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What is SAT?

• SAT is the decision problem for propositional logic
• Well-formed propositional formulas, with variables, logical connectives: ¬,∧,∨,→,↔, and
parenthesis: (, )

• Often restricted to Conjunctive Normal Form (CNF)

• Goal:
Decide whether formula has a satisfying assignment

• SAT is NP-complete [Coo71]
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The CDCL SAT disruption

• CDCL SAT solving is a success story of Computer Science

• Conflict-Driven Clause Learning (CDCL)
• (CDCL) SAT has impacted many different fields
• Hundreds (thousands?) of practical applications
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CDCL SAT solver (continued) improvement
[Source: Simon 2015]
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How good are CDCL SAT solvers?

Demos

• Sample SAT of solvers:

1. POSIT: state of the art DPLL SAT solver in 1995
2. GRASP: first CDCL SAT solver, state of the art 1995∼2000
3. Minisat: CDCL SAT solver, state of the art until the late 00s
4. Glucose: modern state of the art CDCL SAT solver
5. ...

• Example 1: model checking example (from IBM)
• Example 2: cooperative path finding (CPF)
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How good are SAT solvers? – an example

• Cooperative pathfinding (CPF)
• N agents on some grid/graph
• Start positions
• Goal positions
• Minimize makespan
• Restricted planning problem

• Concrete example
• Gaming grid
• 1039 vertices
• 1928 edges
• 100 agents

• Formula w/ 2946190 variables!

• Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!
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*** t r a c ke r : a pathf inding tool ***
I n i t i a l i z a t i o n . . . CPU Time: 0 .004711
Number of va r i ab l e s : 113315
Tentat ive makespan 1
Number of va r i ab l e s : 226630
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 0 . 7 18 1 12
c Done running SAT solver . . . CPU Time: 0.830099
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Elapsed CPU Time: 0 .830112
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Number of assumptions: 1
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Grasping the search space ...

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080 (or ≈ 1085)

• Search space with 15775 propositional variables (worst case):

• # of assignments to 15775 variables: > 104748 !
• Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):

• # of assignments to > 2.8× 106 variables: ≫ 10840000 !!
• Obs: SAT solvers at present (but formula dependent)
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SAT can make the difference – propositional abduction
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• Propositional abduction instances [IMM16]

• Implicit hitting set dualization (IHSD)
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SAT can make the difference – axiom pinpointing
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• EL+ medical ontologies [AMM15]

• Minimal unsatisfiability (MUSes) & maximal satisfiability (MCSes) & Enumeration
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SAT can make the difference – model based diagnosis
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• Model-based diagnosis problem instances [MJIM15]

• Maximum satisfiability (MaxSAT)
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CDCL SAT is ubiquitous in problem solving

Problem
Solving
with SAT

Embeddings

PBO

B&B Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Models

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC
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B&B Search
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Oracles

Min. Models

Backbones

MCS
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MUS

Enumeration

Counting

CEGAR QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

SAT is the oracles’ oracle:
MaxSAT, QBF, LCG, #SAT, SMT,
ASP, FOL, ...
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Tutorial organization

• Part #1: Overview & basic definitions – Joao

• Part #2: Modern CDCL SAT solvers – Alexey

• Part #3: Modeling with propositional logic – Antonio

• Part #4: Problem solving with SAT oracles – Joao

• Part #5: Sample of applications – Alexey

• Part #6: Applications in proof complexity – Antonio

• Part #7: A glimpse of the future – Joao
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1 Basic Definitions
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Preliminaries

• Variables: w, x, y, z,a,b, c, . . .
• Literals: w, x̄, ȳ,a, . . . , but also ¬w,¬y, . . .
• Clauses: disjunction of literals or set of literals
• Formula: conjunction of clauses or set of clauses
• Model (satisfying assignment): partial/total mapping from variables to {0, 1} that
satisfies formula

• Each clause can be satisfied, falsified, but also unit, unresolved
• Formula can be SAT/UNSAT

• Example:

F ≜ (r) ∧ (̄r ∨ s) ∧ (w ∨ a) ∧ (x ∨ b) ∧ (y ∨ z ∨ c) ∧ (b ∨ c ∨ d)

• Example models:

• {r, s, a, b, c, d}
• {r, s, x̄, y, w̄, z, ā, b, c, d}
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• Literals: w, x̄, ȳ,a, . . . , but also ¬w,¬y, . . .
• Clauses: disjunction of literals or set of literals
• Formula: conjunction of clauses or set of clauses
• Model (satisfying assignment): partial/total mapping from variables to {0, 1} that
satisfies formula

• Each clause can be satisfied, falsified, but also unit, unresolved
• Formula can be SAT/UNSAT

• Example:

F ≜ (r) ∧ (̄r ∨ s) ∧ (w ∨ a) ∧ (x ∨ b) ∧ (y ∨ z ∨ c) ∧ (b ∨ c ∨ d)

• Example models:
• {r, s, a, b, c, d}
• {r, s, x̄, y, w̄, z, ā, b, c, d}
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Resolution

• Resolution rule: [DP60, Rob65]

(α ∨ x) (β ∨ x̄)
(α ∨ β)

• Complete proof system for propositional logic

• Extensively used with (CDCL) SAT solvers
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Resolution

• Resolution rule: [DP60, Rob65]

(α ∨ x) (β ∨ x̄)
(α ∨ β)

• Complete proof system for propositional logic
(x ∨ a) (x̄ ∨ a) (ȳ ∨ ā) (y ∨ ā)

(a) (ā)

⊥

• Extensively used with (CDCL) SAT solvers
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Unit propagation

F = (r) ∧ (̄r ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)∧
(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

• Unit clause rule: if clause is unit, its sole literal must be satisfied

• Additional definitions:
• Antecedent (or reason) of an implied assignment

• (b̄ ∨ c̄ ∨ d) for d
• Associate assignment with decision levels

• w = 1@ 1, x = 1@ 2, y = 1@ 3, z = 1@ 4

• r = 1@ 0, d = 1@ 4, ...
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Resolution proofs

• Refutation of unsatisfiable formula by iterated resolution operations yields resolution
proof

• An example:
F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

• Resolution proof:

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

• Modern SAT solvers can generate resolution proofs from learned clauses [ZM03]

18 / 168



Unsatisfiable cores & proof traces

• CNF formula:

F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

Level Dec. Unit Prop.

0 ∅ b̄

c̄

a

⊥

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

Implication graph with conflict
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Unsatisfiable cores & proof traces

• CNF formula:

F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

Level Dec. Unit Prop.

0 ∅ b̄

c̄

a

⊥

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

Resolution proof follows structure of conflicts
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Unsatisfiable cores & proof traces

• CNF formula:

F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

Level Dec. Unit Prop.

0 ∅ b̄

c̄

a

⊥

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

Unsatisfiable subformula (core): (c̄), (b̄), (ā ∨ c), (a ∨ b)
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The DPLL algorithm

[DP60, DLL62]

Assign value
to variable

Unassigned
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2 CDCL SAT Solvers
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What is a CDCL SAT solver?

• Extend DPLL SAT solver with: [DP60, DLL62]

• Clause learning & non-chronological backtracking [MS95, MSS96b, MSS99]

• Exploit UIPs [MS95, MSS99, ZMMM01, SSS12]

• Minimize learned clauses [SB09, Gel09, LLX+17]

• Opportunistically delete clauses [MSS96b, MSS99, GN02, AS09]

• Search restarts [GSC97, BMS00, Hua07, Bie08, LOM+18]

• Lazy data structures

• Watched literals [MMZ+01]

• Conflict-guided branching

• Lightweight branching heuristics [MMZ+01]

• Phase saving [PD07]

• ...
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Clause Learning, UIPs &
Minimization



Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

• Analyze conflict [MS95, MSS96a, MSS96a, MSS96b, MSS99]

• Reasons: x and z
• Decision variable & literals assigned at decision levels less than current

• Create new clause: (x ∨ z)

• Can relate clause learning with resolution

• Learned clauses result from (selected) resolution operations
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Clause learning – after backtracking

Level Dec. Unit Prop.

