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Many ML successes

Q) DeepMind “

‘Gt AlphaGo

AlphaGo Zero & Alpha Zero é\

L

https:fen.wikipedia. org/wikiWaymo

Image & Speech Recognition

ILSVRC top-5 Error on ImageNet e
w & .
AlexNet ) i
““\ |IIII ,( -
“‘ - — —

hitps:fr.wikipedia.org/wiki'Pepper_{robot
2010 2011 w12 2013 2014  Human 205 2016 w17 * = pper )

httpz¥gradientscience.org/infro_adversarial’
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Problem: ML models are brittle
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Eykholt et al’18 Aung et al’17
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Adversarial examples can be very unsettling

Original image Adversarial noise Adversarial example

Dermatoscopic image of a benign Perturbation computed Combined image of nevus and
melanocytic nevus, along with the by a common adversarial attack perturbation and the
diagnostic probability computed attack technique. diagnostic probabilities from
by a deep neural network. the same deep neural network.
I | Benign | Benign

I Malignant I | \alignant

T T T T T T T T T T T T

Model confidence Model confidence
Finlayson et al., Nature 2019
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Problem: ML models are opaque

Why does the NN predict a cat?
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Problem: ML models are opaque

Why does the NN predict a cat?

Which features matter? Are there general explanations??
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B We summarize the potential impact
that the European Union’s new General
Data Protection Regulation will have on
the routine use of machine-learning
algorithms. Slated to take effect as law
across the European Union in 2018, it
will place restrictions on automated
individual decision making (that is,
algorithms that make decisions based
on user-level predictors) that “signifi-
cantly affect” users. When put into
practice, the law may also effectively cre-
ate a right to explanation, whereby a
user can ask for an explanation of an
algorithmic decision that significantly
affects them. We argue that while this
law may pose large challenges for indus-
try, it highlights opportunities for com-
puter scientists to take the lead in
designing algorithms and evaluation
frameworks that avoid discrimination
and enable explanation.
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TheVerge.com

A new bill would force companies to check their

algonthms for blas

%ol Robertson | @thedaxtriarchy | A kel 2pi

Algorithmic Accountability Act

B We summarize the potential impact
that the European Union’s new General
Data Protection Regulation will have on
the routine use of machine-learning
algorithms. Slated to take effect as law
across the European Union in 2018, it
will place restrictions on automated
individual decision making (that is,
algorithms that make decisions based
on user-level predictors) that “signifi-

cantly affect” users. When put into
practice, the law may also effectively cre-
ate a right to explanation, whereby a
user can ask for an explanation of an
algorithmic decision that significantly
affects them. We argue that while this
law may pose large challenges for indus-
try, it highlights opportunities for com-
puter scientists to take the lead in
designing algorithms and evaluation
frameworks that avoid discrimination
and enable explanation.

YA

EXPLAIN!\H[E ARTIFICIAL INTELLIEENL’E

FY17 FY18 FY19 FY20 Fy21

David Gunning
DARPA/I20
Program Update November 2017

DARPA,

Explainable Artificial Intelligence (XAI)
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XAl & EU guidelines

Search

European Commission > Strategy > Digital Single Market > Reports and studies >

Digital Single Market

REPORT / STUDY | 8 April 2019

Ethics guidelines for trustworthy Al

About Artificial
Following the publication of the draft ethics guidelines in intelligence
December 2018 to which more than 500 comments were
received, the independent expert group presents today their | Blog posts
ethics guidelines for trustworthy artificial intelligence. |
News
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XAl & the principle of explicability
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Explanations with heuristic approaches unsettling

Explanations

Dataset (# unique) incorrect minimal
LIME Anchor SHAP LIME Anchor SHAP LIME Anchor SHAP

adult (5579) 61.3% 80.5% 70.7% 7.9% 1.6% 102% 30.8% 17.9% 19.1%
lending  (4414) 260% 3.0% 17.0% 04% 0.0% 25% 75.6% 97.0% 80.5%

rcdv 3696) 94.1% 99.4% 859% 46% 04% T79% 13% 02% 6.2%
compas  (778) 719% 84.4% 60.4% 206% 1.7% 27.8% 7.5% 13.9% 11.8%
german (10000 853% 99.7% 63.0% 14.6% 02% 37.0% 01% 01% 0.0%
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Explanations

Dataset (# unique) incorrect minimal
LIME Anchor SHAP LIME Anchor SHAP LIME Anchor SHAP

adult (5579) 61.3% 80.5% 70.7% 7.9% 1.6% 102% 30.8% 17.9% 19.1%
lending  (4414) 260% 3.0% 17.0% 04% 0.0% 25% 75.6% 97.0% 80.5%

rcdv 3696) 94.1% 99.4% 859% 46% 04% T79% 13% 02% 6.2%
compas  (778) 719% 84.4% 60.4% 206% 1.7% 27.8% 7.5% 13.9% 11.8%
german (10000 853% 99.7% 63.0% 14.6% 02% 37.0% 01% 01% 0.0%

Similar results for

Google’'s XAl service??
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Solutions to problems?

« Assess robustness
- Learn interpretable models
- Explain black-box models

- How about heuristic approaches?
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Solutions to problems?

Assess robustness

- How easy it is to fool and ML model?

Learn interpretable models
 Decision trees; decision sets; decision lists; etc.

Explain black-box models
- By using some accepted definition of explanation

How about heuristic approaches?
- No formal guarantees provided

8/39



How/Why to reason about ML models, with formal guarantees?

« Problem complexity not necessarily an hopeless obstacle
- NP-hardness does not mean impossible to solve!
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How/Why to reason about ML models, with formal guarantees?

« Problem complexity not necessarily an hopeless obstacle
- NP-hardness does not mean impossible to solve!

* There are efficient reasoners
« SAT, SMT, CP, ILP, etc.

- Effective problem encodings

- Exploit known solutions
- Exploit reasoners for efficient problem solving

Formal reasoning about ML models is a practically viable option

9/39



Some uses of formal reasoning methods (FRM)

e Encodings: SAT/SMT/ILP

® Prime implicants
® MUSes Explanations

® Enumeration
® MUSes/MCSes

‘ FRM in ML

Synthesis /
Learning

e Encodings: SAT/SMT/ILP
® MaxSAT & MCSes
® Branch&Bound

Fairness

' Verification /

Robustness

e Encodings: SAT/SMT/ILP
® Abstraction-refinement
® Cores/MUSes

10/39



This tutorial - formal reasoning in ML

- Part 01: first contact with formal reasoning tools Joao
- Part 02: learning interpretable models Kuldeep
- Part 03: assessing robustness of ML models Nina
- Part 04: rigorous explanations of ML models Alexey
- Part 05: recent work on explanations & wrap-up Joao

- Duality, tractability & links with fairness

1/39



Part 1

Basic Formal Toolbox



Preliminaries
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Preliminaries

Classification Problems in ML
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Classification problems

- Set of features 7 = {1,2,...,n}, each taking values from a domain D;
- Features can be categorical or ordinal, discrete or real-valued

* Feature space: F =II}"_, D;
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Classification problems

Set of features 7 = {1,2,...,n}, each taking values from a domain D,
- Features can be categorical or ordinal, discrete or real-valued

* Feature space: F =II}"_, D;

ML model M computes classification function o : F — K
- For simplicity, we will use £ = {#H, B}

Instance v € F, with prediction ¢ = p(v),c e K
« Obs: instance ~ example ~ sample ~ point

Each v € [ is also represented as a set of literals, C, = {(x; = vj)|i € F}
- For boolean features, x; = 0 represented by —x; and x; = 1 represented by x;

14 /39



Preliminaries

Logic Overview
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The SAT problem

- SAT is the decision problem for propositional logic

- Well-formed propositional formulas, with variables, logical connectives: —, A, V, —, <+, and
parenthesis: (,)
- Often restricted to Conjunctive Normal Form (CNF)
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- Well-formed propositional formulas, with variables, logical connectives: —, A, V, —, <+, and
parenthesis: (,)

- Often restricted to Conjunctive Normal Form (CNF)

+ Goal:
Decide whether formula has a satisfying assignment

- Example:
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« Example models:
- {r,s,a,b,c,d}
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The SAT problem

- SAT is the decision problem for propositional logic

- Well-formed propositional formulas, with variables, logical connectives: —, A, V, —, <+, and
parenthesis: (,)

- Often restricted to Conjunctive Normal Form (CNF)

+ Goal:
Decide whether formula has a satisfying assignment

- Example:
FE2()ATVS)A(=wVa)A(=xVDb)A(=yV-zVc)A(=bV-cVd)
« Example models:

- {r,s,a,b,c,d}
- {r,s,—~x,y,~w,z,—a,b,c,d}

 SAT is NP-complete (o071
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The CDCL SAT disruption

« CDCL SAT solving is a success story of Computer Science

- Conflict-Driven Clause Learning (CDCL)
- (CDCL) SAT has impacted many different fields
- Hundreds (thousands?) of practical applications

. Model-Based Diagnosis

: a Noise Analysis Technology Mappi
Network Security NanagementFaylt Locgllniazt;ﬁtv)eﬁmg Pedigree cgﬂs'sm'?gynguﬂin:%pelggn%lgﬁusn

Maximum SatisfiabilityConfiguration emination Anaiysis
Sﬂftwal‘e TﬂStlﬂgfilter Design SWitching Network Verification

Equivalence Checking  Resource Constrained Scheduling

Satisfiability Motulo Theoriesp,ekaoe ianagement smiciiTs

Quantified Boolean Formulas _ ! bolic Trajectory Evaluation
Software Model Checking stam rigranming | " it
bapotying_ woiel FingHardware Motlel Checking

Test Pattern Generation Plannmg Lugic Synthesis Design Debuging

Power Es““‘““”“[}ircujt_ﬂelay Bomputatinn Genome Rearrangement .
Test Suite Minimization Lazv mause [{e“eratmn
Pseudo-Boolean Formulas

atisfiability
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CDCL SAT solver (continued) improvement

[Source: Simon 2015]
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How good are SAT solvers? — an example

- Cooperative pathfinding (CPF)
- N agents on some grid/graph
- Start positions
« Goal positions
« Minimize makespan
- Restricted planning problem
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How good are SAT solvers? — an example

#%% tracker: a pathfinding tool x*

. . Initialization ... CPU Time: 0.004711
- Cooperative pathfinding (CPF) Number of variables: 113315
. Tentative makespan 1
- N agents on some grid/graph Number of variables: 226630
- Start positions Number of assumptions: 1
.. ¢ Running SAT solver ... CPU Time: 0.718112
- Goal positions ¢ Done running SAT solver ... CPU Time: 0.830099
« Minimize makespan No solution for makespan 1
. . Elapsed CPU Time: 0.830112
+ Restricted planning problem Tentative makespan 2

Number of variables: 339945
Number of assumptions: 1

« Concrete examp[e c Running SAT solver ... CPU Time: 1.27113
. . ¢ Done running SAT solver ... CPU Time: 1.27114
+ Gaming grid No solution for makespan 2
. 1039 vertices Elapsed CPU Time: 1.27114
+ 1928 edges
- 100 agents Tentative makespan 24
Number of variables: 2832875
Number of assumptions: 1
c Running SAT solver ... CPU Time: 11.8653
c Done running SAT solver ... CPU Time: 11.8653

No solution for makespan 24

Elapsed CPU Time: 11.8653

Tentative makespan 25

Number of variables: 2946190

Number of assumptions: 1

¢ Running SAT solver ... CPU Time: 12.3491

c Done running SAT solver ... CPU Time: 16.6882
Solution found for makespan 25

Elapsed CPU Time: 16.6995
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- Cooperative pathfinding (CPF)

N agents on some grid/graph
Start positions

Goal positions

Minimize makespan
Restricted planning problem

« Concrete example

Gaming grid

1039 vertices

1928 edges

100 agents
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How good are SAT solvers? — an example

- Cooperative pathfinding (CPF)

- N agents on some grid/graph
- Start positions

« Goal positions

Minimize makespan
Restricted planning problem

« Concrete example
-+ Gaming grid
« 1039 vertices
+ 1928 edges
+ 100 agents
« Formula w/ 2832875 variables!
« Formula w/ 2946190 variables!

 Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!

#%% tracker: a pathfinding tool x*
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Grasping the search space ...

- Number of seconds since the Big Bang: ~ 10'7
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Grasping the search space ...

- Number of seconds since the Big Bang: ~ 10'7

- Number of fundamental particles in observable universe: ~ 10°" (or ~ 10%°)

- Search space with 2832875 propositional variables (worst case):

- # of assignments to > 2.8 x 10° variables: > 10840000 u
- Obs: SAT solvers at present (but formula dependent)
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Preliminaries

Logic & Optimization
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Optimization with maximum satisfiability (MaxSAT)

Xe V X2 —Xg V X9 X7 V X1 —X1
—Xg V Xg Xg V —Xg Xo V Xy X4 V X5
X7V X5 —X7 V X5 —X5 V X3 —X3

« Unsatisfiable formula
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Optimization with maximum satisfiability (MaxSAT)

Xg V Xo —Xg V X2 —X2 V X1
—Xg V Xg Xg V —Xg Xo V Xy X4 V X5
—X7 V X5 —X5 V X3 —1X3

- Unsatisfiable formula
- Find largest subset of clauses that is satisfiable
- A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula

« The MaxSAT solution is one of the smallest (cost) MCSes
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The MaxSAT (r)evolution
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The MaxSAT (r)evolution — partial MaxSAT
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QMaxSAT (2011-12) —e—
QMaxSAT (2010)
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Source: [2018 MaxSAT Eval. organizers]
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MSCG (2015)
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The MaxSAT (r)evolution — weighted MaxSAT
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etc.
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Satisfiability Modulo Theories (SMT)

- Automate reasoning in (fragments of) first-order logic (FOL)

Theory

Solvers

Equality+UF
Arithmetic
etc.

