
Computing with SAT Oracles

Joao Marques-Silva, Alexey Ignatiev & Antonio Morgado

University of Lisbon, Portugal

August 12, 2019 | IJCAI Tutorial T20

Computing with SAT Oracles

Joao Marques-Silva, Alexey Ignatiev & Antonio Morgado

University of Lisbon, Portugal

August 12, 2019 | IJCAI Tutorial T20

What is SAT?

• SAT is the decision problem for propositional logic
• Well-formed propositional formulas, with variables, logical connectives: ¬,∧,∨,→,↔, and
parenthesis: (,)

• Often restricted to Conjunctive Normal Form (CNF)

• Goal:
Decide whether formula has a satisfying assignment

• SAT is NP-complete [Coo71]

3 / 168

What is SAT?

• SAT is the decision problem for propositional logic
• Well-formed propositional formulas, with variables, logical connectives: ¬,∧,∨,→,↔, and
parenthesis: (,)

• Often restricted to Conjunctive Normal Form (CNF)
• Goal:
Decide whether formula has a satisfying assignment

• SAT is NP-complete [Coo71]

3 / 168

What is SAT?

• SAT is the decision problem for propositional logic
• Well-formed propositional formulas, with variables, logical connectives: ¬,∧,∨,→,↔, and
parenthesis: (,)

• Often restricted to Conjunctive Normal Form (CNF)
• Goal:
Decide whether formula has a satisfying assignment

• SAT is NP-complete [Coo71]

3 / 168

The CDCL SAT disruption

• CDCL SAT solving is a success story of Computer Science

• Conflict-Driven Clause Learning (CDCL)
• (CDCL) SAT has impacted many different fields
• Hundreds (thousands?) of practical applications

4 / 168

The CDCL SAT disruption

• CDCL SAT solving is a success story of Computer Science
• Conflict-Driven Clause Learning (CDCL)
• (CDCL) SAT has impacted many different fields
• Hundreds (thousands?) of practical applications

4 / 168

CDCL SAT solver (continued) improvement
[Source: Simon 2015]

��

����

�����

�����

�����

�����

��� ��� ��� ���� ���� ���� ���� ���� ���� ����

�
�
�
��
�
��
�
���
�
�
�

�
���

�
�
��
�
�
�
�
�
�
�

���

�����������������
���������������

���������������������
��������������

���������������
��������������

��������������������
��������������

�����������������������
��������������������������

5 / 168

How good are CDCL SAT solvers?

Demos

• Sample SAT of solvers:

1. POSIT: state of the art DPLL SAT solver in 1995
2. GRASP: first CDCL SAT solver, state of the art 1995∼2000
3. Minisat: CDCL SAT solver, state of the art until the late 00s
4. Glucose: modern state of the art CDCL SAT solver
5. ...

• Example 1: model checking example (from IBM)
• Example 2: cooperative path finding (CPF)

6 / 168

How good are CDCL SAT solvers?

Demos

• Sample SAT of solvers:
1. POSIT: state of the art DPLL SAT solver in 1995
2. GRASP: first CDCL SAT solver, state of the art 1995∼2000
3. Minisat: CDCL SAT solver, state of the art until the late 00s
4. Glucose: modern state of the art CDCL SAT solver
5. ...

• Example 1: model checking example (from IBM)
• Example 2: cooperative path finding (CPF)

6 / 168

How good are CDCL SAT solvers?

Demos

• Sample SAT of solvers:
1. POSIT: state of the art DPLL SAT solver in 1995
2. GRASP: first CDCL SAT solver, state of the art 1995∼2000
3. Minisat: CDCL SAT solver, state of the art until the late 00s
4. Glucose: modern state of the art CDCL SAT solver
5. ...

• Example 1: model checking example (from IBM)
• Example 2: cooperative path finding (CPF)

6 / 168

How good are SAT solvers? – an example

• Cooperative pathfinding (CPF)
• N agents on some grid/graph
• Start positions
• Goal positions
• Minimize makespan
• Restricted planning problem

• Concrete example
• Gaming grid
• 1039 vertices
• 1928 edges
• 100 agents

• Formula w/ 2946190 variables!

• Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!

7 / 168

How good are SAT solvers? – an example

• Cooperative pathfinding (CPF)
• N agents on some grid/graph
• Start positions
• Goal positions
• Minimize makespan
• Restricted planning problem

• Concrete example
• Gaming grid
• 1039 vertices
• 1928 edges
• 100 agents

• Formula w/ 2946190 variables!

• Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!

7 / 168

How good are SAT solvers? – an example

• Cooperative pathfinding (CPF)
• N agents on some grid/graph
• Start positions
• Goal positions
• Minimize makespan
• Restricted planning problem

• Concrete example
• Gaming grid
• 1039 vertices
• 1928 edges
• 100 agents

• Formula w/ 2946190 variables!

• Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!

*** t r a c ke r : a pathf inding tool ***
I n i t i a l i z a t i o n . . . CPU Time: 0 .004711
Number of va r i ab l e s : 113315
Tentat ive makespan 1
Number of va r i ab l e s : 226630
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 0 . 7 18 1 12
c Done running SAT solver . . . CPU Time: 0.830099
No solut ion for makespan 1
Elapsed CPU Time: 0 .830112
Tentat ive makespan 2
Number of va r i ab l e s : 339945
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 1 . 2 7 1 1 3
c Done running SAT solver . . . CPU Time: 1 . 2 7 1 1 4
No solut ion for makespan 2
Elapsed CPU Time: 1 . 2 7 1 1 4
. . .
. . .
Tentat ive makespan 24
Number of va r i ab l e s : 2832875
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 1 1 .8653
c Done running SAT solver . . . CPU Time: 1 1 .8653
No solut ion for makespan 24
Elapsed CPU Time: 1 1 .8653
Tentat ive makespan 25
Number of va r i ab l e s : 2946190
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 12 . 3491
c Done running SAT solver . . . CPU Time: 16 .6882
Solut ion found for makespan 25
Elapsed CPU Time: 16 .6995

7 / 168

How good are SAT solvers? – an example

• Cooperative pathfinding (CPF)
• N agents on some grid/graph
• Start positions
• Goal positions
• Minimize makespan
• Restricted planning problem

• Concrete example
• Gaming grid
• 1039 vertices
• 1928 edges
• 100 agents
• Formula w/ 2946190 variables!

• Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!

*** t r a c ke r : a pathf inding tool ***
I n i t i a l i z a t i o n . . . CPU Time: 0 .004711
Number of va r i ab l e s : 113315
Tentat ive makespan 1
Number of va r i ab l e s : 226630
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 0 . 7 18 1 12
c Done running SAT solver . . . CPU Time: 0.830099
No solut ion for makespan 1
Elapsed CPU Time: 0 .830112
Tentat ive makespan 2
Number of va r i ab l e s : 339945
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 1 . 2 7 1 1 3
c Done running SAT solver . . . CPU Time: 1 . 2 7 1 1 4
No solut ion for makespan 2
Elapsed CPU Time: 1 . 2 7 1 1 4
. . .
. . .
Tentat ive makespan 24
Number of va r i ab l e s : 2832875
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 1 1 .8653
c Done running SAT solver . . . CPU Time: 1 1 .8653
No solut ion for makespan 24
Elapsed CPU Time: 1 1 .8653
Tentat ive makespan 25
Number of va r i ab l e s : 2946190
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 12 . 3491
c Done running SAT solver . . . CPU Time: 16 .6882
Solut ion found for makespan 25
Elapsed CPU Time: 16 .6995

7 / 168

How good are SAT solvers? – an example

• Cooperative pathfinding (CPF)
• N agents on some grid/graph
• Start positions
• Goal positions
• Minimize makespan
• Restricted planning problem

• Concrete example
• Gaming grid
• 1039 vertices
• 1928 edges
• 100 agents
• Formula w/ 2946190 variables!

• Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!

*** t r a c ke r : a pathf inding tool ***
I n i t i a l i z a t i o n . . . CPU Time: 0 .004711
Number of va r i ab l e s : 113315
Tentat ive makespan 1
Number of va r i ab l e s : 226630
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 0 . 7 18 1 12
c Done running SAT solver . . . CPU Time: 0.830099
No solut ion for makespan 1
Elapsed CPU Time: 0 .830112
Tentat ive makespan 2
Number of va r i ab l e s : 339945
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 1 . 2 7 1 1 3
c Done running SAT solver . . . CPU Time: 1 . 2 7 1 1 4
No solut ion for makespan 2
Elapsed CPU Time: 1 . 2 7 1 1 4
. . .
. . .
Tentat ive makespan 24
Number of va r i ab l e s : 2832875
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 1 1 .8653
c Done running SAT solver . . . CPU Time: 1 1 .8653
No solut ion for makespan 24
Elapsed CPU Time: 1 1 .8653
Tentat ive makespan 25
Number of va r i ab l e s : 2946190
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 12 . 3491
c Done running SAT solver . . . CPU Time: 16 .6882
Solut ion found for makespan 25
Elapsed CPU Time: 16 .6995

7 / 168

Grasping the search space ...

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080 (or ≈ 1085)

• Search space with 15775 propositional variables (worst case):

• # of assignments to 15775 variables: > 104748 !
• Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):

• # of assignments to > 2.8× 106 variables: ≫ 10840000 !!
• Obs: SAT solvers at present (but formula dependent)

8 / 168

Grasping the search space ...

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080 (or ≈ 1085)

• Search space with 15775 propositional variables (worst case):

• # of assignments to 15775 variables: > 104748 !
• Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):

• # of assignments to > 2.8× 106 variables: ≫ 10840000 !!
• Obs: SAT solvers at present (but formula dependent)

8 / 168

Grasping the search space ...

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080 (or ≈ 1085)

• Search space with 15775 propositional variables (worst case):

• # of assignments to 15775 variables: > 104748 !
• Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):

• # of assignments to > 2.8× 106 variables: ≫ 10840000 !!
• Obs: SAT solvers at present (but formula dependent)

8 / 168

Grasping the search space ...

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080 (or ≈ 1085)

• Search space with 15775 propositional variables (worst case):
• # of assignments to 15775 variables: > 104748 !
• Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):

• # of assignments to > 2.8× 106 variables: ≫ 10840000 !!
• Obs: SAT solvers at present (but formula dependent)

8 / 168

Grasping the search space ...

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080 (or ≈ 1085)

• Search space with 15775 propositional variables (worst case):
• # of assignments to 15775 variables: > 104748 !
• Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):

• # of assignments to > 2.8× 106 variables: ≫ 10840000 !!
• Obs: SAT solvers at present (but formula dependent)

8 / 168

Grasping the search space ...

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080 (or ≈ 1085)

• Search space with 15775 propositional variables (worst case):
• # of assignments to 15775 variables: > 104748 !
• Obs: SAT solvers in the late 90s (but formula dependent)

• Search space with 2832875 propositional variables (worst case):
• # of assignments to > 2.8× 106 variables: ≫ 10840000 !!
• Obs: SAT solvers at present (but formula dependent)

8 / 168

SAT can make the difference – propositional abduction

10−3 10−2 10−1 100 101 102 103 104

Hyper?

10−3

10−2

10−1

100

101

102

103

104

A
bH

S+

1800 sec. timeout

18
00

se
c.

tim
eo

ut

• Propositional abduction instances [IMM16]

• Implicit hitting set dualization (IHSD)

9 / 168

SAT can make the difference – axiom pinpointing

10−2 10−1 100 101 102 103 104

EL2MUS

10−2

10−1

100

101

102

103

104

E
L

+
SA

T

3600 sec. timeout

36
00

se
c.

tim
eo

ut

• EL+ medical ontologies [AMM15]

• Minimal unsatisfiability (MUSes) & maximal satisfiability (MCSes) & Enumeration

10 / 168

SAT can make the difference – model based diagnosis

10−2 10−1 100 101 102 103

wboinc

10−2

10−1

100

101

102

103

sc
ry

pt
o

600 sec. timeout

60
0

se
c.

tim
eo

ut

• Model-based diagnosis problem instances [MJIM15]

• Maximum satisfiability (MaxSAT)

11 / 168

CDCL SAT is ubiquitous in problem solving

Problem
Solving
with SAT

Embeddings

PBO

B&B Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Models

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

12 / 168

CDCL SAT is ubiquitous in problem solving

Problem
Solving
with SAT

Embeddings

PBO

B&B Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Models

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

SAT is the oracles’ oracle:
MaxSAT, QBF, LCG, #SAT, SMT,
ASP, FOL, ...

12 / 168

Tutorial organization

• Part #1: Overview & basic definitions – Joao

• Part #2: Modern CDCL SAT solvers – Alexey

• Part #3: Modeling with propositional logic – Antonio

• Part #4: Problem solving with SAT oracles – Joao

• Part #5: Sample of applications – Alexey

• Part #6: Applications in proof complexity – Antonio

• Part #7: A glimpse of the future – Joao

13 / 168

Tutorial organization

• Part #1: Overview & basic definitions – Joao

• Part #2: Modern CDCL SAT solvers – Alexey

• Part #3: Modeling with propositional logic – Antonio

• Part #4: Problem solving with SAT oracles – Joao

• Part #5: Sample of applications – Alexey

• Part #6: Applications in proof complexity – Antonio

• Part #7: A glimpse of the future – Joao

13 / 168

Tutorial organization

• Part #1: Overview & basic definitions – Joao

• Part #2: Modern CDCL SAT solvers – Alexey

• Part #3: Modeling with propositional logic – Antonio

• Part #4: Problem solving with SAT oracles – Joao

• Part #5: Sample of applications – Alexey

• Part #6: Applications in proof complexity – Antonio

• Part #7: A glimpse of the future – Joao

13 / 168

1 Basic Definitions

14 / 168

Preliminaries

• Variables: w, x, y, z,a,b, c, . . .
• Literals: w, x̄, ȳ,a, . . . , but also ¬w,¬y, . . .
• Clauses: disjunction of literals or set of literals
• Formula: conjunction of clauses or set of clauses
• Model (satisfying assignment): partial/total mapping from variables to {0, 1} that
satisfies formula

• Each clause can be satisfied, falsified, but also unit, unresolved
• Formula can be SAT/UNSAT

• Example:

F ≜ (r) ∧ (̄r ∨ s) ∧ (w ∨ a) ∧ (x ∨ b) ∧ (y ∨ z ∨ c) ∧ (b ∨ c ∨ d)

• Example models:

• {r, s, a, b, c, d}
• {r, s, x̄, y, w̄, z, ā, b, c, d}

15 / 168

Preliminaries

• Variables: w, x, y, z,a,b, c, . . .
• Literals: w, x̄, ȳ,a, . . . , but also ¬w,¬y, . . .
• Clauses: disjunction of literals or set of literals
• Formula: conjunction of clauses or set of clauses
• Model (satisfying assignment): partial/total mapping from variables to {0, 1} that
satisfies formula

• Each clause can be satisfied, falsified, but also unit, unresolved
• Formula can be SAT/UNSAT

• Example:

F ≜ (r) ∧ (̄r ∨ s) ∧ (w ∨ a) ∧ (x ∨ b) ∧ (y ∨ z ∨ c) ∧ (b ∨ c ∨ d)

• Example models:

• {r, s, a, b, c, d}
• {r, s, x̄, y, w̄, z, ā, b, c, d}

15 / 168

Preliminaries

• Variables: w, x, y, z,a,b, c, . . .
• Literals: w, x̄, ȳ,a, . . . , but also ¬w,¬y, . . .
• Clauses: disjunction of literals or set of literals
• Formula: conjunction of clauses or set of clauses
• Model (satisfying assignment): partial/total mapping from variables to {0, 1} that
satisfies formula

• Each clause can be satisfied, falsified, but also unit, unresolved
• Formula can be SAT/UNSAT

• Example:

F ≜ (r) ∧ (̄r ∨ s) ∧ (w ∨ a) ∧ (x ∨ b) ∧ (y ∨ z ∨ c) ∧ (b ∨ c ∨ d)

• Example models:
• {r, s, a, b, c, d}

• {r, s, x̄, y, w̄, z, ā, b, c, d}

15 / 168

Preliminaries

• Variables: w, x, y, z,a,b, c, . . .
• Literals: w, x̄, ȳ,a, . . . , but also ¬w,¬y, . . .
• Clauses: disjunction of literals or set of literals
• Formula: conjunction of clauses or set of clauses
• Model (satisfying assignment): partial/total mapping from variables to {0, 1} that
satisfies formula

• Each clause can be satisfied, falsified, but also unit, unresolved
• Formula can be SAT/UNSAT

• Example:

F ≜ (r) ∧ (̄r ∨ s) ∧ (w ∨ a) ∧ (x ∨ b) ∧ (y ∨ z ∨ c) ∧ (b ∨ c ∨ d)

• Example models:
• {r, s, a, b, c, d}
• {r, s, x̄, y, w̄, z, ā, b, c, d}

15 / 168

Resolution

• Resolution rule: [DP60, Rob65]

(α ∨ x) (β ∨ x̄)
(α ∨ β)

• Complete proof system for propositional logic

• Extensively used with (CDCL) SAT solvers

16 / 168

Resolution

• Resolution rule: [DP60, Rob65]

(α ∨ x) (β ∨ x̄)
(α ∨ β)

• Complete proof system for propositional logic
(x ∨ a) (x̄ ∨ a) (ȳ ∨ ā) (y ∨ ā)

(a) (ā)

⊥

• Extensively used with (CDCL) SAT solvers

16 / 168

Unit propagation

F = (r) ∧ (̄r ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)∧
(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

• Unit clause rule: if clause is unit, its sole literal must be satisfied

• Additional definitions:
• Antecedent (or reason) of an implied assignment

• (b̄ ∨ c̄ ∨ d) for d
• Associate assignment with decision levels

• w = 1@ 1, x = 1@ 2, y = 1@ 3, z = 1@ 4

• r = 1@ 0, d = 1@ 4, ...

17 / 168

Unit propagation

F = (r) ∧ (̄r ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)∧
(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

• Unit clause rule: if clause is unit, its sole literal must be satisfied

• Additional definitions:
• Antecedent (or reason) of an implied assignment

• (b̄ ∨ c̄ ∨ d) for d
• Associate assignment with decision levels

• w = 1@ 1, x = 1@ 2, y = 1@ 3, z = 1@ 4

• r = 1@ 0, d = 1@ 4, ...

17 / 168

Unit propagation

F = (r) ∧ (̄r ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)∧
(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

• Unit clause rule: if clause is unit, its sole literal must be satisfied

• Additional definitions:
• Antecedent (or reason) of an implied assignment

• (b̄ ∨ c̄ ∨ d) for d
• Associate assignment with decision levels

• w = 1@ 1, x = 1@ 2, y = 1@ 3, z = 1@ 4

• r = 1@ 0, d = 1@ 4, ...

17 / 168

Unit propagation

F = (r) ∧ (̄r ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)∧
(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

Level Dec. Unit Prop.

0

1

2

3

4

∅

w

x

y

z

a

b

c d

r s

• Unit clause rule: if clause is unit, its sole literal must be satisfied

• Additional definitions:
• Antecedent (or reason) of an implied assignment

• (b̄ ∨ c̄ ∨ d) for d
• Associate assignment with decision levels

• w = 1@ 1, x = 1@ 2, y = 1@ 3, z = 1@ 4

• r = 1@ 0, d = 1@ 4, ...

17 / 168

Unit propagation

F = (r) ∧ (̄r ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)∧
(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

Level Dec. Unit Prop.

0

1

2

3

4

∅

w

x

y

z

a

b

c d

r s

• Unit clause rule: if clause is unit, its sole literal must be satisfied

• Additional definitions:
• Antecedent (or reason) of an implied assignment

• (b̄ ∨ c̄ ∨ d) for d
• Associate assignment with decision levels

• w = 1@ 1, x = 1@ 2, y = 1@ 3, z = 1@ 4

• r = 1@ 0, d = 1@ 4, ...
17 / 168

Resolution proofs

• Refutation of unsatisfiable formula by iterated resolution operations yields resolution
proof

• An example:
F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

• Resolution proof:

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

• Modern SAT solvers can generate resolution proofs from learned clauses [ZM03]

18 / 168

Unsatisfiable cores & proof traces

• CNF formula:

F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

Level Dec. Unit Prop.

0 ∅ b̄

c̄

a

⊥

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

Implication graph with conflict

19 / 168

Unsatisfiable cores & proof traces

• CNF formula:

F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

Level Dec. Unit Prop.

0 ∅ b̄

c̄

a

⊥

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

Proof trace ⊥: (ā ∨ c) (a ∨ b) (c̄) (b̄)

19 / 168

Unsatisfiable cores & proof traces

• CNF formula:

F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

Level Dec. Unit Prop.

0 ∅ b̄

c̄

a

⊥

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

Resolution proof follows structure of conflicts

19 / 168

Unsatisfiable cores & proof traces

• CNF formula:

F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

Level Dec. Unit Prop.

0 ∅ b̄

c̄

a

⊥

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

Unsatisfiable subformula (core): (c̄), (b̄), (ā ∨ c), (a ∨ b)

19 / 168

The DPLL algorithm

[DP60, DLL62]

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule
20 / 168

The DPLL algorithm

[DP60, DLL62]

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x ∨ y) ∧ (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b)

20 / 168

The DPLL algorithm

[DP60, DLL62]

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x ∨ y) ∧ (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b)

Level Dec. Unit Prop.

0

1

2

3

∅

x

y

a b ⊥

a ā

y

a ā

ȳ

x

a ā

x̄

20 / 168

The DPLL algorithm

[DP60, DLL62]

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x ∨ y) ∧ (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b)

Level Dec. Unit Prop.

0

1

2

3

∅

x

y

ā b̄ ⊥

a ā

y

a ā

ȳ

x

a ā

x̄

20 / 168

The DPLL algorithm

[DP60, DLL62]

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x ∨ y) ∧ (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b)

Level Dec. Unit Prop.

0

1

2

3

∅

x

ȳ

a b ⊥

a ā

y

a ā

ȳ

x

a ā

x̄

20 / 168

The DPLL algorithm

[DP60, DLL62]

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x ∨ y) ∧ (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b)

Level Dec. Unit Prop.

0

1

2

3

∅

x

ȳ

ā b̄ ⊥

a ā

y

a ā

ȳ

x

a ā

x̄

20 / 168

The DPLL algorithm

[DP60, DLL62]

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x ∨ y) ∧ (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b)

Level Dec. Unit Prop.

0

1

2

∅

x̄

a

y

b ⊥

a ā

y

a ā

ȳ

x

a ā

x̄

20 / 168

The DPLL algorithm

[DP60, DLL62]

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x ∨ y) ∧ (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b)

Level Dec. Unit Prop.

0

1

2

∅

x̄

ā

y

b̄ ⊥

a ā

y

a ā

ȳ

x

a ā

x̄

20 / 168

2 CDCL SAT Solvers

21 / 168

What is a CDCL SAT solver?

• Extend DPLL SAT solver with: [DP60, DLL62]

• Clause learning & non-chronological backtracking [MS95, MSS96b, MSS99]

• Exploit UIPs [MS95, MSS99, ZMMM01, SSS12]

• Minimize learned clauses [SB09, Gel09, LLX+17]

• Opportunistically delete clauses [MSS96b, MSS99, GN02, AS09]

• Search restarts [GSC97, BMS00, Hua07, Bie08, LOM+18]

• Lazy data structures

• Watched literals [MMZ+01]

• Conflict-guided branching

• Lightweight branching heuristics [MMZ+01]

• Phase saving [PD07]

• ...