0

1

2

3

∅

x

y

zz aa

bb

⊥⊥

z

• Clause (x ∨ z) is asserting at decision level 1
• Learned clauses are asserting (with exceptions) [MS95, MSS96b, MSS99]

• Backtracking differs from plain DPLL:
• Always bactrack after a conflict [MMZ+01]
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Quiz – conflict analysis

Level Dec. Unit Prop.
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Unique implication points (UIPs)
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• Dominator in DAG for decision level 4
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(w̄ ∨ x̄ ∨ ā)(w̄ ∨ x̄ ∨ ā)
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• Learn clause (w ∨ x ∨ y ∨ z)
• But a is an UIP [MS95, MSS99]

• Dominator in DAG for level 4

• Learn clause (w ∨ x ∨ a)

26 / 168



Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

∅

www

xx

yyy

zzz r

s

aaa

b ⊥

c

• First UIP:
• Learn clause (w ∨ y ∨ a)

• But there can be more than 1 UIP
• Second UIP:

• Learn clause (x ∨ z ∨ a)
• Clause is not asserting

• In practice smaller clauses more effective
• Compare with (w ∨ x ∨ y ∨ z)

• Multiple UIPs proposed in GRASP [MS95, MSS99]

• First UIP learning proposed in Chaff [MMZ+01]

• Not used in recent state of the art CDCL SAT solvers
• Recent results show it can be beneficial on some instances [SSS12]
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Quiz – conflict analysis with UIP(s)
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Quiz (Cont.) – non-chronological backtracking

Without UIP:
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Clause minimization I

Level Dec. Unit Prop.
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(z̄ ∨ b̄ ∨ ā)
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(x̄ ∨ ȳ ∨ z̄)

• Learn clause (x ∨ y ∨ z ∨ b)
• Apply self-subsuming resolution (i.e. local minimization) [SB09]

• Learn clause (x ∨ y ∨ z)

30 / 168



Clause minimization I

Level Dec. Unit Prop.

0

1

2

3

∅

xxx

yyy

zzz c

bbb

a

⊥
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Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅

ww a

b

ccc

xx e

d ⊥

•
• Cannot apply self-subsuming resolution

• Resolving with reason of c yields (w ∨ x ∨ a ∨ b)

• Can apply recursive minimization
• Learn clause (w ∨ x)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes
• Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time
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Quiz – conflict clause minimization

Level Dec. Unit Prop.
0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)
Minimized clause: (a ∨ r ∨ c ∨ d ∨ g)

Target Curr Var Marked Unmarked Vars to Trace Action

g g {a,d, r, c} ∅ [s] –
g s {a,d, r, c} ∅ [d] –
g d {a,d, r, c} ∅ [] d marked, skip
g – {a,d, r, c} ∅ [] no unmarked vars; ∴ drop g

d d {a, r, c} ∅ [r] –
d r {a, r, c} ∅ [] r marked, skip
d – {a, r, c} ∅ [] no unmarked vars; ∴ drop d
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Quiz – conflict clause minimization (cont.)
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r b {a, c} {b} [] b decision & unmarked
r – {a, c} {b} [] unmarked vars; ∴ keep r

a, c – – ∅ [] a, c decision variables; keep both
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Quiz – conflict clause minimization (cont.)
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Search Restarts



Branch randomization

• Heavy-tail behavior: [GSC97]

• 10000 runs, branching randomization on satisfiable industrial instance

∴ use rapid randomized restarts (search restarts)
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Search restarts

• Restart search after a number of conflicts

• Increase cutoff after each restart
• Guarantees completeness
• Different policies exist

• Effective for SAT & UNSAT formulas. Why?

• Proof complexity arguments

• Clause learning (very) effective in between restarts

cutoff

cutoff

✓
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Search restarts

• Restart search after a number of conflicts
• Increase cutoff after each restart

• Guarantees completeness
• Different policies exist

• Effective for SAT & UNSAT formulas. Why?
• Proof complexity arguments

• Clause learning (very) effective in between restarts
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Lazy Data Structures



Data structures basics

• Recap states of a clause: unresolved, unit, falsified, satisfied

• Each literal l should access clauses containing l and l
• Why?

• Clause with k literals results in k references, from literals to the clause
• Number of clause references equals number of literals, L

• Clause learning can generate large clauses
• Worst-case size: O(n)

• Worst-case number of literals: O(mn)
• In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient representation:

• Watched literals are one example of lazy data structures
• But there are others [ZS00]
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Watched literals

@2 @0 @2 @1
A B C D E F G H Watch 2 unassigned literals in each clause

At DLevel 2: clause is unresolved

@2 @0 @2 @3 @1
A B C D E F G H

At DLevel 3: watch updated

@2 @0 @2 @3 @4 @1
A B C D E F G H

At DLevel 4: watch updated

@5 @2 @0 @2 @3 @4 @1
A B C D E F G H At DLevel 5: clause is unit

Literal D assigned value 1; clause becomes satisfied

@0 @1
A B C D E F G H After backtracking to DLevel 1

Watched literals untouched
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Watched literals – different implementations exist!

@2 @0 @2 @1
A B C D E F G H Watch 2 unassigned literals in each clause

At DLevel 2: clause is unresolved

@2 @0 @2 @3 @1
A B C D E F G H

At DLevel 3: watch updated

@2 @0 @2 @3 @4 @1
A B C D E F G H

At DLevel 4: watch updated

@5 @2 @0 @2 @3 @4 @1
A B C D E F G H At DLevel 5: clause is unit

Literal D assigned value 1; clause becomes satisfied

@0 @1
A B C D E F G H After backtracking to DLevel 1

Watched literals untouched

37 / 168



Additional key techniques

• Conflict-driven branching [MMZ+01]

• Use conflict to bias variables to branch on, associate score with each variable
• Prefer recent bias by regularly decreasing variable scores
• Recent promising ML-based branching [LGPC16a, LGPC16b]

• Clause deletion policies
• Not practical to keep all learned clauses
• Delete larger clauses [MSS96b, MSS99]

• Delete less used clauses [GN02, ES03]

• Delete based on LBD metric [AS09]

• Other effective techniques:
• Phase saving [PD07]

• Novel restart strategies [Hua07, BF15, LOM+18]

• Preprocessing/inprocessing [JHB12, HJL+15]

• Clause minimization: LBD-based and UP-based [AS09, LLX+17]
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Why CDCL Works?



Why CDCL works – a practitioner’s view

• GRASP-like clause learning extensively inspired in circuit reasoners
• UIPs mimic unique sensitization points (USPs), from testing
• Analysis of conflicts organized by decision levels

• In circuits, branching is (mostly) on the inputs, e.g. PODEM, FAN, etc.
• Need to find ways to exploit the circuit’s internal structure
• Several ideas originated in earlier work [MSS93, MSS94]

• Understanding problem structure is essential
• Clauses are learned locally to each decision level
• UIPs further localize the learned clauses
• GRASP-like clause learning aims at learning small clauses, related with the sources of
conflicts

• Most practical problem instances exhibit the structure GRASP-like clause learning is most
effective on

• Most problems are not natively represented in clausal form [Stu13]

• There are also proof complexity arguments [BKS04, PD09, PD11]
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Incremental SAT solving

• SAT solver often called multiple times on related formulas

• It helps to make incremental changes & remember already learned clauses (that still
hold)

• Most often used solution: [ES03]

• Use activation/selector/indicator variables
Given clause Added to SAT solver

ci ci ∨ si
• To activate clause: add assumption si = 1

• To deactivate clause: add assumption si = 0 (optional)
• To remove clause: add unit (si)
• Any learned clause contains explanation given working assumptions (more next)
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An example

B = {(a ∨ b), (a ∨ c)}
S = {(a ∨ s1), (b ∨ c ∨ s2), (a ∨ c ∨ s3), (a ∨ b ∨ s4)}

• Background knowledge B: final clauses, i.e. no indicator variables
• Soft clauses S : add indicator variables {s1, s2, s3, s4}

• E.g. given assumptions {s1 = 1, s2 = 0, s3 = 0, s4 = 1}, SAT solver handles formula:

F = {(a ∨ b), (a ∨ c), (a), (a ∨ b)}

which is satisfiable

41 / 168



An example

B = {(a ∨ b), (a ∨ c)}
S = {(a ∨ s1), (b ∨ c ∨ s2), (a ∨ c ∨ s3), (a ∨ b ∨ s4)}

• Background knowledge B: final clauses, i.e. no indicator variables
• Soft clauses S : add indicator variables {s1, s2, s3, s4}
• E.g. given assumptions {s1 = 1, s2 = 0, s3 = 0, s4 = 1}, SAT solver handles formula:

F = {(a ∨ b), (a ∨ c), (a), (a ∨ b)}

which is satisfiable

41 / 168



Quiz – what happens in this case?

B = {(a ∨ b), (a ∨ c)}
S = {(a ∨ s1), (b ∨ c ∨ s2), (a ∨ c ∨ s3), (a ∨ b ∨ s4)}

• Given assumptions {s1 = 1, s2 = 1, s3 = 1, s4 = 1}?

(a ∨ b) (a ∨ s1) (a ∨ c) (b ∨ c ∨ s2)

(b ∨ s1) (c ∨ s1)

(c̄ ∨ s1 ∨ s2)

(s1 ∨ s2)

• Unsatisfiable core: 1st and 2nd clauses of S , given B
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3 Modeling with SAT
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Recap Clausification of Boolean
Formulas



How to translate to CNF?

• Obs: There are no CNF formulas [Stu13]

• Standard textbook solution
• Operator elimination; De Morgan’s laws, remove double negations & apply distributivity
• Worst-case exponential
• Set of variables constant

• Tseitin’s translation & variants (next)
• New variables added
• Satisfiability is preserved
• Linear size transformation
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Representing Boolean formulas / circuits I

• Satisfiability problems can be defined on Boolean circuits/formulas
• Can use any logic connective: ∧,∨,¬,→,↔, . . .