- Problem representation in propositional logic (PL):

- Positive: Efficient (in practice) SAT algorithms
- Negative: Expressiveness via CNF encodings

- PL + domain-specific reasoning

- Positive: Improved expressiveness
- Negative: Can be (far) less efficient than SAT

- Note: Standard definitions of FOL apply
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- All x; variables integer

« Solve:

((X4—X2 SS)\/(X4—X3 Z5))/\(X4—X3 SG)/\
(Xl—XQ < —1)/\(X1—X3 < —2)/\(X1—X4 < —1)/\(X2—X1 SQ)/\
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- All x; variables integer

« Solve:

((X4—X2 SS)\/(X4—X3 Z5))/\(X4—X3 SG)/\
(Xl—XQ < —1)/\(X1—X3 < —2)/\(X1—X4 < —1)/\(X2—X1 SQ)/\
(X3—X2 < —1)/\((X3—X4 < —2)\/(X4—X3 > 2))

- Integer difference logic (with Boolean structure)

- Unsatisfiable (Why?)
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Another example

- All't;; variables integer
* Solve:

(t1,0 2 0)A(t12 >t11+2)A(ti2+1<8)A
(t2,1 > 0) A(ta2 >t11+3)A(t22+1<8)A
(t3,1 > 0)A(tz32 >t11+2)A(ts2+3 < 8)A
(t11 >t21+3) V(a1 >t11+2)A

((t1,1 >t31+2)V (ta1 >t11 +2))A

((t2,1 >t31+2)V(t31 >ta 1+ 3))A

((t1,2 >tao+ 1)V (t22 >t1 2+ 1))A

(t12 >t32+3)V(t32 >t 2+ 1))A

((to2 >t32+3)V(t3 2 >tao+1))
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((t1,1 >t31+2)V (ta1 >t11 +2))A

((t2,1 > t3,1 +2) V (t3,1 > t2,1 +3))A
(tipg>taa+1)V(tao >ti 2+ 1))A

(t12 >t32+3)V(t32 >t 2+ 1))A

((to2 >t32+3)V(t3 2 >tao+1))

- Another example of integer difference logic (with Boolean structure)

28/39



Another example

- All't;; variables integer
* Solve:

(t1,1 >0)A(ti2>ti1+2)A(ti2+1<8)A
(t2,1 > 0)A(ta2 >t11+3)A(t22+1 <8)A
(t3,1 > 0) A(tz2 > t1,1 +2) A(t3,2 +3 < 8)A
(t11 >t21+3) V(a1 >t11+2)A

((t1,1 >t31+2)V (ta1 >t11 +2))A

((t2,1 > t3,1 +2) V (t3,1 > t2,1 +3))A
(tipg>taa+1)V(tao >ti 2+ 1))A

(t12 >t32+3)V(t32 >t 2+ 1))A

((to2 >t32+3)V(t3 2 >tao+1))

- Another example of integer difference logic (with Boolean structure)
. Satisﬁable, with model: t1,1 = 9; t1,2 == 7; t271 = 2; t2,2 = 0; t3’1 = 0; t372 == 7;
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Entailment

- Let ¢ represent some formula, defined on feature space [, and representing a function
¢:F—{0,1}

- Let 7 represent some other formula, also defined on F, and with 7 : F — {0,1}

30/39



Entailment

- Let ¢ represent some formula, defined on feature space [, and representing a function
¢:F—{0,1}
- Let 7 represent some other formula, also defined on [, and with 7 : I — {0, 1}

- We say that 7 entails ¢, written as 7 o, Iif:

V(x € F).|[7(x) = o(x)]

30/39



Entailment

- Let ¢ represent some formula, defined on feature space [, and representing a function
¢:F—{0,1}

- Let 7 represent some other formula, also defined on [, and with 7 : I — {0, 1}

- We say that 7 entails ¢, written as 7 o, Iif:

V(x € F).|[7(x) = o(x)]

« An example:
- F={0,1}2
* p(X1,X2) = X1 V X2
+ Clearly, x1 E p and —x2 F ¢

30/39



Entailment

- Let ¢ represent some formula, defined on feature space [, and representing a function
¢:F—{0,1}

- Let 7 represent some other formula, also defined on [, and with 7 : I — {0, 1}

- We say that 7 entails ¢, written as 7 o, Iif:

V(x € F).|[7(x) = o(x)]

« An example:
- F={0,1}2
* p(X1,X2) = X1 V X2
+ Clearly, x1 E p and —x2 F ¢

« Another example:
- F={0,1}3
. (p(Xl,XQ,Xg) = X1 AN X2V X1 N\ X3
« Clearly, x1 AxoF o and x; AXsE ¢

30/39



Entailment

- Let ¢ represent some formula, defined on feature space [, and representing a function
¢:F—{0,1}
- Let 7 represent some other formula, also defined on [, and with 7 : I — {0, 1}

- We say that 7 entails ¢, written as 7 o, Iif:
V(x € F).[7(x) = o(x)]

- An example:
- F={0,1}2
. gO(Xl,XQ) = X1 V X2
+ Clearly, x1 E p and —x2 F ¢
« Another example:
- F={0,1}3
* ©(X1,X2,X3) = X1 AX2 VX1 A X3
« Clearly, x1 AxoF o and x; AXsE ¢

- For non-boolean feature spaces, we let ¢, denote the predicate ¢(x) = ¢, I.e.
pe(x) € {0, 1}
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Prime implicants & implicates

- A conjunction of literals = (which will be viewed as a set of literals where convenient) is a
prime implicant of some function ¢ if,

1. mF
2. Foranyn' Cm, 'K o
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Prime implicants & implicates

- A conjunction of literals = (which will be viewed as a set of literals where convenient) is a
prime implicant of some function ¢ if,
1. mF
2. Foranyn' Cm, 'K o

- Example:
- F={0,1}3
. QO(Xl,XQ,X;g) = X1 A X2V X1 N\X3
« Clearly, x1 AXx2F ¢
« Also, x1 ¥ o and xg ¥ ¢

- A disjunction of literals p (also viewed as a set of literals where convenient) is a prime
implicate of some function ¢ if

1. pFp
2. Forany p’ C p, o p’
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Recap tools of the trade

SAT: decision problem for propositional logic

- Formulas most often represented in CNF
- There are optimization variants: MaxSAT, PBO, MinSAT, etc.
- There are quantified variants: QBF, QMaxSAT, etc.

SMT: decision problem for (decidable) fragments of first-order logic (FOL)

- There are optimization variants: MaxSMT, etc.
- There are quantified variants

MILP: decision/optimization problems defined on conjunctions of linear inequalities
over integer & real-valued variables

CP: constraint programming
- There are optimization/quantified variants
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Recap tools of the trade

SAT: decision problem for propositional logic

- Formulas most often represented in CNF
- There are optimization variants: MaxSAT, PBO, MinSAT, etc.
- There are quantified variants: QBF, QMaxSAT, etc.

SMT: decision problem for (decidable) fragments of first-order logic (FOL)

- There are optimization variants: MaxSMT, etc.
- There are quantified variants

MILP: decision/optimization problems defined on conjunctions of linear inequalities
over integer & real-valued variables

CP: constraint programming
- There are optimization/quantified variants

Background on SAT/SMT:

« https://alexeyignatiev.github.io/ssa-school-2019/
« https://alexeyignatiev.github.io/ijcailotut/
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Logic Encodings of ML Models
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Rules with ordinal features

- Example ML model:

Features: xi,x2 € {0,1,2} (integer)

Rules:
IF 2Xx; + X2 >0 THEN predict ©

IF 2x; —Xx2 <0 THEN predict &

34739



Rules with ordinal features

- Example ML model:

Features: xi,x2 € {0,1,2} (integer)

Rules:
IF 2Xx; + X2 >0 THEN predict ©

IF 2x; —Xx2 <0 THEN predict &

-+ Q: Can the model predict both # and 5 for some instance?

34739



Rules with ordinal features

- Example ML model:

Features: xi,x2 € {0,1,2} (integer)

Rules:
IF 2Xx; + X2 >0 THEN predict ©

IF 2x; —Xx2 <0 THEN predict &

-+ Q: Can the model predict both # and 5 for some instance?
* Yes, of course: pickx; =0andxy =1

34739



Rules with ordinal features

- Example ML model:

Features: xi,x2 € {0,1,2} (integer)

Rules:
IF 2Xx; + X2 >0 THEN predict ©

IF 2x1 —xo <0 THEN predict B

-+ Q: Can the model predict both # and 5 for some instance?

* Yes, of course: pickx; =0andxy =1
- A formalization:

Yp < (2X1 +X2 > 0) A Yn < (2X1 — X2 <0) A (Vp) A (Vn)

... and solve with SMT solver

.. There exists a model iff there exists a point in feature space yielding both predictions
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Decision sets

- Example ML model:

Features: xi,x2 € {0,1} (boolean)

Rules:
IF x1 A —Xo AX3 THEN predict &=

IF x1 A—=Xx3 AXs THEN predict =
IF X3 A X4 THEN predict 8
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Decision sets

- Example ML model:

Features: xi,x2 € {0,1} (boolean)

Rules:
IF x1 A —Xo AX3 THEN predict &=

IF x1 A—=Xx3 AXs THEN predict =
IF X3 A X4 THEN predict 8

-+ Q: Can the model predict both # and 5 for some instance?
* Yes, certainly:  pick (x1,X2,X3,X4) = (1,0,1,1)

- A formalization:
yp,l < (X1 N —Xo /\X3) AN

Yn1 < (X1 A X3 AXa) A
Yn2 < (Xs AXa) A (Vp <> Yp1) A
Vo <> (Yn,1 VYn2)) A(Yp) A (Vn)

... and solve with SAT solver (after clausification)

.. There exists a model iff there exists a point in feature space yielding both predictions
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Neural networks

Input Hidden Output
layer layer layer

@

Input #1 —
Input #2 —
. . Output
Input #3 —
Input #4 —

\'

- Each layer (except first) viewed as a block, and

- Compute x’ given input x, weights matrix A, and bias vector b
- Compute output y given x’ and activation function
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Neural networks

Input Hidden Output
layer layer layer

@

Input #1 —
Input #2 —
. . Output
Input #3 —
Input #4 — ot

\'

- Each layer (except first) viewed as a block, and

- Compute x’ given input x, weights matrix A, and bias vector b
- Compute output y given x’ and activation function

- Each unit uses a RelLU activation function [NH10]
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Encoding NNs using MILP

Computation for a NN ReLU block, in two steps:

xX =A-x+b

y = max(x’,0)
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Encoding NNs using MILP

Computation for a NN ReLU block, in two steps:

xX =A-x+b

y = max(x’,0)

Encoding each block: [F118]

n
Z a; iXj + b; = Yi — S;

j=1

Zi=1—=y; <0
Zi=0—=5<0

yi > 0,5, >0,z € {0,1}

Simpler encodings exist, but not as effective k8D 17]
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Encoding NNs using MILP

Computation for a NN ReLU block, in two steps:

Modeling ML models

r_
x =A-x+b with logic is not only

y = max(x’,0) possible but also simple !

Encoding each block:

[F)18]

n
Z a; iXj + b; = Yi — S;

j=1

Zi=1—=y; <0
Zi=0—=5<0

yi > 0,5, >0,z € {0,1}

Simpler encodings exist, but not as effective k8D 17]
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Oracle-based problem solving

- Many problems are not decision problems

- Use decision procedures as oracles for SAT Oracles
- Optimize some cost function
« Maximum satisfiability (MaxSAT), < NP oracles >>
pseudo-boolean optimization (PBO)
+ But also MaxSMT, etc. models Yes witnesses

No summaries «— unsat cores

* Find one minimal set

- Reason about inconsistency: MUSes/MCSes
- Compile knowledge: prime implicants/implicates

- Enumerate minimal/optimal solutions

- Enumerate MaxSAT solutions
- Enumerate primes, MUSes, MCSes

« Other problems

- Propositional abduction
+ Etc.
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Interpretable Classification

Given training data, learn function that correctly classifies that
data, performs suitably well on unseen data, and offers human-
interpretable functions for the predictions made
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Interpretable Classification

Given training data, learn function that correctly classifies that
data, performs suitably well on unseen data, and offers human-
interpretable functions for the predictions made

Given training data, learn decision sets/decision trees that
correctly classify that data, perform suitably well on unseen
data, and offer human-interpretable functions for the predic-
tions made
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Recipe

Step 1
Step 2
Step 3
Step 4

Step 5

Step 6

Discretization of the training and test dataset
Define the grammar of the classifier
Hard Constraints to capture structure of the rules

Hard Constraints to capture evaluation of rules: A rule
must

® return True on positive example and False on
negative example

Soft Constraints

® Minimize the size of rules

Rely on progress in SAT and MaxSAT solving over the
past decade

2/41
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Discretization

Ex. Height (H) | Weight (W) Risk (R)
el 160 210 0
e 175 210 0
& 170 190 1
€4 166 190 0
€5 172 170 1
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Discretization

Ex. Height (H) | Weight (W) Risk (R)
el 160 210 0
e 175 210 0
& 170 190 1
€4 166 190 0
€5 172 170 1

® Suppose Height can range between 50 and 250 cm and weight
ranges between 100 and 300.

® Do we need variable for every value of H and W7
® One-hot encoding: Only introduce variables to differentiate two
distinct data points.

— Variables corresponding to H > 170, H > 165, H > 172, H > 175
suffice
— Variables corresponding to W > 200 and W > 180
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Discretization

Ex. Height (H) | Weight (W) Risk (R)

el 160 210 0

(S) 175 210 0

€3 170 190 1

€4 166 190 0

es 172 170 1
Ex. H > 170 H > 165 H > 172 H>175 | W >200 | W > 180 Risk (R)
e1 0 0 0 0 1 0 0
e 1 0 1 1 1 0 0
e3 1 1 0 0 0 1 1
€4 0 1 0 0 0 1 0
es 1 1 1 0 0 0 1
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Outline

Classification via Decision Sets
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Classification problems

Ex. | Vacation (V) | Concert (C) | Meeting (M) Expo (E) Hike (H)
el 0 0 1 0 0
e 1 0 0 0 1
€3 0 0 1 1 0
€4 1 0 0 1 1
€5 0 1 1 0 0
€6 0 1 1 1 0
€7 1 1 0 1 1

® Training data (or examples): £ = {e1,...,em}
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® Training data (or examples): £ = {e1,...,em}

® Binary features: F = {f1,..