22 / 168

What is a CDCL SAT solver?

• Extend DPLL SAT solver with: [DP60, DLL62]

• Clause learning & non-chronological backtracking [MS95, MSS96b, MSS99]

• Exploit UIPs [MS95, MSS99, ZMMM01, SSS12]

• Minimize learned clauses [SB09, Gel09, LLX+17]

• Opportunistically delete clauses [MSS96b, MSS99, GN02, AS09]

• Search restarts [GSC97, BMS00, Hua07, Bie08, LOM+18]

• Lazy data structures
• Watched literals [MMZ+01]

• Conflict-guided branching
• Lightweight branching heuristics [MMZ+01]

• Phase saving [PD07]

• ...

22 / 168

Clause Learning, UIPs &
Minimization

Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

• Analyze conflict [MS95, MSS96a, MSS96a, MSS96b, MSS99]

• Reasons: x and z
• Decision variable & literals assigned at decision levels less than current

• Create new clause: (x ∨ z)

• Can relate clause learning with resolution

• Learned clauses result from (selected) resolution operations

23 / 168

Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

• Analyze conflict [MS95, MSS96a, MSS96a, MSS96b, MSS99]

• Reasons: x and z
• Decision variable & literals assigned at decision levels less than current

• Create new clause: (x ∨ z)
• Can relate clause learning with resolution

• Learned clauses result from (selected) resolution operations

23 / 168

Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

• Analyze conflict [MS95, MSS96a, MSS96a, MSS96b, MSS99]

• Reasons: x and z
• Decision variable & literals assigned at decision levels less than current

• Create new clause: (x ∨ z)
• Can relate clause learning with resolution

• Learned clauses result from (selected) resolution operations

23 / 168

Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

• Analyze conflict [MS95, MSS96a, MSS96a, MSS96b, MSS99]

• Reasons: x and z
• Decision variable & literals assigned at decision levels less than current

• Create new clause: (x ∨ z)

• Can relate clause learning with resolution

• Learned clauses result from (selected) resolution operations

23 / 168

Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

(ā ∨ b̄) (z̄ ∨ b) (x̄ ∨ z̄ ∨ a)

(ā ∨ z̄)

(x̄ ∨ z̄)

• Analyze conflict [MS95, MSS96a, MSS96a, MSS96b, MSS99]

• Reasons: x and z
• Decision variable & literals assigned at decision levels less than current

• Create new clause: (x ∨ z)
• Can relate clause learning with resolution

• Learned clauses result from (selected) resolution operations

23 / 168

Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

(ā ∨ b̄) (z̄ ∨ b) (x̄ ∨ z̄ ∨ a)

(ā ∨ z̄)

(x̄ ∨ z̄)

• Analyze conflict [MS95, MSS96a, MSS96a, MSS96b, MSS99]

• Reasons: x and z
• Decision variable & literals assigned at decision levels less than current

• Create new clause: (x ∨ z)
• Can relate clause learning with resolution

• Learned clauses result from (selected) resolution operations

23 / 168

Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

(ā ∨ b̄) (z̄ ∨ b) (x̄ ∨ z̄ ∨ a)

(ā ∨ z̄)

(x̄ ∨ z̄)

• Analyze conflict [MS95, MSS96a, MSS96a, MSS96b, MSS99]

• Reasons: x and z
• Decision variable & literals assigned at decision levels less than current

• Create new clause: (x ∨ z)
• Can relate clause learning with resolution

• Learned clauses result from (selected) resolution operations

23 / 168

Clause learning

Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

(ā ∨ b̄) (z̄ ∨ b) (x̄ ∨ z̄ ∨ a)

(ā ∨ z̄)

(x̄ ∨ z̄)

• Analyze conflict [MS95, MSS96a, MSS96a, MSS96b, MSS99]

• Reasons: x and z
• Decision variable & literals assigned at decision levels less than current

• Create new clause: (x ∨ z)
• Can relate clause learning with resolution

• Learned clauses result from (selected) resolution operations

23 / 168

Clause learning – after backtracking

Level Dec. Unit Prop.

0

1

2

3

∅

x

y

zz aa

bb

⊥⊥

z

• Clause (x ∨ z) is asserting at decision level 1
• Learned clauses are asserting (with exceptions) [MS95, MSS96b, MSS99]

• Backtracking differs from plain DPLL:
• Always bactrack after a conflict [MMZ+01]

24 / 168

Clause learning – after backtracking

Level Dec. Unit Prop.

0

1

2

3

∅

x

y

zz aa

bb

⊥⊥

z

• Clause (x ∨ z) is asserting at decision level 1

• Learned clauses are asserting (with exceptions) [MS95, MSS96b, MSS99]

• Backtracking differs from plain DPLL:
• Always bactrack after a conflict [MMZ+01]

24 / 168

Clause learning – after backtracking

Level Dec. Unit Prop.

0

1

2

3

∅

x

y

zz aa

bb

⊥⊥

z

Level Dec. Unit Prop.

0

1

∅

x z̄

• Clause (x ∨ z) is asserting at decision level 1

• Learned clauses are asserting (with exceptions) [MS95, MSS96b, MSS99]

• Backtracking differs from plain DPLL:
• Always bactrack after a conflict [MMZ+01]

24 / 168

Clause learning – after backtracking

Level Dec. Unit Prop.

0

1

2

3

∅

x

y

zz aa

bb

⊥⊥

z

Level Dec. Unit Prop.

0

1

∅

x z̄

• Clause (x ∨ z) is asserting at decision level 1
• Learned clauses are asserting (with exceptions) [MS95, MSS96b, MSS99]

• Backtracking differs from plain DPLL:
• Always bactrack after a conflict [MMZ+01]

24 / 168

Quiz – conflict analysis

Level Dec. Unit Prop.
0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

25 / 168

Quiz – conflict analysis

Level Dec. Unit Prop.
0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f,g}

1 [f,g] f c4 {h} {e}
2 [g, e] g c5 {h} ∅

3 [e] e c3 {h} {c,d}
4 [c,d] c c1 {h,b} {a}
5 [d,a] d c2 {h,b} ∅

6 [a] a dec var {h,b,a} –
7 [] – – {h,b,a} –

25 / 168

Quiz – conflict analysis

Level Dec. Unit Prop.
0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f,g}
1 [f,g] f c4 {h} {e}

2 [g, e] g c5 {h} ∅

3 [e] e c3 {h} {c,d}
4 [c,d] c c1 {h,b} {a}
5 [d,a] d c2 {h,b} ∅

6 [a] a dec var {h,b,a} –
7 [] – – {h,b,a} –

25 / 168

Quiz – conflict analysis

Level Dec. Unit Prop.
0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f,g}
1 [f,g] f c4 {h} {e}
2 [g, e] g c5 {h} ∅

3 [e] e c3 {h} {c,d}
4 [c,d] c c1 {h,b} {a}
5 [d,a] d c2 {h,b} ∅

6 [a] a dec var {h,b,a} –
7 [] – – {h,b,a} –

25 / 168

Quiz – conflict analysis

Level Dec. Unit Prop.
0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f,g}
1 [f,g] f c4 {h} {e}
2 [g, e] g c5 {h} ∅

3 [e] e c3 {h} {c,d}

4 [c,d] c c1 {h,b} {a}
5 [d,a] d c2 {h,b} ∅

6 [a] a dec var {h,b,a} –
7 [] – – {h,b,a} –

25 / 168

Quiz – conflict analysis

Level Dec. Unit Prop.
0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f,g}
1 [f,g] f c4 {h} {e}
2 [g, e] g c5 {h} ∅

3 [e] e c3 {h} {c,d}
4 [c,d] c c1 {h,b} {a}

5 [d,a] d c2 {h,b} ∅

6 [a] a dec var {h,b,a} –
7 [] – – {h,b,a} –

25 / 168

Quiz – conflict analysis

Level Dec. Unit Prop.
0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f,g}
1 [f,g] f c4 {h} {e}
2 [g, e] g c5 {h} ∅

3 [e] e c3 {h} {c,d}
4 [c,d] c c1 {h,b} {a}
5 [d,a] d c2 {h,b} ∅

6 [a] a dec var {h,b,a} –
7 [] – – {h,b,a} –

25 / 168

Quiz – conflict analysis

Level Dec. Unit Prop.
0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f,g}
1 [f,g] f c4 {h} {e}
2 [g, e] g c5 {h} ∅

3 [e] e c3 {h} {c,d}
4 [c,d] c c1 {h,b} {a}
5 [d,a] d c2 {h,b} ∅

6 [a] a dec var {h,b,a} –

7 [] – – {h,b,a} –

25 / 168

Quiz – conflict analysis

Level Dec. Unit Prop.
0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f,g}
1 [f,g] f c4 {h} {e}
2 [g, e] g c5 {h} ∅

3 [e] e c3 {h} {c,d}
4 [c,d] c c1 {h,b} {a}
5 [d,a] d c2 {h,b} ∅

6 [a] a dec var {h,b,a} –
7 [] – – {h,b,a} –

25 / 168

Unique implication points (UIPs)

Level Dec. Unit Prop.

0

1

2

3

4

∅

www

xxx

yyy

zzz aaa

b ⊥

c

26 / 168

Unique implication points (UIPs)

Level Dec. Unit Prop.

0

1

2

3

4

∅

www

xxx

yyy

zzz aaa

b ⊥

c

(b̄ ∨ c̄) (w̄ ∨ ā ∨ c) (x̄ ∨ ā ∨ b) (ȳ ∨ z̄ ∨ a)

(w̄ ∨ ā ∨ b̄)

(w̄ ∨ x̄ ∨ ȳ ∨ z̄)

(w̄ ∨ x̄ ∨ ā)(w̄ ∨ x̄ ∨ ā)

• Learn clause (w ∨ x ∨ y ∨ z)

• But a is an UIP [MS95, MSS99]

• Dominator in DAG for decision level 4

26 / 168

Unique implication points (UIPs)

Level Dec. Unit Prop.

0

1

2

3

4

∅

www

xxx

yyy

zzz aaa

b ⊥

c

(b̄ ∨ c̄) (w̄ ∨ ā ∨ c) (x̄ ∨ ā ∨ b) (ȳ ∨ z̄ ∨ a)

(w̄ ∨ ā ∨ b̄)

(w̄ ∨ x̄ ∨ ȳ ∨ z̄)

(w̄ ∨ x̄ ∨ ā)(w̄ ∨ x̄ ∨ ā)

• Learn clause (w ∨ x ∨ y ∨ z)
• But a is an UIP [MS95, MSS99]

• Dominator in DAG for decision level 4

26 / 168

Unique implication points (UIPs)

Level Dec. Unit Prop.

0

1

2

3

4

∅

www

xxx

yyy

zzz aaa

b ⊥

c

(b̄ ∨ c̄) (w̄ ∨ ā ∨ c) (x̄ ∨ ā ∨ b) (ȳ ∨ z̄ ∨ a)

(w̄ ∨ ā ∨ b̄)

(w̄ ∨ x̄ ∨ ȳ ∨ z̄)

(w̄ ∨ x̄ ∨ ā)(w̄ ∨ x̄ ∨ ā)

• Learn clause (w ∨ x ∨ y ∨ z)
• But a is an UIP [MS95, MSS99]

• Dominator in DAG for level 4

• Learn clause (w ∨ x ∨ a)

26 / 168

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

∅

www

xx

yyy

zzz r

s

aaa

b ⊥

c

• First UIP:
• Learn clause (w ∨ y ∨ a)

• But there can be more than 1 UIP
• Second UIP:

• Learn clause (x ∨ z ∨ a)
• Clause is not asserting

• In practice smaller clauses more effective
• Compare with (w ∨ x ∨ y ∨ z)

• Multiple UIPs proposed in GRASP [MS95, MSS99]

• First UIP learning proposed in Chaff [MMZ+01]

• Not used in recent state of the art CDCL SAT solvers
• Recent results show it can be beneficial on some instances [SSS12]

27 / 168

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

∅

www

xx

yyy

zzz r

s

aaa

b ⊥

c

• First UIP:
• Learn clause (w ∨ y ∨ a)

• But there can be more than 1 UIP
• Second UIP:

• Learn clause (x ∨ z ∨ a)
• Clause is not asserting

• In practice smaller clauses more effective
• Compare with (w ∨ x ∨ y ∨ z)

• Multiple UIPs proposed in GRASP [MS95, MSS99]

• First UIP learning proposed in Chaff [MMZ+01]

• Not used in recent state of the art CDCL SAT solvers
• Recent results show it can be beneficial on some instances [SSS12]

27 / 168

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

∅

www

xx

yyy

zzz r

s

aaa

b ⊥

c

• First UIP:
• Learn clause (w ∨ y ∨ a)

• But there can be more than 1 UIP

• Second UIP:
• Learn clause (x ∨ z ∨ a)
• Clause is not asserting

• In practice smaller clauses more effective
• Compare with (w ∨ x ∨ y ∨ z)

• Multiple UIPs proposed in GRASP [MS95, MSS99]

• First UIP learning proposed in Chaff [MMZ+01]

• Not used in recent state of the art CDCL SAT solvers
• Recent results show it can be beneficial on some instances [SSS12]

27 / 168

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

∅

www

xx

yyy

zzz r

s

aaa

b ⊥

c

• First UIP:
• Learn clause (w ∨ y ∨ a)

• But there can be more than 1 UIP
• Second UIP:

• Learn clause (x ∨ z ∨ a)
• Clause is not asserting

• In practice smaller clauses more effective
• Compare with (w ∨ x ∨ y ∨ z)

• Multiple UIPs proposed in GRASP [MS95, MSS99]

• First UIP learning proposed in Chaff [MMZ+01]

• Not used in recent state of the art CDCL SAT solvers
• Recent results show it can be beneficial on some instances [SSS12]

27 / 168

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

∅

www

xx

yyy

zzz r

s

aaa

b ⊥

c

• First UIP:
• Learn clause (w ∨ y ∨ a)

• But there can be more than 1 UIP
• Second UIP:

• Learn clause (x ∨ z ∨ a)
• Clause is not asserting

• In practice smaller clauses more effective
• Compare with (w ∨ x ∨ y ∨ z)

• Multiple UIPs proposed in GRASP [MS95, MSS99]

• First UIP learning proposed in Chaff [MMZ+01]

• Not used in recent state of the art CDCL SAT solvers
• Recent results show it can be beneficial on some instances [SSS12]

27 / 168

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

∅

www

xx

yyy

zzz r

s

aaa

b ⊥

c

• First UIP:
• Learn clause (w ∨ y ∨ a)

• But there can be more than 1 UIP
• Second UIP:

• Learn clause (x ∨ z ∨ a)
• Clause is not asserting

• In practice smaller clauses more effective
• Compare with (w ∨ x ∨ y ∨ z)

• Multiple UIPs proposed in GRASP [MS95, MSS99]

• First UIP learning proposed in Chaff [MMZ+01]

• Not used in recent state of the art CDCL SAT solvers

• Recent results show it can be beneficial on some instances [SSS12]

27 / 168

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

∅

www

xx

yyy

zzz r

s

aaa

b ⊥

c

• First UIP:
• Learn clause (w ∨ y ∨ a)

• But there can be more than 1 UIP
• Second UIP:

• Learn clause (x ∨ z ∨ a)
• Clause is not asserting

• In practice smaller clauses more effective
• Compare with (w ∨ x ∨ y ∨ z)

• Multiple UIPs proposed in GRASP [MS95, MSS99]

• First UIP learning proposed in Chaff [MMZ+01]

• Not used in recent state of the art CDCL SAT solvers
• Recent results show it can be beneficial on some instances [SSS12]

27 / 168

Quiz – conflict analysis with UIP(s)

Level Dec. Unit Prop.
0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

28 / 168

Quiz – conflict analysis with UIP(s)

Level Dec. Unit Prop.
0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f,g}

1 [f,g] f c4 {h} {e}
2 [g, e] g c5 {h} ∅

3 [e] e c3 {h, e} ∅

6 [] – – {h, e} –

28 / 168

Quiz – conflict analysis with UIP(s)

Level Dec. Unit Prop.
0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f,g}
1 [f,g] f c4 {h} {e}

2 [g, e] g c5 {h} ∅

3 [e] e c3 {h, e} ∅

6 [] – – {h, e} –

28 / 168

Quiz – conflict analysis with UIP(s)

Level Dec. Unit Prop.
0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f,g}
1 [f,g] f c4 {h} {e}
2 [g, e] g c5 {h} ∅

3 [e] e c3 {h, e} ∅

6 [] – – {h, e} –

28 / 168

Quiz – conflict analysis with UIP(s)

Level Dec. Unit Prop.
0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f,g}
1 [f,g] f c4 {h} {e}
2 [g, e] g c5 {h} ∅

3 [e] e c3 {h, e} ∅

6 [] – – {h, e} –

28 / 168

Quiz – conflict analysis with UIP(s)

Level Dec. Unit Prop.
0

1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue

0 – ⊥ c6 ∅ {f,g}
1 [f,g] f c4 {h} {e}
2 [g, e] g c5 {h} ∅

3 [e] e c3 {h, e} ∅

6 [] – – {h, e} –

28 / 168

Quiz (Cont.) – non-chronological backtracking

Without UIP:

Level Dec. Unit Prop.
0
1

2

3

4

∅
h

b

y

a c

d

e f

g

⊥

ā

c4
c1

c1

c2

c3

c3

c4

c5

c6

c6

With UIP:

Level Dec. Unit Prop.
0
1

2

3

4

∅
h

b

y

a c

d

a e f

g

⊥

ē

c4c1

c1

c2

c3

c3

c4

c5

c6

c6

29 / 168

Clause minimization I

Level Dec. Unit Prop.

0

1

2

3

∅

xxx

yyy

zzz c

bbb

a

⊥

30 / 168

Clause minimization I

Level Dec. Unit Prop.

0

1

2

3

∅

xxx

yyy

zzz c

bbb

a

⊥

(ā ∨ c̄) (z̄ ∨ b̄ ∨ c) (x̄ ∨ ȳ ∨ z̄ ∨ a)

(z̄ ∨ b̄ ∨ ā)

(x̄ ∨ ȳ ∨ z̄ ∨ b̄)

• Learn clause (x ∨ y ∨ z ∨ b)

• Apply self-subsuming resolution (i.e. local minimization) [SB09]

30 / 168

Clause minimization I

Level Dec. Unit Prop.

0

1

2

3

∅

xxx

yyy

zzz c

bbb

a

⊥

(ā ∨ c̄) (z̄ ∨ b̄ ∨ c) (x̄ ∨ ȳ ∨ z̄ ∨ a)

(z̄ ∨ b̄ ∨ ā)

(x̄ ∨ ȳ ∨ z̄ ∨ b̄)

(x̄ ∨ b)

• Learn clause (x ∨ y ∨ z ∨ b)
• Apply self-subsuming resolution (i.e. local minimization) [SB09]

30 / 168

Clause minimization I

Level Dec. Unit Prop.

0

1

2

3

∅

xxx

yyy

zzz c

bbb

a

⊥

(ā ∨ c̄) (z̄ ∨ b̄ ∨ c) (x̄ ∨ ȳ ∨ z̄ ∨ a)

(z̄ ∨ b̄ ∨ ā)

(x̄ ∨ ȳ ∨ z̄ ∨ b̄)

(x̄ ∨ b)

(x̄ ∨ ȳ ∨ z̄)

• Learn clause (x ∨ y ∨ z ∨ b)
• Apply self-subsuming resolution (i.e. local minimization) [SB09]

• Learn clause (x ∨ y ∨ z)

30 / 168

Clause minimization I

Level Dec. Unit Prop.

0

1

2

3

∅

xxx

yyy

zzz c

bbb

a

⊥

(ā ∨ c̄) (z̄ ∨ b̄ ∨ c) (x̄ ∨ ȳ ∨ z̄ ∨ a)

(z̄ ∨ b̄ ∨ ā)

(x̄ ∨ ȳ ∨ z̄ ∨ b̄)

(x̄ ∨ b)

(x̄ ∨ ȳ ∨ z̄)

• Learn clause (x ∨ y ∨ z ∨ b)
• Apply self-subsuming resolution (i.e. local minimization) [SB09]

• Learn clause (x ∨ y ∨ z)

30 / 168

Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅

ww a

b

ccc

xx e

d ⊥

•
• Cannot apply self-subsuming resolution

• Resolving with reason of c yields (w ∨ x ∨ a ∨ b)

• Can apply recursive minimization
• Learn clause (w ∨ x)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes
• Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time

31 / 168

Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅

ww a

b

ccc

xx e

d ⊥

• Learn clause (w ∨ x ∨ c)

• Cannot apply self-subsuming resolution
• Resolving with reason of c yields (w ∨ x ∨ a ∨ b)

• Can apply recursive minimization
• Learn clause (w ∨ x)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes
• Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time

31 / 168

Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅

ww a

b

ccc

xx e

d ⊥

• Learn clause (w ∨ x ∨ c)
• Cannot apply self-subsuming resolution

• Resolving with reason of c yields (w ∨ x ∨ a ∨ b)

• Can apply recursive minimization
• Learn clause (w ∨ x)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes
• Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time

31 / 168

Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅

ww a

b

ccc

xx e

d ⊥

• Learn clause (w ∨ x ∨ c)
• Cannot apply self-subsuming resolution

• Resolving with reason of c yields (w ∨ x ∨ a ∨ b)

• Can apply recursive minimization

• Learn clause (w ∨ x)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes
• Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time

31 / 168

Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅

ww a

b

ccc

xx e

d ⊥

• Learn clause (w ∨ x ∨ c)
• Cannot apply self-subsuming resolution

• Resolving with reason of c yields (w ∨ x ∨ a ∨ b)

• Can apply recursive minimization

• Learn clause (w ∨ x)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes
• Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time

31 / 168

Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅

ww a

b

ccc

xx e

d ⊥

• Learn clause (w ∨ x ∨ c)
• Cannot apply self-subsuming resolution

• Resolving with reason of c yields (w ∨ x ∨ a ∨ b)

• Can apply recursive minimization

• Learn clause (w ∨ x)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes
• Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time

31 / 168

Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅

ww a

b

ccc

xx e

d ⊥

• Learn clause (w ∨ x ∨ c)
• Cannot apply self-subsuming resolution

• Resolving with reason of c yields (w ∨ x ∨ a ∨ b)

• Can apply recursive minimization
• Learn clause (w ∨ x)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes
• Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time

31 / 168

Clause minimization II

Level Dec. Unit Prop.