• Can represent circuits/formulas as CNF formulas [Tse68, PG86]

• For each (simple) gate, CNF formula encodes the consistent assignments to the gate’s inputs
and output

• Given z = OP(x, y), represent in CNF z↔ OP(x, y)

• CNF formula for the circuit is the conjunction of CNF formula for each gate

Fc = (a ∨ c) ∧ (b ∨ c) ∧ (a ∨ b ∨ c)

Ft = (r ∨ t) ∧ (s ∨ t) ∧ (r ∨ s ∨ t)

NAND

OR

a
b c

r
s t
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Representing Boolean formulas / circuits II

NAND
a
b c

ab
c 00 01 11 10

0

1

1

1 1 1

0 0 0

0

a b c Fc(a,b,c)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Fc = (a ∨ c) ∧ (b ∨ c) ∧ (a ∨ b ∨ c)
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Representing Boolean formulas / circuits III

• CNF formula for the circuit is the conjunction of the CNF formula for each gate
• Can specify objectives with additional clauses

NAND
AND

OR

a
b c

d

x y
z = 1?

F = (a ∨ x) ∧ (b ∨ x) ∧ (a ∨ b ∨ x) ∧
(x ∨ y) ∧ (c ∨ y) ∧ (x ∨ c ∨ y) ∧
(y ∨ z) ∧ (d ∨ z) ∧ (y ∨ d ∨ z) ∧ (z)

• Note: z = d ∨ (c ∧ (¬(a ∧ b)))
• No distinction between Boolean circuits and (non-clausal) formulas, besides adding new
variables

• Easy to do more structures: ITEs; Adders; etc.
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Quiz – how to encode a 100 input gate?

z

x1

x100

• Impractical to create the truth table...
• For any xi, if xi = 0, then z = 0

, i.e. ¬xi→¬z

• If for all i xi = 1, then z = 1

, i.e. ∧ixi→ z

• Resulting CNF encoding:
100∧
i=1

(xi ∨ z) ∧ (x1 ∨ · · · ∨ x100 ∨ z)

• Similar ideas apply for other (simple) logical operators: AND, NAND, OR, NOR, etc.
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• Similar ideas apply for other (simple) logical operators: AND, NAND, OR, NOR, etc.
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Hard and Soft Constraints



Hard vs. soft constraints

• Hard: Constraints that must be satisfied

• Soft: Constraints that we would like to satisfy, if possible
• Associate a cost (can be unit) with falsifying each soft constraint
• For a hard constraint, the cost can be viewed as∞

• An example:
• How to model linear cost function optimization?

min
∑n

j=1 cj xj
s.t. φ

• Hard constraints: φ
• Soft constraints: (xj), each with cost cj
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Linear Constraints



Linear constraints

• Cardinality constraints:
∑n

j=1 xj ≤ k ?
• How to handle AtMost1 constraints,

∑n
j=1 xj ≤ 1 ?

• General form:
∑n

j=1 xj ▷◁ k, with ▷◁ ∈ {<,≤,=,≥, >}

• Pseudo-Boolean constraints:
∑n

j=1 ajxj ▷◁ k, with ▷◁ ∈ {<,≤,=,≥, >}

• If variables are non-Boolean, e.g. with finite domain
• Need to encode variables (more later)
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Equals1, AtLeast1 & AtMost1 constraints

•
∑n

j=1 xj = 1: encode with (
∑n

j=1 xj ≤ 1) ∧ (
∑n

j=1 xj ≥ 1)

•
∑n

j=1 xj ≥ 1: encode with (x1 ∨ x2 ∨ . . . ∨ xn)

•
∑n

j=1 xj ≤ 1 encode with:
• Pairwise encoding

• Clauses: O(n2) ; No auxiliary variables
• Sequential counter [Sin05]

• Clauses: O(n) ; Auxiliary variables: O(n)
• Bitwise encoding [FP01, Pre07]

• Clauses: O(n log n) ; Auxiliary variables: O(log n)

• ...
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Pairwise encoding

• How to (propositionally) encode AtMost1 constraint a+ b+ c+ d ≤ 1?

• Encoded as: (a ∨ b) ∧ (a ∨ c) ∧ (a ∨ d) ∧ (b ∨ c) ∧ (b ∨ d) ∧ (c ∨ d)

• With N variables, number of clauses becomes n(n−1)
2

• But no additional variables
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Sequential counter encoding

• Encode
∑n

j=1 xj ≤ 1 with sequential counter:

(x1 ∨ s1) ∧ (xn ∨ sn−1)∧∧
1<i<n ((xi ∨ si) ∧ (si−1 ∨ si) ∧ (xi ∨ si−1))

• If some xj = 1, then all si variables must be assigned
• si = 1 for i ≥ j, and so xi = 0 for i > j
• si = 0 for i < j, and so xi = 0 for i < j
• Thus, all other xi variables must take value 0

• If all xj = 0, can find consistent assignment to si variables

• O(n) clauses ; O(n) auxiliary variables
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Bitwise encoding

• Encode
∑n

j=1 xj ≤ 1 with bitwise encoding:

• Auxiliary variables v0, . . . , vr−1 ; r = ⌈logn⌉ (with n > 1)
• If xj = 1, then v0 . . . vr−1 = b0 . . .br−1, the binary encoding of j− 1

xj → (v0 = b0) ∧ . . . ∧ (vr−1 = br−1)⇔ (xj ∨ (v0 = b0) ∧ . . . ∧ (vr−1 = br−1))

• Clauses (xj ∨ (vi ↔ bi)) = (xj ∨ li), i = 0, . . . , r− 1, where
• li ≡ vi, if bi = 1

• li ≡ vi, otherwise
• If xj = 1, assignment to vi variables must encode j− 1

• For consistency, all other x variables must not take value 1

• If all xj = 0, any assignment to vi variables is consistent
• O(n logn) clauses ; O(logn) auxiliary variables

• An example: x1 + x2 + x3 ≤ 1
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j− 1 v1v0
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x2 1 01

x3 2 10
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General cardinality constraints

• General form:
∑n

j=1 xj ≤ k (or
∑n

j=1 xj ≥ k)
• Operational encoding [War98]

• Clauses/Variables: O(n)
• Does not ensure arc-consistency

• Generalized pairwise
• Clauses: O(2n) ; no auxiliary variables

• Sequential counters [Sin05]

• Clauses/Variables: O(n k)
• BDDs [ES06]

• Clauses/Variables: O(n k)
• Sorting networks [Bat68, ES06]

• Clauses/Variables: O(n log2 n)
• Cardinality Networks: [ANOR09, ANOR11]

• Clauses/Variables: O(n log2 k)

• Pairwise Cardinality Networks: [CZ10]

• ...
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Generalized pairwise encoding

• General form:
∑n

j=1 xj ≤ k

• Any combination of k+ 1 true variables is disallowed

• Example: a+ b+ c+ d ≤ 2

• Encoded as: (a ∨ b ∨ c) ∧ (a ∨ b ∨ d) ∧ (a ∨ c ∨ d) ∧ (b ∨ c ∨ d)

• In general, number of clauses is Cnk+1

• Recall: for AtMost1 (i.e. for k = 1), number of clauses is: n(n−1)
2

56 / 168



Generalized pairwise encoding

• General form:
∑n

j=1 xj ≤ k

• Any combination of k+ 1 true variables is disallowed

• Example: a+ b+ c+ d ≤ 2

• Encoded as: (a ∨ b ∨ c) ∧ (a ∨ b ∨ d) ∧ (a ∨ c ∨ d) ∧ (b ∨ c ∨ d)

• In general, number of clauses is Cnk+1

• Recall: for AtMost1 (i.e. for k = 1), number of clauses is: n(n−1)
2

56 / 168



Generalized pairwise encoding

• General form:
∑n

j=1 xj ≤ k

• Any combination of k+ 1 true variables is disallowed

• Example: a+ b+ c+ d ≤ 2

a ∧ b→ c =⇒ (a ∨ b ∨ c)
a ∧ b→ d =⇒ (a ∨ b ∨ d)
a ∧ c→ d =⇒ (a ∨ c ∨ d)
b ∧ c→ d =⇒ (b ∨ c ∨ d)

• Encoded as: (a ∨ b ∨ c) ∧ (a ∨ b ∨ d) ∧ (a ∨ c ∨ d) ∧ (b ∨ c ∨ d)

• In general, number of clauses is Cnk+1

• Recall: for AtMost1 (i.e. for k = 1), number of clauses is: n(n−1)
2

56 / 168



Generalized pairwise encoding

• General form:
∑n

j=1 xj ≤ k

• Any combination of k+ 1 true variables is disallowed

• Example: a+ b+ c+ d ≤ 2

a ∧ b→ c =⇒ (a ∨ b ∨ c)
a ∧ b→ d =⇒ (a ∨ b ∨ d)
a ∧ c→ d =⇒ (a ∨ c ∨ d)
b ∧ c→ d =⇒ (b ∨ c ∨ d)