'7fK}

- 12V, F2C 3, =M,and 4, =2 E
— Literals: f, and —f,
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Classification problems

Ex. | Vacation (V) | Concert (C) | Meeting (M) Expo (E) Hike (H)

el 0 0 1 0 0

e 1 0 0 0 1

€3 0 0 1 1 0

€s 1 0 0 1 1

€5 0 1 1 0 0

€6 0 1 1 1 0

€7 1 1 0 1 1
Training data (or examples): £ = {e1,...,epm}
Binary features: F = {f,...,fx}

- 12V, F2C 3, =M,and 4, =2 E
— Literals: f, and —f,

Feature space: U = Hﬁl{fr, —f, }

Binary classification: C = {cp =0,¢c1 = 1}
— & partitioned into £ and £

7/41



Example

Ex. | Vacation (V) | Concert (C) | Meeting (M) Expo (E) Hike (H)
el 0 0 1 0 0
e 1 0 0 0 1
€3 0 0 1 1 0
€s 1 0 0 1 1
€5 0 1 1 0 0
€6 0 1 1 1 0
€7 1 1 0 1 1

® Binary features: F = {f1,f, f3, 14}
- LAV, Lh2C RE2M,and L, 2E

® ¢ is represented by the 2-tuple (71,¢1),

— 71 = (_IV,_|C, Ma_'E)
S = O

o Y ={V,-V} x{C,=C} x {M,-M} x {E,-E}

8 /41



ltemsets & decision sets

e Given F, an itemset 7 is an element of 7 = ____5:1{7?, —f, }
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ltemsets & decision sets

e Given F, an itemset 7 is an element of 7 = ____5:1{7(” —f, }

® A rule is a 2-tuple (7, ¢), with itemset 7 € 7, and class c € C
Rule (7, ¢) interpreted as:

IF all specified literals in 7 are true, THEN pick class ¢

® A decision set $ is a finite set of rules — unordered

* A rule of the form © = ((), c) denotes the default rule of a
decision set $

— Default rule is optional and used only when other rules do not
apply on some feature space point
— In this talk, we will seek to learn

9/41



Example

Ex. | Vacation (V) | Concert (C) | Meeting (M) Expo (E) Hike (H)
el 0 0 1 0 0
e 1 0 0 0 1
€3 0 0 1 1 0
€s 1 0 0 1 1
€5 0 1 1 0 0
€6 0 1 1 1 0
€7 1 1 0 1 1

® Rule 1: ((—M,—E), 1)

— Meaning: if -Meeting and —Expo then Hike

® Rule 2: ((V,—C), )

— Meaning: if Vacation and —Concert then Hike

® Rule 3: ((=V,M), o)

— Meaning: if —Vacation and Meeting then —Hike
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Example

Ex. | Vacation (V) | Concert (C) | Meeting (M) Expo (E) Hike (H)
el 0 0 1 0 0
e 1 0 0 0 1
€3 0 0 1 1 0
€s 1 0 0 1 1
€5 0 1 1 0 0
€6 0 1 1 1 0
€7 1 1 0 1 1

® Rule 1: ((—M,—E), 1)

— Meaning: if -Meeting and —Expo then Hike

® Rule 2: ((V,—C), )

— Meaning: if Vacation and —Concert then Hike

® Rule 3: ((=V,M), o)

— Meaning: if —Vacation and Meeting then —Hike

® Default rule: (1, o)
— Meaning: if all other rules do not apply, then pick —=Hike
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Succinct explanations

® If a rule fires, the set of literals represents the explanation for the
predicted class

— Explanation is succinct : only the literals in the rule used;
independent of example

® For the default class, must pick one falsified literal in every rule
that predicts a different class

— Explanation is not succinct : explanation depends on each
example

® Obs: Uninteresting to predict ¢; as negation of ¢y (and
vice-versa)

— Explanations also not succinct

11/41



Stating our goals

® Assumptions:
— Also, let £ NETE L
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Stating our goals

® Assumptions:
— Also, let £ NETE L

e DNF functions to compute:
— FY for predicting ¢y, while ensuring £~ F FY
— F! for predicting c;, while ensuring £ F F*
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Different Possibilities

® MinDSo:
Find the smallest DNF formulas F° and F! such that:
1. EEF
2. EYE F!
3. FleFPE L

— Obs: MinDSq ensures succinct explanations

» Computes F° and F' (i.e. no negation) and no default rule
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Different Possibilities

® MinDSo:
Find the smallest DNF formulas F° and F! such that:
1. EEF°
2. EYE F!
3. Fle+F°E L

— Obs: MinDSq ensures succinct explanations

» Computes F° and F' (i.e. no negation) and no default rule

e MinDSs: Minimize F! such that

1. ETE F!

2. FIANETE L

— No succinct explanations for F°
e MinDS,: Minimize F° such that

1. EEF°

2. FONETE L

— No succinct explanations for F!

[
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Outline

Decision Sets via MaxSAT
Handling Noise
Addressing Scalability Challenge
Experimental Results
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Boolean Formulation of MinDS3

o representation for F*

® Consider N terms
— F':= F}V F}---F}, where

Fr=((bix-AVeci-—AVd) - Abis HEVc, —hVd,) -
/\((b,’)K - f V CiK - —fx V d,',K))

» If bi1 is true, then f; is in F,-l.
» If ¢;.1 is true, then —f; is in F}.
» If d;1 is true, then f; and —f; do not appear in F}

— F,-1 is a DNF term if exactly one of {b;,,ci,,d;,} is true for each r.
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o representation for F*

® Consider N terms
— F':= F}V F}---F}, where

Fr=((bix-AVeci-—AVd) - Abis HEVc, —hVd,) -
/\((b,’)K - f V CiK - —fx V d,',K))

» If bi1 is true, then f; is in F,-l.
» If ¢;.1 is true, then —f; is in F}.
» If d;1 is true, then f; and —f; do not appear in F}

— F,-1 is a DNF term if exactly one of {b;,,ci,,d;,} is true for each r.

® Goal: Find values of {b,-,j, Cij di,j}
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MaxSAT Formulation

® Recall
— o(r,q): value of feature f, for ¢,

Fr=(bix-AVeii-~AVdi) - Abiy Ve, —fVd,) -
/\((b,’)K - fk V CiK - —fi V d,',K))

® Structural Constraints: /\,-J ExactlyOne(bj r, ci r, di r)

o £ETEFL Fore, € &, FYA, f, — o(r,q)] = 1 (Hard)

o FLANETFE L: Fore, € &, FYA, f = o(r,q)] = 0 (Hard)
® Soft Constraints: S, := (—bj ,)Cir); W(Si,) =1

— Minimize the size of each term
— Can have different objective functions
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Example

- Vacation (V) | Meeting (M) | Expo (E) Hike (H)
f1 f> f3 Label

e1 0 1 0 1

e 1 0 0 0

€3 0 1 1 1

Suppose, we want to learn Fl of one term ,i.e., N = 1. Remember,

Fi=(bi1-AVar - ~AVdi1)V(bi2-hVayo —fHVd)A

(b13-fVcz-—fVd3s)

F21 — (b2,1 -V 1 —f1 V d271) V (b2,2 - fr V €22 - —h V d2,2) \

(b23:-f3V 33V dr3)
1. For e, we have F[A, f, — o(r,q)] =

((cpVdii)A(bi2Vdig)A(ca3Vdiz)) V
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Example

- Vacation (V) | Meeting (M) | Expo (E) || Hike (H)
f1 f f3 Label

€1 0 1 0 1

€ 1 0 0 0

e3 0 1 1 1

Suppose, we want to learn F! of one term ,i.e., N = 1. Remember,

Fl=(bi1-AVcai1 - —AVdi1)V(bia-hVeco —HVdia)A

(b13-fzVeciz-—fzVdi3)

F} =(ba1-AVec1-—AVd1)V (b Ve —fHVda)V

(b23:- V233V da3)

1. Suppose, MaxSAT solver returns
b171 =C12 = d1,3 = d2’1 = d2,3 = b273 — 1: then the rule is
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Example

- Vacation (V) | Meeting (M) | Expo (E) || Hike (H)
f1 f f3 Label

€1 0 1 0 1

€ 1 0 0 0

e3 0 1 1 1

Suppose, we want to learn F! of one term ,i.e., N = 1. Remember,

Fl=(bi1-AVcai1 - —AVdi1)V(bia-hVeco —HVdia)A
(b13-fzVeciz-—fzVdi3)
Fl = (b1 AVl ~AVdi1)V(bo HhVeo —hHVdo)V
(b23-f3V 33V da3)

1. Suppose, MaxSAT solver returns

b171 =C12 = d1,3 = d2’1 = d2,3 = b273 — 1; then the rule is
FL= (f A=f)V (A)
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Tools

® The MaxSAT formulation is NP-hard

® Use Local search based approaches [LBS, KDD-16]
— Local search-based:
git clone git@github.com: jirifilip/pyIDS.git
e Use MaxSAT solvers [IPNM, IJCAR-18]

— Significant progress in MaxSAT solving over the past decade

— Usage of symmetry breaking predicates
— MaxSAT-based Decision sets

git clone https://github.com/alexeyignatiev/minds
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Tools

® The MaxSAT formulation is NP-hard

® Use Local search based approaches [LBS, KDD-16]
— Local search-based:
git clone git@github.com: jirifilip/pyIDS.git
e Use MaxSAT solvers [IPNM, IJCAR-18]

— Significant progress in MaxSAT solving over the past decade
— Usage of symmetry breaking predicates

— MaxSAT-based Decision sets
git clone https://github.com/alexeyignatiev/minds
® Results: Over a set of 49 instances, local-search based approach
can handle only 2 instances while MaxSAT based approach can
optimal decision sets of 42 instances IPNM, IJCAR-18]
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Looking Beyond: Handling Noise

® Noisy data sets: collection of data, non-existence of perfect rules
— The optimal decision sets are too large.
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Looking Beyond: Handling Noise

® Noisy data sets: collection of data, non-existence of perfect rules
— The optimal decision sets are too large.
® MinDS3: Minimize F! and such that
1. ETEF!
2. FINETE L
— No succinct explanations for F°
® Noisy MinDS3: Minimize F*!, such that
1. 1,=1ife, - F' foreg € ET ore, = F' for e, € EF
2. Minimize |F| + )\Zq 1,
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MaxSAT Formulation for Noisy Setting

[MM, CP-18]

Fr=((bix-fiVeii-—AVdig) - A(bi,- Vi —fVdi,)
VAN (b,"K - fe V CiK:* —f V d,',K))

® Notations
— Variables: {b,',r, Cir, di,rﬂ?q}
— e,: example g
— o(r,q): sign of feature f, for e,
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MaxSAT Formulation for Noisy Setting

[MM, CP-18]

Fr=((bix-fiVeii-—AVdig) - A(bi,- Vi —fVdi,)
VAN (b,"K - fe V CiK:* —f V d,',K))

® Notations

— Variables: {b,',r, Cir, di,rﬂ?q}

— e,: example g

— o(r,q): sign of feature f, for e,
® Hard Constraints:

— Structural Constraints: /\,-’r ExactlyOne(b; , ci.r, d; r)

- ETEFY Fore, € &, FYA, f, = o(r,q)] = 1 ® n, (Hard)

- F*ANEE L Fore, e &, FYA, f — o(r,q)] = 0@ n, (Hard)
e Soft Constraints

— Minimize the size of each term: S;, := (di ,); W(S;,) =1

Y

— Minimize mis-classification: 7, := (—14) W(Tg) =



lllustrative Example

® |ris Classification:

® Features: sepal length, sepal width, petal length, and petal width

® MLIC learned R=

1. (sepal length < 6.3 A sepal width < 3.0 A petal width > 1.5) Vv
2. ( sepal width > 2.7 A petal length < 4.0 A petal width < 1.2 )V
3. ( petal length > 5.0)
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Accuracy

Dataset Size # Features RIPPER Log Reg NN RF SVM MLIC
0.886 0.909 0.926 0.909 0.886 0.889

ionosphere 350 564 (0.1) (0.1) (1.2) (1.3) (0.1) (15.04)
0.868 0.884 0.921 0.895 0.879 0.895

parkinsons 190 392 (0.1) (0.1) (1.2) (1.1) (1.6 ) (245)
0.78 0.759 0.788 0.788 0.765 0.797

Trans 740 64 (0.0) (0.0) (1.2) (1.2) (372.3) (1177)
0.961 0.936 0.961 0.943 0.955 0.946

WDBC 560 540 (0.1) (0.0) (1.3) (1.4) (3.0) (911)
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Intepretability

Dataset Examples # Features MLIC
lonosphere 350 564 5.5
parkinsons 190 392 6

Trans 740 64 4

WDBC 560 540 3.5
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Scalability

How do we scale to tens of thousands of examples and
features?

Primary Bottleneck Size of MaxSAT formula O(M - N - K) for a
formula on M examples, N clauses and K features
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Outline

Incremental learning
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IMLI: Incremental Rule-learning Approach

® The large formula size of the MaxSAT instance for the poor

scalability
® The proposal of mini-batch incremental learning [Ghosh and M., AIES 19]

Feature

= R1 Ri-1 wmp Ry

& L} 1 1

(Vs

=) IS ... IS e

Dataset Batch 1 Batcht — 1 Batch t
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IMLI: Solution Technique - |

Feature
= R1 Ri—1 wmp Ry
§ 1 1 1
m) I eee mmmmm
Dataset Batch 1 Batcht — 1 Batcht

® \We propose a mini-batch incremental learning framework with the
following objective function on batch t

min  ~(bjj - 1(bij) + cij - 1(cij) + dij - 1(di)) + A ng.
i).j q
where indicator function /(-) is defined as follows.

/(b' ) B —1 if b,',j € Ri_q
711 otherwise

Similarly, for I(c; ;) and /(d; ;)
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IMLI: Solution Technique - Il

(t — 1)-th batch t-th batch
we learn assignment we construct soft unit clause
® 11 =20 ® —by1
®* h1p=1 ® b1
® b1 =0 ® by
°® by, =1 ® bro
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IMLI: Solution Technique-II|

Feature
= R1 Ri—1 wp R
§ 1 1 1
m) I eee mmm R
Dataset Batch 1 Batcht — 1 Batcht

For M examples, N clauses, and K features,

® The number of clauses for each batch is (’)(¥ -N - K)
— Significant reduction from O(M - N - K)
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Accuracy and training time of different classifiers

Dataset Size n | Features m LR SVC | RIPPER IML|
A o8 13 | oy | (037 | (2500 | (0749
o || 5 28
Twitter 49999 1050 (3?95952,; Timeout | (g 89;153 (59?2-72

Table: Each cell in the last 5 columns refers to test accuracy (%) and training
time (s).

MLIC timed out on all the above instances
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Size of rules of different rule-based classifiers

Dataset | RIPPER | IMLI
PIMA 8.25 3.5
Twitter 21.6 6
Credit 14.25 3

Table: Average size of the rules of different rule-based models.