0

1

2

∅

ww a

b

ccc

xx e

d ⊥

• Learn clause (w ∨ x ∨ c)
• Cannot apply self-subsuming resolution

• Resolving with reason of c yields (w ∨ x ∨ a ∨ b)

• Can apply recursive minimization
• Learn clause (w ∨ x)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new decision nodes
• Drop literal c if only marked nodes visited

• Recursive minimization runs in (amortized) linear time

31 / 168

Quiz – conflict clause minimization

Level Dec. Unit Prop.
0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)
Minimized clause: (a ∨ r ∨ c ∨ d ∨ g)

Target Curr Var Marked Unmarked Vars to Trace Action

g g {a,d, r, c} ∅ [s] –
g s {a,d, r, c} ∅ [d] –
g d {a,d, r, c} ∅ [] d marked, skip
g – {a,d, r, c} ∅ [] no unmarked vars; ∴ drop g

d d {a, r, c} ∅ [r] –
d r {a, r, c} ∅ [] r marked, skip
d – {a, r, c} ∅ [] no unmarked vars; ∴ drop d

32 / 168

Quiz – conflict clause minimization

Level Dec. Unit Prop.
0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)
Minimized clause: (a ∨ r ∨ c ∨ d ∨ g)

Target Curr Var Marked Unmarked Vars to Trace Action

g g {a,d, r, c} ∅ [s] –
g s {a,d, r, c} ∅ [d] –
g d {a,d, r, c} ∅ [] d marked, skip
g – {a,d, r, c} ∅ [] no unmarked vars; ∴ drop g

d d {a, r, c} ∅ [r] –
d r {a, r, c} ∅ [] r marked, skip
d – {a, r, c} ∅ [] no unmarked vars; ∴ drop d

32 / 168

Quiz – conflict clause minimization

Level Dec. Unit Prop.
0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)
Minimized clause: (a ∨ r ∨ c ∨ d ∨ g)

Target Curr Var Marked Unmarked Vars to Trace Action

g g {a,d, r, c} ∅ [s] –
g s {a,d, r, c} ∅ [d] –
g d {a,d, r, c} ∅ [] d marked, skip
g – {a,d, r, c} ∅ [] no unmarked vars; ∴ drop g

d d {a, r, c} ∅ [r] –
d r {a, r, c} ∅ [] r marked, skip
d – {a, r, c} ∅ [] no unmarked vars; ∴ drop d

32 / 168

Quiz – conflict clause minimization

Level Dec. Unit Prop.
0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)
Minimized clause: (a ∨ r ∨ c ∨ d ∨ g)

Target Curr Var Marked Unmarked Vars to Trace Action

g g {a,d, r, c} ∅ [s] –

g s {a,d, r, c} ∅ [d] –
g d {a,d, r, c} ∅ [] d marked, skip
g – {a,d, r, c} ∅ [] no unmarked vars; ∴ drop g

d d {a, r, c} ∅ [r] –
d r {a, r, c} ∅ [] r marked, skip
d – {a, r, c} ∅ [] no unmarked vars; ∴ drop d

32 / 168

Quiz – conflict clause minimization

Level Dec. Unit Prop.
0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)
Minimized clause: (a ∨ r ∨ c ∨ d ∨ g)

Target Curr Var Marked Unmarked Vars to Trace Action

g g {a,d, r, c} ∅ [s] –
g s {a,d, r, c} ∅ [d] –

g d {a,d, r, c} ∅ [] d marked, skip
g – {a,d, r, c} ∅ [] no unmarked vars; ∴ drop g

d d {a, r, c} ∅ [r] –
d r {a, r, c} ∅ [] r marked, skip
d – {a, r, c} ∅ [] no unmarked vars; ∴ drop d

32 / 168

Quiz – conflict clause minimization

Level Dec. Unit Prop.
0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)
Minimized clause: (a ∨ r ∨ c ∨ d ∨ g)

Target Curr Var Marked Unmarked Vars to Trace Action

g g {a,d, r, c} ∅ [s] –
g s {a,d, r, c} ∅ [d] –
g d {a,d, r, c} ∅ [] d marked, skip

g – {a,d, r, c} ∅ [] no unmarked vars; ∴ drop g

d d {a, r, c} ∅ [r] –
d r {a, r, c} ∅ [] r marked, skip
d – {a, r, c} ∅ [] no unmarked vars; ∴ drop d

32 / 168

Quiz – conflict clause minimization

Level Dec. Unit Prop.
0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)
Minimized clause: (a ∨ r ∨ c ∨ d

∨ g

)

Target Curr Var Marked Unmarked Vars to Trace Action

g g {a,d, r, c} ∅ [s] –
g s {a,d, r, c} ∅ [d] –
g d {a,d, r, c} ∅ [] d marked, skip
g – {a,d, r, c} ∅ [] no unmarked vars; ∴ drop g

d d {a, r, c} ∅ [r] –
d r {a, r, c} ∅ [] r marked, skip
d – {a, r, c} ∅ [] no unmarked vars; ∴ drop d

32 / 168

Quiz – conflict clause minimization

Level Dec. Unit Prop.
0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)
Minimized clause: (a ∨ r ∨ c ∨ d

∨ g

)

Target Curr Var Marked Unmarked Vars to Trace Action

g g {a,d, r, c} ∅ [s] –
g s {a,d, r, c} ∅ [d] –
g d {a,d, r, c} ∅ [] d marked, skip
g – {a,d, r, c} ∅ [] no unmarked vars; ∴ drop g

d d {a, r, c} ∅ [r] –

d r {a, r, c} ∅ [] r marked, skip
d – {a, r, c} ∅ [] no unmarked vars; ∴ drop d

32 / 168

Quiz – conflict clause minimization

Level Dec. Unit Prop.
0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)
Minimized clause: (a ∨ r ∨ c ∨ d

∨ g

)

Target Curr Var Marked Unmarked Vars to Trace Action

g g {a,d, r, c} ∅ [s] –
g s {a,d, r, c} ∅ [d] –
g d {a,d, r, c} ∅ [] d marked, skip
g – {a,d, r, c} ∅ [] no unmarked vars; ∴ drop g

d d {a, r, c} ∅ [r] –
d r {a, r, c} ∅ [] r marked, skip

d – {a, r, c} ∅ [] no unmarked vars; ∴ drop d

32 / 168

Quiz – conflict clause minimization

Level Dec. Unit Prop.
0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)
Minimized clause: (a ∨ r ∨ c

∨ d

∨ g

)

Target Curr Var Marked Unmarked Vars to Trace Action

g g {a,d, r, c} ∅ [s] –
g s {a,d, r, c} ∅ [d] –
g d {a,d, r, c} ∅ [] d marked, skip
g – {a,d, r, c} ∅ [] no unmarked vars; ∴ drop g

d d {a, r, c} ∅ [r] –
d r {a, r, c} ∅ [] r marked, skip
d – {a, r, c} ∅ [] no unmarked vars; ∴ drop d

32 / 168

Quiz – conflict clause minimization (cont.)

Level Dec. Unit Prop.
0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)
Minimized clause: (a ∨ r ∨ c)

Target Curr Var Marked Unmarked Vars to Trace Action

r r {a, c} ∅ [a,b] –
r a {a, c} ∅ [b] a marked
r b {a, c} {b} [] b decision & unmarked
r – {a, c} {b} [] unmarked vars; ∴ keep r

a, c – – ∅ [] a, c decision variables; keep both

33 / 168

Quiz – conflict clause minimization (cont.)

Level Dec. Unit Prop.
0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)
Minimized clause: (a ∨ r ∨ c)

Target Curr Var Marked Unmarked Vars to Trace Action

r r {a, c} ∅ [a,b] –
r a {a, c} ∅ [b] a marked
r b {a, c} {b} [] b decision & unmarked
r – {a, c} {b} [] unmarked vars; ∴ keep r

a, c – – ∅ [] a, c decision variables; keep both

33 / 168

Quiz – conflict clause minimization (cont.)

Level Dec. Unit Prop.
0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)
Minimized clause: (a ∨ r ∨ c)

Target Curr Var Marked Unmarked Vars to Trace Action

r r {a, c} ∅ [a,b] –
r a {a, c} ∅ [b] a marked
r b {a, c} {b} [] b decision & unmarked
r – {a, c} {b} [] unmarked vars; ∴ keep r

a, c – – ∅ [] a, c decision variables; keep both

33 / 168

Quiz – conflict clause minimization (cont.)

Level Dec. Unit Prop.
0

1

2

3

4

∅
a

b

y

c

r d s g

e h

f

⊥

Learned clause: (a ∨ r ∨ c ∨ d ∨ g)
Minimized clause: (a ∨ r ∨ c)

Target Curr Var Marked Unmarked Vars to Trace Action

r r {a, c} ∅ [a,b] –
r a {a, c} ∅ [b] a marked
r b {a, c} {b} [] b decision & unmarked
r – {a, c} {b} [] unmarked vars; ∴ keep r

a, c – – ∅ [] a, c decision variables; keep both

33 / 168

Search Restarts

Branch randomization

• Heavy-tail behavior: [GSC97]

• 10000 runs, branching randomization on satisfiable industrial instance

∴ use rapid randomized restarts (search restarts)

34 / 168

Search restarts

• Restart search after a number of conflicts

• Increase cutoff after each restart
• Guarantees completeness
• Different policies exist

• Effective for SAT & UNSAT formulas. Why?

• Proof complexity arguments

• Clause learning (very) effective in between restarts

cutoff

cutoff

✓

35 / 168

Search restarts

• Restart search after a number of conflicts
• Increase cutoff after each restart

• Guarantees completeness
• Different policies exist

• Effective for SAT & UNSAT formulas. Why?

• Proof complexity arguments

• Clause learning (very) effective in between restarts

cutoff

cutoff

✓

35 / 168

Search restarts

• Restart search after a number of conflicts
• Increase cutoff after each restart

• Guarantees completeness
• Different policies exist

• Effective for SAT & UNSAT formulas. Why?

• Proof complexity arguments

• Clause learning (very) effective in between restarts

cutoff

cutoff

✓

35 / 168

Search restarts

• Restart search after a number of conflicts
• Increase cutoff after each restart

• Guarantees completeness
• Different policies exist

• Effective for SAT & UNSAT formulas. Why?
• Proof complexity arguments

• Clause learning (very) effective in between restarts

cutoff

cutoff

✓

35 / 168

Search restarts

• Restart search after a number of conflicts
• Increase cutoff after each restart

• Guarantees completeness
• Different policies exist

• Effective for SAT & UNSAT formulas. Why?
• Proof complexity arguments

• Clause learning (very) effective in between restarts

cutoff

cutoff

✓

New
clauses

New
clauses

35 / 168

Lazy Data Structures

Data structures basics

• Recap states of a clause: unresolved, unit, falsified, satisfied

• Each literal l should access clauses containing l and l
• Why?

• Clause with k literals results in k references, from literals to the clause
• Number of clause references equals number of literals, L

• Clause learning can generate large clauses
• Worst-case size: O(n)

• Worst-case number of literals: O(mn)
• In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient representation:

• Watched literals are one example of lazy data structures
• But there are others [ZS00]

36 / 168

Data structures basics

• Recap states of a clause: unresolved, unit, falsified, satisfied

• Each literal l should access clauses containing l and l
• Why? Unit propagation

• Clause with k literals results in k references, from literals to the clause
• Number of clause references equals number of literals, L

• Clause learning can generate large clauses
• Worst-case size: O(n)

• Worst-case number of literals: O(mn)
• In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient representation:

• Watched literals are one example of lazy data structures
• But there are others [ZS00]

36 / 168

Data structures basics

• Recap states of a clause: unresolved, unit, falsified, satisfied

• Each literal l should access clauses containing l and l
• Why? Unit propagation

• Clause with k literals results in k references, from literals to the clause

• Number of clause references equals number of literals, L

• Clause learning can generate large clauses
• Worst-case size: O(n)

• Worst-case number of literals: O(mn)
• In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient representation:

• Watched literals are one example of lazy data structures
• But there are others [ZS00]

36 / 168

Data structures basics

• Recap states of a clause: unresolved, unit, falsified, satisfied

• Each literal l should access clauses containing l and l
• Why? Unit propagation

• Clause with k literals results in k references, from literals to the clause
• Number of clause references equals number of literals, L

• Clause learning can generate large clauses
• Worst-case size: O(n)

• Worst-case number of literals: O(mn)
• In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient representation:

• Watched literals are one example of lazy data structures
• But there are others [ZS00]

36 / 168

Data structures basics

• Recap states of a clause: unresolved, unit, falsified, satisfied

• Each literal l should access clauses containing l and l
• Why? Unit propagation

• Clause with k literals results in k references, from literals to the clause
• Number of clause references equals number of literals, L

• Clause learning can generate large clauses
• Worst-case size: O(n)

• Worst-case number of literals: O(mn)
• In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient representation:

• Watched literals are one example of lazy data structures
• But there are others [ZS00]

36 / 168

Data structures basics

• Recap states of a clause: unresolved, unit, falsified, satisfied

• Each literal l should access clauses containing l and l
• Why? Unit propagation

• Clause with k literals results in k references, from literals to the clause
• Number of clause references equals number of literals, L

• Clause learning can generate large clauses
• Worst-case size: O(n)

• Worst-case number of literals: O(mn)

• In practice,
Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient representation:

• Watched literals are one example of lazy data structures
• But there are others [ZS00]

36 / 168

Data structures basics

• Recap states of a clause: unresolved, unit, falsified, satisfied

• Each literal l should access clauses containing l and l
• Why? Unit propagation

• Clause with k literals results in k references, from literals to the clause
• Number of clause references equals number of literals, L

• Clause learning can generate large clauses
• Worst-case size: O(n)

• Worst-case number of literals: O(mn)
• In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient representation:

• Watched literals are one example of lazy data structures
• But there are others [ZS00]

36 / 168

Data structures basics

• Recap states of a clause: unresolved, unit, falsified, satisfied

• Each literal l should access clauses containing l and l
• Why? Unit propagation

• Clause with k literals results in k references, from literals to the clause
• Number of clause references equals number of literals, L

• Clause learning can generate large clauses
• Worst-case size: O(n)

• Worst-case number of literals: O(mn)
• In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient representation:

• Watched literals are one example of lazy data structures
• But there are others [ZS00]

36 / 168

Data structures basics

• Recap states of a clause: unresolved, unit, falsified, satisfied

• Each literal l should access clauses containing l and l
• Why? Unit propagation

• Clause with k literals results in k references, from literals to the clause
• Number of clause references equals number of literals, L

• Clause learning can generate large clauses
• Worst-case size: O(n)

• Worst-case number of literals: O(mn)
• In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient representation: Watched
Literals [MMZ+01]

• Watched literals are one example of lazy data structures
• But there are others [ZS00]

36 / 168

Data structures basics

• Recap states of a clause: unresolved, unit, falsified, satisfied

• Each literal l should access clauses containing l and l
• Why? Unit propagation

• Clause with k literals results in k references, from literals to the clause
• Number of clause references equals number of literals, L

• Clause learning can generate large clauses
• Worst-case size: O(n)

• Worst-case number of literals: O(mn)
• In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient representation: Watched
Literals [MMZ+01]

• Watched literals are one example of lazy data structures
• But there are others [ZS00]

36 / 168

Watched literals

@2 @0 @2 @1
A B C D E F G H Watch 2 unassigned literals in each clause

At DLevel 2: clause is unresolved

@2 @0 @2 @3 @1
A B C D E F G H

At DLevel 3: watch updated

@2 @0 @2 @3 @4 @1
A B C D E F G H

At DLevel 4: watch updated

@5 @2 @0 @2 @3 @4 @1
A B C D E F G H At DLevel 5: clause is unit

Literal D assigned value 1; clause becomes satisfied

@0 @1
A B C D E F G H After backtracking to DLevel 1

Watched literals untouched

37 / 168

Watched literals

@2 @0 @2 @1
A B C D E F G H Watch 2 unassigned literals in each clause

At DLevel 2: clause is unresolved

@2 @0 @2 @3 @1
A B C D E F G H

At DLevel 3: watch updated

@2 @0 @2 @3 @4 @1
A B C D E F G H

At DLevel 4: watch updated

@5 @2 @0 @2 @3 @4 @1
A B C D E F G H At DLevel 5: clause is unit

Literal D assigned value 1; clause becomes satisfied

@0 @1
A B C D E F G H After backtracking to DLevel 1

Watched literals untouched

37 / 168

Watched literals

@2 @0 @2 @1
A B C D E F G H Watch 2 unassigned literals in each clause

At DLevel 2: clause is unresolved

@2 @0 @2 @3 @1
A B C D E F G H

At DLevel 3: watch updated

@2 @0 @2 @3 @4 @1
A B C D E F G H

At DLevel 4: watch updated

@5 @2 @0 @2 @3 @4 @1
A B C D E F G H At DLevel 5: clause is unit

Literal D assigned value 1; clause becomes satisfied

@0 @1
A B C D E F G H After backtracking to DLevel 1

Watched literals untouched

37 / 168

Watched literals

@2 @0 @2 @1
A B C D E F G H Watch 2 unassigned literals in each clause

At DLevel 2: clause is unresolved

@2 @0 @2 @3 @1
A B C D E F G H

At DLevel 3: watch updated

@2 @0 @2 @3 @4 @1
A B C D E F G H

At DLevel 4: watch updated

@5 @2 @0 @2 @3 @4 @1
A B C D E F G H At DLevel 5: clause is unit

Literal D assigned value 1; clause becomes satisfied

@0 @1
A B C D E F G H After backtracking to DLevel 1

Watched literals untouched

37 / 168

Watched literals

@2 @0 @2 @1
A B C D E F G H Watch 2 unassigned literals in each clause

At DLevel 2: clause is unresolved

@2 @0 @2 @3 @1
A B C D E F G H

At DLevel 3: watch updated

@2 @0 @2 @3 @4 @1
A B C D E F G H

At DLevel 4: watch updated

@5 @2 @0 @2 @3 @4 @1
A B C D E F G H At DLevel 5: clause is unit

Literal D assigned value 1; clause becomes satisfied

@0 @1
A B C D E F G H After backtracking to DLevel 1

Watched literals untouched

37 / 168

Watched literals

@2 @0 @2 @1
A B C D E F G H Watch 2 unassigned literals in each clause

At DLevel 2: clause is unresolved

@2 @0 @2 @3 @1
A B C D E F G H

At DLevel 3: watch updated

@2 @0 @2 @3 @4 @1
A B C D E F G H

At DLevel 4: watch updated

@5 @2 @0 @2 @3 @4 @1
A B C D E F G H At DLevel 5: clause is unit

Literal D assigned value 1; clause becomes satisfied

@0 @1
A B C D E F G H After backtracking to DLevel 1

Watched literals untouched

37 / 168

Watched literals

@2 @0 @2 @1
A B C D E F G H Watch 2 unassigned literals in each clause

At DLevel 2: clause is unresolved

@2 @0 @2 @3 @1
A B C D E F G H

At DLevel 3: watch updated

@2 @0 @2 @3 @4 @1
A B C D E F G H

At DLevel 4: watch updated

@5 @2 @0 @2 @3 @4 @1
A B C D E F G H At DLevel 5: clause is unit

Literal D assigned value 1; clause becomes satisfied

@0 @1
A B C D E F G H After backtracking to DLevel 1

Watched literals untouched

37 / 168

Watched literals – different implementations exist!

@2 @0 @2 @1
A B C D E F G H Watch 2 unassigned literals in each clause

At DLevel 2: clause is unresolved

@2 @0 @2 @3 @1
A B C D E F G H

At DLevel 3: watch updated

@2 @0 @2 @3 @4 @1
A B C D E F G H

At DLevel 4: watch updated

@5 @2 @0 @2 @3 @4 @1
A B C D E F G H At DLevel 5: clause is unit

Literal D assigned value 1; clause becomes satisfied

@0 @1
A B C D E F G H After backtracking to DLevel 1

Watched literals untouched

37 / 168

Additional key techniques

• Conflict-driven branching [MMZ+01]

• Use conflict to bias variables to branch on, associate score with each variable
• Prefer recent bias by regularly decreasing variable scores
• Recent promising ML-based branching [LGPC16a, LGPC16b]

• Clause deletion policies
• Not practical to keep all learned clauses
• Delete larger clauses [MSS96b, MSS99]

• Delete less used clauses [GN02, ES03]

• Delete based on LBD metric [AS09]

• Other effective techniques:
• Phase saving [PD07]

• Novel restart strategies [Hua07, BF15, LOM+18]

• Preprocessing/inprocessing [JHB12, HJL+15]

• Clause minimization: LBD-based and UP-based [AS09, LLX+17]

38 / 168

Additional key techniques

• Conflict-driven branching [MMZ+01]

• Use conflict to bias variables to branch on, associate score with each variable
• Prefer recent bias by regularly decreasing variable scores
• Recent promising ML-based branching [LGPC16a, LGPC16b]

• Clause deletion policies
• Not practical to keep all learned clauses
• Delete larger clauses [MSS96b, MSS99]

• Delete less used clauses [GN02, ES03]

• Delete based on LBD metric [AS09]

• Other effective techniques:
• Phase saving [PD07]

• Novel restart strategies [Hua07, BF15, LOM+18]

• Preprocessing/inprocessing [JHB12, HJL+15]

• Clause minimization: LBD-based and UP-based [AS09, LLX+17]

38 / 168

Additional key techniques

• Conflict-driven branching [MMZ+01]

• Use conflict to bias variables to branch on, associate score with each variable
• Prefer recent bias by regularly decreasing variable scores
• Recent promising ML-based branching [LGPC16a, LGPC16b]

• Clause deletion policies
• Not practical to keep all learned clauses
• Delete larger clauses [MSS96b, MSS99]

• Delete less used clauses [GN02, ES03]

• Delete based on LBD metric [AS09]

• Other effective techniques:
• Phase saving [PD07]

• Novel restart strategies [Hua07, BF15, LOM+18]

• Preprocessing/inprocessing [JHB12, HJL+15]

• Clause minimization: LBD-based and UP-based [AS09, LLX+17]

38 / 168

Why CDCL Works?