• Encoded as: (a ∨ b ∨ c) ∧ (a ∨ b ∨ d) ∧ (a ∨ c ∨ d) ∧ (b ∨ c ∨ d)

• In general, number of clauses is Cnk+1

• Recall: for AtMost1 (i.e. for k = 1), number of clauses is: n(n−1)
2

56 / 168



Another example

• Example: a+ b+ c+ d+ e ≤ 2

• Encoding will contain C53 = 10 clauses:

a ∧ b→ c =⇒ (a ∨ b ∨ c)
a ∧ b→ d =⇒ (a ∨ b ∨ d)
a ∧ b→ e =⇒ (a ∨ b ∨ e)
a ∧ c→ d =⇒ (a ∨ c ∨ d)
a ∧ c→ e =⇒ (a ∨ c ∨ e)
a ∧ d→ e =⇒ (a ∨ d ∨ e)
b ∧ c→ d =⇒ (b ∨ c ∨ d)
b ∧ c→ e =⇒ (b ∨ c ∨ e)
b ∧ d→ e =⇒ (b ∨ d ∨ e)
c ∧ d→ e =⇒ (c ∨ d ∨ e)
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Sequential counter – revisited I

• Encode
∑n

j=1 xj ≤ k with sequential counter:
x1 x2 xn

v1 v2 vn

s1,1

s1,2

s1,k s2,k

s2,2

s2,1

sn�1,k

sn�1,2

sn�1,1

• Equations for each block 1 < i < n , 1 < j < k:

si =
∑i

j=1 xj
si represented in unary

si,1 = si−1,1 ∨ xi
si,j = si−1,j ∨ si−1,j−1 ∧ xi
vi = (si−1,k ∧ xi) = 0
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Sequential counter – revisited II

• CNF formula for
∑n

j=1 xj ≤ k:

• Assume: k > 0 ∧ n > 1

• Indeces: 1 < i < n , 1 < j ≤ k
(¬x1 ∨ x1,1)
(¬s1,j)
(¬xi ∨ si,1)
(¬si−1,1 ∨ si,1)
(¬xi ∨ ¬si−1,j−1 ∨ si,j)
(¬si−1,j ∨ si,j)
(¬xi ∨ ¬si−1,k)

(¬xn ∨ ¬sn−1,k)

• O(n k) clauses & variables
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Pseudo-Boolean constraints

• General form:
∑n

j=1 aj xj ≤ b
• Operational encoding [War98]

• Clauses/Variables: O(n)
• Does not guarantee arc-consistency

• BDDs [ES06]

• Worst-case exponential number of clauses

• Polynomial watchdog encoding [BBR09]

• Let ν(n) = log(n) log(amax)
• Clauses: O(n3ν(n)) ; Aux variables: O(n2ν(n))

• Improved polynomial watchdog encoding [ANO+12]

• Clauses & aux variables: O(n3 log(amax))

• ...
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Encoding PB constraints with BDDs I

• Encode 3x1 + 3x2 + x3 ≤ 3

• Construct BDD
• E.g. analyze variables by decreasing coefficients

• Extract ITE-based circuit from BDD

x1

x2

0 x3

0 1

x2

x3

0 1

1

1 0

1 0

1 0

1 0

1 0
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Encoding PB constraints with BDDs II

• Encode 3x1 + 3x2 + x3 ≤ 3

• Extract ITE-based circuit from BDD
• Simplify and create final circuit:

ITE
1 0

s

ba

z

NO
R

1

NA
ND

x1

x2 x3 x2x3
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More on PB constraints

• How about
∑n

j=1 aj xj = k ?

• Can use (
∑n

j=1 aj xj ≥ k) ∧ (
∑n

j=1 aj xj ≤ k), but...

•
∑n

j=1 aj xj = k is a knapsack constraint
• Cannot find all consequences in polynomial time [FS02, Tri03, Sel03]

(Otherwise P = NP)

• Example:

4x1 + 3x2 + 2x3 = 5

• Replace by (4x1 + 3x2 + 2x3 ≥ 5) ∧ (4x1 + 3x2 + 2x3 ≤ 5)

• Let x2 = 0

• Either constraint can still be satisfied, but not both
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• Replace by (4x1 + 3x2 + 2x3 ≥ 5) ∧ (4x1 + 3x2 + 2x3 ≤ 5)

• Let x2 = 0

• Either constraint can still be satisfied, but not both
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Encoding CSPs



CSP constraints

• Many possible encodings:

• Direct encoding [dK89, GJ96, Wal00]

• Log encoding [Wal00]

• Support encoding [Kas90, Gen02]

• Log-Support encoding [Gav07]

• Order encoding for finite linear CSPs [TTKB09]
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Direct encoding for CSP w/ binary constraints

• Variable xi with domain Di, with mi = |Di|

• Constraints are relations over domains of variables
• For a constraint over x1, . . . , xk, define relation R ⊆ D1 × · · · × Dk
• Need to encode elements not in the relation
• For a binary relation, use set of binary clauses, one for each element not in R

• Represent values of xi with Boolean variables xi,1, . . . , xi,mi

• Require
∑mi

k=1 xi,k = 1

• Suffices to require
∑mi

k=1 xi,k ≥ 1 [Wal00]

• If the pair of assignments xi = vi ∧ xj = vj is not allowed, add binary clause (xi,vi ∨ xj,vj)
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Additional topics

• Encoding problems to SAT is ubiquitous:

• Many more encodings of finite domain CSP into SAT

• Encodings of Answer Set Programming (ASP) into SAT

• Eager SMT solving

• Theorem provers iteratively encode problems into SAT

• Model finders interatively encode problems into SAT

• ...
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Modeling Examples



Minimum vertex cover

• The problem:
• Graph G = (V, E)
• Vertex cover U ⊆ V

• For each (vi, vj) ∈ E, either vi ∈ U or vj ∈ U

• Minimum vertex cover: vertex cover U of minimum size

v1

v2

v3

v4

Vertex cover: {v2, v3, v4}
Min vertex cover: {v1}
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Minimum vertex cover

• Modeling with Pseudo-Boolean Optimization (PBO):
• Variables: xi for each vi ∈ V, with xi = 1 iff vi ∈ U
• Clauses: (xi ∨ xj) for each (vi, vj) ∈ E
• Objective function: minimize number of true xi variables

• I.e. minimize vertices included in U

• Alternative propositional encoding:
φS = {(¬x1), (¬x2), (¬x3), (¬x4)}
φH = {(x1 ∨ x2), (x1 ∨ x3), (x1 ∨ x4)}
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Graph coloring

• Given undirected graph G = (V, E) and k colors:
• Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different
colors?

• How to model color assignments to vertices?

• xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}

• How to model adjacent vertices with different colors?

• (¬xi,j ∨ ¬xl,j) if (vi, vl) ∈ E, with j ∈ {1, . . . , k}

• How to model vertices get some color?

•
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

• Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)
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The N-Queens problem I

• The N-Queens Problem:
Place N queens on a N× N board, such that no two queens attack each other

• Example for a 5× 5 board:

Q
Q

Q
Q

Q
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The N-Queens problem II

• xij: 1 if queen placed in position (i, j); 0 otherwise

• Each row must have exactly one queen:

1 ≤ i ≤ N,
N∑
j=1

xij = 1

• Each column must have exactly one queen:

1 ≤ j ≤ N,
N∑
i=1

xij = 1

• Also, need to define constraints on diagonals...
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The N-Queens problem III

• Each diagonal can have at most one queen:

↘ ↙ ↙ ↙
↘ ↖
↘ ↖
↘ ↖
↗ ↗ ↗ ↗

i = 1, 2 ≤ j < N,
j−1∑
k=0

xi+k j−k ≤ 1

i = N, 1 ≤ j < N,
N−j∑
k=0

xi−k j+k ≤ 1

j = 1, 1 ≤ i < N,
N−i∑
k=0

xi+k j+k ≤ 1

j = N, 2 ≤ i < N,
i−1∑
k=0

xi−k j−k ≤ 1
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Design debugging

[SMV+07]

Correct circuit

AND

AND

r
s

y

z

Input stimuli: ⟨r, s⟩ = ⟨0, 1⟩
Valid output: ⟨y, z⟩ = ⟨0, 0⟩

Faulty circuit

AND
r
s

y

zOR

Input stimuli: ⟨r, s⟩ = ⟨0, 1⟩
Invalid output: ⟨y, z⟩ = ⟨0, 0⟩

• The model:
• Hard clauses: Input and output values
• Soft clauses: CNF representation of circuit

• The problem:
• Maximize number of satisfied clauses (i.e. circuit gates)
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Software package upgrades

[MBC+06, TSJL07, AL08, ALS09, ABL+10b]

