1 \ém
mone'.‘?“"i'{‘i.,‘fi’l’,'_s'.,stm..w | B8 u L__] 1~
b — @% e
CACM Oct. 2018 - Human- Adnan Darwiche — On Al Adnan Darwiche — Explaining Adnan Darwiche - On the Adnan Darwiche — On Model-
Level Intelligence or Animal... Education and Verifying Al Systems Role of Logic in Probabilisti... Based versus Model-Blind...
Association for Computing Ma... UCLA Automated Reasoning G... UCLA Automated Reasoning G... UCLA Automated Reasoning G... UCR School of Public Policy
2.7K views * 4 months ago 1.4K views * 5 months ago 464 views * 4 months ago 2K views * 1 year ago 3.3Kviews * 1 year ago
Learning and Reasoning with Bayesian Networks P PLAY ALL -
9 g Wi =y Subscribe!
Lectures by Adnan Darwiche for his UCLA course on Bayesian Networks.

1a. Course Overview with a Historical Perspective on Al
UCLA Automated Reasoning Group « 2.2K views * 1 year ago Sentential Decision Dlagrams
Adnan Darwiche's UCLA course: Learning and Reasoning with Bayesian Networks.

/1 |\,

BA ~BL B4 DC-DL
SDD Circuit

Adnan Darwiche - SDD: A
New Canonical...