Why CDCL works – a practitioner’s view

• GRASP-like clause learning extensively inspired in circuit reasoners
• UIPs mimic unique sensitization points (USPs), from testing
• Analysis of conflicts organized by decision levels

• In circuits, branching is (mostly) on the inputs, e.g. PODEM, FAN, etc.
• Need to find ways to exploit the circuit’s internal structure
• Several ideas originated in earlier work [MSS93, MSS94]

• Understanding problem structure is essential
• Clauses are learned locally to each decision level
• UIPs further localize the learned clauses
• GRASP-like clause learning aims at learning small clauses, related with the sources of
conflicts

• Most practical problem instances exhibit the structure GRASP-like clause learning is most
effective on

• Most problems are not natively represented in clausal form [Stu13]

• There are also proof complexity arguments [BKS04, PD09, PD11]

39 / 168

Why CDCL works – a practitioner’s view

• GRASP-like clause learning extensively inspired in circuit reasoners
• UIPs mimic unique sensitization points (USPs), from testing
• Analysis of conflicts organized by decision levels

• In circuits, branching is (mostly) on the inputs, e.g. PODEM, FAN, etc.
• Need to find ways to exploit the circuit’s internal structure
• Several ideas originated in earlier work [MSS93, MSS94]

• Understanding problem structure is essential
• Clauses are learned locally to each decision level
• UIPs further localize the learned clauses
• GRASP-like clause learning aims at learning small clauses, related with the sources of
conflicts

• Most practical problem instances exhibit the structure GRASP-like clause learning is most
effective on

• Most problems are not natively represented in clausal form [Stu13]

• There are also proof complexity arguments [BKS04, PD09, PD11]

39 / 168

Why CDCL works – a practitioner’s view

• GRASP-like clause learning extensively inspired in circuit reasoners
• UIPs mimic unique sensitization points (USPs), from testing
• Analysis of conflicts organized by decision levels

• In circuits, branching is (mostly) on the inputs, e.g. PODEM, FAN, etc.
• Need to find ways to exploit the circuit’s internal structure
• Several ideas originated in earlier work [MSS93, MSS94]

• Understanding problem structure is essential
• Clauses are learned locally to each decision level
• UIPs further localize the learned clauses
• GRASP-like clause learning aims at learning small clauses, related with the sources of
conflicts

• Most practical problem instances exhibit the structure GRASP-like clause learning is most
effective on

• Most problems are not natively represented in clausal form [Stu13]

• There are also proof complexity arguments [BKS04, PD09, PD11]

39 / 168

Incremental SAT solving

• SAT solver often called multiple times on related formulas

• It helps to make incremental changes & remember already learned clauses (that still
hold)

• Most often used solution: [ES03]

• Use activation/selector/indicator variables
Given clause Added to SAT solver

ci ci ∨ si
• To activate clause: add assumption si = 1

• To deactivate clause: add assumption si = 0 (optional)
• To remove clause: add unit (si)
• Any learned clause contains explanation given working assumptions (more next)

40 / 168

Incremental SAT solving

• SAT solver often called multiple times on related formulas

• It helps to make incremental changes & remember already learned clauses (that still
hold)

• Most often used solution: [ES03]

• Use activation/selector/indicator variables
Given clause Added to SAT solver

ci ci ∨ si
• To activate clause: add assumption si = 1

• To deactivate clause: add assumption si = 0 (optional)
• To remove clause: add unit (si)
• Any learned clause contains explanation given working assumptions (more next)

40 / 168

Incremental SAT solving

• SAT solver often called multiple times on related formulas

• It helps to make incremental changes & remember already learned clauses (that still
hold)

• Most often used solution: [ES03]

• Use activation/selector/indicator variables
Given clause Added to SAT solver

ci ci ∨ si

• To activate clause: add assumption si = 1

• To deactivate clause: add assumption si = 0 (optional)
• To remove clause: add unit (si)
• Any learned clause contains explanation given working assumptions (more next)

40 / 168

Incremental SAT solving

• SAT solver often called multiple times on related formulas

• It helps to make incremental changes & remember already learned clauses (that still
hold)

• Most often used solution: [ES03]

• Use activation/selector/indicator variables
Given clause Added to SAT solver

ci ci ∨ si
• To activate clause: add assumption si = 1

• To deactivate clause: add assumption si = 0 (optional)
• To remove clause: add unit (si)
• Any learned clause contains explanation given working assumptions (more next)

40 / 168

Incremental SAT solving

• SAT solver often called multiple times on related formulas

• It helps to make incremental changes & remember already learned clauses (that still
hold)

• Most often used solution: [ES03]

• Use activation/selector/indicator variables
Given clause Added to SAT solver

ci ci ∨ si
• To activate clause: add assumption si = 1

• To deactivate clause: add assumption si = 0 (optional)

• To remove clause: add unit (si)
• Any learned clause contains explanation given working assumptions (more next)

40 / 168

Incremental SAT solving

• SAT solver often called multiple times on related formulas

• It helps to make incremental changes & remember already learned clauses (that still
hold)

• Most often used solution: [ES03]

• Use activation/selector/indicator variables
Given clause Added to SAT solver

ci ci ∨ si
• To activate clause: add assumption si = 1

• To deactivate clause: add assumption si = 0 (optional)
• To remove clause: add unit (si)

• Any learned clause contains explanation given working assumptions (more next)

40 / 168

Incremental SAT solving

• SAT solver often called multiple times on related formulas

• It helps to make incremental changes & remember already learned clauses (that still
hold)

• Most often used solution: [ES03]

• Use activation/selector/indicator variables
Given clause Added to SAT solver

ci ci ∨ si
• To activate clause: add assumption si = 1

• To deactivate clause: add assumption si = 0 (optional)
• To remove clause: add unit (si)
• Any learned clause contains explanation given working assumptions (more next)

40 / 168

An example

B = {(a ∨ b), (a ∨ c)}
S = {(a ∨ s1), (b ∨ c ∨ s2), (a ∨ c ∨ s3), (a ∨ b ∨ s4)}

• Background knowledge B: final clauses, i.e. no indicator variables
• Soft clauses S : add indicator variables {s1, s2, s3, s4}

• E.g. given assumptions {s1 = 1, s2 = 0, s3 = 0, s4 = 1}, SAT solver handles formula:

F = {(a ∨ b), (a ∨ c), (a), (a ∨ b)}

which is satisfiable

41 / 168

An example

B = {(a ∨ b), (a ∨ c)}
S = {(a ∨ s1), (b ∨ c ∨ s2), (a ∨ c ∨ s3), (a ∨ b ∨ s4)}

• Background knowledge B: final clauses, i.e. no indicator variables
• Soft clauses S : add indicator variables {s1, s2, s3, s4}
• E.g. given assumptions {s1 = 1, s2 = 0, s3 = 0, s4 = 1}, SAT solver handles formula:

F = {(a ∨ b), (a ∨ c), (a), (a ∨ b)}

which is satisfiable

41 / 168

Quiz – what happens in this case?

B = {(a ∨ b), (a ∨ c)}
S = {(a ∨ s1), (b ∨ c ∨ s2), (a ∨ c ∨ s3), (a ∨ b ∨ s4)}

• Given assumptions {s1 = 1, s2 = 1, s3 = 1, s4 = 1}?

(a ∨ b) (a ∨ s1) (a ∨ c) (b ∨ c ∨ s2)

(b ∨ s1) (c ∨ s1)

(c̄ ∨ s1 ∨ s2)

(s1 ∨ s2)

• Unsatisfiable core: 1st and 2nd clauses of S , given B

42 / 168

Quiz – what happens in this case?

B = {(a ∨ b), (a ∨ c)}
S = {(a ∨ s1), (b ∨ c ∨ s2), (a ∨ c ∨ s3), (a ∨ b ∨ s4)}

• Given assumptions {s1 = 1, s2 = 1, s3 = 1, s4 = 1}?

(a ∨ b) (a ∨ s1) (a ∨ c) (b ∨ c ∨ s2)

(b ∨ s1) (c ∨ s1)

(c̄ ∨ s1 ∨ s2)

(s1 ∨ s2)

• Unsatisfiable core: 1st and 2nd clauses of S , given B

42 / 168

Quiz – what happens in this case?

B = {(a ∨ b), (a ∨ c)}
S = {(a ∨ s1), (b ∨ c ∨ s2), (a ∨ c ∨ s3), (a ∨ b ∨ s4)}

• Given assumptions {s1 = 1, s2 = 1, s3 = 1, s4 = 1}?

(a ∨ b) (a ∨ s1) (a ∨ c) (b ∨ c ∨ s2)

(b ∨ s1) (c ∨ s1)

(c̄ ∨ s1 ∨ s2)

(s1 ∨ s2)

• Unsatisfiable core: 1st and 2nd clauses of S , given B

42 / 168

3 Modeling with SAT

43 / 168

Recap Clausification of Boolean
Formulas

How to translate to CNF?

• Obs: There are no CNF formulas [Stu13]

• Standard textbook solution
• Operator elimination; De Morgan’s laws, remove double negations & apply distributivity
• Worst-case exponential
• Set of variables constant

• Tseitin’s translation & variants (next)
• New variables added
• Satisfiability is preserved
• Linear size transformation

44 / 168

How to translate to CNF?

• Obs: There are no CNF formulas [Stu13]

• Standard textbook solution
• Operator elimination; De Morgan’s laws, remove double negations & apply distributivity
• Worst-case exponential
• Set of variables constant

• Tseitin’s translation & variants (next)
• New variables added
• Satisfiability is preserved
• Linear size transformation

44 / 168

How to translate to CNF?

• Obs: There are no CNF formulas [Stu13]

• Standard textbook solution
• Operator elimination; De Morgan’s laws, remove double negations & apply distributivity
• Worst-case exponential
• Set of variables constant

• Tseitin’s translation & variants (next)
• New variables added
• Satisfiability is preserved
• Linear size transformation

44 / 168

How to translate to CNF?

• Obs: There are no CNF formulas [Stu13]

• Standard textbook solution
• Operator elimination; De Morgan’s laws, remove double negations & apply distributivity
• Worst-case exponential
• Set of variables constant

• Tseitin’s translation & variants (next)
• New variables added
• Satisfiability is preserved
• Linear size transformation

44 / 168

Representing Boolean formulas / circuits I

• Satisfiability problems can be defined on Boolean circuits/formulas
• Can use any logic connective: ∧,∨,¬,→,↔, . . .

• Can represent circuits/formulas as CNF formulas [Tse68, PG86]

• For each (simple) gate, CNF formula encodes the consistent assignments to the gate’s inputs
and output

• Given z = OP(x, y), represent in CNF z↔ OP(x, y)

• CNF formula for the circuit is the conjunction of CNF formula for each gate

Fc = (a ∨ c) ∧ (b ∨ c) ∧ (a ∨ b ∨ c)

Ft = (r ∨ t) ∧ (s ∨ t) ∧ (r ∨ s ∨ t)

NAND

OR

a
b c

r
s t

45 / 168

Representing Boolean formulas / circuits II

NAND
a
b c

ab
c 00 01 11 10

0

1

1

1 1 1

0 0 0

0

a b c Fc(a,b,c)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Fc = (a ∨ c) ∧ (b ∨ c) ∧ (a ∨ b ∨ c)

46 / 168

Representing Boolean formulas / circuits III

• CNF formula for the circuit is the conjunction of the CNF formula for each gate
• Can specify objectives with additional clauses

NAND
AND

OR

a
b c

d

x y
z = 1?

F = (a ∨ x) ∧ (b ∨ x) ∧ (a ∨ b ∨ x) ∧
(x ∨ y) ∧ (c ∨ y) ∧ (x ∨ c ∨ y) ∧
(y ∨ z) ∧ (d ∨ z) ∧ (y ∨ d ∨ z) ∧ (z)

• Note: z = d ∨ (c ∧ (¬(a ∧ b)))
• No distinction between Boolean circuits and (non-clausal) formulas, besides adding new
variables

• Easy to do more structures: ITEs; Adders; etc.

47 / 168

Representing Boolean formulas / circuits III

• CNF formula for the circuit is the conjunction of the CNF formula for each gate
• Can specify objectives with additional clauses

NAND
AND

OR

a
b c

d

x y
z = 1?

F = (a ∨ x) ∧ (b ∨ x) ∧ (a ∨ b ∨ x) ∧
(x ∨ y) ∧ (c ∨ y) ∧ (x ∨ c ∨ y) ∧
(y ∨ z) ∧ (d ∨ z) ∧ (y ∨ d ∨ z) ∧ (z)

• Note: z = d ∨ (c ∧ (¬(a ∧ b)))
• No distinction between Boolean circuits and (non-clausal) formulas, besides adding new
variables

• Easy to do more structures: ITEs; Adders; etc.

47 / 168

Representing Boolean formulas / circuits III

• CNF formula for the circuit is the conjunction of the CNF formula for each gate
• Can specify objectives with additional clauses

NAND
AND

OR

a
b c

d

x y
z = 1?

F = (a ∨ x) ∧ (b ∨ x) ∧ (a ∨ b ∨ x) ∧
(x ∨ y) ∧ (c ∨ y) ∧ (x ∨ c ∨ y) ∧
(y ∨ z) ∧ (d ∨ z) ∧ (y ∨ d ∨ z) ∧ (z)

• Note: z = d ∨ (c ∧ (¬(a ∧ b)))
• No distinction between Boolean circuits and (non-clausal) formulas, besides adding new
variables

• Easy to do more structures: ITEs; Adders; etc.
47 / 168

Quiz – how to encode a 100 input gate?

z

x1

x100

• Impractical to create the truth table...
• For any xi, if xi = 0, then z = 0

, i.e. ¬xi→¬z

• If for all i xi = 1, then z = 1

, i.e. ∧ixi→ z

• Resulting CNF encoding:
100∧
i=1

(xi ∨ z) ∧ (x1 ∨ · · · ∨ x100 ∨ z)

• Similar ideas apply for other (simple) logical operators: AND, NAND, OR, NOR, etc.

48 / 168

Quiz – how to encode a 100 input gate?

z

x1

x100

• Impractical to create the truth table...

• For any xi, if xi = 0, then z = 0

, i.e. ¬xi→¬z

• If for all i xi = 1, then z = 1

, i.e. ∧ixi→ z

• Resulting CNF encoding:
100∧
i=1

(xi ∨ z) ∧ (x1 ∨ · · · ∨ x100 ∨ z)

• Similar ideas apply for other (simple) logical operators: AND, NAND, OR, NOR, etc.

48 / 168

Quiz – how to encode a 100 input gate?

z

x1

x100

• Impractical to create the truth table...
• For any xi, if xi = 0, then z = 0

, i.e. ¬xi→¬z
• If for all i xi = 1, then z = 1

, i.e. ∧ixi→ z

• Resulting CNF encoding:
100∧
i=1

(xi ∨ z) ∧ (x1 ∨ · · · ∨ x100 ∨ z)

• Similar ideas apply for other (simple) logical operators: AND, NAND, OR, NOR, etc.

48 / 168

Quiz – how to encode a 100 input gate?

z

x1

x100

• Impractical to create the truth table...
• For any xi, if xi = 0, then z = 0 , i.e. ¬xi→¬z

• If for all i xi = 1, then z = 1

, i.e. ∧ixi→ z

• Resulting CNF encoding:
100∧
i=1

(xi ∨ z) ∧ (x1 ∨ · · · ∨ x100 ∨ z)

• Similar ideas apply for other (simple) logical operators: AND, NAND, OR, NOR, etc.

48 / 168

Quiz – how to encode a 100 input gate?

z

x1

x100

• Impractical to create the truth table...
• For any xi, if xi = 0, then z = 0 , i.e. ¬xi→¬z
• If for all i xi = 1, then z = 1

, i.e. ∧ixi→ z
• Resulting CNF encoding:

100∧
i=1

(xi ∨ z) ∧ (x1 ∨ · · · ∨ x100 ∨ z)

• Similar ideas apply for other (simple) logical operators: AND, NAND, OR, NOR, etc.

48 / 168

Quiz – how to encode a 100 input gate?

z

x1

x100

• Impractical to create the truth table...
• For any xi, if xi = 0, then z = 0 , i.e. ¬xi→¬z
• If for all i xi = 1, then z = 1 , i.e. ∧ixi→ z

• Resulting CNF encoding:
100∧
i=1

(xi ∨ z) ∧ (x1 ∨ · · · ∨ x100 ∨ z)

• Similar ideas apply for other (simple) logical operators: AND, NAND, OR, NOR, etc.

48 / 168

Quiz – how to encode a 100 input gate?

z

x1

x100

• Impractical to create the truth table...
• For any xi, if xi = 0, then z = 0 , i.e. ¬xi→¬z
• If for all i xi = 1, then z = 1 , i.e. ∧ixi→ z
• Resulting CNF encoding:

100∧
i=1

(xi ∨ z) ∧ (x1 ∨ · · · ∨ x100 ∨ z)

• Similar ideas apply for other (simple) logical operators: AND, NAND, OR, NOR, etc.

48 / 168

Quiz – how to encode a 100 input gate?

z

x1

x100

• Impractical to create the truth table...
• For any xi, if xi = 0, then z = 0 , i.e. ¬xi→¬z
• If for all i xi = 1, then z = 1 , i.e. ∧ixi→ z
• Resulting CNF encoding:

100∧
i=1

(xi ∨ z) ∧ (x1 ∨ · · · ∨ x100 ∨ z)

• Similar ideas apply for other (simple) logical operators: AND, NAND, OR, NOR, etc.

48 / 168

Hard and Soft Constraints

Hard vs. soft constraints

• Hard: Constraints that must be satisfied

• Soft: Constraints that we would like to satisfy, if possible
• Associate a cost (can be unit) with falsifying each soft constraint
• For a hard constraint, the cost can be viewed as∞

• An example:
• How to model linear cost function optimization?

min
∑n

j=1 cj xj
s.t. φ

• Hard constraints: φ
• Soft constraints: (xj), each with cost cj

49 / 168

Hard vs. soft constraints

• Hard: Constraints that must be satisfied
• Soft: Constraints that we would like to satisfy, if possible

• Associate a cost (can be unit) with falsifying each soft constraint
• For a hard constraint, the cost can be viewed as∞

• An example:
• How to model linear cost function optimization?

min
∑n

j=1 cj xj
s.t. φ

• Hard constraints: φ
• Soft constraints: (xj), each with cost cj

49 / 168

Hard vs. soft constraints

• Hard: Constraints that must be satisfied
• Soft: Constraints that we would like to satisfy, if possible

• Associate a cost (can be unit) with falsifying each soft constraint
• For a hard constraint, the cost can be viewed as∞

• An example:
• How to model linear cost function optimization?

min
∑n

j=1 cj xj
s.t. φ

• Hard constraints: φ
• Soft constraints: (xj), each with cost cj

49 / 168

Hard vs. soft constraints

• Hard: Constraints that must be satisfied
• Soft: Constraints that we would like to satisfy, if possible

• Associate a cost (can be unit) with falsifying each soft constraint
• For a hard constraint, the cost can be viewed as∞

• An example:
• How to model linear cost function optimization?

min
∑n

j=1 cj xj
s.t. φ

• Hard constraints: φ

• Soft constraints: (xj), each with cost cj

49 / 168

Hard vs. soft constraints

• Hard: Constraints that must be satisfied
• Soft: Constraints that we would like to satisfy, if possible

• Associate a cost (can be unit) with falsifying each soft constraint
• For a hard constraint, the cost can be viewed as∞

• An example:
• How to model linear cost function optimization?

min
∑n

j=1 cj xj
s.t. φ

• Hard constraints: φ
• Soft constraints: (xj), each with cost cj

49 / 168

Linear Constraints

Linear constraints

• Cardinality constraints:
∑n

j=1 xj ≤ k ?
• How to handle AtMost1 constraints,

∑n
j=1 xj ≤ 1 ?

• General form:
∑n

j=1 xj ▷◁ k, with ▷◁ ∈ {<,≤,=,≥, >}

• Pseudo-Boolean constraints:
∑n

j=1 ajxj ▷◁ k, with ▷◁ ∈ {<,≤,=,≥, >}

• If variables are non-Boolean, e.g. with finite domain
• Need to encode variables (more later)

50 / 168

Linear constraints

• Cardinality constraints:
∑n

j=1 xj ≤ k ?
• How to handle AtMost1 constraints,

∑n
j=1 xj ≤ 1 ?

• General form:
∑n

j=1 xj ▷◁ k, with ▷◁ ∈ {<,≤,=,≥, >}

• Pseudo-Boolean constraints:
∑n

j=1 ajxj ▷◁ k, with ▷◁ ∈ {<,≤,=,≥, >}

• If variables are non-Boolean, e.g. with finite domain
• Need to encode variables (more later)

50 / 168

Linear constraints

• Cardinality constraints:
∑n

j=1 xj ≤ k ?
• How to handle AtMost1 constraints,

∑n
j=1 xj ≤ 1 ?

• General form:
∑n

j=1 xj ▷◁ k, with ▷◁ ∈ {<,≤,=,≥, >}

• Pseudo-Boolean constraints:
∑n

j=1 ajxj ▷◁ k, with ▷◁ ∈ {<,≤,=,≥, >}

• If variables are non-Boolean, e.g. with finite domain
• Need to encode variables (more later)

50 / 168

Equals1, AtLeast1 & AtMost1 constraints

•
∑n

j=1 xj = 1: encode with (
∑n

j=1 xj ≤ 1) ∧ (
∑n

j=1 xj ≥ 1)

•
∑n

j=1 xj ≥ 1: encode with (x1 ∨ x2 ∨ . . . ∨ xn)

•
∑n

j=1 xj ≤ 1 encode with:
• Pairwise encoding

• Clauses: O(n2) ; No auxiliary variables
• Sequential counter [Sin05]

• Clauses: O(n) ; Auxiliary variables: O(n)
• Bitwise encoding [FP01, Pre07]

• Clauses: O(n log n) ; Auxiliary variables: O(log n)

• ...

51 / 168

Pairwise encoding

• How to (propositionally) encode AtMost1 constraint a+ b+ c+ d ≤ 1?