IMLI generates shorter rules compared to other rule-based

models
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Example Rules

Rule for Pima Indians Diabetes Database

Tested positive for diabetes if :=
(Plasma glucose concentration > 125 AND Triceps thickness < 35 mm

AND Diabetes pedigree function > 0.259 AND Age > 25 years)
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Example Rules

Rule for Pima Indians Diabetes Database

Tested positive for diabetes if :=

(Plasma glucose concentration > 125 AND Triceps thickness < 35 mm
AND Diabetes pedigree function > 0.259 AND Age > 25 years)

Rule for Parkinson’s Disease Dataset

A person has Parkinson’s disease if :=

(minimum vocal fundamental frequency < 87.57 Hz OR minimum
vocal fundamental frequency > 121.38 Hz OR Shimmer:APQ3 < 0.01
OR MDVP:APQ > 0.02 OR D2 < 1.93 OR NHR > 0.01 OR HNR >
26.5 OR spread2 > 0.3) AND

(Maximum vocal fundamental frequency < 200.41 Hz OR HNR < 18.8
OR spread2 > 0.18 OR D2 > 2.92)
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Recipe so far

® Discretization of the training and test dataset

e Hard Constraints to capture structure of the rules

e Hard Constraints to capture evaluation of rules: A rule must

— EITHER return True on positive example and False on negative

example
— OR the noise variable is set to True

® Soft Constraints

— Minimize the size of rules
— Minimize the number of mis-classifications
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From Decisions Sets to Decision Trees

[NIPM, 1JCAI-18]
e Hard Constraints to capture structure of the rules

— A leaf node has no children and is either 0 (False) or 1 (True)

— A non-leaf node must have a child.

— If the i-th node is a parent then it must have a child

— All nodes (except root) must have a parent

— Left edge corresponding to node with label f, corresponds to f, =0
— Right edge corresponding to node with label f, corresponds to f, =1

® Evaluation along a path is just conjunction of edges
e Hard constraints to capture evaluation of rules
— return True on positive example and False on negative example

® Exploitation of domain specific knowledge to improve encoding

— Minimize the size of the trees
— Minimize the number of mis-classifications
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Lot of Exciting Research

Janota, Morgado: SAT-Based Encodings for Optimal Decision
Trees with Explicit Paths. SAT 2020: 501-518

Verhaeghe, Nijssen, Pesant, Quimper, Schaus: Learning optimal
decision trees using constraint programming. Constraints An Int.
J. 25(3-4): 226-250 (2020)

Aglin, Nijssen, Schaus: Learning Optimal Decision Trees Using
Caching Branch-and-Bound Search. AAAI 2020: 3146-3153
Aglin, Nijssen, Schaus: PyDL8.5: a Library for Learning Optimal
Decision Trees. |JCAI 2020: 5222-5224

Demirovic, Lukina, Hebrard, Chan, Bailey, Leckie,
Ramamohanarao, P Stuckey: MurTree: Optimal Classification
Trees via Dynamic Programming and Search. CoRR
abs/2007.12652 (2020)

Hu, Siala, Hebrard, Huguet: Learning Optimal Decision Trees with
MaxSAT and its Integration in AdaBoost. [JCAI 2020: 1170-1176
Avellaneda: Efficient Inference of Optimal Decision Trees. AAAI
2020: 3195-3202
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From Decision Sets to Decision Lists

® Rule 1: ((=M,—=E), 1)
— Meaning: if -Meeting and —Expo then Hike

® Rule 2: ((V,—C), 1)

— Meaning: if Vacation and —Concert then —Hike

® Decision List: Oredered List of Rules

® List A: Rule 1 followed by Rule 2
- V=1,C=0M=0,E=0

® | st A Evaluation: Hike
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From Decision Sets to Decision Lists

® Rule 1: ((=M,—=E), 1)
— Meaning: if -Meeting and —Expo then Hike

® Rule 2: ((V,—C), 1)

— Meaning: if Vacation and —Concert then —Hike

® Decision List: Oredered List of Rules

® List A: Rule 1 followed by Rule 2
- V=1,C=0M=0,E=0

® | ist A Evaluation: Hike
® List B: Rule 2 followed by Rule 1
e | ist B Evaluation: —Hike

Jingiang Yu, Alexey Ignatiev, Pierre Le Bodic, Peter J. Stuckey: Optimal
Decision Lists using SAT. CoRR abs/2010.09919 (2020)
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Exciting Work
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Conclusions & research directions

® SAT/MaxSAT-based solutions for computing (explainable) decision
sets

— Minimize the number of terms
— Allows several different objective functions

® Far better than local search based approach
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Conclusions & research directions

® SAT/MaxSAT-based solutions for computing (explainable) decision
sets

— Minimize the number of terms
— Allows several different objective functions

® Far better than local search based approach

® Formalizations beyond Decisions sets and Decision Trees

— Checklists [GMM, ECAI20]
— The underlying approach can be applied
— Exploitation of domain specific knowledge

® Scalability and handling very large data sets.
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Tools

® | ocal search-based:
git clone git@github.com:jirifilip/pyIDS.git

® MaxSAT-based Decision sets
git clone https://github.com/alexeyignatiev/minds

® Noisy and Incremental: pip install rulelearning
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Questions?
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Why robustness?

Robustness of ML models
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Control systems

Mediated Perception (e.g. Mobileye, Google)

Input Image Driving Control

Behavior Reflex (e.g. ALVINN, LeCun et al.)

Direct Perception (ours)

| Reward

bandwidth
~\ .-'f ‘-, |ABRagent

A

bit rate | e

| Lr=H state |

eural Netwark  bitrates

T Client-side network and video player measurements




Machine Learning is used on
daily basis



Deep learning-based systems can
be fooled



Deep learning-based systems can
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Fooling DL systems

[Szegedy et al.] Intriguing properties of neural networks



Outline




Adversarial attacks



Untargeted adversarial examples

Given an input (X, C), an input X’ = X 4+ P is an
untargeted adversarial example iff NN misclassifies
X" and P is small according to some metric.
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Untargeted adversarial examples

Original image

88% tabby cat

[Szegedy et al.] Intriguing properties of neural networks
[Athalye et al.]Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples
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Untargeted adversarial examples

Original image + Perturbation — Perturbed image

88% tabby cat

[Szegedy et al.] Intriguing properties of neural networks
[Athalye et al.]Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples



Untargeted adversarial examples

Original image + Perturbation — Perturbed image

88% tabby cat 99% guacamole

[Szegedy et al.] Intriguing properties of neural networks
[Athalye et al.]Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples



Beyond cats and dogs

[Eykholt at al.] Robust Physical-World Attacks on Deep Learning Visual Classification



Beyond cats and dogs

[Athalye at al.] Synthesizing Robust Adversarial Examples



Beyond cats and dogs

N
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4 :

B classified as turtle [ classified as rifle
B classified as other

[Athalye at al.] Synthesizing Robust Adversarial Examples



Beyond cats and dogs

[Eykholt at al.] Robust Physical-World Attacks on Deep Learning Visual Classification



Beyond images

Generating Natural Languape Adversarial Examples
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White-box vs Black-box Attacks

X
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‘i ¥
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O

i

(a8

[Goodfellow et al., Szegedy et al.] [Papernot et al., 2016a, 2016b]

Gradient-based methods that generate * More realistic and applicable model
adversarial images by perturbing the * Challenging because of weak adversaries:
gradients of the loss function w.r.t. the no knowledge of the network architecture
input image * Previous attacks require ‘transferability’

assumption on adversarial examples
* GAN based attacks
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New research sub-area

Obfuscated gradients give a false sense of security: Circumventing defenses to
adversarial examples. A Athalye, N Carlini, D Wagner. ICML 2018, 2018.

Attacks

Defenses



New research sub-area

Attacks Defenses



Outline

Motivation

Adversarial attacks
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Network verification problem
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Network verification problem

NNs is defined as I™ — O™

pre(x) and post(y) are logic formulas

pre defines preconditions on the inputs

post defines postconditions on the output



Network verification problem

Given conditions pre and post, a property is:

Va.Vy.(pre(x) Ny = NN(z)) = post(y)



Network verification problem

To find a counterexample:

pre(x) A (y = NN(z)) A\ —post(y)



Network verification problem

Let 2’ is a given M classified as ‘cat’.

pre(x) == |v — ') < e

post(y) := ‘cat’

Va.Vy.(pre(x) Ny = NN(x)) = post(y)



Verification methods

festii 0™



Verification methods
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Verification roadmap

"

Exact Over-approx Train more Certified
Methods methods robust networks networks
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Sound and complete methods

Strength: Prove whether a property holds

R. Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks,2017

R. Bunel, I. Turksaslan, P. Torr, P. Kohli, and P. Kumar. Piecewise Linear Neural Network Verification: A
Comparative Study, 2017.

G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: An Efficient SMT Solver for
Verifying Deep Neural Networks.2017

A. Lomuscio and L. Maganti. An Approach to Reachability Analysis for Feed-Forward ReLU Neural

Networks, 2017.



Sound and complete methods

pre(x) A (y = NN (x)) A —post(y)
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Sound and complete methods

pre(x) A (y = NN (x)) A —post(y)

' (will discuss for BNNs+SAT)

SMT (pre(xz)) ANSMT(y = NN(x)) AN SMT (—post(y))

3

SMT solver




Sound and complete methods

pre(x) A (y = NN (x)) A —post(y)

\ 2

SMT (pre(xz)) ANSMT(y = NN(x)) AN SMT (—post(y))

3

SMT solver (or Marabou, Planet, etc)




Sound and complete methods

Limitation: scalability (up to 2000 neurons)
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Sound and incomplete methods

Strength: Prove that a property holds
(can return do not know’)

Singh, G., Gehr, T,, Mirman, M., Puschel, M., and Vechev, M. T. Fast and effective robustness
certification.

Zhang, H., Weng, T., Chen, P., Hsieh, C., and Daniel, L. Efficient neural network robustness certification
with general activation functions.

Weng, T., Zhang, H., Chen, H., Song, Z., Hsieh, C., Daniel, L., Boning, D. S., and Dhillon, I. S. Towards
fast computation of certified robustness for relu networks

T. Gehr, M. Mirman, D. Drachsler-Cohen, E. Tsankov, S. Chaudhuri, and M. Vechev. Al2: Safety and
Robustness Certification of Neural Networks with Abstract Interpretation.



Sound and incomplete methods

Based on over-approximation of the output space

E—q—r ConvZ2D —

—p

RelU

— Conv2D —

b ok EC T Logits

Decision boundary

https://medium.com/@deepmindsafetyresearch/towards-robust-and-verified-ai-specification-testing-
robust-training-and-formal-verification-69bd1bc48bda



Sound and incomplete methods

Based on over-approximation of the output space

E—-—c Conv2D —4— RelU —— Conv2D ——--—» FC iLogts

Decision boundary

https://medium.com/@deepmindsafetyresearch/towards-robust-and-verified-ai-specification-testing-
robust-training-and-formal-verification-69bd1bc48bda



Sound and incomplete methods

Based on over-approximation of the output space

*Input *Linear Transformer *RelLU
o \ ([1] [1]) N ReLU;
21M(z1>0) <2tz o # 2424 ®
I
3“$2 o (2 _1) o 3.l ) 1+—e | 1+ e IJIIN
ﬂ 1 -2 -1 1 -2 -1 1
2¢¥ 20 o = 2121 ® L
e 1+ e ; o 3 Ll 3
19 o ~ () A
K by ! 1 Zq = E #
) . Li,'l -2 -1 1 2 an@<o® :
—=2 -1 1 ) —=2 -1 1

2 +Z6 e}

[Gehr et al. ] Al2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation




Sound and incomplete methods

. scalability (up to 10000 neurons)



Do we augment training?

no

[ Sound and complete ]

4 )
Sound,
not complete
\§ J
\

yes

Adversarial training

Certification of NNs

J

J

Easier-to-verify networks



Adversarial training methods

Strength: (empirically) improve robustness of NNs

* Alexey Kurakin, lan Goodfellow, and Samy Bengio. Adversarial machine learning at scale,
2017.

* lan Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples.2017

* Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu.Towards deep learning models resistant to adversarial attacks, 2018.



Adversarial training methods

min max Loss(I + d, L, W)
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Adversarial training methods

min max Loss(I + d, L, W)
%% 0EA
I,LeD



Adversarial training methods

min max Loss(I + 6, L, W) J




Adversarial training methods

min max Loss(I + o, L, W) J

 Use gradient-based search, e.g. PGD, to solve inner
optimization



Adversarial training methods

min max Loss(I + 6, L, W) J

1. Select minibatch B
2. For each (I,L) € B compute an adversarial

example 6*
3. Update parameters at |+ 0*



Adversarial training methods

. NO guarantees on robustness
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Certified training methods

Strength: prove that a property holds
(but can produce false negatives)

e Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex

outer adversarial polytope, 2018
e Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against

adversarial examples. 2018
* Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable abstract interpretation

for provably robust neural networks. 2018



Certification of NNs

min max Loss(I + 6, L, W) J




Certification of NNs

min max Loss(I + 6, L, W) J




Certification of NNs

min max Loss(I + o, L, W) J

14 u { U
Bounded ReLL.U set Convex relaxation

* Use a convex relaxation inner optimization
* Use gradients of this relaxation in the training procedure



Certification of NNs

e work with relaxation, an upper bound on the can be quite loose
* thelossis much more complex than in a non-adv training
(accuracy drops, scalability issues)
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Easier-to-verify networks

Strength: train a network that is easier to
verify for existing decision procedures

Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability

Kai Y. Xiao, Vincent Tjeng, Nur Muhammad (Mahi) Shafiullah, Aleksander Madry, ICLR’19
In Search for a SAT-friendly Binarized Neural Network Architecture

Nina Narodytska, Hongce Zhang, Aarti Gupta, Toby Walsh, ICLR20



Easier-to-verify networks

. NO guarantees on robustness
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Do we augment training?

Easier-to-verify networks



Why BNNs?

Binarized neural networks: Training deep neural networks with weights and
activations constrained to+ 1 or-1
M Courbariaux, | Hubara, D Soudry, R El-Yaniv... - arXiv preprint arXiv ..., 2016 - arxiv.org

We introduce a method to train Binarized Neural Networks (BNNs)-neural networks with
binary weights and activations at run-time. At training-time the binary weights and activations
are used for computing the parameters gradients. During the forward pass, BNNs drastically ...