• Universe of software packages: {p1, . . . ,pn}
• Associate xi with pi: xi = 1 iff pi is installed
• Constraints associated with package pi: (pi,Di, Ci)

• Di: dependencies (required packages) for installing pi
• Ci: conflicts (disallowed packages) for installing pi

• Example problem: Maximum Installability
• Maximum number of packages that can be installed
• Package constraints represent hard clauses
• Soft clauses: (xi)

Package constraints:

(p1, {p2 ∨ p3}, {p4})
(p2, {p3}, {p4})
(p3, {p2}, ∅)
(p4, {p2, p3}, ∅)
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• Maximum number of packages that can be installed
• Package constraints represent hard clauses
• Soft clauses: (xi)

Package constraints:

(p1, {p2 ∨ p3}, {p4})
(p2, {p3}, {p4})
(p3, {p2}, ∅)
(p4, {p2, p3}, ∅)

MaxSAT formulation:

φH = {(¬x1 ∨ x2 ∨ x3), (¬x1 ∨ ¬x4),
(¬x2 ∨ x3), (¬x2 ∨ ¬x4), (¬x3 ∨ x2),
(¬x4 ∨ x2), (¬x4 ∨ x3)}

φS = {(x1), (x2), (x3), (x4)}
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The knapsack problem

• Given list of pairs (vi,wi), i = 1, . . . ,n
• Each pair (vi,wi), represents the value and weight of object i

• Pick subset of objects with the maximum sum of values, such that the sum of weights
does not exceed W

• Propositional encoding for the knapsack problem?

• Solution: consider 0-1 ILP (or PBO) formulation:
• Associate propositional variable xi with each objet i
• xi = 1 iff object i is picked

max
∑n

i=1 vi · xi
s.t

∑n
i=1 wi · xi ≤ W
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4 Problem Solving with SAT Oracles
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So what are SAT oracles?

No summaries

Yes witnesses

NP oracles

SAT Oracles

models

unsat cores
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Computing a model

• Q: How to solve the FSAT problem?
FSAT: Compute a model of a satisfiable CNF formula F , using an NP oracle

• A possible algorithm:
1. Analyze each variable xi ∈ {x1, . . . , xn} = var(F), in order
2. i← 1 and Fi ≜ F
3. Call NP oracle on Fi ∧ (xi)
4. If answer is yes, then Fi+1 ← Fi ∪ (xi)
5. If answer is no, then Fi+1 ← Fi ∪ (¬xi)
6. i← i+ 1

7. If i ≤ n, then repeat from 3.

• Algorithm needs |var(F)| calls to an NP oracle

• Note: Cannot solve FSAT with logarithmic number of NP oracle calls, unless P = NP [GF93]

• FSAT is an example of a function problem

• Note: FSAT can be solved with one SAT oracle call
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Beyond decision problems

Answer Problem Type

Yes/No Decision Problems
Some solution Function Problems
All solutions Enumeration Problems
# solutions Counting Problems
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... and beyond NP – decision and function problems

∆p
0 = Σp

0 = P = Πp
0 = ∆p

1

NP = Σp
1 Πp

1 = coNP

PNP = ∆p
2

Σp
2 Πp

2

∆p
3

Σp
3 Πp

3

...

F∆p
0 = FΣp

0 = FP = FΠp
0 = F∆p

1

FNP = FΣp
1 FΠp

1 = coFNP

FPNP = F∆p
2

FΣp
2 FΠp

2

F∆p
3

FΣp
3 FΠp

3

...
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Oracle-based problem solving – simple scenario

Decision 
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries
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Oracle-based problem solving – general setting

Decision 
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries
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Many problems to solve – within FPNP

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems
All solutions Enumeration Problems
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Many problems to solve – within FPNP

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems
All solutions Enumeration Problems

Function Problems on Propositional Formulas

MaxSAT
PBO

MinSAT

Autarkies

Backbones

Prime Implicants

MCSesMUSes Indep. Vars

WBO

MESes

MSSes
MNSes

MDSes Implicant Ext.
MFSes

MCFSes

Minimal Models

Prime Implicates
Maximal Models

Implicate Ext.

...

...
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Many problems to solve – within FPNP

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems
All solutions Enumeration Problems

Function Problems on Propositional Formulas

Optimization Problems

Minimal Sets

MaxSAT
PBO

MinSAT

Autarkies

Backbones

Prime Implicants

MCSesMUSes Indep. Vars

WBO

MESes

MSSes
MNSes

MDSes Implicant Ext.
MFSes

MCFSes

Minimal Models

Prime Implicates
Maximal Models

Implicate Ext.

...

...
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Selection of topics

Problem
Solving
with SAT

Embeddings

PBO

B&B Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Models

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

MaxSAT solvingMUS extraction

MUS enumeration
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Minimal Unsatisfiability



Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable?

• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining constraints consistent?

• How to compute these minimal sets?
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Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No
• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining constraints consistent?

• How to compute these minimal sets? Minimality
matters!
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Unsatisfiable formulas – MUSes & MCSes

• Given F (⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iffM⊨ ⊥ and
∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff F \ C ⊭ ⊥ and
∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?
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Why it matters?

• Analysis of over-constrained systems
• Model-based diagnosis [Rei87]

• Software fault localization
• Spreadsheet debugging
• Debugging relational specifications (e.g. Alloy)
• Type error debugging
• Axiom pinpointing in description logics
• ...

• Model checking of software & hardware systems
• Inconsistency measurement
• Minimal models; MinCost SAT; ...
• ...

• Find minimal relaxations to recover consistency
• But also minimum relaxations to recover consistency, eg. MaxSAT

• Find minimal explanations of inconsistency
• But also minimum explanations of inconsistency, eg. Smallest MUS
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• ...

• Find minimal relaxations to recover consistency
• But also minimum relaxations to recover consistency, eg. MaxSAT

• Find minimal explanations of inconsistency
• But also minimum explanations of inconsistency, eg. Smallest MUS

Enumeration
required!
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Deletion-based algorithm

Input : Set F
Output: Minimal subsetM
begin
M← F
foreach c ∈M do

if ¬SAT(M\ {c}) then
M←M\ {c} // If ¬SAT(M\ {c}), then c ̸∈ MUS

returnM // FinalM is MUS
end

• Number of oracles calls: O(m) [CD91, BDTW93]
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Deletion-based algorithm

Input : Set F
Output: Minimal subsetM
begin
M← F
foreach c ∈M do

if ¬SAT(M\ {c}) then
M←M\ {c} // Remove c fromM

returnM // FinalM is MUS
end

• Number of oracles calls: O(m) [CD91, BDTW93]

Monotonicity
implicit &
essential!

88 / 168



Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}
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Many MUS algorithms

• Formula F with m clauses k the size of largest minimal subset

Algorithm Oracle Calls Reference
Insertion-based O(km) [dSNP88, vMW08]

MCS_MUS O(km) [BK15]

Deletion-based O(m) [CD91, BDTW93]

Linear insertion O(m) [MSL11, BLM12]

Dichotomic O(k log(m)) [HLSB06]

QuickXplain O(k+ k log(mk )) [Jun04]

Progression O(k log(1 + m
k )) [MJB13]

• Note: Lower bound in FPNP|| and upper bound in FPNP [CT95]

• Oracle calls correspond to testing unsatisfiability with SAT solver

• Practical optimizations: clause set trimming; clause set refinement; redundancy
removal; (recursive) model rotation
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MUS Enumeration



How to enumerate MUSes?

1. Standard solution:
Exploit HS duality between MCSes and MUSes [Rei87, LS08]

MCSes are MHSes of MUSes and vice-versa
• Enumerate all MCSes and then enumerate all MHSes of the MCSes, i.e. compute all the MUSes
• Problematic if too many MCSes, and we want the MUSes
• And, often we want to enumerate the MUSes

2. Exploit recent advances in 2QBF solving

3. Implicit hitting set dualization [LPMM16]

• Most effective if MUSes provided to user on-demand
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How to enumerate MUSes, preferably?