• Encoded as: (a ∨ b) ∧ (a ∨ c) ∧ (a ∨ d) ∧ (b ∨ c) ∧ (b ∨ d) ∧ (c ∨ d)

• With N variables, number of clauses becomes n(n−1)
2

• But no additional variables

52 / 168

Pairwise encoding

• How to (propositionally) encode AtMost1 constraint a+ b+ c+ d ≤ 1?

a→ b ∧ c ∧ d =⇒ (a ∨ b) ∧ (a ∨ c) ∧ (a ∨ d)
b→ c ∧ d ∧ a =⇒ (b ∨ c) ∧ (b ∨ d)∧(b ∨ a)
c→ d ∧ a ∧ b =⇒ (c ∨ d)∧(c ∨ a) ∧ (c ∨ b)
d→ a ∧ b ∧ c =⇒ (d ∨ a) ∧ (d ∨ b) ∧ (d ∨ c)

• Encoded as: (a ∨ b) ∧ (a ∨ c) ∧ (a ∨ d) ∧ (b ∨ c) ∧ (b ∨ d) ∧ (c ∨ d)

• With N variables, number of clauses becomes n(n−1)
2

• But no additional variables

52 / 168

Pairwise encoding

• How to (propositionally) encode AtMost1 constraint a+ b+ c+ d ≤ 1?

a→ b ∧ c ∧ d =⇒ (a ∨ b) ∧ (a ∨ c) ∧ (a ∨ d)
b→ c ∧ d ∧ a =⇒ (b ∨ c) ∧ (b ∨ d)∧(b ∨ a)
c→ d ∧ a ∧ b =⇒ (c ∨ d)∧(c ∨ a) ∧ (c ∨ b)
d→ a ∧ b ∧ c =⇒ (d ∨ a) ∧ (d ∨ b) ∧ (d ∨ c)

• Encoded as: (a ∨ b) ∧ (a ∨ c) ∧ (a ∨ d) ∧ (b ∨ c) ∧ (b ∨ d) ∧ (c ∨ d)

• With N variables, number of clauses becomes n(n−1)
2

• But no additional variables

52 / 168

Sequential counter encoding

• Encode
∑n

j=1 xj ≤ 1 with sequential counter:

(x1 ∨ s1) ∧ (xn ∨ sn−1)∧∧
1<i<n ((xi ∨ si) ∧ (si−1 ∨ si) ∧ (xi ∨ si−1))

• If some xj = 1, then all si variables must be assigned
• si = 1 for i ≥ j, and so xi = 0 for i > j
• si = 0 for i < j, and so xi = 0 for i < j
• Thus, all other xi variables must take value 0

• If all xj = 0, can find consistent assignment to si variables

• O(n) clauses ; O(n) auxiliary variables

53 / 168

Bitwise encoding

• Encode
∑n

j=1 xj ≤ 1 with bitwise encoding:

• Auxiliary variables v0, . . . , vr−1 ; r = ⌈logn⌉ (with n > 1)
• If xj = 1, then v0 . . . vr−1 = b0 . . .br−1, the binary encoding of j− 1

xj → (v0 = b0) ∧ . . . ∧ (vr−1 = br−1)⇔ (xj ∨ (v0 = b0) ∧ . . . ∧ (vr−1 = br−1))

• Clauses (xj ∨ (vi ↔ bi)) = (xj ∨ li), i = 0, . . . , r− 1, where
• li ≡ vi, if bi = 1

• li ≡ vi, otherwise
• If xj = 1, assignment to vi variables must encode j− 1

• For consistency, all other x variables must not take value 1

• If all xj = 0, any assignment to vi variables is consistent
• O(n logn) clauses ; O(logn) auxiliary variables

• An example: x1 + x2 + x3 ≤ 1

54 / 168

Bitwise encoding

• Encode
∑n

j=1 xj ≤ 1 with bitwise encoding:
• Auxiliary variables v0, . . . , vr−1 ; r = ⌈logn⌉ (with n > 1)
• If xj = 1, then v0 . . . vr−1 = b0 . . .br−1, the binary encoding of j− 1

xj → (v0 = b0) ∧ . . . ∧ (vr−1 = br−1)⇔ (xj ∨ (v0 = b0) ∧ . . . ∧ (vr−1 = br−1))

• Clauses (xj ∨ (vi ↔ bi)) = (xj ∨ li), i = 0, . . . , r− 1, where
• li ≡ vi, if bi = 1

• li ≡ vi, otherwise
• If xj = 1, assignment to vi variables must encode j− 1

• For consistency, all other x variables must not take value 1

• If all xj = 0, any assignment to vi variables is consistent
• O(n logn) clauses ; O(logn) auxiliary variables

• An example: x1 + x2 + x3 ≤ 1

j− 1 v1v0
x1 0 00

x2 1 01

x3 2 10

54 / 168

Bitwise encoding

• Encode
∑n

j=1 xj ≤ 1 with bitwise encoding:
• Auxiliary variables v0, . . . , vr−1 ; r = ⌈logn⌉ (with n > 1)
• If xj = 1, then v0 . . . vr−1 = b0 . . .br−1, the binary encoding of j− 1

xj → (v0 = b0) ∧ . . . ∧ (vr−1 = br−1)⇔ (xj ∨ (v0 = b0) ∧ . . . ∧ (vr−1 = br−1))

• Clauses (xj ∨ (vi ↔ bi)) = (xj ∨ li), i = 0, . . . , r− 1, where
• li ≡ vi, if bi = 1

• li ≡ vi, otherwise

• If xj = 1, assignment to vi variables must encode j− 1

• For consistency, all other x variables must not take value 1

• If all xj = 0, any assignment to vi variables is consistent
• O(n logn) clauses ; O(logn) auxiliary variables

• An example: x1 + x2 + x3 ≤ 1

j− 1 v1v0
x1 0 00

x2 1 01

x3 2 10

(x1 ∨ v1) ∧ (x1 ∨ v0)
(x2 ∨ v1) ∧ (x2 ∨ v0)
(x3 ∨ v1) ∧ (x3 ∨ v0)

54 / 168

Bitwise encoding

• Encode
∑n

j=1 xj ≤ 1 with bitwise encoding:
• Auxiliary variables v0, . . . , vr−1 ; r = ⌈logn⌉ (with n > 1)
• If xj = 1, then v0 . . . vr−1 = b0 . . .br−1, the binary encoding of j− 1

xj → (v0 = b0) ∧ . . . ∧ (vr−1 = br−1)⇔ (xj ∨ (v0 = b0) ∧ . . . ∧ (vr−1 = br−1))

• Clauses (xj ∨ (vi ↔ bi)) = (xj ∨ li), i = 0, . . . , r− 1, where
• li ≡ vi, if bi = 1

• li ≡ vi, otherwise
• If xj = 1, assignment to vi variables must encode j− 1

• For consistency, all other x variables must not take value 1

• If all xj = 0, any assignment to vi variables is consistent
• O(n logn) clauses ; O(logn) auxiliary variables

• An example: x1 + x2 + x3 ≤ 1

j− 1 v1v0
x1 0 00

x2 1 01

x3 2 10

(x1 ∨ v1) ∧ (x1 ∨ v0)
(x2 ∨ v1) ∧ (x2 ∨ v0)
(x3 ∨ v1) ∧ (x3 ∨ v0)

54 / 168

General cardinality constraints

• General form:
∑n

j=1 xj ≤ k (or
∑n

j=1 xj ≥ k)
• Operational encoding [War98]

• Clauses/Variables: O(n)
• Does not ensure arc-consistency

• Generalized pairwise
• Clauses: O(2n) ; no auxiliary variables

• Sequential counters [Sin05]

• Clauses/Variables: O(n k)
• BDDs [ES06]

• Clauses/Variables: O(n k)
• Sorting networks [Bat68, ES06]

• Clauses/Variables: O(n log2 n)
• Cardinality Networks: [ANOR09, ANOR11]

• Clauses/Variables: O(n log2 k)

• Pairwise Cardinality Networks: [CZ10]

• ...

55 / 168

Generalized pairwise encoding

• General form:
∑n

j=1 xj ≤ k

• Any combination of k+ 1 true variables is disallowed

• Example: a+ b+ c+ d ≤ 2

• Encoded as: (a ∨ b ∨ c) ∧ (a ∨ b ∨ d) ∧ (a ∨ c ∨ d) ∧ (b ∨ c ∨ d)

• In general, number of clauses is Cnk+1

• Recall: for AtMost1 (i.e. for k = 1), number of clauses is: n(n−1)
2

56 / 168

Generalized pairwise encoding

• General form:
∑n

j=1 xj ≤ k

• Any combination of k+ 1 true variables is disallowed

• Example: a+ b+ c+ d ≤ 2

• Encoded as: (a ∨ b ∨ c) ∧ (a ∨ b ∨ d) ∧ (a ∨ c ∨ d) ∧ (b ∨ c ∨ d)

• In general, number of clauses is Cnk+1

• Recall: for AtMost1 (i.e. for k = 1), number of clauses is: n(n−1)
2

56 / 168

Generalized pairwise encoding

• General form:
∑n

j=1 xj ≤ k

• Any combination of k+ 1 true variables is disallowed

• Example: a+ b+ c+ d ≤ 2

a ∧ b→ c =⇒ (a ∨ b ∨ c)
a ∧ b→ d =⇒ (a ∨ b ∨ d)
a ∧ c→ d =⇒ (a ∨ c ∨ d)
b ∧ c→ d =⇒ (b ∨ c ∨ d)

• Encoded as: (a ∨ b ∨ c) ∧ (a ∨ b ∨ d) ∧ (a ∨ c ∨ d) ∧ (b ∨ c ∨ d)

• In general, number of clauses is Cnk+1

• Recall: for AtMost1 (i.e. for k = 1), number of clauses is: n(n−1)
2

56 / 168

Generalized pairwise encoding

• General form:
∑n

j=1 xj ≤ k

• Any combination of k+ 1 true variables is disallowed

• Example: a+ b+ c+ d ≤ 2

a ∧ b→ c =⇒ (a ∨ b ∨ c)
a ∧ b→ d =⇒ (a ∨ b ∨ d)
a ∧ c→ d =⇒ (a ∨ c ∨ d)
b ∧ c→ d =⇒ (b ∨ c ∨ d)

• Encoded as: (a ∨ b ∨ c) ∧ (a ∨ b ∨ d) ∧ (a ∨ c ∨ d) ∧ (b ∨ c ∨ d)

• In general, number of clauses is Cnk+1

• Recall: for AtMost1 (i.e. for k = 1), number of clauses is: n(n−1)
2

56 / 168

Another example

• Example: a+ b+ c+ d+ e ≤ 2

• Encoding will contain C53 = 10 clauses:

a ∧ b→ c =⇒ (a ∨ b ∨ c)
a ∧ b→ d =⇒ (a ∨ b ∨ d)
a ∧ b→ e =⇒ (a ∨ b ∨ e)
a ∧ c→ d =⇒ (a ∨ c ∨ d)
a ∧ c→ e =⇒ (a ∨ c ∨ e)
a ∧ d→ e =⇒ (a ∨ d ∨ e)
b ∧ c→ d =⇒ (b ∨ c ∨ d)
b ∧ c→ e =⇒ (b ∨ c ∨ e)
b ∧ d→ e =⇒ (b ∨ d ∨ e)
c ∧ d→ e =⇒ (c ∨ d ∨ e)

57 / 168

Sequential counter – revisited I

• Encode
∑n

j=1 xj ≤ k with sequential counter:
x1 x2 xn

v1 v2 vn

s1,1

s1,2

s1,k s2,k

s2,2

s2,1

sn�1,k

sn�1,2

sn�1,1

• Equations for each block 1 < i < n , 1 < j < k:

si =
∑i

j=1 xj
si represented in unary

si,1 = si−1,1 ∨ xi
si,j = si−1,j ∨ si−1,j−1 ∧ xi
vi = (si−1,k ∧ xi) = 0

58 / 168

Sequential counter – revisited II

• CNF formula for
∑n

j=1 xj ≤ k:

• Assume: k > 0 ∧ n > 1

• Indeces: 1 < i < n , 1 < j ≤ k
(¬x1 ∨ x1,1)
(¬s1,j)
(¬xi ∨ si,1)
(¬si−1,1 ∨ si,1)
(¬xi ∨ ¬si−1,j−1 ∨ si,j)
(¬si−1,j ∨ si,j)
(¬xi ∨ ¬si−1,k)

(¬xn ∨ ¬sn−1,k)

• O(n k) clauses & variables

59 / 168

Pseudo-Boolean constraints

• General form:
∑n

j=1 aj xj ≤ b
• Operational encoding [War98]

• Clauses/Variables: O(n)
• Does not guarantee arc-consistency

• BDDs [ES06]

• Worst-case exponential number of clauses

• Polynomial watchdog encoding [BBR09]

• Let ν(n) = log(n) log(amax)
• Clauses: O(n3ν(n)) ; Aux variables: O(n2ν(n))

• Improved polynomial watchdog encoding [ANO+12]

• Clauses & aux variables: O(n3 log(amax))

• ...

60 / 168

Pseudo-Boolean constraints

• General form:
∑n

j=1 aj xj ≤ b
• Operational encoding [War98]

• Clauses/Variables: O(n)
• Does not guarantee arc-consistency

• BDDs [ES06]

• Worst-case exponential number of clauses
• Polynomial watchdog encoding [BBR09]

• Let ν(n) = log(n) log(amax)
• Clauses: O(n3ν(n)) ; Aux variables: O(n2ν(n))

• Improved polynomial watchdog encoding [ANO+12]

• Clauses & aux variables: O(n3 log(amax))

• ...

60 / 168

Pseudo-Boolean constraints

• General form:
∑n

j=1 aj xj ≤ b
• Operational encoding [War98]

• Clauses/Variables: O(n)
• Does not guarantee arc-consistency

• BDDs [ES06]

• Worst-case exponential number of clauses
• Polynomial watchdog encoding [BBR09]

• Let ν(n) = log(n) log(amax)
• Clauses: O(n3ν(n)) ; Aux variables: O(n2ν(n))

• Improved polynomial watchdog encoding [ANO+12]

• Clauses & aux variables: O(n3 log(amax))

• ...

60 / 168

Encoding PB constraints with BDDs I

• Encode 3x1 + 3x2 + x3 ≤ 3

• Construct BDD
• E.g. analyze variables by decreasing coefficients

• Extract ITE-based circuit from BDD

x1

x2

0 x3

0 1

x2

x3

0 1

1

1 0

1 0

1 0

1 0

1 0

61 / 168

Encoding PB constraints with BDDs I

• Encode 3x1 + 3x2 + x3 ≤ 3

• Construct BDD
• E.g. analyze variables by decreasing coefficients

• Extract ITE-based circuit from BDD

x1

x2

0 x3

0 1

x2

x3

0 1

1

1 0

1 0

1 0

1 0

1 0

ITE
0 1

s

ba

z

ITE
0 1

s

ba

z

ITE
1 0

s

ba

z

ITE
0 1

s

ba

z

ITE
0 1

s

ba

z

01 1 0

0 1

1

x1

x2

x3

x2

x3

61 / 168

Encoding PB constraints with BDDs II

• Encode 3x1 + 3x2 + x3 ≤ 3

• Extract ITE-based circuit from BDD
• Simplify and create final circuit:

ITE
1 0

s

ba

z

NO
R

1

NA
ND

x1

x2 x3 x2x3

62 / 168

More on PB constraints

• How about
∑n

j=1 aj xj = k ?

• Can use (
∑n

j=1 aj xj ≥ k) ∧ (
∑n

j=1 aj xj ≤ k), but...

•
∑n

j=1 aj xj = k is a knapsack constraint
• Cannot find all consequences in polynomial time [FS02, Tri03, Sel03]

(Otherwise P = NP)

• Example:

4x1 + 3x2 + 2x3 = 5

• Replace by (4x1 + 3x2 + 2x3 ≥ 5) ∧ (4x1 + 3x2 + 2x3 ≤ 5)

• Let x2 = 0

• Either constraint can still be satisfied, but not both

63 / 168

More on PB constraints

• How about
∑n

j=1 aj xj = k ?
• Can use (

∑n
j=1 aj xj ≥ k) ∧ (

∑n
j=1 aj xj ≤ k), but...

•
∑n

j=1 aj xj = k is a knapsack constraint

• Cannot find all consequences in polynomial time [FS02, Tri03, Sel03]

(Otherwise P = NP)

• Example:

4x1 + 3x2 + 2x3 = 5

• Replace by (4x1 + 3x2 + 2x3 ≥ 5) ∧ (4x1 + 3x2 + 2x3 ≤ 5)

• Let x2 = 0

• Either constraint can still be satisfied, but not both

63 / 168

More on PB constraints

• How about
∑n

j=1 aj xj = k ?
• Can use (

∑n
j=1 aj xj ≥ k) ∧ (

∑n
j=1 aj xj ≤ k), but...

•
∑n

j=1 aj xj = k is a knapsack constraint
• Cannot find all consequences in polynomial time [FS02, Tri03, Sel03]

(Otherwise P = NP)

• Example:

4x1 + 3x2 + 2x3 = 5

• Replace by (4x1 + 3x2 + 2x3 ≥ 5) ∧ (4x1 + 3x2 + 2x3 ≤ 5)

• Let x2 = 0

• Either constraint can still be satisfied, but not both

63 / 168

More on PB constraints

• How about
∑n

j=1 aj xj = k ?
• Can use (

∑n
j=1 aj xj ≥ k) ∧ (

∑n
j=1 aj xj ≤ k), but...

•
∑n

j=1 aj xj = k is a knapsack constraint
• Cannot find all consequences in polynomial time [FS02, Tri03, Sel03]

(Otherwise P = NP)

• Example:

4x1 + 3x2 + 2x3 = 5

• Replace by (4x1 + 3x2 + 2x3 ≥ 5) ∧ (4x1 + 3x2 + 2x3 ≤ 5)

• Let x2 = 0

• Either constraint can still be satisfied, but not both

63 / 168

More on PB constraints

• How about
∑n

j=1 aj xj = k ?
• Can use (

∑n
j=1 aj xj ≥ k) ∧ (

∑n
j=1 aj xj ≤ k), but...

•
∑n

j=1 aj xj = k is a knapsack constraint
• Cannot find all consequences in polynomial time [FS02, Tri03, Sel03]

(Otherwise P = NP)

• Example:

4x1 + 3x2 + 2x3 = 5

• Replace by (4x1 + 3x2 + 2x3 ≥ 5) ∧ (4x1 + 3x2 + 2x3 ≤ 5)

• Let x2 = 0

• Either constraint can still be satisfied, but not both

63 / 168

More on PB constraints

• How about
∑n

j=1 aj xj = k ?
• Can use (

∑n
j=1 aj xj ≥ k) ∧ (

∑n
j=1 aj xj ≤ k), but...

•
∑n

j=1 aj xj = k is a knapsack constraint
• Cannot find all consequences in polynomial time [FS02, Tri03, Sel03]

(Otherwise P = NP)

• Example:

4x1 + 3x2 + 2x3 = 5

• Replace by (4x1 + 3x2 + 2x3 ≥ 5) ∧ (4x1 + 3x2 + 2x3 ≤ 5)

• Let x2 = 0

• Either constraint can still be satisfied, but not both

63 / 168

More on PB constraints

• How about
∑n

j=1 aj xj = k ?
• Can use (

∑n
j=1 aj xj ≥ k) ∧ (

∑n
j=1 aj xj ≤ k), but...

•
∑n

j=1 aj xj = k is a knapsack constraint
• Cannot find all consequences in polynomial time [FS02, Tri03, Sel03]

(Otherwise P = NP)

• Example:

4x1 + 3x2 + 2x3 = 5

• Replace by (4x1 + 3x2 + 2x3 ≥ 5) ∧ (4x1 + 3x2 + 2x3 ≤ 5)

• Let x2 = 0

• Either constraint can still be satisfied, but not both

63 / 168

Encoding CSPs

CSP constraints

• Many possible encodings:

• Direct encoding [dK89, GJ96, Wal00]

• Log encoding [Wal00]

• Support encoding [Kas90, Gen02]

• Log-Support encoding [Gav07]

• Order encoding for finite linear CSPs [TTKB09]

64 / 168

Direct encoding for CSP w/ binary constraints

• Variable xi with domain Di, with mi = |Di|

• Constraints are relations over domains of variables
• For a constraint over x1, . . . , xk, define relation R ⊆ D1 × · · · × Dk
• Need to encode elements not in the relation
• For a binary relation, use set of binary clauses, one for each element not in R

• Represent values of xi with Boolean variables xi,1, . . . , xi,mi

• Require
∑mi

k=1 xi,k = 1

• Suffices to require
∑mi

k=1 xi,k ≥ 1 [Wal00]

• If the pair of assignments xi = vi ∧ xj = vj is not allowed, add binary clause (xi,vi ∨ xj,vj)

65 / 168

Additional topics

• Encoding problems to SAT is ubiquitous:

• Many more encodings of finite domain CSP into SAT

• Encodings of Answer Set Programming (ASP) into SAT

• Eager SMT solving

• Theorem provers iteratively encode problems into SAT

• Model finders interatively encode problems into SAT

• ...

66 / 168

Modeling Examples

Minimum vertex cover

• The problem:
• Graph G = (V, E)
• Vertex cover U ⊆ V

• For each (vi, vj) ∈ E, either vi ∈ U or vj ∈ U

• Minimum vertex cover: vertex cover U of minimum size

v1

v2

v3

v4

Vertex cover: {v2, v3, v4}
Min vertex cover: {v1}

67 / 168

Minimum vertex cover

• The problem:
• Graph G = (V, E)
• Vertex cover U ⊆ V

• For each (vi, vj) ∈ E, either vi ∈ U or vj ∈ U

• Minimum vertex cover: vertex cover U of minimum size

v1

v2

v3

v4

Vertex cover: {v2, v3, v4}

Min vertex cover: {v1}

67 / 168

Minimum vertex cover

• The problem:
• Graph G = (V, E)
• Vertex cover U ⊆ V

• For each (vi, vj) ∈ E, either vi ∈ U or vj ∈ U

• Minimum vertex cover: vertex cover U of minimum size

v1

v2

v3

v4

Vertex cover: {v2, v3, v4}
Min vertex cover: {v1}

67 / 168

Minimum vertex cover

• Modeling with Pseudo-Boolean Optimization (PBO):
• Variables: xi for each vi ∈ V, with xi = 1 iff vi ∈ U
• Clauses: (xi ∨ xj) for each (vi, vj) ∈ E
• Objective function: minimize number of true xi variables

• I.e. minimize vertices included in U

• Alternative propositional encoding:
φS = {(¬x1), (¬x2), (¬x3), (¬x4)}
φH = {(x1 ∨ x2), (x1 ∨ x3), (x1 ∨ x4)}

68 / 168

Minimum vertex cover

• Modeling with Pseudo-Boolean Optimization (PBO):
• Variables: xi for each vi ∈ V, with xi = 1 iff vi ∈ U
• Clauses: (xi ∨ xj) for each (vi, vj) ∈ E
• Objective function: minimize number of true xi variables

• I.e. minimize vertices included in U

v1

v2

v3

v4

minimize x1 + x2 + x3 + x4
subject to (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x4)

• Alternative propositional encoding:
φS = {(¬x1), (¬x2), (¬x3), (¬x4)}
φH = {(x1 ∨ x2), (x1 ∨ x3), (x1 ∨ x4)}

68 / 168

Minimum vertex cover

• Modeling with Pseudo-Boolean Optimization (PBO):
• Variables: xi for each vi ∈ V, with xi = 1 iff vi ∈ U
• Clauses: (xi ∨ xj) for each (vi, vj) ∈ E
• Objective function: minimize number of true xi variables

• I.e. minimize vertices included in U

v1

v2

v3

v4

minimize x1 + x2 + x3 + x4
subject to (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x4)

• Alternative propositional encoding:
φS = {(¬x1), (¬x2), (¬x3), (¬x4)}
φH = {(x1 ∨ x2), (x1 ∨ x3), (x1 ∨ x4)}

68 / 168

Graph coloring

• Given undirected graph G = (V, E) and k colors:
• Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different
colors?

• How to model color assignments to vertices?

• xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}

• How to model adjacent vertices with different colors?

• (¬xi,j ∨ ¬xl,j) if (vi, vl) ∈ E, with j ∈ {1, . . . , k}

• How to model vertices get some color?

•
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

• Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

69 / 168

Graph coloring

• Given undirected graph G = (V, E) and k colors:
• Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different
colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?

• xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}

• How to model adjacent vertices with different colors?

• (¬xi,j ∨ ¬xl,j) if (vi, vl) ∈ E, with j ∈ {1, . . . , k}

• How to model vertices get some color?

•
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

• Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

69 / 168

Graph coloring

• Given undirected graph G = (V, E) and k colors:
• Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different
colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?

• xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}
• How to model adjacent vertices with different colors?

• (¬xi,j ∨ ¬xl,j) if (vi, vl) ∈ E, with j ∈ {1, . . . , k}

• How to model vertices get some color?

•
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

• Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

69 / 168

Graph coloring

• Given undirected graph G = (V, E) and k colors:
• Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different
colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?
• xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}

• How to model adjacent vertices with different colors?

• (¬xi,j ∨ ¬xl,j) if (vi, vl) ∈ E, with j ∈ {1, . . . , k}

• How to model vertices get some color?

•
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

• Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

69 / 168

Graph coloring

• Given undirected graph G = (V, E) and k colors:
• Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different
colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?
• xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}

• How to model adjacent vertices with different colors?

• (¬xi,j ∨ ¬xl,j) if (vi, vl) ∈ E, with j ∈ {1, . . . , k}
• How to model vertices get some color?

•
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

• Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

69 / 168

Graph coloring

• Given undirected graph G = (V, E) and k colors:
• Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different
colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?
• xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}

• How to model adjacent vertices with different colors?
• (¬xi,j ∨ ¬xl,j) if (vi, vl) ∈ E, with j ∈ {1, . . . , k}

• How to model vertices get some color?