¢ Y9 Cited by 925 Related articles All 9 versions 9

Binarized neural networks
| Hubara, M Courbariaux, D Soudry... - Advances in neural ..., 2016 - papers.nips.cc

We introduce a method to train Binarized Neural Networks (BNNs)-neural networks with
binary weights and activations at run-time. At train-time the binary weights and activations
are used for computing the parameter gradients. During the forward pass, BNNs drastically ...

¢ Y9 Cited by 470 Related articles All 5 versions 99

Xnor-net: Imagenet classification using binary convolutional neural networks
M Rastegari, V Ordonez, J Redmon... - European Conference on ..., 2016 - Springer
... Because, at inference we only perform forward propagation with the binarized weights ... Similar

to binarization in the forward pass, we can binarize \(g”{in}\) in the backward pass ... Our
binarization technique is general, we can use any CNN architecture ...

3¢ Y9 Cited by 1373 Related articles Al 8 versions

97



Compactness

 Only 1 bit per weight, {-1,1}
 Can be deployed on embedded devices



Inference efficiency

fast binary matrix multiplication
(7X speed up on GPU)
“Accelerating Binarized Neural Networks:

Comparison of FPGA, CPU, GPU, and ASIC”
IEEE’2016



Structure of BNNs



Binarized Neural Networks

Linear BN Sign

Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1
Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, Yoshua Bengio



Binarized Neural Networks

y=Ar+b z=a=" + v t = sign(z)




Binarized Neural Networks

y=Ax+0b t = sign(z
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Binarized Neural Networks

y=Ax+0b t = sign(z

e =

wﬁa’i,j E{—ljl} b,(){,m,O',’YER



BNNs and logic-based
reasoning



BNNs and Logic

L. BNN Y,



BNNs and Logic

L. BNN Y,

0

SAT(y = BNN(z))



BNNs and Logic

_w”i
(i

SAT(y = BNN(z))



BNNs and Logic

SAT(y = BNN(x))



BNNs and Logic

BinBN N (x,y) :=
SAT(y = BNN(z))



Translation: BNN to SAT

y=Ax+b z=al"" + v t = sign(z)




Translation: BNN to SAT

‘y:A.’L'+b‘ ‘ =

z=al=" 4y
{—

Y,
(l1’1+...+l1,n2k1)<:>t1:1
(lm,1++lm,n2km)¢>tm:1

‘ It = sig71(z)|

0

N

112



Translation: BNN to SAT

‘y:A;L-—I-b‘ |z:a%+7‘ Itzsign(z)‘ ‘y:A.’L'—I-b‘ ‘z:a%Jﬂy‘ Itzsign(z)| ‘y:Aw+b‘ ‘z:a”’m+~y‘ [t:sign(z)‘

o

N — N, N S el

g 8 g

(l1,1+---+ll,n2kl)¢>t%:1 (l1,1+...+ll’n2k1)<:>t1:1 (l1,1+...+l1,n2k1)¢>t€:1
: A ;. A .
(lm,1+---+lm,n2km)<:>t}n: U1t tlmn = k) & b =1 Uma+ . tlnn 2 km) S th, =1

BInBNN

113



Work with small networks



In Search for a SAT-friendly Binarized Neural
Network Architecture
ICLR’20

N Narodytska, H Zhang, A Gupta, T Walsh



Translation: BNN to SAT

‘y:A;L-—I-b‘ |z:a%+7‘ Itzsign(z)‘ ‘y:A.’L'—I-b‘ ‘z:a%Jﬂy‘ Itzsign(z)| ‘y:Aw+b‘ ‘z:a”’m+~y‘ [t:sign(z)‘

o

N — N, N S el

g 8 g

(l1,1+---+ll,n2kl)¢>t%:1 (l1,1+...+ll’n2k1)<:>t1:1 (l1,1+...+l1,n2k1)¢>t€:1
: A ;. A .
(lm,1+---+lm,n2km)<:>t}n: U1t tlmn = k) & b =1 Uma+ . tlnn 2 km) S th, =1

BInBNN
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“Neuron” constraint

(lha+...+hn=>k)eti =1



“Neuron” constraint

(l1,1—|—...—|—lljn2k1)<=>t1:1

1

Number of variables I

Reification means no propagation!
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“Neuron” constraint

(l1,1+---‘|‘l1,n2k1)<:>t1:1

1

Number of variables I

Reification means no propagation!
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We can train a BNN so that




Binarized Neural Network

y=Ax +b z =T 4y f =tanh(z)| |t = sign(f

s S, .

z,a;; € {—1,1} b,a,m,o,v,W € R



Binarized Neural

A = sign(W)

Network

y=Ar+b z = ="

+ f =tanh(z)

t = sign(f

0O
Yy z

z,a; ; €{—-1,1}

¥o

b,a,m,o,v, W € R




Ternary quantization

BNN+: Improved Binary Network Training
Sajad Darabi, Mouloud Belbahri, Matthieu Courbariaux, Vahid Partovi Nia

123



Ternary quantization

L1+ ...+lhn>k)et1 =1

where
;.5 = 1 :>lj = Xy,
Qg5 = —1 = lj = Zl_?j



Ternary quantization

L1+ ...+lhn>k)et1 =1

where

;. 5 = 1 :>lj = Iy,
a@-’j:()ilj=0,
Qg5 = —1 = lj = ij



L1+Ternary quantization

L1+ ...+lhn>k)et1 =1

where

;. 5 = 1 :>lj = Iy,
a@-,j:()iljzo,
Qg5 = —1 = lj = ij

Add L1 regularization



L1+Ternary quantization

= wN e

Train a BNN

Build a distribution of absolute values of weights
Select a percentile (40%, 60%), t= 0.03

Train a ternary BNN wit

0 if |w,,;,j
Uij =

N the two-sided threshold t

<t

sign(w; ;) otherwise



Stabilization of SIGN
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Stabilization of SIGN

(ll,l—l—...—|—l1’n—k1ZO)@tlzl

LB, (4. 411 k1) =0 t1 =1
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Stabilization of SIGN

(ll,l—l—...—|—l1’n—k1ZO)@tlzl

UB(l1,1+--.+l1,n—]€1) <0



Stabilization of SIGN

(ll,l—l—...—|—l1’n—k1ZO)@tlzl

UB(l1,1+--.+l1,n—]€1) <0 t1 =0



Stabilization of SIGN

Encourage LB and UB of a neurons to take
the same sign:

sign(UB,; ;) = sign(LB; ;)

Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability
Kai Y. Xiao, Vincent Tjeng, Nur Muhammad (Mahi) Shafiullah, Aleksander Madry



Stabilization of SIGN

Encourage LB and UB of a neurons to take
the same sign:

—sign(UB; ;) x sign(LB; ;)

Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability
Kai Y. Xiao, Vincent Tjeng, Nur Muhammad (Mahi) Shafiullah, Aleksander Madry



Stabilization of SIGN

Encourage LB and UB of a neurons to take
the same sign:

sty B styTtE o)

Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability
Kai Y. Xiao, Vincent Tjeng, Nur Muhammad (Mahi) Shafiullah, Aleksander Madry



Stabilization of SIGN

y=Ax +b z—ay_ f =tanh(z)| |t = sign(f

S

LB,,UB,
LB, UB, LB, ,UB, LB;UB; LB;,UB,




Sparse+L1+StableSign

BNNs MNIST FASHION MNISTBG

Yo | #prms Yo #prms Yo #prms
Vanilla 96.5 623K 82.1 623K 74.3 623K
Sparse Y0.4 3L 84.1 3TK 78.2 41K
Sparse+Stable 95.9 32K 83.2 3TK 78.3 38K
Sparse+L1 96.0 20K 83.7 35K 78.4 36K
Sparse+L 1+Stable 95.2 20K 82.9 3TK 80.0 34K
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BNNs MNIST FASHION MNISTBG
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Sparse+L1+StableSign

BNNs MNIST FASHION MNISTBG

Yo #prms Yo #prms Yo #prms
Vanilla [ 96.5 | 623K | 82.1 623K 74.3 623K
Sparse 96.4 32K 84.1 3TK 78.2 41K
Sparse+Stable 95.9 32K 83.2 3TK 78.3 38K
Sparse+L1 90.U ZUIv 83.7 35K 78.4 36K
Sparse+L 1+Stable 95.2 20K 82.9 3TK 80.0 34K




Sparse+L1+StableSign

BNNs MNIST FASHION | MNISTBG
#vars/#cls #vars/#cls #vars/#cls
Sparse 63K/224K 34K/116K | 24K/80K
Sparse+Stable 42K/146K 19K/538K 12K/36K
Sparse+L1 an ZUK 34K/115K 1 7TK/53K
Sparse+Stable+L1 | 1K/33K 12K/33K 10K/28K
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Efficient Exact Verification of Binarized Neural
Networks

Kai Jia, Martin Rinard
Neurips'20



1. Improved sparsity

Ternary quantization

<

Balanced ternary quantization



2. Friendly reified cardinality

(11,1‘|‘---‘|‘l1,n2k1)<:>t1:1
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Reification means no propagation!
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2. Friendly reified cardinality
(11,1—|— —I-Zankl St =1

td 1

Number of variabl
eification means no propagation!

Force k to me small!



3. Improved adversarial training

Improved the backpropagation procedure to
make PGD attacks more effective



4. Improved the SAT solver

Keep cardinality constraints natively



Impressive preformence

Mean Time (s) Accuracy Timeout
Build Solve Total Verifiable Natural PGD

EEV S 0.0158 0.0004 0.0162 89.2949%, 07 44% 03.47% 0

MNIST EEV L 0.1090 0.0025 0.1115 01.68% 07 46% 095.47% 0
e = 0.1 Xiao et al. [63] S 4.98 0.49 5.47 04.33% 08.68% 095.13% 0.05%
Xiao et al. [63] L"  156.74 0.27 157.01 05.6% 08.95% 96.58% 0

EEV S 0.0140 0.0006 0.0146 66.42% 94.31% 80.70% 0

MNIST EEV L 0.1140 0.0039 0.1179 77.59% 096.36% 87.90% 0
e = 0.3 Xiao et al. [63] S 4.34 2.78 7.12 80.68%  97.33%  92.05% 1.02%
Xiao et al. [63] " 16639 37.45 203.84 59.6% 07.54% 93.25% 24.1%

EEV S 0.0258 0.0013 0.0271 26.13% 46.58% 33.70% 0

CIFARI10 EEV L 0.1653 0.0097 0.1750 30.49% 47.35% 38.22% 0
— % Xiao et al. [63] S 52.58 13.50 66.08 45.93% 61.12% 49.92% 1.86%
Xiaoetal. [63]L°  335.97 29 88 365.85 41.4% 61.41% 50.61% 9.6%

EEV S 0.0313 0.0014 0.0327 18.93% 37.75% 24.60% 0

CIFARI0 EEV L 0.1691 0.0090 0.1781 22.55% 35.00% 26.41% 0
£ — 2;‘;.5 Xiao et al. |[63] S 38.34 22.33 60.67 20.27% 40.45% 26.78% 2.47%
Xiao et al. [63] L™ 401.72 20.14 421.86 19.8% 42 81% 28.69% 5.4%




Impressive preformence

Mean Time (s) Accuracy Timeout
Build Solve Total Verifiable Natural PGD

EEV S 0.0158 0.0004 0.0162 89.2949%, 07 44% 03.47% 0

MNIST EEV L 0.1090 0.0025 0.1115 01.68% 07 46% 095.47% 0
e = 0.1 Xiao et al. [63] S 4.98 0.49 5.47 04.33% 08.68% 095.13% 0.05%
Xiao et al. [63] L" | 156.74 0.27 157.01 05.6% 08.95% 96.58% 0

EEV S 0.0140 0.0006 0.0146 66.42% 94.31% 80.70% 0

MNIST EEV L 0.1140 0.0039 0.1179 77.59% 096.36% 87.90% 0
e = 0.3 Xiao et al. [63] S 4.34 2.78 7.12 80.68%  97.33%  92.05% 1.02%
Xiao et al. [63] " | 166.39 37.45 203.84 59.6% 07.54% 93.25% 24.1%

EEV S 0.0258 0.0013 0.0271 26.13% 46.58% 33.70% 0

CIFARI10 EEV L 0.1653 0.0097 0.1750 30.49% 47.35% 38.22% 0
— % Xiao et al. [63] S 52.58 13.50 66.08 45.93% 61.12% 49.92% 1.86%
Xiaoetal. [63] L = 335.97 29 88 365.85 41.4% 61.41% 50.61% 9.6%

EEV S 0.0313 0.0014 0.0327 18.93% 37.75% 24.60% 0

CIFARI0 EEV L 0.1691 0.0090 0.1781 22.55% 35.00% 26.41% 0
£ — 2;‘;.5 Xiao et al. |[63] S 38.34 22.33 60.67 20.27% 40.45% 26.78% 2.47%
Xiao et al. [63] L 401.72 20.14 421.86 19.8% 42 81% 28.69% 5.4%




Outline

Motivation

Adversarial attacks
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Where we are
VNN'LIB ABOUT NEWS STANDARD BENCHMARKS SOFTWARE CREDITS Q

Verification of Neural Networks

VNN-LIB is an international initiative whose aim is to encourage collaboration and facilitate research and
development in Verification of Neural Networks (VNN). |

The goals of VNN-LIB are:

¢ Develop a cohesive community around VNN by connecting developers and researchers working in this domain.
e Establish a common format for the exchange of Neural Networks and their properties.

¢ Provide the community with a library of established common benchmarks for VNN tools.

¢ Provide and maintain a common repository for tools and resources useful to the VNN community.

The initiative and this site are still in their embryonal stages: your collaboration is essential to grow and improve
VNN-LIB, so do not hesitate to send us feedback, comments and suggestions.



Where we are

VNN 2020 Home - Program - Call for Papers and Benchmarks - VNN-COMP

VNN-COMP

VNN-COMP 2020 Report

A draft (read only) version of the report is available on Overleaf here: https://www.overleaf.com/read/rbcfnbyhymmy

VNN-COMP 2020 Call for Participation
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What is next?

1. Verification is a very important tool to
analyze NNs

2. Smaller networks are useful in many
practical applications



Thanks!



LOGIC-ENABLED VERIFICATION AND EXPLANATION OF ML MODELS

PART 4

A. Ignatiev, ). Marques-Silva, K. Meel & N. Narodytska

Monash Univ, ANITI@Univ. Toulouse, NU Singapore & VMWare Research

January 08, 2021 | 1JCAI Tutorial T22



Computing Explanations



What do we want to achieve?