Formulas P and N Formula F 0

Select subset of F

Block MCS/MUS

1. Keep sets representing computed MUSes (set N ) and MCSes (set P)

2. Compute minimal hitting set (MHS) H of N , subject to P
• Must not repeat MUSes
• Must not repeat MCSes
• Maximize clauses picked, i.e. prefer to check satisfiability on as many clauses as possible
• If unsatisfiable: no more MUSes/MCSes to enumerate

3. Target set: F ′, i.e. F minus clauses from H
4. Run SAT oracle on F ′

• If F ′ unsatisfiable: extract new MUS
• Otherwise, H is already an MCS of F

5. Repeat loop
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• Otherwise, H is already an MCS of F

5. Repeat loop

92 / 168



MARCO/eMUS algorithm

Input: CNF formula F
1 begin
2 I← {pi | ci ∈ F}
3 (P,N )← (∅, ∅)
4 while true do
5 (st,H)← MinHittingSet(N ,P)
6 if not st then return
7 F ′ ← {ci |pi ∈ I ∧ pi ̸∈ H}
8 if not SAT(F ′) then
9 M← ComputeMUS(F ′)

10 ReportMUS (M)

11 N ← N ∪ {¬pi | ci ∈M}
12 else
13 P ← P ∪ {pi |pi ∈ H}

14 end
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An example

MinHS (N ) F ′ MUS/MCS
p1p2p3p4p5p6p7 S/U

1111111 U ¬p1 ∨ ¬p2 ∨ ¬p3
0111111 U ¬p6 ∨ ¬p7
0111101 S p1 ∨ p6
1011101 U ¬p1 ∨ ¬p4 ∨ ¬p5
1101010 S p3 ∨ p5 ∨ p7
1010110 S p2 ∨ p4 ∨ p7
1100101 S p3 ∨ p4 ∨ p6
0111110 S p1 ∨ p7
1101001 S p3 ∨ p5 ∨ p6
1010101 S p2 ∨ p4 ∨ p6
1011001 S p2 ∨ p5 ∨ p6
1100110 S p3 ∨ p4 ∨ p7
1011010 S p2 ∨ p5 ∨ p7

c1 = p

c2 = ¬p ∨ r

c3 = ¬r

c4 = ¬p ∨ q c5 = ¬q

c6 = s
c7 = ¬s
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Maximum Satisfiability



Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula
• The MaxSAT solution is one of the smallest cost MCSes

• Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17]
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MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No

Yes
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MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

• Must satisfy hard clauses, if any
• Compute set of satisfied soft clauses with maximum cost

• Without weights, cost of each falsified soft clause is 1

• Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)

• Note: goal is to compute set of satisfied (or falsified) clauses;
not just the cost !
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MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

• Must satisfy hard clauses, if any
• Compute set of satisfied soft clauses with maximum cost

• Without weights, cost of each falsified soft clause is 1

• Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)

• Note: goal is to compute set of satisfied (or falsified) clauses;
not just the cost !
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Issues with MaxSAT

• Unit propagation is unsound for MaxSAT

• Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• Is 2 the MaxSAT solution??
• No! Enough to either falsify (x) or (z)

• Cannot use unit propagation
• Cannot learn clauses (using unit propagation)
• Need to solve MaxSAT using different techniques
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Many MaxSAT approaches

MaxSAT Al-
gorithms

Branch
& Bound

Iterative

Core GuidedIterative
MHS

Model
Guided

No unit prop; No
cl. learning

All cls relaxed

Relax cls given
unsat cores

Iterative
MHS & SAT

Relax cls given
models

• For practical (industrial) instances: core-guided & iterative MHS approaches are the
most effective [MaxSAT14]
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Core-guided solver performance – partial
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Core-guided solver performance – weighted partial
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Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 12

Example CNF formula

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed
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x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 12

Relax all clauses; Set UB = 12 + 1

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed
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Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 12

Formula is SAT; E.g. all xi = 0 and r1 = r7 = r9 = 1 (i.e. cost = 3)

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed
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Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 2

Refine UB = 3

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed
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Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4
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x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 2

Formula is SAT; E.g. x1 = x2 = 1; x3 = ... = x8 = 0 and r4 = r9 = 1 (i.e. cost = 2)

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed
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Basic MaxSAT with iterative SAT solving
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¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 1

Formula is UNSAT; terminate

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed
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Basic MaxSAT with iterative SAT solving
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x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 1

MaxSAT solution is last satisfied UB: UB = 2

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed
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Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 1

MaxSAT solution is last satisfied UB: UB = 2

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

101 / 168



MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Example CNF formula

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed
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MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Formula is UNSAT; OPT ≤ |φ| − 1; Get unsat core

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed
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MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑6
i=1 ri ≤ 1

Add relaxation variables and AtMostk, k = 1, constraint

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
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MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K:

• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}
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MaxSAT solving with SAT oracles – a sample

• A sample of recent algorithms:
Algorithm # Oracle Queries Reference
Linear search SU Exponential*** [BP10]

Binary search Linear* [FM06]

FM/WMSU1/WPM1 Exponential** [FM06, MP08, MMSP09, ABL09, ABGL12]

WPM2 Exponential** [ABL10a, ABL13]

Bin-Core-Dis Linear [HMM11, MHM12]

Iterative MHS Exponential [DB11, DB13a, DB13b]

* O(logm) queries with SAT oracle, for (partial) unweighted MaxSAT
** Weighted case; depends on computed cores
*** On # bits of problem instance (due to weights)

• But also additional recent work:
• Progression [IMM+14]

• Soft cardinality constraints (OLL) [MDM14, MIM14]

• Recent implementation (RC2, using PySAT) won 2018 MaxSAT Evaluation
• MaxSAT resolution [NB14]

• ...
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5 Sample of Applications
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Flagship applications

• Bounded (& unbounded) model checking
• Automated planning
• Multi-agent path finding

• Software model checking
• Package management
• Design debugging

• Haplotyping
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CDCL SAT is the engines’ engine

Engines using
SAT engines Boolean

QBF

MaxSAT

PBO

#SAT

...

FOL SMT

Model
finding

Theorem
proving

...

Other

ASP

LCG

CSP

...
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CDCL SAT is ubiquitous in problem solving

Problem
Solving
with SAT

Embeddings

PBO

B&B Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Models

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC
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Recent applications

• Package dependency and upgradability [IJM14]

• Exact and approximate problem solving with SAT

• Two-level logic minimization with SAT [IPM15]

• Reimplementation of Quine-McCluskey with SAT oracles

• Model-based diagnosis [MJIM15, IMWM19]

• MaxSAT + implicit hitting set dualization using SAT oracles
• our talk on August 14!

• Maximum cliques with SAT [IMM17]

• eXplainable AI

• Explainable decision sets [IPNM18]

• Computation of smallest decision sets (rules)
• Smallest (explainable) decision trees [NIPM18]

• Computation of smallest decision trees
• Abduction-based explanations for ML models [INMS19]

• Extraction of explanations for any ML model on demand
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Package dependency

Eclipse ∼2K Linux ∼50K Maven ∼78K

Figure 1: Number of packages in modern package management systems

can single package P be installed in repository R? — NP-complete!
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Encoding PackUP to SAT and MaxSAT

a

b c

f d e

⇐ ⇒

conflicts

or or

Find any solution — SAT
(¬a ∨ b) ∧ (¬a ∨ c) ∧ (¬b ∨ f ∨ d) ∧ (¬c ∨ d ∨ e) ∧ (¬f ∨ ¬d) ∧ (a)

Find best solution — MaxSAT
(¬a ∨ b) ∧ (¬a ∨ c) ∧ (¬b ∨ f ∨ d) ∧ (¬c ∨ d ∨ e) ∧ (¬f ∨ ¬d) ∧ (a)

(¬a) ∧ (¬b) ∧ (¬c) ∧ (¬d) ∧ (¬e) ∧ (¬f)
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Solving MaxClique with SAT



Modeling MaxClique with SAT

• given a graph G = (V, E), find a largest complete subgraph

• main constraint:
(u, v) ̸∈ E ⇒

either u or v is not in the maximum-size clique

• associate Boolean xu with u ∈ V

• main goal — maximize∑
u∈V xu

• e.g. use MaxSAT
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An example

Construct F = ⟨H,S⟩s.t.
{
H ≜ {(¬xu ∨ ¬xv) | (u, v) ∈ EC}
S ≜ {(xu) | v ∈ V}

u1

u2

u3

u4 u5

u6

u7

H=


(¬x1 ∨ ¬x6) (¬x1 ∨ ¬x7)
(¬x2 ∨ ¬x6) (¬x2 ∨ ¬x7)
(¬x4 ∨ ¬x6) (¬x4 ∨ ¬x7)
(¬x6 ∨ ¬x7)



S =


(x1) (x2) (x3)
(x4) (x5) (x6)
(x7)



solve F with MaxSAT !
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But the size of EC can be problematic...
Instance |V| |E| |E|C

comm-n10000 10000 10000 49995000
ca-AstroPh 18772 396160 175807218
ca-citeseer 227322 814136 25836945367
ca-coauthors-dblp 540488 15245731 146048663585
ca-CondMat 23133 186936 267392475
ca-dblp-2010 226415 716462 25631272858
ca-dblp-2012 317082 1049868 50269606035
ca-HepPh 12008 237010 71865026
ca-HepTh 9877 51971 48730532
ca-MathSciNet 332689 820644 55340331061
ia-email-EU 32430 54397 525814268
ia-reality-call 6809 9484 23175161
ia-retweet-pol 18470 61157 170518528
ia-wiki-Talk 92117 360767 4242456136
rt-pol 18470 61157 170518528
rt_barackobama 9631 9826 46373070
soc-epinions 63947 606512 2044034866
soc-gplus 23628 39242 279113764
tech-as-caida2007 26477 53383 350475620
tech-internet-as 40164 85123 806508407
tech-pgp 10680 24340 57012200
tech-WHOIS 7476 56943 27892083
web-arabic-2005 163598 1747269 13380487332
web-baidu-baike-related 415641 3284387 86375643874
web-it-2004 509338 7178413 129705675378
web-NotreDame 325729 1497134 53048356451
web-sk-2005 121422 334419 7371377334 115 / 168
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|EC| = |E|×(|E|−1)
2 − |E|
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Unrealistic to
model with SAT
on sparse graphs

115 / 168



How to reduce the encoding size?