•
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

• Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

69 / 168

Graph coloring

• Given undirected graph G = (V, E) and k colors:
• Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different
colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?
• xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}

• How to model adjacent vertices with different colors?
• (¬xi,j ∨ ¬xl,j) if (vi, vl) ∈ E, with j ∈ {1, . . . , k}

• How to model vertices get some color?

•
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

• Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

69 / 168

Graph coloring

• Given undirected graph G = (V, E) and k colors:
• Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different
colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?
• xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}

• How to model adjacent vertices with different colors?
• (¬xi,j ∨ ¬xl,j) if (vi, vl) ∈ E, with j ∈ {1, . . . , k}

• How to model vertices get some color?
•

∑
j∈{1,...,k} xi,j = 1, for vi ∈ V

• Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

69 / 168

Graph coloring

• Given undirected graph G = (V, E) and k colors:
• Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different
colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?
• xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}

• How to model adjacent vertices with different colors?
• (¬xi,j ∨ ¬xl,j) if (vi, vl) ∈ E, with j ∈ {1, . . . , k}

• How to model vertices get some color?
•

∑
j∈{1,...,k} xi,j = 1, for vi ∈ V

• Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

69 / 168

The N-Queens problem I

• The N-Queens Problem:
Place N queens on a N× N board, such that no two queens attack each other

• Example for a 5× 5 board:

Q
Q

Q
Q

Q

70 / 168

The N-Queens problem II

• xij: 1 if queen placed in position (i, j); 0 otherwise

• Each row must have exactly one queen:

1 ≤ i ≤ N,
N∑
j=1

xij = 1

• Each column must have exactly one queen:

1 ≤ j ≤ N,
N∑
i=1

xij = 1

• Also, need to define constraints on diagonals...

71 / 168

The N-Queens problem III

• Each diagonal can have at most one queen:

↘ ↙ ↙ ↙
↘ ↖
↘ ↖
↘ ↖
↗ ↗ ↗ ↗

i = 1, 2 ≤ j < N,
j−1∑
k=0

xi+k j−k ≤ 1

i = N, 1 ≤ j < N,
N−j∑
k=0

xi−k j+k ≤ 1

j = 1, 1 ≤ i < N,
N−i∑
k=0

xi+k j+k ≤ 1

j = N, 2 ≤ i < N,
i−1∑
k=0

xi−k j−k ≤ 1

72 / 168

Design debugging

[SMV+07]

Correct circuit

AND

AND

r
s

y

z

Input stimuli: ⟨r, s⟩ = ⟨0, 1⟩
Valid output: ⟨y, z⟩ = ⟨0, 0⟩

Faulty circuit

AND
r
s

y

zOR

Input stimuli: ⟨r, s⟩ = ⟨0, 1⟩
Invalid output: ⟨y, z⟩ = ⟨0, 0⟩

• The model:
• Hard clauses: Input and output values
• Soft clauses: CNF representation of circuit

• The problem:
• Maximize number of satisfied clauses (i.e. circuit gates)

73 / 168

Software package upgrades

[MBC+06, TSJL07, AL08, ALS09, ABL+10b]

• Universe of software packages: {p1, . . . ,pn}
• Associate xi with pi: xi = 1 iff pi is installed
• Constraints associated with package pi: (pi,Di, Ci)

• Di: dependencies (required packages) for installing pi
• Ci: conflicts (disallowed packages) for installing pi

• Example problem: Maximum Installability
• Maximum number of packages that can be installed
• Package constraints represent hard clauses
• Soft clauses: (xi)

Package constraints:

(p1, {p2 ∨ p3}, {p4})
(p2, {p3}, {p4})
(p3, {p2}, ∅)
(p4, {p2, p3}, ∅)

74 / 168

Software package upgrades

[MBC+06, TSJL07, AL08, ALS09, ABL+10b]

• Universe of software packages: {p1, . . . ,pn}
• Associate xi with pi: xi = 1 iff pi is installed
• Constraints associated with package pi: (pi,Di, Ci)

• Di: dependencies (required packages) for installing pi
• Ci: conflicts (disallowed packages) for installing pi

• Example problem: Maximum Installability
• Maximum number of packages that can be installed
• Package constraints represent hard clauses
• Soft clauses: (xi)

Package constraints:

(p1, {p2 ∨ p3}, {p4})
(p2, {p3}, {p4})
(p3, {p2}, ∅)
(p4, {p2, p3}, ∅)

MaxSAT formulation:

φH = {(¬x1 ∨ x2 ∨ x3), (¬x1 ∨ ¬x4),
(¬x2 ∨ x3), (¬x2 ∨ ¬x4), (¬x3 ∨ x2),
(¬x4 ∨ x2), (¬x4 ∨ x3)}

φS = {(x1), (x2), (x3), (x4)}
74 / 168

The knapsack problem

• Given list of pairs (vi,wi), i = 1, . . . ,n
• Each pair (vi,wi), represents the value and weight of object i

• Pick subset of objects with the maximum sum of values, such that the sum of weights
does not exceed W

• Propositional encoding for the knapsack problem?

• Solution: consider 0-1 ILP (or PBO) formulation:
• Associate propositional variable xi with each objet i
• xi = 1 iff object i is picked

max
∑n

i=1 vi · xi
s.t

∑n
i=1 wi · xi ≤ W

75 / 168

The knapsack problem

• Given list of pairs (vi,wi), i = 1, . . . ,n
• Each pair (vi,wi), represents the value and weight of object i

• Pick subset of objects with the maximum sum of values, such that the sum of weights
does not exceed W

• Propositional encoding for the knapsack problem?

• Solution: consider 0-1 ILP (or PBO) formulation:
• Associate propositional variable xi with each objet i
• xi = 1 iff object i is picked

max
∑n

i=1 vi · xi
s.t

∑n
i=1 wi · xi ≤ W

75 / 168

The knapsack problem

• Given list of pairs (vi,wi), i = 1, . . . ,n
• Each pair (vi,wi), represents the value and weight of object i

• Pick subset of objects with the maximum sum of values, such that the sum of weights
does not exceed W

• Propositional encoding for the knapsack problem?

• Solution: consider 0-1 ILP (or PBO) formulation:
• Associate propositional variable xi with each objet i
• xi = 1 iff object i is picked

max
∑n

i=1 vi · xi
s.t

∑n
i=1 wi · xi ≤ W

75 / 168

The knapsack problem

• Given list of pairs (vi,wi), i = 1, . . . ,n
• Each pair (vi,wi), represents the value and weight of object i

• Pick subset of objects with the maximum sum of values, such that the sum of weights
does not exceed W

• Propositional encoding for the knapsack problem?

• Solution: consider 0-1 ILP (or PBO) formulation:
• Associate propositional variable xi with each objet i
• xi = 1 iff object i is picked

max
∑n

i=1 vi · xi
s.t

∑n
i=1 wi · xi ≤ W

75 / 168

4 Problem Solving with SAT Oracles

76 / 168

So what are SAT oracles?

No summaries

Yes witnesses

NP oracles

SAT Oracles

models

unsat cores

77 / 168

So what are SAT oracles?

No summaries

Yes witnesses

NP oracles

SAT Oracles

models

unsat cores

77 / 168

Computing a model

• Q: How to solve the FSAT problem?
FSAT: Compute a model of a satisfiable CNF formula F , using an NP oracle

• A possible algorithm:
1. Analyze each variable xi ∈ {x1, . . . , xn} = var(F), in order
2. i← 1 and Fi ≜ F
3. Call NP oracle on Fi ∧ (xi)
4. If answer is yes, then Fi+1 ← Fi ∪ (xi)
5. If answer is no, then Fi+1 ← Fi ∪ (¬xi)
6. i← i+ 1

7. If i ≤ n, then repeat from 3.

• Algorithm needs |var(F)| calls to an NP oracle

• Note: Cannot solve FSAT with logarithmic number of NP oracle calls, unless P = NP [GF93]

• FSAT is an example of a function problem

• Note: FSAT can be solved with one SAT oracle call

78 / 168

Computing a model

• Q: How to solve the FSAT problem?
FSAT: Compute a model of a satisfiable CNF formula F , using an NP oracle

• A possible algorithm:
1. Analyze each variable xi ∈ {x1, . . . , xn} = var(F), in order
2. i← 1 and Fi ≜ F
3. Call NP oracle on Fi ∧ (xi)
4. If answer is yes, then Fi+1 ← Fi ∪ (xi)
5. If answer is no, then Fi+1 ← Fi ∪ (¬xi)
6. i← i+ 1

7. If i ≤ n, then repeat from 3.

• Algorithm needs |var(F)| calls to an NP oracle

• Note: Cannot solve FSAT with logarithmic number of NP oracle calls, unless P = NP [GF93]

• FSAT is an example of a function problem

• Note: FSAT can be solved with one SAT oracle call

78 / 168

Computing a model

• Q: How to solve the FSAT problem?
FSAT: Compute a model of a satisfiable CNF formula F , using an NP oracle

• A possible algorithm:
1. Analyze each variable xi ∈ {x1, . . . , xn} = var(F), in order
2. i← 1 and Fi ≜ F
3. Call NP oracle on Fi ∧ (xi)
4. If answer is yes, then Fi+1 ← Fi ∪ (xi)
5. If answer is no, then Fi+1 ← Fi ∪ (¬xi)
6. i← i+ 1

7. If i ≤ n, then repeat from 3.

• Algorithm needs |var(F)| calls to an NP oracle

• Note: Cannot solve FSAT with logarithmic number of NP oracle calls, unless P = NP [GF93]

• FSAT is an example of a function problem

• Note: FSAT can be solved with one SAT oracle call

78 / 168

Computing a model

• Q: How to solve the FSAT problem?
FSAT: Compute a model of a satisfiable CNF formula F , using an NP oracle

• A possible algorithm:
1. Analyze each variable xi ∈ {x1, . . . , xn} = var(F), in order
2. i← 1 and Fi ≜ F
3. Call NP oracle on Fi ∧ (xi)
4. If answer is yes, then Fi+1 ← Fi ∪ (xi)
5. If answer is no, then Fi+1 ← Fi ∪ (¬xi)
6. i← i+ 1

7. If i ≤ n, then repeat from 3.

• Algorithm needs |var(F)| calls to an NP oracle

• Note: Cannot solve FSAT with logarithmic number of NP oracle calls, unless P = NP [GF93]

• FSAT is an example of a function problem

• Note: FSAT can be solved with one SAT oracle call

78 / 168

Computing a model

• Q: How to solve the FSAT problem?
FSAT: Compute a model of a satisfiable CNF formula F , using an NP oracle

• A possible algorithm:
1. Analyze each variable xi ∈ {x1, . . . , xn} = var(F), in order
2. i← 1 and Fi ≜ F
3. Call NP oracle on Fi ∧ (xi)
4. If answer is yes, then Fi+1 ← Fi ∪ (xi)
5. If answer is no, then Fi+1 ← Fi ∪ (¬xi)
6. i← i+ 1

7. If i ≤ n, then repeat from 3.

• Algorithm needs |var(F)| calls to an NP oracle

• Note: Cannot solve FSAT with logarithmic number of NP oracle calls, unless P = NP [GF93]

• FSAT is an example of a function problem
• Note: FSAT can be solved with one SAT oracle call

78 / 168

Beyond decision problems

Answer Problem Type

Yes/No Decision Problems
Some solution Function Problems
All solutions Enumeration Problems
solutions Counting Problems

79 / 168

Beyond decision problems

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems
All solutions Enumeration Problems
solutions Counting Problems

79 / 168

Beyond decision problems

Answer Problem Type
Yes/No Decision Problems

Some solution

Function Problems
All solutions Enumeration Problems
solutions Counting Problems

79 / 168

Beyond decision problems

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems

All solutions Enumeration Problems
solutions Counting Problems

79 / 168

Beyond decision problems

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems
All solutions

Enumeration Problems
solutions Counting Problems

79 / 168

Beyond decision problems

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems
All solutions Enumeration Problems

solutions Counting Problems

79 / 168

Beyond decision problems

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems
All solutions Enumeration Problems
solutions

Counting Problems

79 / 168

Beyond decision problems

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems
All solutions Enumeration Problems
solutions Counting Problems

79 / 168

... and beyond NP – decision and function problems

∆p
0 = Σp

0 = P = Πp
0 = ∆p

1

NP = Σp
1 Πp

1 = coNP

PNP = ∆p
2

Σp
2 Πp

2

∆p
3

Σp
3 Πp

3

...

F∆p
0 = FΣp

0 = FP = FΠp
0 = F∆p

1

FNP = FΣp
1 FΠp

1 = coFNP

FPNP = F∆p
2

FΣp
2 FΠp

2

F∆p
3

FΣp
3 FΠp

3

...

80 / 168

Oracle-based problem solving – simple scenario

Decision
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries

81 / 168

Oracle-based problem solving – general setting

Decision
Procedure

Poly-time
Algorithm

Yes/No +
Witness

SAT, SMT, CSP, ...
Solver / Oracle

Bounded # of
calls / queries

82 / 168

Many problems to solve – within FPNP

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems
All solutions Enumeration Problems

83 / 168

Many problems to solve – within FPNP

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems
All solutions Enumeration Problems

Function Problems on Propositional Formulas

MaxSAT
PBO

MinSAT

Autarkies

Backbones

Prime Implicants

MCSesMUSes Indep. Vars

WBO

MESes

MSSes
MNSes

MDSes Implicant Ext.
MFSes

MCFSes

Minimal Models

Prime Implicates
Maximal Models

Implicate Ext.

...

...

83 / 168

Many problems to solve – within FPNP

Answer Problem Type
Yes/No Decision Problems

Some solution Function Problems
All solutions Enumeration Problems

Function Problems on Propositional Formulas

Optimization Problems

Minimal Sets

MaxSAT
PBO

MinSAT

Autarkies

Backbones

Prime Implicants

MCSesMUSes Indep. Vars

WBO

MESes

MSSes
MNSes

MDSes Implicant Ext.
MFSes

MCFSes

Minimal Models

Prime Implicates
Maximal Models

Implicate Ext.

...

...

83 / 168

Selection of topics

Problem
Solving
with SAT

Embeddings

PBO

B&B Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Models

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

MaxSAT solvingMUS extraction

MUS enumeration

84 / 168

Minimal Unsatisfiability

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable?

• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining constraints consistent?

• How to compute these minimal sets?

85 / 168

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No

• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining constraints consistent?

• How to compute these minimal sets?

85 / 168

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No
• Minimal subset of constraints that is inconsistent / unsatisfiable?

• Minimal subset of constraints whose removal makes remaining constraints consistent?

• How to compute these minimal sets?

85 / 168

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No
• Minimal subset of constraints that is inconsistent / unsatisfiable?

• Minimal subset of constraints whose removal makes remaining constraints consistent?

• How to compute these minimal sets?

85 / 168

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No
• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining constraints consistent?

• How to compute these minimal sets?

85 / 168

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No
• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining constraints consistent?

• How to compute these minimal sets?

85 / 168

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No
• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining constraints consistent?

• How to compute these minimal sets?

85 / 168

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No
• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining constraints consistent?

• How to compute these minimal sets? Minimality
matters!

85 / 168

Unsatisfiable formulas – MUSes & MCSes

• Given F (⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iffM⊨ ⊥ and
∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff F \ C ⊭ ⊥ and
∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?

86 / 168

Unsatisfiable formulas – MUSes & MCSes

• Given F (⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iffM⊨ ⊥ and
∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff F \ C ⊭ ⊥ and
∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?

86 / 168

Unsatisfiable formulas – MUSes & MCSes

• Given F (⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iffM⊨ ⊥ and
∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff F \ C ⊭ ⊥ and
∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?

86 / 168

Unsatisfiable formulas – MUSes & MCSes

• Given F (⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iffM⊨ ⊥ and
∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff F \ C ⊭ ⊥ and
∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?

86 / 168

Unsatisfiable formulas – MUSes & MCSes

• Given F (⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iffM⊨ ⊥ and
∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff F \ C ⊭ ⊥ and
∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?

86 / 168

Unsatisfiable formulas – MUSes & MCSes

• Given F (⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iffM⊨ ⊥ and
∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff F \ C ⊭ ⊥ and
∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

• Easy to see why

• How to compute MUSes & MCSes efficiently with SAT oracles?

86 / 168

Why it matters?

• Analysis of over-constrained systems
• Model-based diagnosis [Rei87]

• Software fault localization
• Spreadsheet debugging
• Debugging relational specifications (e.g. Alloy)
• Type error debugging
• Axiom pinpointing in description logics
• ...

• Model checking of software & hardware systems
• Inconsistency measurement
• Minimal models; MinCost SAT; ...
• ...

• Find minimal relaxations to recover consistency
• But also minimum relaxations to recover consistency, eg. MaxSAT

• Find minimal explanations of inconsistency
• But also minimum explanations of inconsistency, eg. Smallest MUS

87 / 168

Why it matters?

• Analysis of over-constrained systems
• Model-based diagnosis [Rei87]

• Software fault localization
• Spreadsheet debugging
• Debugging relational specifications (e.g. Alloy)
• Type error debugging
• Axiom pinpointing in description logics
• ...

• Model checking of software & hardware systems
• Inconsistency measurement
• Minimal models; MinCost SAT; ...
• ...

• Find minimal relaxations to recover consistency
• But also minimum relaxations to recover consistency, eg. MaxSAT

• Find minimal explanations of inconsistency
• But also minimum explanations of inconsistency, eg. Smallest MUS

Enumeration
required!

87 / 168

Deletion-based algorithm

Input : Set F
Output: Minimal subsetM
begin
M← F
foreach c ∈M do

if ¬SAT(M\ {c}) then
M←M\ {c} // If ¬SAT(M\ {c}), then c ̸∈ MUS

returnM // FinalM is MUS
end

• Number of oracles calls: O(m) [CD91, BDTW93]

88 / 168

Deletion-based algorithm

Input : Set F
Output: Minimal subsetM
begin
M← F
foreach c ∈M do

if ¬SAT(M\ {c}) then
M←M\ {c} // Remove c fromM

returnM // FinalM is MUS
end

• Number of oracles calls: O(m) [CD91, BDTW93]

Monotonicity
implicit &
essential!

88 / 168

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

89 / 168

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1

c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

89 / 168

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2

c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

89 / 168

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3

c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

89 / 168

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4

c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

89 / 168

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5

c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

89 / 168

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6

c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

89 / 168

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

89 / 168

Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

89 / 168

Many MUS algorithms

• Formula F with m clauses k the size of largest minimal subset

Algorithm Oracle Calls Reference
Insertion-based O(km) [dSNP88, vMW08]

MCS_MUS O(km) [BK15]

Deletion-based O(m) [CD91, BDTW93]

Linear insertion O(m) [MSL11, BLM12]

Dichotomic O(k log(m)) [HLSB06]

QuickXplain O(k+ k log(mk)) [Jun04]

Progression O(k log(1 + m
k)) [MJB13]

• Note: Lower bound in FPNP|| and upper bound in FPNP [CT95]

• Oracle calls correspond to testing unsatisfiability with SAT solver

• Practical optimizations: clause set trimming; clause set refinement; redundancy
removal; (recursive) model rotation

90 / 168

MUS Enumeration

How to enumerate MUSes?

1. Standard solution:
Exploit HS duality between MCSes and MUSes [Rei87, LS08]

MCSes are MHSes of MUSes and vice-versa
• Enumerate all MCSes and then enumerate all MHSes of the MCSes, i.e. compute all the MUSes
• Problematic if too many MCSes, and we want the MUSes
• And, often we want to enumerate the MUSes

2. Exploit recent advances in 2QBF solving

3. Implicit hitting set dualization [LPMM16]

• Most effective if MUSes provided to user on-demand

91 / 168

How to enumerate MUSes?

1. Standard solution:
Exploit HS duality between MCSes and MUSes [Rei87, LS08]

MCSes are MHSes of MUSes and vice-versa
• Enumerate all MCSes and then enumerate all MHSes of the MCSes, i.e. compute all the MUSes
• Problematic if too many MCSes, and we want the MUSes
• And, often we want to enumerate the MUSes

2. Exploit recent advances in 2QBF solving

3. Implicit hitting set dualization [LPMM16]

• Most effective if MUSes provided to user on-demand

91 / 168

How to enumerate MUSes?

1. Standard solution:
Exploit HS duality between MCSes and MUSes [Rei87, LS08]

MCSes are MHSes of MUSes and vice-versa
• Enumerate all MCSes and then enumerate all MHSes of the MCSes, i.e. compute all the MUSes
• Problematic if too many MCSes, and we want the MUSes
• And, often we want to enumerate the MUSes

2. Exploit recent advances in 2QBF solving

3. Implicit hitting set dualization [LPMM16]

• Most effective if MUSes provided to user on-demand

91 / 168

How to enumerate MUSes?

1. Standard solution:
Exploit HS duality between MCSes and MUSes [Rei87, LS08]

MCSes are MHSes of MUSes and vice-versa
• Enumerate all MCSes and then enumerate all MHSes of the MCSes, i.e. compute all the MUSes
• Problematic if too many MCSes, and we want the MUSes
• And, often we want to enumerate the MUSes

2. Exploit recent advances in 2QBF solving

3. Implicit hitting set dualization [LPMM16]

• Most effective if MUSes provided to user on-demand

91 / 168

How to enumerate MUSes, preferably?

Formulas P and N Formula F 0

Select subset of F

Block MCS/MUS

1. Keep sets representing computed MUSes (set N) and MCSes (set P)

2. Compute minimal hitting set (MHS) H of N , subject to P
• Must not repeat MUSes
• Must not repeat MCSes
• Maximize clauses picked, i.e. prefer to check satisfiability on as many clauses as possible
• If unsatisfiable: no more MUSes/MCSes to enumerate

3. Target set: F ′, i.e. F minus clauses from H
4. Run SAT oracle on F ′

• If F ′ unsatisfiable: extract new MUS
• Otherwise, H is already an MCS of F

5. Repeat loop

92 / 168

How to enumerate MUSes, preferably?

Formulas P and N Formula F 0

Select subset of F

Block MCS/MUS

1. Keep sets representing computed MUSes (set N) and MCSes (set P)
2. Compute minimal hitting set (MHS) H of N , subject to P

• Must not repeat MUSes
• Must not repeat MCSes
• Maximize clauses picked, i.e. prefer to check satisfiability on as many clauses as possible
• If unsatisfiable: no more MUSes/MCSes to enumerate

3. Target set: F ′, i.e. F minus clauses from H
4. Run SAT oracle on F ′

• If F ′ unsatisfiable: extract new MUS
• Otherwise, H is already an MCS of F

5. Repeat loop

92 / 168

How to enumerate MUSes, preferably?

Formulas P and N Formula F 0

Select subset of F

Block MCS/MUS

1. Keep sets representing computed MUSes (set N) and MCSes (set P)
2. Compute minimal hitting set (MHS) H of N , subject to P

• Must not repeat MUSes
• Must not repeat MCSes
• Maximize clauses picked, i.e. prefer to check satisfiability on as many clauses as possible
• If unsatisfiable: no more MUSes/MCSes to enumerate

3. Target set: F ′, i.e. F minus clauses from H

4. Run SAT oracle on F ′

• If F ′ unsatisfiable: extract new MUS
• Otherwise, H is already an MCS of F

5. Repeat loop

92 / 168

How to enumerate MUSes, preferably?