Machine Learning System

9 @  »Cat
@ : ? ; a
"&\\1} @ @S e
o0 g :\d >
& e
2 > o

This is a cat:
¢ It has fur, whiskers, and claws.
¢ It has this feature:

This is a cat.

Current Explanation XAl Explanation

2/40
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A recap: approaches to XAl

interpretable ML models

(decision trees, lists, )

explanation of ML models “on the fly”

(post-hoc explanation)



Why? or Why not? explanations

why? why not?
(why did (not) | get a loan?)



Why? or Why not? explanations

why?

why not?

(why did (not) | get a loan?)

abductive

N

contrastive
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State of the art

heuristic approaches exist

(e.g. LIME, AnChor' or SHAP) [RSG16, RSG18, LL17]
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State of the art

heuristic approaches exist

(e.g. LIME, AnChor' or SHAP) [RSG16, RSG18, LL17]

V

- local explanations §>
* No guarantees

(un-)reliable?
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Rigorous approaches



State of the art

alternative is to use logic
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State of the art

alternative is to use logic
(reasoning over formal models)

V

 search
- compilation
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Compilation-based approach






Compiling a classifier

Machine Learning Syst
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Compiling a classifier

Machine Learning Syst

®
3

i
04
) .

\
)

! ‘f'/)

. LYY ;
y ¢ 2 ¥z 9
&A\ L T

ODD
perform operations on
tractable representation

|

,,, 3277 . . “ | ;7\\

. Y =
» . \
A : & —

= ) v

. J R v
= t

.
|

7/ 40



once you have an ODD:



once you have an ODD:
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“Which positive features are responsible for a yes decision?”
“Which negative features are responsible for a no decision?”
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once you have an ODD:

- compute MC-explanations

“Which positive features are responsible for a yes decision?”
“Which negative features are responsible for a no decision?”

- compute Pl-explanations

“Which features (+ or -) make the other features irrelevant?”

- perform verification queries

counting of counterexamples, computing their probabilites and common characteristics

8/40



What ML models can we compile?

° Na.l.ve Bayes [cDO3]

9/40



What ML models can we compile?

¢ Na.l.ve Bayes [CcD03]
 Latent Tree

9/40



What ML models can we compile?
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What ML models can we compile?

- Naive Bayes
- Latent Tree
- General BN
- BNN and CNN

9/40



and of ML model compilation

reasoning about explanations in polynomial time
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and of ML model compilation

reasoning about explanations in polynomial time
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and of ML model compilation

reasoning about explanations in polynomial time

but

difficult to compute an ODD
ODD can be large



Search-based explanations




From ML model to logic

Machine Learning System
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Machine Learning System
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From ML model to logic

formula M literal =
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Abductive explanations of ML models

[INMS19]

given a classifier M, a cube | and a prediction T,
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and
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Abductive explanations of ML models

[INMS19]

given a classifier M, a cube | and a prediction T,

compute a (cardinality- or subset-) minimal E,, C I s.t.

Em AM L

and

En, ANMFE 7
g

iterative explanation procedure

12/ 40



Computing primes

1. E,AM £ 1
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Computing primes

1. E,AM F1 — tautology
2. En AMET < EpEM — 1)




Computing primes

1. E,AM F1 — tautology
2. En AMET < EpEM — 1)

V

Enm is a prime implicant of M — =




Computing one subset-minimal explanation

Input: model M, initial cube I, prediction =
Output: Subset-minimal explanation E,

begin

forlcl:
if Entails(/\ {{}, M — =) : #t make an (entailment) oracle call

| < I\ {l}

retuxrn |

end

14 [ 40



Computing one cardinality-minimal explanation

cardinality-minimal explanations can be computed
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but it is hard for X}
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Computing one cardinality-minimal explanation

cardinality-minimal explanations can be computed

(following implicit-hitting set based approach) it
but it is hard for X}

(worst-case exponential number of oracle queries)

15/ 40



Experimental setup

- implementation in Python
« supports SMT solvers through PySMT
- Yices2 used

« supports CPLEX 12.8.0
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Experimental setup

iImplementation in Python
« supports SMT solvers through PySMT
- Yices2 used

« supports CPLEX 12.8.0

ReLU-based neural networks (Fy1e]
- one hidden layer with i € {10,15,20} neurons

benchmarks selected from:

« UCI Machine Learning Repository
- Penn Machine Learning Benchmarks
- MNIST Digits Database

Machine configuration:

- Intel Core i7 2.8GHz, 8GByte
- time limit — 1800s
- memory limit — 4GByte

16/ 40



Some of the experimental results

Minimal explanation

Minimum explanation

Dataset
size SMT(s) MILP(s) size SMT(s) MILP(s)
m 1 0.03 0.05 = = =
australian (14) a 879 1.38 0.33 — — —
M 14 17.00 1.43 = = =
m 13 0.13 0.14 = = =
backache (32) a 19.28  5.08 0.85 — — —
M 26 2221 275 — — —
m 3 0.02 0.04 3 0.02 0.03
breast-cancer (9) a  5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81
m 4 0.05 0.07 4 = 0.07
cleve (13) a 8.62 3.32 0.32 7.89 — 5.14
M 13 60.74 0.60 13 — 39.06
m 6 0.02 0.04 4 0.01 0.04
hepatitis (19) a 11.42 0.07 0.06 9.39 4.07 2.89
M 19 0.26 0.20 19 27.05 22.23
m 3 0.01 0.02 3 0.01 0.02
voting (16) a 4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 1.25 1.77
m 3 0.02 0.02 3 0.02 0.04
spect (22) a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73
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- “Congressional Voting Records” dataset
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Comparing quality to compilation-based approach

- “Congressional Voting Records” dataset
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Comparing quality to compilation-based approach

- “Congressional Voting Records” dataset
(0101110000001 10 1)—datasample (16 features)

smallest size explanations computed by compilation for BN: iscors
- ( 11 0600 110 )—9literals
. ( 111 o0 110 )—9literals
subset-minimal explanations computed by search for ReLU-NNs: s1o)
- ( 1 o © 0 ) — 4literals
- ( 1 0 0 ) — 3 literals
- ( 01 e 0 © ) —5literals
( 01 0 © 1) — 5 literals

18/ 40



What does it mean?

explanations can hint on the classifier quality!

19/ 40



MNIST examples

(a) (b) (c) (d)

Figure 1: Possible minimal explanations for digit one.

(a) (b) () (d)
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And so what?

explanations are not equally good!



Summary on search-based explanations

principled approach to XAl
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Summary on search-based explanations

principled approach to XAl

based on
applies a reasoning oracle, e.g. SMT or MILP
provides minimality guarantees

global explanations!
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What next?

enumeration of explanations?
preferences over explanations?

reasoning about explanations!

(assessment of heuristic approaches)



Assessing heuristic approaches
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Heuristic approaches - a recap

heuristic approaches
(e.g. LIME, Anchor, )

local explanations
no minimality guarantees
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how good are heuristic explanations?

let’s check for boosted trees



Assessment setup

how good are heuristic explanations?

let’s check for boosted trees

(easy to encode) (BLMTS, LMB17, V217, INM15]



........ amphlblan e, s bird bug
yes :

: es :
-0.0547288768 ) 0285283029 )i i 7 0.184210524 i

0.007924526 )

03
--------------------------------------------------------------------------------------------------------------------------

Fiai fis}l ............. . PRI iIlVWEftfﬂDITitfi .......... . st IIlaJ]lIIlal .......... .
g yes :

Y5 019463414 ) -0.0550289042 ) i Y23 0311460674 ):

no~—>{-0.0549824126 )

backbone?

--------------------------------------------------------------------------------------------------------------------------

JESTIRRIR reptﬂe .............. -,

0.028965516 )

:| venomous?

-0.0444687866 )

----------------------------------------------
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-0.0549824126 )

: yes
: 0.028965516 )

-0.0444687866 )}
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O pvses ey N ‘

VS (Coosarasses )i i T 0.285283029 )
! no 0.007924526 )i = -0.0547288768 ) ¢

0.19463414 ):

-0.0549824126 )

] -0.0550289042 )}
: 0.108808279 ):

RSN overivs B

: yes :
! 0.028965516 )}
- -0.0444687866 )

input instance:
(animal_name = pitviper) A —hair
—feathers A eggs A =milk A —airbornen
—aquatic A predator A —=toothed A —=finsA
(legs = 0) A tail A -~domestic A —catsize
(class = reptile)
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e E

i Y 5(-0.0547288768 )
© no—{ 0.007924526 )

0.19463414 ):

-0.0549824126 )

input instance:
IF (animal_name = pitviper) A —hair
S e N R bug e, : —feathers A eggs A =milk A —airbornen
; () | (o ); —aquatic A predator A —toothed A —finsA
: (legs = 0) A tail A ~domestic A —catsize

A ; E~ ........................................ : THEN (Class — reptlle)

= IR Anchor’s explanation:

: ), | (D) =hair A =milk A —=toothed A —fins

S F ‘ THEN (class = reptile)
RN e F

: yes :
! 0.028965516 )}
- -0.0444687866 )
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input instance:
IF (animal_name = pitviper) A —hair
v [amphibian]-... R o R bug e, : —feathers A eggs A —milk A —airborneA

- oCmmms), 2 e —aquatic A predator A —=toothed A —=finsA
(it _ : : :
e e Y —— (legs = 0) A tall A ~domestic A —catsize

— - — - — * THEN (class = reptile)

o). > osmaon) Anchor’s explanation:
e I ey B I et IF =hair A =milk A —=toothed A —fins

s S S R ‘ THEN (class = reptile)

counterexample!
IF animal_name = toad) A —hair
e ( - ) A

e ; —feathers A eggs A —milk A —airborneA
—aquatic A —~predator A —toothed A —finsA
(legs = 4) A —tail A =domestic A —catsize
THEN (class = amphibian)

27/ 40



how?



how?

gl
ven &, EnEF (M —
m)



how?

given &, EnE(M — )

\ 4



how?

given &, EnE(M — )

\ 4

En N M A — — satisfiable



how?

given &, EnE(M — )

\ 4

En N M A — — satisfiable

(in fact, this formula can have many models)
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Repairing heuristic explanations

Input: model M, initial cube Z, heuristic explanation &, prediction 7
Output: Subset-minimal explanation &,

begin
(Il,IQ) < (I\gh,gh)

forlc 7, :
if Entails(Zy UL\ {{}, M — n) :
T < T\ {l}

forlcZ,:

if Entails(Zy UL\ {}, M — 7) =
Ty < Lo\ {l}

return’zZ; Ui,

end
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Input: model M, initial cube Z, heuristic explanation &, prediction =
Output: Subset-minimal explanation &,

begin

forlcZ,:

if Entails(Zy UL\ {}, M — 7) =
Ty < Lo\ {l}

return’zZ; Ui,

end
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IF —hair A =milk A —=toothed A —fins
THEN (class = reptile)



Incorrect explanation

IF —hair A =milk A —=toothed A —fins
THEN (class = reptile)

repaired explanation

IF —feathers A =milk A backbonen
—fins A (legs = 0) A tail
THEN (class = reptile)



Refining heuristic explanations

Input: model M, heuristic explanation &, prediction =
Output: Subset-minimal explanation &,

begin

foxrlc &, :
if Entails(&p \ {}, M — 7) =
En <+ En \ {l}

return &,

end
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Assessment experiment

3 datasets from Anchor e
2 additional datasets from FairML and ProPublica s

[FSV15, FFM T 15, FSV19]

target all data samples
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Assessment experiment

e —————— heuristic exp]anation ....................................................... ,

!

1 no yes [

[ repair K

J \.

A
=]
O
o p
=
a
——/

yes no
incorrect redundant correct

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
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Assessment experiment

Explanations

Dataset (# unique) incorrect redundant correct

LIME Anchor SHAP LIME Anchor SHAP LIME Anchor SHAP

adult (5579) 61.3% 80.5% 70.7% 7.9% 1.6% 102% 308% 17.9% 19.1%
lending (4414) 240% 3.0% 17.0% 0.4% 0.0% 25% 756% 97.0% 80.5%
rcdv (3696) 941% 99.4% 859% 4.6% 0.4% 7.9% 1.3% 0.2% 6.2%
compas (778) 719% 84.4% 60.4% 20.6% 1.7% 27.8% 7.5% 13.9% 11.8%
german (1000) 853% 99.7% 63.0% 146% 02% 37.0% 0.1% 0.1% 0.0%
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Explanations

Dataset (# unique) incorrect redundant correct
LIME Anchor SHAP LIME Anchor SHAP LIME Anchor SHAP
adult (5579) 61.3% 80.5% 70.7% 7.9% 1.6% 102% 308% 17.9% 19.1%
lending (4414) 24.0% 3.0% 17.0% 0.4% 0.0% 25% 75.6% 97.0% 80.5%
rcdv (3696) 941% 99.4% 859% 4.6% 0.4% 7.9% 1.3% 0.2% 6.2%
compas (778) 719% 84.4% 60.4% 20.6% 1.7% 27.8% 7.5% 13.9% 11.8%
german (1000) 853% 99.7% 63.0% 146% 02% 37.0% 0.1% 0.1% 0.0%

so should we trust heuristic approaches?
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Assessment experiment

Explanations

Dataset (# unique) incorrect redundant correct

LIME Anchor SHAP LIME Anchor SHAP LIME Anchor SHAP

adult (5579) 61.3% 80.5% 70.7% 7.9% 1.6% 102% 308% 17.9% 19.1%
lending (4414) 240% 3.0% 17.0% 0.4% 0.0% 25% 756% 97.0% 80.5%
rcdv (3696) 941% 99.4% 859% 4.6% 0.4% 7.9% 1.3% 0.2% 6.2%
compas (778) 719% 84.4% 60.4% 20.6% 1.7% 27.8% 7.5% 13.9% 11.8%
german (1000) 853% 99.7% 63.0% 146% 02% 37.0% 0.1% 0.1% 0.0%

so should we trust heuristic approaches?
or better not?