• main hurdle:
• approaches based on GC = (V, EC) will not scale...
• and G = (V, E) is much smaller than GC = (V, EC)

• can we model MaxClique using solely G?

116 / 168



How to reduce the encoding size?

• main hurdle:
• approaches based on GC = (V, EC) will not scale...
• and G = (V, E) is much smaller than GC = (V, EC)

• can we model MaxClique using solely G?

116 / 168



Another take at solving MaxClique with SAT

revisit the original decision problem:
given G = (V, E), is there a clique of size K?

1. one must pick exactly K vertices:

∑
u∈V

xu = K

2. if a vertex u ∈ V is picked (i.e. xu = 1), then K− 1 of its neighbours must also be picked:

xu →

 ∑
v∈Adj(u)

xv = K− 1
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eXplainable AI (XAI)



What is eXplainable AI (XAI)?

©DARPA
118 / 168



Approaches to XAI

interpretable ML models
(decision trees, lists, sets)

explanation of ML models “on the fly”
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Interpretable ML models

Example Lecture Concert Expo Shop Hike?

e1 1 0 1 0 0
e2 1 0 0 1 0
e3 0 0 1 0 1
e4 1 1 0 0 0
e5 0 0 0 1 1
e6 1 1 1 1 0
e7 0 1 1 0 0
e8 0 0 1 1 1

(a)When should we hike and when not?

if ¬Lecture and ¬Concert then Hike
if Lecture then ¬Hike
if Concert then ¬Hike

(b) Example decision set

Lecture?

0

1

Concert?

0

1

1

0

0

(c) Example decision tree
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if Lecture then ¬Hike
if Concert then ¬Hike

(b) Example decision set

Lecture?

0

1

Concert?

0

1

1

0

0

(c) Example decision tree
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Interpretable ML models

[IPNM18, NIPM18]

can be encoded into SAT

a series of SAT oracle calls
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Smallest decision trees – encoding sizes in bytes

[NIPM18]

Model Weather Mouse Cancer Car Income

CP’09* 27K 3.5M 92G 842M 354G

IJCAI’18 190K 1.2M 5.2M 4.1M 1.2G
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Post-hoc explanations



State of the art

heuristic approaches exist
(e.g. LIME or Anchor)

• local explanations
• no guarantees

(un-)reliable?
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From ML model to logic

formula Mcube I literal π

I ∧M⊨ π
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Abductive explanations of ML models

[INMS19]

given a classifier M, a cube I and a prediction π,

compute a (cardinality- or subset-) minimal Em ⊆ I s.t.

Em ∧M ̸ ⊨⊥
and

Em ∧M⊨ π

iterative explanation procedure
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Computing primes

1. Em ∧M ̸ ⊨⊥

— tautology
2. Em ∧M⊨ π ⇔ Em ⊨ (M→ π)

Em is a prime implicant of M→ π
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Computing one subset-minimal explanation

Input: model M, initial cube I, prediction π

Output: Subset-minimal explanation Em

begin
for l ∈ I :

if Entails(I \ {l},M→ π) : # make an oracle call
I← I \ {l}

return I

end
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Examples

(a) (b) (c) (d)

Figure 3: Possible minimal explanations for digit one.

(a) (b) (c) (d)

Figure 4: Possible minimal explanations for digit three.
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XAI summary

principled approach to XAI

based on abductive reasoning
applies a reasoning oracle, e.g. SAT, SMT or MILP

provides minimality guarantees
global explanations!
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What next?



What next?

enumeration of explanations?

preferences over explanations?
assessment heuristic approaches!
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Assessing heuristic explanations

[NSM+19]

unconstrained feature space samples with ≤ 50% difference
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PySAT and RC2



PySAT and RC2

PySAT is a Python framework for
quick prototyping with SAT oracles

https://pysathq.github.io/

RC2 is a MaxSAT solver that
won two complete categories
of MaxSAT Evaluations 2018 & 2019
(FLoC Olympic Games 2018)

https://maxsat-evaluations.github.io/
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Overview of PySAT

[IMM18]

PySAT modules

solvers
module

cardenc
module

formula
module

PySAT API

• Open source, available on github
• Comprehensive list of SAT solvers
• Comprehensive list of cardinality encodings
• Fairly comprehensive documentation
• Several use cases
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Available solvers

Solver Version
Glucose 3.0
Glucose 4.1
Lingeling bbc-9230380-160707
Minicard 1.2
Minisat 2.2 release
Minisat GitHub version
MapleCM SAT competition 2018
Maplesat MapleCOMSPS_LRB

... ...

• Solvers can either be used incrementally or non-incrementally
• Tools can use multiple solvers, e.g. for hitting set dualization or CEGAR-based QBF
solving

• URL: https://pysathq.github.io/docs/html/api/solvers.html
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Formula manipulation

Features
CNF & Weighted CNF (WCNF)
Read formulas from file/string
Write formulas to file
Append clauses to formula
Negate CNF formulas
Translate between CNF and WCNF
ID manager

• URL: https://pysathq.github.io/docs/html/api/formula.html

135 / 168

https://pysathq.github.io/docs/html/api/formula.html 


Available cardinality encodings

Name Type
pairwise AtMost1
bitwise AtMost1
ladder AtMost1

sequential counter AtMostk
sorting network AtMostk

cardinality network AtMostk
totalizer AtMostk
mtotalizer AtMostk
kmtotalizer AtMostk

• Also AtLeastK and EqualsK constraints

• URL: https://pysathq.github.io/docs/html/api/card.html
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Installation & info

• Installation:
$ [sudo] pip2|pip3 install python-sat

• Website: https://pysathq.github.io/
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Basic interface – Python3 shell

>>> from pysat.card import *
>>> am1 = CardEnc.atmost(lits=[1, -2, 3], encoding=EncType.pairwise)
>>> print(am1.clauses)
[[-1, 2], [-1, -3], [2, -3]]
>>>
>>> from pysat.solvers import Solver
>>> with Solver(name='m22', bootstrap_with=am1.clauses) as s:
... if s.solve(assumptions=[1, 2, 3]) == False:
... print(s.get_core())
[3, 1]
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Basic interface – Python3 script

#!/usr/local/bin/python3
from sys import argv

from pysat.formula import CNF
from pysat.solvers import Glucose3, Solver

formula = CNF()
formula.append([-1, 2, 4])
formula.append([1, -2, 5])
formula.append([-1, -2, 6])
formula.append([1, 2, 7])

g = Glucose3(bootstrap_with=formula.clauses)

if g.solve(assumptions=[-4, -5, -6, -7]) == False:
print("Core: ", g.get_core())
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Example: naive (deletion) MUS extraction

Input : Set F
Output: Minimal subsetM
begin
M← F
foreach c ∈M do

if ¬SAT(M\ {c}) then
M←M\ {c} // If ¬SAT(M\ {c}), then c ̸∈ MUS

returnM // FinalM is MUS
end

• Number of predicate tests: O(m) [CD91, BDTW93]
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Naive MUS extraction I

def main():
cnf = CNF(from_file=argv[1]) # create a CNF object from file
(rnv, assumps) = add_assumps(cnf)

oracle = Solver(name='g3', bootstrap_with=cnf.clauses)

mus = find_mus(assumps, oracle)
mus = [ref - rnv for ref in mus]
print("MUS: ", mus)

if __name__== "__main__":
main() 141 / 168



Naive MUS extraction II

def add_assumps(cnf):
rnv = topv = cnf.nv
assumps = [] # list of assumptions to use
for i in range(len(cnf.clauses)):

topv += 1
assumps.append(topv) # register literal
cnf.clauses[i].append(-topv) # extend clause with literal

cnf.nv = cnf.nv + len(assumps) # update # of vars
return rnv, assumps

def main():
cnf = CNF(from_file=argv[1]) # create a CNF object from file
(rnv, assumps) = add_assumps(cnf)

oracle = Solver(name='g3', bootstrap_with=cnf.clauses)

mus = find_mus(assumps, oracle)
mus = [ref - rnv for ref in mus]
print("MUS: ", mus)

if __name__== "__main__":
main() 142 / 168



Naive MUS extraction III

from sys import argv

from pysat.formula import CNF
from pysat.solvers import Solver

def find_mus(assmp, oracle):
i = 0
while i < len(assmp):

ts = assmp[:i] + assmp[(i+1):]
if not oracle.solve(assumptions=ts):

assmp = ts
else:

i += 1
return assmp
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else:

i += 1
return assmp

Demo
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A less naive MUS extractor
def clset_refine(assmp, oracle):

assmp = sorted(assmp)
while True:

oracle.solve(assumptions=assmp)
ts = sorted(oracle.get_core())
if ts == assmp:

break
assmp = ts

return assmp
# ...
def main():

cnf = CNF(from_file=argv[1]) # create a CNF object from file
(rnv, assumps) = add_assumps(cnf)

oracle = Solver(name='g3', bootstrap_with=cnf.clauses)

assumps = clset_refine(assumps, oracle)
mus = find_mus(assumps, oracle)
mus = [ref - rnv for ref in mus]
print("MUS: ", mus)

if __name__== "__main__":
main() 144 / 168



PySAT and MAPF demo

[Sur12]

given K agents and K goals on a map of size N×M,

compute “shortest path” for all pairs (agent, goal)

plenty of works on solving MAPF with SAT!