Formulas P and N Formula F 0

Select subset of F

Block MCS/MUS

1. Keep sets representing computed MUSes (set N) and MCSes (set P)
2. Compute minimal hitting set (MHS) H of N , subject to P

• Must not repeat MUSes
• Must not repeat MCSes
• Maximize clauses picked, i.e. prefer to check satisfiability on as many clauses as possible
• If unsatisfiable: no more MUSes/MCSes to enumerate

3. Target set: F ′, i.e. F minus clauses from H
4. Run SAT oracle on F ′

• If F ′ unsatisfiable: extract new MUS
• Otherwise, H is already an MCS of F

5. Repeat loop

92 / 168

How to enumerate MUSes, preferably?

Formulas P and N Formula F 0

Select subset of F

Block MCS/MUS

1. Keep sets representing computed MUSes (set N) and MCSes (set P)
2. Compute minimal hitting set (MHS) H of N , subject to P

• Must not repeat MUSes
• Must not repeat MCSes
• Maximize clauses picked, i.e. prefer to check satisfiability on as many clauses as possible
• If unsatisfiable: no more MUSes/MCSes to enumerate

3. Target set: F ′, i.e. F minus clauses from H
4. Run SAT oracle on F ′

• If F ′ unsatisfiable: extract new MUS
• Otherwise, H is already an MCS of F

5. Repeat loop

92 / 168

MARCO/eMUS algorithm

Input: CNF formula F
1 begin
2 I← {pi | ci ∈ F}
3 (P,N)← (∅, ∅)
4 while true do
5 (st,H)← MinHittingSet(N ,P)
6 if not st then return
7 F ′ ← {ci |pi ∈ I ∧ pi ̸∈ H}
8 if not SAT(F ′) then
9 M← ComputeMUS(F ′)

10 ReportMUS (M)

11 N ← N ∪ {¬pi | ci ∈M}
12 else
13 P ← P ∪ {pi |pi ∈ H}

14 end

93 / 168

An example

MinHS (N) F ′ MUS/MCS
p1p2p3p4p5p6p7 S/U

1111111 U ¬p1 ∨ ¬p2 ∨ ¬p3
0111111 U ¬p6 ∨ ¬p7
0111101 S p1 ∨ p6
1011101 U ¬p1 ∨ ¬p4 ∨ ¬p5
1101010 S p3 ∨ p5 ∨ p7
1010110 S p2 ∨ p4 ∨ p7
1100101 S p3 ∨ p4 ∨ p6
0111110 S p1 ∨ p7
1101001 S p3 ∨ p5 ∨ p6
1010101 S p2 ∨ p4 ∨ p6
1011001 S p2 ∨ p5 ∨ p6
1100110 S p3 ∨ p4 ∨ p7
1011010 S p2 ∨ p5 ∨ p7

c1 = p

c2 = ¬p ∨ r

c3 = ¬r

c4 = ¬p ∨ q c5 = ¬q

c6 = s
c7 = ¬s

94 / 168

An example

MinHS (N) F ′ MUS/MCS
p1p2p3p4p5p6p7 S/U

1111111 U ¬p1 ∨ ¬p2 ∨ ¬p3
0111111 U ¬p6 ∨ ¬p7
0111101 S p1 ∨ p6
1011101 U ¬p1 ∨ ¬p4 ∨ ¬p5
1101010 S p3 ∨ p5 ∨ p7
1010110 S p2 ∨ p4 ∨ p7
1100101 S p3 ∨ p4 ∨ p6
0111110 S p1 ∨ p7
1101001 S p3 ∨ p5 ∨ p6
1010101 S p2 ∨ p4 ∨ p6
1011001 S p2 ∨ p5 ∨ p6
1100110 S p3 ∨ p4 ∨ p7
1011010 S p2 ∨ p5 ∨ p7

c1 = p

c2 = ¬p ∨ r

c3 = ¬r

c4 = ¬p ∨ q c5 = ¬q

c6 = s
c7 = ¬s

94 / 168

An example

MinHS (N) F ′ MUS/MCS
p1p2p3p4p5p6p7 S/U

1111111 U ¬p1 ∨ ¬p2 ∨ ¬p3
0111111 U ¬p6 ∨ ¬p7
0111101 S p1 ∨ p6
1011101 U ¬p1 ∨ ¬p4 ∨ ¬p5
1101010 S p3 ∨ p5 ∨ p7
1010110 S p2 ∨ p4 ∨ p7
1100101 S p3 ∨ p4 ∨ p6
0111110 S p1 ∨ p7
1101001 S p3 ∨ p5 ∨ p6
1010101 S p2 ∨ p4 ∨ p6
1011001 S p2 ∨ p5 ∨ p6
1100110 S p3 ∨ p4 ∨ p7
1011010 S p2 ∨ p5 ∨ p7

c1 = p

c2 = ¬p ∨ r

c3 = ¬r

c4 = ¬p ∨ q c5 = ¬q

c6 = s
c7 = ¬s

94 / 168

An example

MinHS (N) F ′ MUS/MCS
p1p2p3p4p5p6p7 S/U

1111111 U ¬p1 ∨ ¬p2 ∨ ¬p3
0111111 U ¬p6 ∨ ¬p7
0111101 S p1 ∨ p6
1011101 U ¬p1 ∨ ¬p4 ∨ ¬p5
1101010 S p3 ∨ p5 ∨ p7
1010110 S p2 ∨ p4 ∨ p7
1100101 S p3 ∨ p4 ∨ p6
0111110 S p1 ∨ p7
1101001 S p3 ∨ p5 ∨ p6
1010101 S p2 ∨ p4 ∨ p6
1011001 S p2 ∨ p5 ∨ p6
1100110 S p3 ∨ p4 ∨ p7
1011010 S p2 ∨ p5 ∨ p7

c1 = p

c2 = ¬p ∨ r

c3 = ¬r

c4 = ¬p ∨ q c5 = ¬q

c6 = s
c7 = ¬s

94 / 168

An example

MinHS (N) F ′ MUS/MCS
p1p2p3p4p5p6p7 S/U

1111111 U ¬p1 ∨ ¬p2 ∨ ¬p3
0111111 U ¬p6 ∨ ¬p7
0111101 S p1 ∨ p6
1011101 U ¬p1 ∨ ¬p4 ∨ ¬p5
1101010 S p3 ∨ p5 ∨ p7
1010110 S p2 ∨ p4 ∨ p7
1100101 S p3 ∨ p4 ∨ p6
0111110 S p1 ∨ p7
1101001 S p3 ∨ p5 ∨ p6
1010101 S p2 ∨ p4 ∨ p6
1011001 S p2 ∨ p5 ∨ p6
1100110 S p3 ∨ p4 ∨ p7
1011010 S p2 ∨ p5 ∨ p7

c1 = p

c2 = ¬p ∨ r

c3 = ¬r

c4 = ¬p ∨ q c5 = ¬q

c6 = s
c7 = ¬s

94 / 168

An example

MinHS (N) F ′ MUS/MCS
p1p2p3p4p5p6p7 S/U

1111111 U ¬p1 ∨ ¬p2 ∨ ¬p3
0111111 U ¬p6 ∨ ¬p7
0111101 S p1 ∨ p6
1011101 U ¬p1 ∨ ¬p4 ∨ ¬p5
1101010 S p3 ∨ p5 ∨ p7
1010110 S p2 ∨ p4 ∨ p7
1100101 S p3 ∨ p4 ∨ p6
0111110 S p1 ∨ p7
1101001 S p3 ∨ p5 ∨ p6
1010101 S p2 ∨ p4 ∨ p6
1011001 S p2 ∨ p5 ∨ p6
1100110 S p3 ∨ p4 ∨ p7
1011010 S p2 ∨ p5 ∨ p7

c1 = p

c2 = ¬p ∨ r

c3 = ¬r

c4 = ¬p ∨ q c5 = ¬q

c6 = s
c7 = ¬s

94 / 168

An example

MinHS (N) F ′ MUS/MCS
p1p2p3p4p5p6p7 S/U

1111111 U ¬p1 ∨ ¬p2 ∨ ¬p3
0111111 U ¬p6 ∨ ¬p7
0111101 S p1 ∨ p6
1011101 U ¬p1 ∨ ¬p4 ∨ ¬p5
1101010 S p3 ∨ p5 ∨ p7
1010110 S p2 ∨ p4 ∨ p7
1100101 S p3 ∨ p4 ∨ p6
0111110 S p1 ∨ p7
1101001 S p3 ∨ p5 ∨ p6
1010101 S p2 ∨ p4 ∨ p6
1011001 S p2 ∨ p5 ∨ p6
1100110 S p3 ∨ p4 ∨ p7
1011010 S p2 ∨ p5 ∨ p7

c1 = p

c2 = ¬p ∨ r

c3 = ¬r

c4 = ¬p ∨ q c5 = ¬q

c6 = s
c7 = ¬s

94 / 168

Maximum Satisfiability

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula
• The MaxSAT solution is one of the smallest cost MCSes

• Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17]

95 / 168

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is satisfiable
• A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula

• The MaxSAT solution is one of the smallest cost MCSes

• Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17]

95 / 168

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is satisfiable
• A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula
• The MaxSAT solution is one of the smallest MCSes

• Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17]

95 / 168

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is satisfiable
• A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula
• The MaxSAT solution is one of the smallest MCSes

• Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17]

95 / 168

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is satisfiable
• A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula
• The MaxSAT solution is one of the smallest cost MCSes

• Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17]

95 / 168

Recap MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is satisfiable
• A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula
• The MaxSAT solution is one of the smallest cost MCSes

• Note: Clauses can have weights & there can be hard clauses

• Many practical applications [SZGN17]

95 / 168

MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No

Yes

96 / 168

MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

96 / 168

MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

• Must satisfy hard clauses, if any
• Compute set of satisfied soft clauses with maximum cost

• Without weights, cost of each falsified soft clause is 1

• Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)

• Note: goal is to compute set of satisfied (or falsified) clauses;
not just the cost !

96 / 168

MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

• Must satisfy hard clauses, if any
• Compute set of satisfied soft clauses with maximum cost

• Without weights, cost of each falsified soft clause is 1

• Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)

• Note: goal is to compute set of satisfied (or falsified) clauses;
not just the cost !

96 / 168

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT

• Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• Is 2 the MaxSAT solution??
• No! Enough to either falsify (x) or (z)

• Cannot use unit propagation
• Cannot learn clauses (using unit propagation)
• Need to solve MaxSAT using different techniques

97 / 168

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
• Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• Is 2 the MaxSAT solution??
• No! Enough to either falsify (x) or (z)

• Cannot use unit propagation
• Cannot learn clauses (using unit propagation)
• Need to solve MaxSAT using different techniques

97 / 168

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
• Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• Is 2 the MaxSAT solution??
• No! Enough to either falsify (x) or (z)

• Cannot use unit propagation
• Cannot learn clauses (using unit propagation)
• Need to solve MaxSAT using different techniques

97 / 168

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
• Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• Is 2 the MaxSAT solution??

• No! Enough to either falsify (x) or (z)
• Cannot use unit propagation
• Cannot learn clauses (using unit propagation)
• Need to solve MaxSAT using different techniques

97 / 168

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
• Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• Is 2 the MaxSAT solution??
• No! Enough to either falsify (x) or (z)

• Cannot use unit propagation
• Cannot learn clauses (using unit propagation)
• Need to solve MaxSAT using different techniques

97 / 168

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
• Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• Is 2 the MaxSAT solution??
• No! Enough to either falsify (x) or (z)

• Cannot use unit propagation

• Cannot learn clauses (using unit propagation)
• Need to solve MaxSAT using different techniques

97 / 168

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
• Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• Is 2 the MaxSAT solution??
• No! Enough to either falsify (x) or (z)

• Cannot use unit propagation
• Cannot learn clauses (using unit propagation)

• Need to solve MaxSAT using different techniques

97 / 168

Issues with MaxSAT

• Unit propagation is unsound for MaxSAT
• Formula with all clauses soft:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• After unit propagation:

{(x), (¬x ∨ y1), (¬x ∨ y2), (¬y1 ∨ ¬z), (¬y2 ∨ ¬z), (z)}

• Is 2 the MaxSAT solution??
• No! Enough to either falsify (x) or (z)

• Cannot use unit propagation
• Cannot learn clauses (using unit propagation)
• Need to solve MaxSAT using different techniques

97 / 168

Many MaxSAT approaches

MaxSAT Al-
gorithms

Branch
& Bound

Iterative

Core GuidedIterative
MHS

Model
Guided

No unit prop; No
cl. learning

All cls relaxed

Relax cls given
unsat cores

Iterative
MHS & SAT

Relax cls given
models

• For practical (industrial) instances: core-guided & iterative MHS approaches are the
most effective [MaxSAT14]

98 / 168

Many MaxSAT approaches

MaxSAT Al-
gorithms

Branch
& Bound

Iterative

Core GuidedIterative
MHS

Model
Guided

No unit prop; No
cl. learning

All cls relaxed

Relax cls given
unsat cores

Iterative
MHS & SAT

Relax cls given
models

• For practical (industrial) instances: core-guided & iterative MHS approaches are the
most effective [MaxSAT14]

98 / 168

Core-guided solver performance – partial

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of instances

Number x of instances solved in y seconds

Open-WBO-In
QMaxSAT2-mt-13

QMaxSat-g2-12
QMaxSat0.4-11

QMaxSat-10

Source: [MaxSAT 2014 organizers]

99 / 168

Core-guided solver performance – weighted partial

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of instances

Number x of instances solved in y seconds

Eva500a
WPM1-2013

WPM1-11
pwbo2.1-12

wbo-1.4a-wcnf-10

Source: [MaxSAT 2014 organizers]

100 / 168

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 12

Example CNF formula

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

101 / 168

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 12

Relax all clauses; Set UB = 12 + 1

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

101 / 168

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 12

Formula is SAT; E.g. all xi = 0 and r1 = r7 = r9 = 1 (i.e. cost = 3)

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

101 / 168

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 2

Refine UB = 3

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

101 / 168

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 2

Formula is SAT; E.g. x1 = x2 = 1; x3 = ... = x8 = 0 and r4 = r9 = 1 (i.e. cost = 2)

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

101 / 168

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 1

Refine UB = 2

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

101 / 168

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 1

Formula is UNSAT; terminate

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

101 / 168

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 1

MaxSAT solution is last satisfied UB: UB = 2

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

101 / 168

Basic MaxSAT with iterative SAT solving

x6 ∨ x2∨r1 ¬x6 ∨ x2∨r2 ¬x2 ∨ x1∨r3 ¬x1∨r4

¬x6 ∨ x8∨r5 x6 ∨ ¬x8∨r6 x2 ∨ x4∨r7 ¬x4 ∨ x5∨r8

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r11 ¬x3∨r12

∑12
i=1 ri ≤ 1

MaxSAT solution is last satisfied UB: UB = 2

AtMostk/PB constraints over
all relaxation variables

All (possibly many)
soft clauses relaxed

101 / 168

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Example CNF formula

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

102 / 168

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Formula is UNSAT; OPT ≤ |φ| − 1; Get unsat core

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

102 / 168

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑6
i=1 ri ≤ 1

Add relaxation variables and AtMostk, k = 1, constraint

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

102 / 168

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑6
i=1 ri ≤ 1

Formula is (again) UNSAT; OPT ≤ |φ| − 2; Get unsat core

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

102 / 168

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑10
i=1 ri ≤ 2

Add new relaxation variables and update AtMostk, k=2, constraint

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

102 / 168

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑10
i=1 ri ≤ 2

Instance is now SAT

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

102 / 168

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑10
i=1 ri ≤ 2

MaxSAT solution is |φ| − I = 12− 2 = 10

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

102 / 168

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑10
i=1 ri ≤ 2

MaxSAT solution is |φ| − I = 12− 2 = 10

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

102 / 168

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

∑10
i=1 ri ≤ 2

MaxSAT solution is |φ| − I = 12− 2 = 10

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

Some clauses
not relaxed

102 / 168

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K:

• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}

103 / 168

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅

• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}

103 / 168

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅

• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}

103 / 168

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅

• SAT(F \ ∅)? No

• Core of F : {c1, c2, c3, c4}

103 / 168

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅

• SAT(F \ ∅)? No

• Core of F : {c1, c2, c3, c4}

103 / 168

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: ∅

• SAT(F \ ∅)? No

• Core of F : {c1, c2, c3, c4}. Update K

103 / 168

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K:

• SAT(F \ {c1})?

• Core of F : {c9, c10, c11, c12}

103 / 168

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}

• SAT(F \ {c1})?

• Core of F : {c9, c10, c11, c12}

103 / 168

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}

• SAT(F \ {c1})?

• Core of F : {c9, c10, c11, c12}

103 / 168

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}

• SAT(F \ {c1})? No

• Core of F : {c9, c10, c11, c12}

103 / 168

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}

• SAT(F \ {c1})? No

• Core of F : {c9, c10, c11, c12}

103 / 168

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1}

• SAT(F \ {c1})? No

• Core of F : {c9, c10, c11, c12}. Update K

103 / 168

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K:

• SAT(F \ {c1, c9})?

• Core of F : {c3, c4, c7, c8, c11, c12}

103 / 168

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}

• SAT(F \ {c1, c9})?

• Core of F : {c3, c4, c7, c8, c11, c12}

103 / 168

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}

• SAT(F \ {c1, c9})?

• Core of F : {c3, c4, c7, c8, c11, c12}

103 / 168

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}

• SAT(F \ {c1, c9})? No

• Core of F : {c3, c4, c7, c8, c11, c12}

103 / 168

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}

• SAT(F \ {c1, c9})? No

• Core of F : {c3, c4, c7, c8, c11, c12}

103 / 168

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c1, c9}

• SAT(F \ {c1, c9})? No

• Core of F : {c3, c4, c7, c8, c11, c12}. Update K

103 / 168

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K:

• SAT(F \ {c4, c9})?

• Terminate & return 2

103 / 168

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}

• SAT(F \ {c4, c9})?

• Terminate & return 2

103 / 168

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}

• SAT(F \ {c4, c9})?

• Terminate & return 2

103 / 168

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}

• SAT(F \ {c4, c9})? Yes

• Terminate & return 2

103 / 168

MHS approach for MaxSAT

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}

• SAT(F \ {c4, c9})? Yes

• Terminate & return 2

103 / 168

MaxSAT solving with SAT oracles – a sample

• A sample of recent algorithms:
Algorithm # Oracle Queries Reference
Linear search SU Exponential*** [BP10]

Binary search Linear* [FM06]

FM/WMSU1/WPM1 Exponential** [FM06, MP08, MMSP09, ABL09, ABGL12]

WPM2 Exponential** [ABL10a, ABL13]

Bin-Core-Dis Linear [HMM11, MHM12]

Iterative MHS Exponential [DB11, DB13a, DB13b]

* O(logm) queries with SAT oracle, for (partial) unweighted MaxSAT
** Weighted case; depends on computed cores
*** On # bits of problem instance (due to weights)

• But also additional recent work:
• Progression [IMM+14]

• Soft cardinality constraints (OLL) [MDM14, MIM14]

• Recent implementation (RC2, using PySAT) won 2018 MaxSAT Evaluation
• MaxSAT resolution [NB14]

• ...
104 / 168

5 Sample of Applications

105 / 168

Flagship applications

• Bounded (& unbounded) model checking
• Automated planning
• Multi-agent path finding

• Software model checking
• Package management
• Design debugging

• Haplotyping

106 / 168

CDCL SAT is the engines’ engine

Engines using
SAT engines Boolean

QBF

MaxSAT

PBO

#SAT

...

FOL SMT

Model
finding

Theorem
proving

...

Other

ASP

LCG

CSP

...

107 / 168

CDCL SAT is ubiquitous in problem solving

Problem
Solving
with SAT

Embeddings

PBO

B&B Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

Min. Models

Backbones

MCS

MaxSAT

MUS

Enumeration

Counting

CEGAR QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

108 / 168

Recent applications

• Package dependency and upgradability [IJM14]

• Exact and approximate problem solving with SAT

• Two-level logic minimization with SAT [IPM15]

• Reimplementation of Quine-McCluskey with SAT oracles

• Model-based diagnosis [MJIM15, IMWM19]

• MaxSAT + implicit hitting set dualization using SAT oracles
• our talk on August 14!

• Maximum cliques with SAT [IMM17]

• eXplainable AI

• Explainable decision sets [IPNM18]

• Computation of smallest decision sets (rules)
• Smallest (explainable) decision trees [NIPM18]

• Computation of smallest decision trees
• Abduction-based explanations for ML models [INMS19]

• Extraction of explanations for any ML model on demand

109 / 168

Recent applications

• Package dependency and upgradability [IJM14]

• Exact and approximate problem solving with SAT

• Two-level logic minimization with SAT [IPM15]

• Reimplementation of Quine-McCluskey with SAT oracles

• Model-based diagnosis [MJIM15, IMWM19]

• MaxSAT + implicit hitting set dualization using SAT oracles
• our talk on August 14!

• Maximum cliques with SAT [IMM17]

• eXplainable AI

• Explainable decision sets [IPNM18]

• Computation of smallest decision sets (rules)
• Smallest (explainable) decision trees [NIPM18]

• Computation of smallest decision trees
• Abduction-based explanations for ML models [INMS19]

• Extraction of explanations for any ML model on demand

109 / 168

Recent applications

• Package dependency and upgradability [IJM14]

• Exact and approximate problem solving with SAT

• Two-level logic minimization with SAT [IPM15]

• Reimplementation of Quine-McCluskey with SAT oracles

• Model-based diagnosis [MJIM15, IMWM19]

• MaxSAT + implicit hitting set dualization using SAT oracles
• our talk on August 14!

• Maximum cliques with SAT [IMM17]

• eXplainable AI

• Explainable decision sets [IPNM18]

• Computation of smallest decision sets (rules)
• Smallest (explainable) decision trees [NIPM18]

• Computation of smallest decision trees
• Abduction-based explanations for ML models [INMS19]

• Extraction of explanations for any ML model on demand

109 / 168

Recent applications

• Package dependency and upgradability [IJM14]

• Exact and approximate problem solving with SAT

• Two-level logic minimization with SAT [IPM15]

• Reimplementation of Quine-McCluskey with SAT oracles

• Model-based diagnosis [MJIM15, IMWM19]

• MaxSAT + implicit hitting set dualization using SAT oracles
• our talk on August 14!

• Maximum cliques with SAT [IMM17]

• eXplainable AI

• Explainable decision sets [IPNM18]

• Computation of smallest decision sets (rules)
• Smallest (explainable) decision trees [NIPM18]

• Computation of smallest decision trees
• Abduction-based explanations for ML models [INMS19]

• Extraction of explanations for any ML model on demand

109 / 168

Recent applications

• Package dependency and upgradability [IJM14]

• Exact and approximate problem solving with SAT

• Two-level logic minimization with SAT [IPM15]

• Reimplementation of Quine-McCluskey with SAT oracles

• Model-based diagnosis [MJIM15, IMWM19]

• MaxSAT + implicit hitting set dualization using SAT oracles
• our talk on August 14!