34 [ 40
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What about measuring precision of Anchor’s explanations?

given model M, input Z, prediction 7, and explanation &:

prec(&) =

p(r-~e)M(T') = 7]

alternatively, do approximate model counting for:

ENMAN—T

(in fact, a bit more complicated but the idea is here)
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Assessing heuristic explanations'

Precision estimate

1.0 4

0.8 4

0.6

0.4 4

0.2

0.0

-
.
.....
amm

.
------

= Anchor (adult)
ApproxMC3(adult)
Anchor (lending)
ApproxMC3(lending)
Anchor (recidivism)

= ApproxMC3(recidivism)

Precision estimate

T
50

T T T T T
100 150 200 250 300

#anchors

unconstrained feature space

1.0 4

0.8

0.6

0.4 4

0.2

0.0

-

-
.

.

= Anchor (adult)
ApproxMC3(adult)
Anchor (lending)
ApproxMC3(lending)
Anchor (recidivism)

= ApproxMC3(recidivism)

T T T T T T T
0 50 100 150 200 250 300

#anchors

samples with < 50% difference

Unconstrained inputs

Constrainted inputs

Dataset
Anchor  ApproxMC3  Anchor  ApproxMC3
adult 0.99 0.67 0.99 0.81
lending 0.99 0.87 0.99 0.92
recidivism 0.99 0.75 0.99 0.80
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logic is helpful in XAl!

(for computing explanations but also assessing heuristic appoaches)

rigorous approach

trustable explanations
minimality guarantees

(if one can encode and check entailment!)

38/ 40
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challenges

scalability
(search or compilation?)
other ML models, reasoners, methods?

other types of explanations?

what about other heuristic approaches?
hybrid approaches?



Further insights (see next)

generic oracle-based approach but...
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Further insights (see next)

generic oracle-based approach but...

poly time algorithms for some ML models!

+
‘why?’ vs ‘why not?’

XAl vs verification

V
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Why Pl-explanations for DTs?

[11M20]
- Instance: (x1,X2,X3,X4) = (1,0,1,1)
- Why is prediction H?
- Pl-explanation for prediction & given
instance (X1, X2,X3,X4) = (1,0,1,1)7?

- Analysis:
;’ ’ - Prediction changes if x; can take any
value in {0,1}? No
o~ 7 - Prediction changes if xo and x; can take
¥ any value in {0,1}? No
= @ - Pl-explanation: (xs = 1) A (xa = 1)
8 ? 10
;/ : - Obs: There are functions for which
= some paths grows with number of
B N features, and Pl-explanation is of

constant-size
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Need for Pl-explanations in DTs is ubiquitous— Russell&Norving’s book

[RN10]

7
None// Full Some

No

Yes Yes

No Yes

- Pl-explanation for (P,H, T,W) = (Full, Yes, Thai, N0o)?
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Need for Pl-explanations in DTs is ubiquitous— Zhou's book

, [Zho12]
isy > 0.73? )
Y N
Y
Cross IS X > 0.647
Y NN
\
3
Cross circle

- Pl-explanation for (x,y) = (1.25, —1.13)7?
Obs: Pl-explanations can be computed for categorical, ordinal, integer or real-valued features!
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Need for Pl-explanations in DTs is ubiquitous— Alpaydin’s book

[Alp14]

X1 < 2.57
Y \\ N
Y
O IS X9 < 1.07
\\
\
\
N
O L]

- Pl-explanation for (x1,Xx2) = (3.14,0.87)7
Obs: Pl-explanations can be computed for categorical, ordinal, integer or real-valued features!
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Need for Pl-explanations in DTs is ubiquitous— Poole&Mackworth’s book

[PM17]

Long// Short
y//
Skips
New / Follow-up
y//
Reads
Unknown , Known
}4/

Skips Reads

- Pl-explanation for (L, T,A) = (Short, Follow-Up, Unknown)?
- Pl-explanation for (L, T,A) = (Short, Follow-Up, Known)?
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DT explanations in polynomial time

[11M20]

- Run Pl-explanation algorithm based on
1 NP-oracles
- Worst-case exponential time
P' : - For prediction &, it suffices to ensure
all B paths remain inconsistent

7 - l.e. find a subset-minimal hitting set of
’ all B paths; these are the features to

¥
8 : = @ keep
10 - Well-known to be solvable in

¥ polynomial time [£GS]
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Experimental evidence

1Al ITl

Dataset (#F  #S)

D #N %A #P %R %C %m %M %avg D #N %A #P %R %C %m %M %avg
adult (12 6061) 6 83 78 42 33 25 20 40 25 17 509 73 255 75 91 10 66 22
anneal (38 886) 6 29 99 15 26 16 16 33 21 9 31 100 % 25 4 12 20 16
backache (32 180) 4 17 72 9 33 39 25 33 30 3 9 91 5 8 8 50 66 54
bank (19 36293) 6 113 8 57 5 12 16 20 18 19 1467 86 734 69 64 7 63 27
biodegradation ( 41  1052) 5 19 65 10 30 1 25 50 33 8 7176 36 50 8 14 40 21
cancer (9 449) 6 37 8 19 36 9 20 25 21 5 21 84 M 5 10 25 50 37
car (6 1728) 6 43 96 22 8 89 20 80 45 M 57 98 29 65 41 16 50 30
colic (22 357) 6 55 8 28 46 6 16 33 20 4 17 80 9 33 27 25 25 25
compas (M 155) 6 77 34 39 17 8 16 20 17 15 183 37 92 66 43 12 60 27
contraceptive (9  1425) 6 99 49 50 8 2 20 60 37 17 385 48 193 27 32 12 66 21
dermatology ( 34 366) 6 33 90 17 23 3 16 33 21 7 17 95 9 2 0 14 20 17
divorce ( 54 150) 5 15 90 8 50 19 20 33 24 2 5 96 3 3 16 50 50 50
german (21 10000 6 25 61 13 38 10 20 40 29 10 99 72 50 46 13 12 40 22
heart-c (13 302) 6 43 65 22 36 18 20 33 22 4 15 75 8 87 8 25 50 34
heart-h (13 293) 6 37 59 19 31 4 20 4O 24 8 25 77 13 61 60 20 50 32
kr-vs-kp (36 3196) 6 49 96 25 80 75 16 60 33 13 67 99 3479 43 7 70 35
lending (9 5082) 6 45 73 23 73 80 16 50 25 14 507 65 254 69 80 12 75 25
letter (16 18668) 6 127 58 64 1 0 20 20 20 46 4857 68 2429 6 7 6 25 9
lymphography (18 148) 6 61 76 31 35 25 16 33 21 6 21 86 M 9 0 16 16 16
mortality (118 13442) 6 1M1 74 56 8 14 16 20 17 26 865 76 433 61 61 7 54 19
mushroom (22 8124) 6 39 100 20 80 44 16 33 24 5 23 100 12 50 31 20 40 25
pendigits (16 10992) 6 121 8 61 0 0 — — — 38 937 85 469 25 86 6 25 1
promoters ( 58 106) 1 3 9 2 0 0 — - — 3 9 81 5 20 14 33 33 33
recidivism (15 3998) 6 105 61 53 28 22 16 33 18 15 611 51 306 53 38 9 44 16
seismic_bumps (18 2578) 6 37 89 19 42 19 20 33 24 8 39 93 20 60 79 20 60 @ 42
shuttle ( 9 58000) 6 63 99 32 28 7 20 33 23 23 159 99 80 33 9 14 50 30
soybean (35 623) 6 63 8 32 9 5 25 25 25 16 71 89 36 22 1 9 12 10
spambase (57 42100 6 63 75 32 37 12 16 33 19 15 143 9] 72 76 98 7 58 25
spect (22 228) 6 45 8 23 60 51 20 50 35 6 15 86 8 87 98 50 83 65
splice (2 3178) 3 7 50 4 0 0 — — — 8 177 55 89 0 0 - - —
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Tractability

Explaining NBCs & LCs
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Key concepts & outcomes — NBCs & [Pr

G | Pr(G)
= | 0.90

0.95 0.20
= | 003 =5 075
G | Pr(Rs|G) G | Pr(Rs|G)

0.05 0.02
= 095 = | 034

NBC classifier (def): 7(e) = argmax .. (Pr(cle))
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NBC classifier (def): 7(e) = argmax . (Pr(cle)) = argmax . (Pr(c) x []; Pr(eilc))
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Key concepts & outcomes — NBCs & [Pr

G | Pr(G)
= | 0.90

0.95 0.20
= | 003 =5 075
G | Pr(Rs|G) G | Pr(Rs|G)

0.05 0.02
= 095 = | 034

NBC classifier (def): 7(e) = argmax . (Pr(cle)) = argmax . (Pr(c) x []; Pr(eilc))
NBC classifier (alt):  7(e) = argmax .k ((T +log Pr(c)) + X..(T + log Pr(ej|c)))

Using oper. [Pr(-):  7(e) = argmaxx(lPr(cle)) = argmax ¢, ((IPr(c)) + 2 ((Pr(ei[c)))
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Key concepts & outcomes - working with [Pr

G | Pr(G)
= | 0.90

G | Pr(R1|G) . . . . G | Pr(R4|G)
e O C) )’
5] 003 G | Pr(Ral0) G | Pr(Rsl0) 5] 075
0.05 0.02
= 0.95 = 0.34
a=(1,0,1,0) | Pr(E) Pr(ri| @) Pr(—ro| @) Pr(rs| B) Pr(—ry| B8) |Pr(E |a)
Pr(-) 0.10 0.95 0.95 0.02 0.80
[Pr(+) 1.70 3.95 3.95 0.09 3.78 13.47
a=(1,0,1,0) | Pr(B) Pr(ri| B) Pr(—ro| 8) Pr(rs| B) Pr(—ry| B)|Pr(E |a)
Pr(-) 0.90 0.03 0.05 0.34 0.25
[Pr(+) 3.89 0.49 1.00 2.92 261 10.91
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Key concepts & outcomes - working with [Pr

G | Pr(G)
= | 0.90

G | Pr(R1|G) . . . . G | Pr(R4|G)
] & ® ® ® 2
21 00 G | Pr(Ra|G) G | Pr(Rs[0) 21 07
0.05 0.02
5| 095 ERIRED
a=(1,0,1,0) | Pr(E) Pr(ri| @) Pr(—ro| @) Pr(rs| B) Pr(—ry| B8) |Pr(E |a)
Pr(-) 0.10  0.95 0.95 0.02 0.80 /
[Pr(-) 1.70  3.95 3.95 0.09 3.78 13.47
a=(1,0,1,0) | Pr(B) Pr(ri| B) Pr(—ro| 8) Pr(rs| B) Pr(—ry| B)|Pr(E |a)
Pr(-) 090  0.03 0.05 0.34 0.25
[Pr(-) 3.89  0.49 1.00 2.92 2.61 10.91

Pick class H!
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Key concepts & outcomes — XLCs

G | Pr(G)
= | 0.90

0.95 0.20
= | 003 =5 075
G | Pr(Rs|G) G | Pr(Rs|G)

0.05 0.02
= 095 = | 034

NBC classifier (def): 7(e) = argmaxx (Pr(c) x [, Pr(eilc))
NBC classifier (alt):  7(e) = argmaXx . ((T +logPr(c)) + X..(T + log Pr(ej|c)))

Using oper. [Pr(-): 7(e) = argmax . ((IPr(c)) + > ;(IPr(ei|c)))

XLC classifier: v(e) = WO+ZI.€ wie; +Z a(ej,v;, vz, --7qu)
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G | Pr(G)
= | 0.90

0.95 0.20
= 0.03 = 0.75
G | Pr(R2|G) G | Pr(Rs|G)
0.05 0.02
= 0.95 = 0.34 Can reduce

NBC to XLC

NBC classifier (def): 7(e) = argmaxx (Pr(c) x [, Pr(eilc))
7(e) = argmax.cx (T +log Pr(c)) 4 25;(T + log Pr(e;|c)))

r(€) + 2i(IPr(ei|c)))

NBC classifier (alt):

7(e) = argmaxX ., ((LP

e) = Wo +Zie

Using oper. [Pr(-):

XLC classifier: W€,+Z e,, ; 7--7ij)

Key concepts & outcomes — XLCs
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Key concepts & outcomes — NBC to XLC

G | Pr(G)
= 0.90

S uss '@ '@ G | Pr(R4|G)
0.95 (Ra
= 0.03 : 0.0

Eliminate argmax:  [Pr(&) — [Pr(B) +
Z,-n:l(lPr(ﬁe,\ H) — IPr(—e;| B))—e; +
Z,‘n:l(lpr(e/| ) — lPr(e,-| E|>>e/' >0
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Key concepts & outcomes — NBC to XLC

G | Pr(G)
= | 0.90

0.95 0.20
= | 003 =5 075
G | Pr(Rs|G) G | Pr(Rs|G)

0.05 0.02
= 095 = | 034

Eliminate argmax: [Pr(&®) — [Pr(B) +
> (IPr(—e;| B) — IPr(—e| B))—e; +
Zf:1<lpr(e,| @) — [Pr(e]] B))e; > 0
Mapping to XLC: vvo = [Pr(®E) — Pr(8)

= Pr(—¢j| @) — IPr(—¢;| B)
= [Pr(e;| B) — Pr(e;| B)

/
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Key concepts & outcomes - minding the gap

Pr(®) | Pr(—=r1| 8) Pr(ri| @8) | Pr(—=ro| B) Pr(re| @) | Pr(—rs| @) Pr(rs| @) | Pr(—ry| B) Pr(ry| &)
Pr(-) | 0.10 0.05 0.95 0.95 0.05 0.98 0.02 0.80 0.20
Pr(-)| 1.70 1.00 3.95 3.95 1.00 3.98 0.09 3.78 2.39

Pr(B) | Pr(—=r1| 8) Pr(r1| B) | Pr(—=ro| B) Pr(re| B)|Pr(—r3| &) Pr(rs| 8) | Pr(—ry| B) Pr(ry] 8)

Pr(-) | 0.90 0.97 0.03 0.05 0.95 0.66 0.34 0.25 0.75
Pr(-)| 3.89 3.97 0.49 1.00 3.95 3.58 2.92 2.61 3.71
: 2 1,2 dj
Gap value: %= v(a) =wo + 2 o(a,vi,Vv7,...,v;) >0
Worst-case gap: [ 2wy + 2V <0
a; a;
Relate I' and I'“: I =wo + eV — 2jec(V; = V) =T = 2 i = -
oA w0 G 1,2
where, 0; =V =V =V, mm{vj,vj,...}