demo for MAPF@Minecraft+PySAT:
https://reason.di.fc.ul.pt/~aign/storage/mcmapf2.mov
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6 SAT Oracles & Proof Complexity
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Proof Complexity

• CDCL is the main technique for solving SAT
• When formulas are unsatisfiable, CDCL is equivalent to Resolution
• Success of CDCL demonstrates the reach of the Resolution proof system

• Some basic problems, like pigeon-hole principle, cannot have short Resolution
Refutations

• From proof complexity point of view, Resolution is regarded as a rather weak proof
system

• Recent efforts for developing efficient implementations of stronger proof systems:
• Extended Resolution (ExtRes)
• DRAT
• Cutting Planes (CP)
• Dual-Rail Maximum Satisfiability (DRMaxSAT)
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Dual-Rail Maximum Satisfiability
(DRMaxSAT)



DRMaxSAT - General Idea

• Translates a CNF formula F using the Dual-Rail Encoding
• Uses a MaxSAT algorithm to obtain the cost of the encoded formula
• Determines the satisfiability of F based on the cost of the encoded formula
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DRMaxSAT: Dual-Rail Encoding (DRE)

Dual-Rail Encoding (DRE) [DAC87, AI99]

Input: F CNF formula with N variables X = {x1, . . . , xN}

Output: MaxSAT problem < H,S >:

• for each xi ∈ X:
• associate new variables pi and ni

xi = 1 iff pi = 1, and xi = 0 iff ni = 1

• add to S the clauses (pi) and (ni)
• add to H the clause (¬pi ∨ ¬ni) (P clauses)

• for each clause c ∈ F add to H the clause c′:
• if xi ∈ c then ¬ni ∈ c′

• if ¬xi ∈ c then ¬pi ∈ c′
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DRMaxSAT: DRE Example

F = {(¬x1 ∨ ¬x2), (x1), (x2), (¬x2)}

• MaxSAT problem < H,S >
• for x1:

• create p1 and n1
• add (p1), (n1) to S
• add (¬p1 ∨ ¬n1) to H

• for x2:
• create p2 and n2
• add (p2), (n2) to S
• add (¬p2 ∨ ¬n2) to H
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DRMaxSAT: DRE Example

F = {(¬x1 ∨ ¬x2), (x1), (x2), (¬x2)}

MaxSAT problem < H,S >

:

S ={(p1), (n1), (p2), (n1)}

H ={(¬p1 ∨ ¬n1), (¬p2 ∨ ¬n2),
(¬p1 ∨ ¬p2),
(¬n1), (¬n2), (¬p2)}

MaxSAT Cost: 3
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DRMaxSAT: DRE Theorem

Theorem
F is satisfiable iff there is a truth assignment satisfying H that satisfies at least N clauses in
S . [SAT17]

Example: N = 2 and MaxSAT cost 3, thus F is unsatisfiable.
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DRMaxSAT: General Pseudo-Code

input: F
HEnc(F) = ⟨H,S⟩ ← DualRailEncode(F)
cost← ApplyMaxSAT(HEnc(F))

if cost ≤ |var(F)| then
return true

end
else
return false

end
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DRMaxSAT: Theoretical Results

What is the power of DRMaxSAT?

Considered three MaxSAT approaches with DRMaxSAT:

• MaxSAT Resolution
• Core-guided MaxSAT Algorithms
• Implict Hitting Set MaxSAT Algorithms (MaxHS-like algorithms)
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DRMaxSAT: Summary of Theoretical Results on MaxSAT Resolution

Theorem
Multiple DRMaxSAT simulates tree-like Resolution. [Source: AAAI18]

Theorem
Weighted DRMaxSAT simulates general Resolution. [Source: AAAI18]

Theorem
DRMaxSAT refutes both PHP and 2PHP in polynomial time. [Source: SAT17,AAAI18]

Theorem
The DRMaxSAT proof system does not polynomially simulate CP. [Source: AAAI18]

• DRMaxSAT is strictly stronger than Resolution
• DRMaxSAT does not simulate Cutting Planes
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DRMaxSAT: Summary of Theoretical Results with Core-guided Algorithms

Theorem
Core-guided MaxSAT with the dual-rail encoding p-simulates unrestricted Resolution.

Theorem
Core-guided MaxSAT with the dual-rail encoding refutes both PHP and 2PHP in polynomial
time. [Source: SAT17,AAAI18]

• Core-guided MaxSAT with the dual-rail encoding is strictly stronger than Resolution
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DRMaxSAT: Summary of Theoretical Results with MaxHS-like Algorithms

Theorem
MaxHS-like MaxSAT Algorithms with the dual-rail encoding refutes both PHP and 2PHP in
polynomial time. [Source: SAT19]

158 / 168



DRMaxSAT: Experimental Results

What is the behaviour of DRMaxSAT in practice?

Several problems/principles hard for resolution:

• (PHP) Pigeonhole Principle
• (2PHP) Doubled Pigeonhole Principle
• (MCB) Mutilated Chessboard Principle
• (URQ) Urquhart/Tseitin formulas
• (COMB) Combination formulas PHPm+1

m ∨ URQn,i
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DRMaxSAT: Experimental Results - PHP

[Source: SAT17]
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DRMaxSAT: Experimental Results - 2PHP

[Source: AAAI18]
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DRMaxSAT: Experimental Results - MCB

[Source: AAAI18]
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DRMaxSAT: Experimental Results - URQ & COMB

[Source: SAT17]

0 10 20 30 40 50
instances

10−2

10−1

100

101

102

103

C
PU

tim
e

(s
)

maxhs
lmhs
lmhs-nes
lgl
wbo
lp-wcnf
mscg
lgl-nogauss
glucose
eva

0 20 40 60 80 100
instances

10−1

100

101

102

103

C
PU

tim
e

(s
)

lmhs
lmhs-nes
maxhs
lgl-nocard
lgl

lp-wcnf
wbo
glucose
mscg
eva

URQ COMB

163 / 168



7 A Glimpse of the Future
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Take home messages

• Remarkable improvements in (CDCL) SAT solver performance
• SAT is a low-level, but very powerful problem solving paradigm

• Wide range of applications of SAT oracles
• High profile applications, e.g. verification of ML models & XAI
• Solving problems (well) beyond NP
• Recent inroads in proof complexity

• Ongoing arms race for proof systems stronger than resolution/clause learning, e.g. extended
resolution, cutting planes and DRMaxSAT

• Also, there are other success stories, e.g. ILP
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Some final notes

• There is an ongoing revolution on problem solving with SAT oracles
• E.g. QBF, model-based diagnosis, explainability, theorem proving, program synthesis, XAI, ...
• But also with ILP & SMT oracles

• The use of SAT/ILP/SMT oracles is impacting problem solving for many different
complexity classes

• With well-known representative problems, e.g. QBF, #SAT, etc.
• More to be expected

• E.g. the age of modular reasoning?

• Many fascinating oracle-related research topics out there !
• Additional connections with rigorous reasoning in ML expected
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Sample of tools

• PySAT
• SAT solvers:

• MiniSat
• Glucose

• MaxSAT solvers:
• RC2
• MSCG
• OpenWBO
• MaxHS

• MUS extractors:
• MUSer

• MCS extractors:
• mcsXL
• LBX
• MCSls

• Many other tools available from the ReasonLab server
167 / 168

https://pysathq.github.io/
https://github.com/niklasso/minisat
http://www.labri.fr/perso/lsimon/glucose/
https://reason.di.fc.ul.pt/wiki/doku.php?id=rc2
https://reason.di.fc.ul.pt/wiki/doku.php?id=mscg
http://sat.inesc-id.pt/open-wbo/
http://www.maxhs.org
https://reason.di.fc.ul.pt/wiki/doku.php?id=muser
https://reason.di.fc.ul.pt/wiki/doku.php?id=mcsxl
https://reason.di.fc.ul.pt/wiki/doku.php?id=lbx
https://reason.di.fc.ul.pt/wiki/doku.php?id=mcsls
https://reason.di.fc.ul.pt/wiki/doku.php?id=soft


Questions?
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