. . a; W .
Worst-case, given some min. P Wo + 2 jjcp V' + 2jgp V" = =@ + 2icp 6> 0
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Key concepts & outcomes - 0-1 [LP

pi € {07 1}

Pr(®) | Pr(—=r1| 8) Pr(ri| @8) | Pr(—=ro| B) Pr(re| @) | Pr(—rs| @) Pr(rs| @) | Pr(—ry| B) Pr(ry| &)
Pr(-) | 0.10 0.05 0.95 0.95 0.05 0.98 0.02 0.80 0.20
Pr(-)| 1.70 1.00 3.95 3.95 1.00 3.98 0.09 3.78 2.39
Pr(B) | Pr(—=r1| 8) Pr(r1| B) | Pr(—=ro| B) Pr(re| B)|Pr(—r3| &) Pr(rs| 8) | Pr(—ry| B) Pr(ry] 8)
Pr(-) | 0.90 0.97 0.03 0.05 0.95 0.66 0.34 0.25 0.75
Pr(-) | 3.89 3.97 0.49 1.00 3.95 3.58 292 2.61 3.71
Optimization problem:
min 27:1 D
n
s.t. Diim1 0ipi > @




Key concepts & outcomes - 0-1 [LP

Special case of knapsack;

can solve in log-linear time

Pr(®) | Pr(—=r1| 8) Pr(ri| @8) | Pr(—=ro| B) Pr(re| @) | Pr(—rs| @) Pr(rs| @) | Pr(—ry| B) Pr(ry| &)
Pr(-) | 0.10 0.05 0.95 0.95 0.05 0.98 0.02 0.80 0.20
Pr(-)| 1.70 1.00 3.95 3.95 1.00 3.98 0.09 3.78 2.39
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Key concepts & outcomes - 0-1 [LP

Special case of knapsack;

can solve in log-linear time

Pr(®) | Pr(—=r1| 8) Pr(ri| @8) | Pr(—=ro| B) Pr(re| @) | Pr(—rs| @) Pr(rs| @) | Pr(—ry| B) Pr(ry| &)
Pr(-) | 0.10 0.05 0.95 0.95 0.05 0.98 0.02 0.80 0.20
Pr(-)| 1.70 1.00 3.95 3.95 1.00 3.98 0.09 3.78 2.39
Pr(B) | Pr(—=r1| 8) Pr(r1| B) | Pr(—=ro| B) Pr(re| B)|Pr(—r3| &) Pr(rs| 8) | Pr(—ry| B) Pr(ry] 8)
Pr(-) | 0.90 0.97 0.03 0.05 0.95 0.66 0.34 0.25 0.75
Pr(-) | 3.89 3.97 0.49 1.00 3.95 3.58 292 2.61 3.71
Can enumerate min. sols
Optimization problem: w/ log-linear delay
min 27:1 D
n
s.t. Diim1 0ipi > @
pi € {07 1}




Overview of experimental results

CPU time (s)

10! H’
100
107!
—
1072
0 20000 40000 60000 80000

instances

(a) Raw performance of XPXLC

instances
I

20
10!
18 -
16 -
14
0 o8l
121 10 2y

1071 4

102 10-! 109 10!
XPXLC

(b) Performance of STEP (with MOs & TOs) (c) XPXLC vs STEP (no comp. time)

Our work (XPXLC) vs. STEP iscois, pHoo]
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Main result

- Definitions:
- Abductive explanation X (AXp, Pl-explanation): [SCD18, INM19a]
- Minimal set of literals sufficient for prediction

V(x ). /\jeX(Xj = V) =(1(x) = ¢)

- Contrastive explanation ) (CXp): [Mil19, INAM20]
- Minimal set of literals sufficient for changing prediction

I(x € F). /\W(xj =) A (1(x) = 0)
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- Contrastive explanation Y (CXp): [Mil19, INAM20]
- Minimal set of literals sufficient for changing prediction

3(x € F). /\W(x,- =) A (7(x) = 0)

- Relating AXp's with CXp's: [INAM20]
AXp's are MHSes of CXp’s and vice-versa

- Why bother? Can compute AXp's from CXp’s, and vice-versa !
- E.g. one can enumerate AXp's+CXp’'s concurrently

- Work exploits hitting set duality, first studied in model-based diagnosis [Reig7]
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Duality

Global Explanations vs. Adversarial Examples
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Overview

- Vast body of work on computing explanations (XPs)
- Mostly heuristic approaches, with recent rigorous solutions

- Vast body of work on coping with adversarial examples (AEs)
- Both heuristic and rigorous approaches
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Overview

- Vast body of work on computing explanations (XPs)
- Mostly heuristic approaches, with recent rigorous solutions

- Vast body of work on coping with adversarial examples (AEs)
- Both heuristic and rigorous approaches

- Can XPs and AEs be somehow related?

- Recent work observed that some connection existed, but formal connection has been elusive

- Recent proposal of a (first) link between XPs and AEs [INM19b)

- Work exploits hitting set duality, first studied in model-based diagnosis [Reis7]
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A well-known example

[RN10]

Input Attributes Goal

Example . . . . .
Alt | Bar | Fri | Hun Pat Price | Rain | Res Type Est WillWwait
X1 Yes | No | No | Yes | Some | SSS No | Yes | French | 0-10 y1 = Yes
Xo Yes | No | No | Yes Full S No No Thai 30-60 yo = No
X3 No | Yes | No | No | Some S No No | Burger | 0-10 y3 = Yes
X4 Yes | No | Yes | Yes Full S Yes No Thai 10-30 Va4 = Yes
Xs Yes | No | Yes | No Full SSS No | Yes | French >60 ys = No
X6 No | Yes | No | Yes | Some SS Yes | Yes | Italian | 0-10 V6 = Yes
X7 No | Yes | No No None S Yes No | Burger | 0-10 y7 = NO
Xs No | No | No | Yes | Some SS Yes | Yes Thai 0-10 ys = Yes
X9 No | Yes | Yes No Full S Yes No | Burger >60 Yo = NO
X10 Yes | Yes | Yes | Yes Full SSS No | Yes | Italian | 10-30 || yi0 = No
X11 No | No | No | No | None S No No Thai 0-10 y11 = No
X12 Yes | Yes | Yes | Yes Full S No No | Burger | 30-60 || yi2 = Yes
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A well-known example (Cont.)

- 10 features:

{A(lternate), B(ar), W(eekend), H(ungry), Pa(trons), Pr(ice), Ra(in), Re(serv.), T(ype), E(stim.)}

- Example instance (x;, with outcome y; = Yes):

{A,—B, =W, H, (Pa = Some), (Pr = $$%), —Ra, Re, (T = French), (E = 0-10)}

+ A possible decision set (obtained with some off-the-shelf tool, & function’):

IF (Pa =Some) A —(E = >60) THEN (Wait = Yes) (R1)
IF W A —=(Pr=5$$) A =(E=>60) THEN (Wait = Yes) (R2)
IF =W A —(Pa = Some) THEN (Wait = No) (R3)
IF (E=>60) THEN (Wait = No) (R4)
IF —(Pa =Some) A (Pr=559) THEN (Wait = No) (R5)
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A subset-minimal set C of literals is a counterexample (CEx) to a prediction 7, if C = (M — p),
withpeKap=m
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withpeKap=m

- Breaks:

A literal 7 breaks a set of literals S (each denoting a different feature) if S contains a literal
Inconsistent with

- Back to the example, consider prediction (Wait = Yes):
- Using (R1) (and assuming a consistent instance), an explanation is:

(Pa = Some) A —(E = >60)

- Due to (R5), a counterexample is:

—(Pa = Some) A (Pr=$59)
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Counterexamples & breaks

- Counterexamples:

A subset-minimal set C of literals is a counterexample (CEx) to a prediction 7, if C = (M — p),
withpeKap=m

- Breaks:

A literal 7 breaks a set of literals S (each denoting a different feature) if S contains a literal
Inconsistent with

- Back to the example, consider prediction (Wait = Yes):
- Using (R1) (and assuming a consistent instance), an explanation is:

(Pa = Some) A —(E = >60)
- Due to (R5), a counterexample is:
—(Pa = Some) A (Pr = $S9)

- XP & = {(Pa = Some), —(E = >60)} breaks CEx Sz = {—(Pa = Some), (Pr = $55)} and

vice-versa
18 /33



Some preliminary results

1. Relationship between XPs with CEX’s:

19/33



Some preliminary results

1. Relationship between XPs with CEX’s:
- Each XP breaks every CEx

19/33



Some preliminary results

1. Relationship between XPs with CEX’s:
- Each XP breaks every CEx

- Each CEx breaks every XP

19/33



Some preliminary results

1. Relationship between XPs with CEX’s:
- Each XP breaks every CEx

- Each CEx breaks every XP

.. XPs can be computed from all CEx's (by HSD) and vice-versa

19/33



Some preliminary results

1. Relationship between XPs with CEX’s:
- Each XP breaks every CEx

- Each CEx breaks every XP

.. XPs can be computed from all CEx's (by HSD) and vice-versa

2. Given instance Z, an AE can be computed from closest CEx
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Revisiting the example

- Restaurant dataset
- ML model is decision set (shown earlier)
- Prediction is (Wait = Yes)

- Global explanations:
1. (Pa =Some) A —(E = >60)
2. WA —=(Pr=255$) A =(E = >60)

- Counterexamples:
1. =W A —=(Pa = Some)
2. (E= >60)
3. —=(Pa = Some) A (Pr=5595)

- The XP's break the CEx's and vice-versa
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Links with Fairness

21/33



Some questions regarding fairness

[IcS ™ 20]

- What should be the criterion for fairness of a model (a classifier)?

- What should be the criterion for dataset bias?

- What should be the criterion for fairness of a particular decision?

- How to learn a fair model from biased data?

22/33



Basic definitions

- Classifier: boolean function ¢(x,y) € {0, 1}, where

- x: values of non-protected features (salary, age, ...), and
- y: values of protected features (gender, race, ...).

- Dataset: set of tuples (x,y, ¢y with c e {0, 1}

- Examples:

1. Should a bank approve a loan to a customer?
2. Should a judge release a prisoner on probation?
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Links with Fairness

Fairness Through Unawareness
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Criterion: fairness through unawareness (FTU)

- FTU: ¢ is a function only of the non-protected features x

- FTU criterion for testing unfairness of model:

Ix3I(y1,¥2)- [y1 #y2 A (X, ¥1) # @(X,y2)]

E.g. Alice and Bob are identical (same salary, age, ...), Alice is refused a loan but Bob isn't

- Optimisation: only need to test criterion for y1, y2 which differ on a single feature
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Criterion: fairness through unawareness (FTU)

- FTU: ¢ is a function only of the non-protected features x

- FTU criterion for testing unfairness of model:
Ix3(y1,¥2)-[y1 # ¥2 A o(x,¥1) # p(x,y2)]
E.g. Alice and Bob are identical (same salary, age, ...), Alice is refused a loan but Bob isn't

- Optimisation: only need to test criterion for y1, y2 which differ on a single feature

Possible drawbacks of FTU:
- There may be correlations between protected and non-protected features
E.g.: the bank isn’'t unfair to women, they just don't give loans to people who are pregnant!
- Positive discrimination may be a good thing
E.g.: height restrictions for army recruits are less strict for women
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FTU as a criterion for dataset bias

- FTU criterion for testing bias of a dataset D:

3%, y1,¥2.[y1 # y2 A (X,¥1,0),{x,y2,1) € D]

- Criterion can be applied even if D is inconsistent (i.e. Ix, y[{x,y,0),{(x,y,1>€ D] )
- Criterion can be tested in linear time (using hash tables) since it is equivalent to: 3x such that

{c:3y,{x,y,c)eD}| > 1
{y:3c,{x,y,cheD} > 1

- Recent work showed that FTU is unique is respecting a number of desirable fairness
properties fics+20]
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Links with Fairness

Relating Fairness with Explanations
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Local fairness: fairness of a particular decision

- An example:

- Emma wants to know If she was refused a loan because she is a woman

- The bank uses a simple model: refuse a loan if the client is unemployed or if they are a
woman

- This model is clearly unfair with respect to gender, but

- The bank claims that the decision is fair since they refused the loan because Emma is unemployed
- Emma points out there are two possible explanations for the refusal:

(1) she is unemployed, or that
(2) she is a woman,

and hence the decision should be considered unfair
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Local fairness: fairness of a particular decision

- An example:

- Emma wants to know If she was refused a loan because she is a woman

- The bank uses a simple model: refuse a loan if the client is unemployed or if they are a
woman

- This model is clearly unfair with respect to gender, but

- The bank claims that the decision is fair since they refused the loan because Emma is unemployed
- Emma points out there are two possible explanations for the refusal:

(1) she is unemployed, or that
(2) she is a woman,
and hence the decision should be considered unfair

- Who is right?
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Fairness of a particular decision from explanations

- Recap: a Pl-explanation £ of a prediction ¢(z) = c is a subset-minimal set of literals from
the literals Z of z € F, which entails the prediction c:

V(xe ). [E(x) =(p(x) = 0)]

- An explanation is fair if it includes no protected features
- A prediction ¢p(z) = c is:

- Universally fair: if all of its explanations are fair
- Existentially fair: if at least one of its explanations is fair
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Fairness of a particular decision from explanations

- Recap: a Pl-explanation £ of a prediction ¢(z) = c is a subset-minimal set of literals from
the literals Z of z € F, which entails the prediction c:

V(xe ). [E(x) =(p(x) = 0)]

- An explanation is fair if it includes no protected features
- A prediction ¢p(z) = c is:

- Universally fair: if all of its explanations are fair

- Existentially fair: if at least one of its explanations is fair

- Back to the example:
Emma’s loan refusal decision is existentially fair but not universally fair
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Complexity of checking fairness

- A model ¢ is fair iff all its decisions are universally fair
- Checking fairness of a model is in co-NP

- Checking existential fairness of a decision ¢(z) = cis in co-NP
- It can be solved by exhaustive search over only the protected features

- Checking universal fairness of a decision ¢(z) = cis in II;
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Research Directions
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Many challenges

- Scalability, scalability, scalability...

- Rigorous methods still lacking in reasoning about NNs
- Q: How to improve performance of sound & complete methods for assessing robustness?
- Q: Alternatives to NNs in some settings?

- More efficient (and still rigorous) alternatives to prime-based explanations?
- Q: Basis for developing safe heuristics?

- Scaling the learning of interpretable models?

- Q: How to target large datasets?
- Q: Mechanisms for avoiding overfitting?

- Exploiting logic in learning black-box models (FBD+19]
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Questions?
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