• Maximum cliques with SAT [IMM17]

• eXplainable AI

• Explainable decision sets [IPNM18]

• Computation of smallest decision sets (rules)
• Smallest (explainable) decision trees [NIPM18]

• Computation of smallest decision trees
• Abduction-based explanations for ML models [INMS19]

• Extraction of explanations for any ML model on demand

109 / 168

Recent applications

• Package dependency and upgradability [IJM14]

• Exact and approximate problem solving with SAT

• Two-level logic minimization with SAT [IPM15]

• Reimplementation of Quine-McCluskey with SAT oracles

• Model-based diagnosis [MJIM15, IMWM19]

• MaxSAT + implicit hitting set dualization using SAT oracles
• our talk on August 14!

• Maximum cliques with SAT [IMM17]

• eXplainable AI
• Explainable decision sets [IPNM18]

• Computation of smallest decision sets (rules)

• Smallest (explainable) decision trees [NIPM18]

• Computation of smallest decision trees
• Abduction-based explanations for ML models [INMS19]

• Extraction of explanations for any ML model on demand

109 / 168

Recent applications

• Package dependency and upgradability [IJM14]

• Exact and approximate problem solving with SAT

• Two-level logic minimization with SAT [IPM15]

• Reimplementation of Quine-McCluskey with SAT oracles

• Model-based diagnosis [MJIM15, IMWM19]

• MaxSAT + implicit hitting set dualization using SAT oracles
• our talk on August 14!

• Maximum cliques with SAT [IMM17]

• eXplainable AI
• Explainable decision sets [IPNM18]

• Computation of smallest decision sets (rules)
• Smallest (explainable) decision trees [NIPM18]

• Computation of smallest decision trees

• Abduction-based explanations for ML models [INMS19]

• Extraction of explanations for any ML model on demand

109 / 168

Recent applications

• Package dependency and upgradability [IJM14]

• Exact and approximate problem solving with SAT

• Two-level logic minimization with SAT [IPM15]

• Reimplementation of Quine-McCluskey with SAT oracles

• Model-based diagnosis [MJIM15, IMWM19]

• MaxSAT + implicit hitting set dualization using SAT oracles
• our talk on August 14!

• Maximum cliques with SAT [IMM17]

• eXplainable AI
• Explainable decision sets [IPNM18]

• Computation of smallest decision sets (rules)
• Smallest (explainable) decision trees [NIPM18]

• Computation of smallest decision trees
• Abduction-based explanations for ML models [INMS19]

• Extraction of explanations for any ML model on demand

109 / 168

Package dependency

Package dependency

Eclipse ∼2K Linux ∼50K Maven ∼78K

Figure 1: Number of packages in modern package management systems

can single package P be installed in repository R? — NP-complete!

110 / 168

Package dependency

Eclipse ∼2K Linux ∼50K Maven ∼78K

Figure 1: Number of packages in modern package management systems

can single package P be installed in repository R? — NP-complete!

110 / 168

PackUP example

a

b c

f d e

⇐ ⇒

conflicts

or or

a

b c

f d e

⇐ ⇒

conflicts

or or

a

b c

f d e

⇐ ⇒

conflicts

or or

a

b c

f d e

⇐ ⇒

conflicts

g

hx

y
z

w
or

⇐

⇐ ⇒

⇐

or or

a

b c

f d e

⇐ ⇒

conflicts

g

hx

y
z

w
or

⇐

⇐ ⇒

⇐

or or

a

b c

f d e

⇐ ⇒

conflicts

g

hx

y
z

w
or

⇐

⇐ ⇒

⇐

or or

111 / 168

PackUP example

a

b c

f d e

⇐ ⇒

conflicts

or or

a

b c

f d e

⇐ ⇒

conflicts

or or

a

b c

f d e

⇐ ⇒

conflicts

or or

a

b c

f d e

⇐ ⇒

conflicts

g

hx

y
z

w
or

⇐

⇐ ⇒

⇐

or or

a

b c

f d e

⇐ ⇒

conflicts

g

hx

y
z

w
or

⇐

⇐ ⇒

⇐

or or

a

b c

f d e

⇐ ⇒

conflicts

g

hx

y
z

w
or

⇐

⇐ ⇒

⇐

or or

111 / 168

PackUP example

a

b c

f d e

⇐ ⇒

conflicts

or or

a

b c

f d e

⇐ ⇒

conflicts

or or

a

b c

f d e

⇐ ⇒

conflicts

or or

a

b c

f d e

⇐ ⇒

conflicts

g

hx

y
z

w
or

⇐

⇐ ⇒

⇐

or or

a

b c

f d e

⇐ ⇒

conflicts

g

hx

y
z

w
or

⇐

⇐ ⇒

⇐

or or

a

b c

f d e

⇐ ⇒

conflicts

g

hx

y
z

w
or

⇐

⇐ ⇒

⇐

or or

111 / 168

PackUP example

a

b c

f d e

⇐ ⇒

conflicts

or or

a

b c

f d e

⇐ ⇒

conflicts

or or

a

b c

f d e

⇐ ⇒

conflicts

or or

a

b c

f d e

⇐ ⇒

conflicts

g

hx

y
z

w
or

⇐

⇐ ⇒

⇐

or or

a

b c

f d e

⇐ ⇒

conflicts

g

hx

y
z

w
or

⇐

⇐ ⇒

⇐

or or

a

b c

f d e

⇐ ⇒

conflicts

g

hx

y
z

w
or

⇐

⇐ ⇒

⇐

or or

111 / 168

PackUP example

a

b c

f d e

⇐ ⇒

conflicts

or or

a

b c

f d e

⇐ ⇒

conflicts

or or

a

b c

f d e

⇐ ⇒

conflicts

or or

a

b c

f d e

⇐ ⇒

conflicts

g

hx

y
z

w
or

⇐

⇐ ⇒

⇐

or or

a

b c

f d e

⇐ ⇒

conflicts

g

hx

y
z

w
or

⇐

⇐ ⇒

⇐

or or

a

b c

f d e

⇐ ⇒

conflicts

g

hx

y
z

w
or

⇐

⇐ ⇒

⇐

or or

111 / 168

PackUP example

a

b c

f d e

⇐ ⇒

conflicts

or or

a

b c

f d e

⇐ ⇒

conflicts

or or

a

b c

f d e

⇐ ⇒

conflicts

or or

a

b c

f d e

⇐ ⇒

conflicts

g

hx

y
z

w
or

⇐

⇐ ⇒

⇐

or or

a

b c

f d e

⇐ ⇒

conflicts

g

hx

y
z

w
or

⇐

⇐ ⇒

⇐

or or

a

b c

f d e

⇐ ⇒

conflicts

g

hx

y
z

w
or

⇐

⇐ ⇒

⇐

or or

111 / 168

Encoding PackUP to SAT and MaxSAT

a

b c

f d e

⇐ ⇒

conflicts

or or

Find any solution — SAT
(¬a ∨ b) ∧ (¬a ∨ c) ∧ (¬b ∨ f ∨ d) ∧ (¬c ∨ d ∨ e) ∧ (¬f ∨ ¬d) ∧ (a)

Find best solution — MaxSAT
(¬a ∨ b) ∧ (¬a ∨ c) ∧ (¬b ∨ f ∨ d) ∧ (¬c ∨ d ∨ e) ∧ (¬f ∨ ¬d) ∧ (a)

(¬a) ∧ (¬b) ∧ (¬c) ∧ (¬d) ∧ (¬e) ∧ (¬f)

112 / 168

Encoding PackUP to SAT and MaxSAT

a

b c

f d e

⇐ ⇒

conflicts

or or

Find any solution — SAT
(¬a ∨ b) ∧ (¬a ∨ c) ∧ (¬b ∨ f ∨ d) ∧ (¬c ∨ d ∨ e) ∧ (¬f ∨ ¬d) ∧ (a)

Find best solution — MaxSAT
(¬a ∨ b) ∧ (¬a ∨ c) ∧ (¬b ∨ f ∨ d) ∧ (¬c ∨ d ∨ e) ∧ (¬f ∨ ¬d) ∧ (a)

(¬a) ∧ (¬b) ∧ (¬c) ∧ (¬d) ∧ (¬e) ∧ (¬f)

112 / 168

Encoding PackUP to SAT and MaxSAT

a

b c

f d e

⇐ ⇒

conflicts

or or

Find any solution — SAT
(¬a ∨ b) ∧ (¬a ∨ c) ∧ (¬b ∨ f ∨ d) ∧ (¬c ∨ d ∨ e) ∧ (¬f ∨ ¬d) ∧ (a)

Find best solution — MaxSAT
(¬a ∨ b) ∧ (¬a ∨ c) ∧ (¬b ∨ f ∨ d) ∧ (¬c ∨ d ∨ e) ∧ (¬f ∨ ¬d) ∧ (a)

(¬a) ∧ (¬b) ∧ (¬c) ∧ (¬d) ∧ (¬e) ∧ (¬f)

112 / 168

Encoding PackUP to SAT and MaxSAT

a

b c

f d e

⇐ ⇒

conflicts

or or

Find any solution — SAT
(¬a ∨ b) ∧ (¬a ∨ c) ∧ (¬b ∨ f ∨ d) ∧ (¬c ∨ d ∨ e) ∧ (¬f ∨ ¬d) ∧ (a)

Find best solution — MaxSAT
(¬a ∨ b) ∧ (¬a ∨ c) ∧ (¬b ∨ f ∨ d) ∧ (¬c ∨ d ∨ e) ∧ (¬f ∨ ¬d) ∧ (a)

(¬a) ∧ (¬b) ∧ (¬c) ∧ (¬d) ∧ (¬e) ∧ (¬f)

112 / 168

Solving MaxClique with SAT

Modeling MaxClique with SAT

• given a graph G = (V, E), find a largest complete subgraph

• main constraint:
(u, v) ̸∈ E ⇒

either u or v is not in the maximum-size clique

• associate Boolean xu with u ∈ V

• main goal — maximize∑
u∈V xu

• e.g. use MaxSAT

113 / 168

Modeling MaxClique with SAT

• given a graph G = (V, E), find a largest complete subgraph

• main constraint:
(u, v) ̸∈ E ⇒ either u or v is not in the maximum-size clique

• associate Boolean xu with u ∈ V

• main goal — maximize∑
u∈V xu

• e.g. use MaxSAT

113 / 168

Modeling MaxClique with SAT

• given a graph G = (V, E), find a largest complete subgraph

• main constraint:
(u, v) ̸∈ E ⇒ either u or v is not in the maximum-size clique

• associate Boolean xu with u ∈ V

• main goal — maximize∑
u∈V xu

• e.g. use MaxSAT

113 / 168

Modeling MaxClique with SAT

• given a graph G = (V, E), find a largest complete subgraph

• main constraint:
(u, v) ̸∈ E ⇒ either u or v is not in the maximum-size clique

• associate Boolean xu with u ∈ V

• main goal — maximize∑
u∈V xu

• e.g. use MaxSAT

113 / 168

An example

Construct F = ⟨H,S⟩s.t.
{
H ≜ {(¬xu ∨ ¬xv) | (u, v) ∈ EC}
S ≜ {(xu) | v ∈ V}

u1

u2

u3

u4 u5

u6

u7

H=

(¬x1 ∨ ¬x6) (¬x1 ∨ ¬x7)
(¬x2 ∨ ¬x6) (¬x2 ∨ ¬x7)
(¬x4 ∨ ¬x6) (¬x4 ∨ ¬x7)
(¬x6 ∨ ¬x7)

S =

(x1) (x2) (x3)
(x4) (x5) (x6)
(x7)

solve F with MaxSAT !
114 / 168

An example

Construct F = ⟨H,S⟩ s.t.
{
H ≜ {(¬xu ∨ ¬xv) | (u, v) ∈ EC}
S ≜ {(xu) | v ∈ V}

u1

u2

u3

u4 u5

u6

u7

H=

(¬x1 ∨ ¬x6) (¬x1 ∨ ¬x7)
(¬x2 ∨ ¬x6) (¬x2 ∨ ¬x7)
(¬x4 ∨ ¬x6) (¬x4 ∨ ¬x7)
(¬x6 ∨ ¬x7)

S =

(x1) (x2) (x3)
(x4) (x5) (x6)
(x7)

solve F with MaxSAT !
114 / 168

An example

Construct F = ⟨H,S⟩ s.t.
{
H ≜ {(¬xu ∨ ¬xv) | (u, v) ∈ EC}
S ≜ {(xu) | v ∈ V}

u1

u2

u3

u4 u5

u6

u7

H=

(¬x1 ∨ ¬x6) (¬x1 ∨ ¬x7)
(¬x2 ∨ ¬x6) (¬x2 ∨ ¬x7)
(¬x4 ∨ ¬x6) (¬x4 ∨ ¬x7)
(¬x6 ∨ ¬x7)

S =

(x1) (x2) (x3)
(x4) (x5) (x6)
(x7)

solve F with MaxSAT !
114 / 168

An example

Construct F = ⟨H,S⟩ s.t.
{
H ≜ {(¬xu ∨ ¬xv) | (u, v) ∈ EC}
S ≜ {(xu) | v ∈ V}

u1

u2

u3

u4 u5

u6

u7

H=

(¬x1 ∨ ¬x6) (¬x1 ∨ ¬x7)
(¬x2 ∨ ¬x6) (¬x2 ∨ ¬x7)
(¬x4 ∨ ¬x6) (¬x4 ∨ ¬x7)
(¬x6 ∨ ¬x7)

S =

(x1) (x2) (x3)
(x4) (x5) (x6)
(x7)

solve F with MaxSAT !
114 / 168

An example

Construct F = ⟨H,S⟩ s.t.
{
H ≜ {(¬xu ∨ ¬xv) | (u, v) ∈ EC}
S ≜ {(xu) | v ∈ V}

u1

u2

u3

u4 u5

u6

u7

H=

(¬x1 ∨ ¬x6) (¬x1 ∨ ¬x7)
(¬x2 ∨ ¬x6) (¬x2 ∨ ¬x7)
(¬x4 ∨ ¬x6) (¬x4 ∨ ¬x7)
(¬x6 ∨ ¬x7)

S =

(x1) (x2) (x3)
(x4) (x5) (x6)
(x7)

solve F with MaxSAT !
114 / 168

An example

Construct F = ⟨H,S⟩ s.t.
{
H ≜ {(¬xu ∨ ¬xv) | (u, v) ∈ EC}
S ≜ {(xu) | v ∈ V}

u1

u2

u3

u4 u5

u6

u7

H=

(¬x1 ∨ ¬x6) (¬x1 ∨ ¬x7)
(¬x2 ∨ ¬x6) (¬x2 ∨ ¬x7)
(¬x4 ∨ ¬x6) (¬x4 ∨ ¬x7)
(¬x6 ∨ ¬x7)

S =

(x1) (x2) (x3)
(x4) (x5) (x6)
(x7)

solve F with MaxSAT !
114 / 168

An example

Construct F = ⟨H,S⟩ s.t.
{
H ≜ {(¬xu ∨ ¬xv) | (u, v) ∈ EC}
S ≜ {(xu) | v ∈ V}

u1

u2

u3

u4 u5

u6

u7

H=

(¬x1 ∨ ¬x6) (¬x1 ∨ ¬x7)
(¬x2 ∨ ¬x6) (¬x2 ∨ ¬x7)
(¬x4 ∨ ¬x6) (¬x4 ∨ ¬x7)
(¬x6 ∨ ¬x7)

S =

(x1) (x2) (x3)
(x4) (x5) (x6)
(x7)

solve F with MaxSAT !
114 / 168

An example

Construct F = ⟨H,S⟩ s.t.
{
H ≜ {(¬xu ∨ ¬xv) | (u, v) ∈ EC}
S ≜ {(xu) | v ∈ V}

u1

u2

u3

u4 u5

u6

u7

H=

(¬x1 ∨ ¬x6) (¬x1 ∨ ¬x7)
(¬x2 ∨ ¬x6) (¬x2 ∨ ¬x7)
(¬x4 ∨ ¬x6) (¬x4 ∨ ¬x7)
(¬x6 ∨ ¬x7)

S =

(x1) (x2) (x3)
(x4) (x5) (x6)
(x7)

solve F with MaxSAT !
114 / 168

An example

Construct F = ⟨H,S⟩ s.t.
{
H ≜ {(¬xu ∨ ¬xv) | (u, v) ∈ EC}
S ≜ {(xu) | v ∈ V}

u1

u2

u3

u4 u5

u6

u7

H=

(¬x1 ∨ ¬x6) (¬x1 ∨ ¬x7)
(¬x2 ∨ ¬x6) (¬x2 ∨ ¬x7)
(¬x4 ∨ ¬x6) (¬x4 ∨ ¬x7)
(¬x6 ∨ ¬x7)

S =

(x1) (x2) (x3)
(x4) (x5) (x6)
(x7)

solve F with MaxSAT !
114 / 168

An example

Construct F = ⟨H,S⟩ s.t.
{
H ≜ {(¬xu ∨ ¬xv) | (u, v) ∈ EC}
S ≜ {(xu) | v ∈ V}

u1

u2

u3

u4 u5

u6

u7

H=

(¬x1 ∨ ¬x6) (¬x1 ∨ ¬x7)
(¬x2 ∨ ¬x6) (¬x2 ∨ ¬x7)
(¬x4 ∨ ¬x6) (¬x4 ∨ ¬x7)
(¬x6 ∨ ¬x7)

S =

(x1) (x2) (x3)
(x4) (x5) (x6)
(x7)

solve F with MaxSAT !
114 / 168

But the size of EC can be problematic...
Instance |V| |E| |E|C

comm-n10000 10000 10000 49995000
ca-AstroPh 18772 396160 175807218
ca-citeseer 227322 814136 25836945367
ca-coauthors-dblp 540488 15245731 146048663585
ca-CondMat 23133 186936 267392475
ca-dblp-2010 226415 716462 25631272858
ca-dblp-2012 317082 1049868 50269606035
ca-HepPh 12008 237010 71865026
ca-HepTh 9877 51971 48730532
ca-MathSciNet 332689 820644 55340331061
ia-email-EU 32430 54397 525814268
ia-reality-call 6809 9484 23175161
ia-retweet-pol 18470 61157 170518528
ia-wiki-Talk 92117 360767 4242456136
rt-pol 18470 61157 170518528
rt_barackobama 9631 9826 46373070
soc-epinions 63947 606512 2044034866
soc-gplus 23628 39242 279113764
tech-as-caida2007 26477 53383 350475620
tech-internet-as 40164 85123 806508407
tech-pgp 10680 24340 57012200
tech-WHOIS 7476 56943 27892083
web-arabic-2005 163598 1747269 13380487332
web-baidu-baike-related 415641 3284387 86375643874
web-it-2004 509338 7178413 129705675378
web-NotreDame 325729 1497134 53048356451
web-sk-2005 121422 334419 7371377334 115 / 168

But the size of EC can be problematic...
Instance |V| |E| |E|C

comm-n10000 10000 10000 49995000
ca-AstroPh 18772 396160 175807218
ca-citeseer 227322 814136 25836945367
ca-coauthors-dblp 540488 15245731 146048663585
ca-CondMat 23133 186936 267392475
ca-dblp-2010 226415 716462 25631272858
ca-dblp-2012 317082 1049868 50269606035
ca-HepPh 12008 237010 71865026
ca-HepTh 9877 51971 48730532
ca-MathSciNet 332689 820644 55340331061
ia-email-EU 32430 54397 525814268
ia-reality-call 6809 9484 23175161
ia-retweet-pol 18470 61157 170518528
ia-wiki-Talk 92117 360767 4242456136
rt-pol 18470 61157 170518528
rt_barackobama 9631 9826 46373070
soc-epinions 63947 606512 2044034866
soc-gplus 23628 39242 279113764
tech-as-caida2007 26477 53383 350475620
tech-internet-as 40164 85123 806508407
tech-pgp 10680 24340 57012200
tech-WHOIS 7476 56943 27892083
web-arabic-2005 163598 1747269 13380487332
web-baidu-baike-related 415641 3284387 86375643874
web-it-2004 509338 7178413 129705675378
web-NotreDame 325729 1497134 53048356451
web-sk-2005 121422 334419 7371377334

|EC| = |E|×(|E|−1)
2 − |E|

115 / 168

But the size of EC can be problematic...
Instance |V| |E| |E|C

comm-n10000 10000 10000 49995000
ca-AstroPh 18772 396160 175807218
ca-citeseer 227322 814136 25836945367
ca-coauthors-dblp 540488 15245731 146048663585
ca-CondMat 23133 186936 267392475
ca-dblp-2010 226415 716462 25631272858
ca-dblp-2012 317082 1049868 50269606035
ca-HepPh 12008 237010 71865026
ca-HepTh 9877 51971 48730532
ca-MathSciNet 332689 820644 55340331061
ia-email-EU 32430 54397 525814268
ia-reality-call 6809 9484 23175161
ia-retweet-pol 18470 61157 170518528
ia-wiki-Talk 92117 360767 4242456136
rt-pol 18470 61157 170518528
rt_barackobama 9631 9826 46373070
soc-epinions 63947 606512 2044034866
soc-gplus 23628 39242 279113764
tech-as-caida2007 26477 53383 350475620
tech-internet-as 40164 85123 806508407
tech-pgp 10680 24340 57012200
tech-WHOIS 7476 56943 27892083
web-arabic-2005 163598 1747269 13380487332
web-baidu-baike-related 415641 3284387 86375643874
web-it-2004 509338 7178413 129705675378
web-NotreDame 325729 1497134 53048356451
web-sk-2005 121422 334419 7371377334

|EC| = |E|×(|E|−1)
2 − |E|

Unrealistic to
model with SAT
on sparse graphs

115 / 168

How to reduce the encoding size?

• main hurdle:
• approaches based on GC = (V, EC) will not scale...
• and G = (V, E) is much smaller than GC = (V, EC)

• can we model MaxClique using solely G?

116 / 168

How to reduce the encoding size?

• main hurdle:
• approaches based on GC = (V, EC) will not scale...
• and G = (V, E) is much smaller than GC = (V, EC)

• can we model MaxClique using solely G?

116 / 168

Another take at solving MaxClique with SAT

revisit the original decision problem:
given G = (V, E), is there a clique of size K?

1. one must pick exactly K vertices:

∑
u∈V

xu = K

2. if a vertex u ∈ V is picked (i.e. xu = 1), then K− 1 of its neighbours must also be picked:

xu →

 ∑
v∈Adj(u)

xv = K− 1

117 / 168

Another take at solving MaxClique with SAT

revisit the original decision problem:
given G = (V, E), is there a clique of size K?

1. one must pick exactly K vertices:

∑
u∈V

xu = K

2. if a vertex u ∈ V is picked (i.e. xu = 1), then K− 1 of its neighbours must also be picked:

xu →

 ∑
v∈Adj(u)

xv = K− 1

117 / 168

Another take at solving MaxClique with SAT

revisit the original decision problem:
given G = (V, E), is there a clique of size K?

1. one must pick exactly K vertices:

∑
u∈V

xu = K

2. if a vertex u ∈ V is picked (i.e. xu = 1), then K− 1 of its neighbours must also be picked:

xu →

 ∑
v∈Adj(u)

xv = K− 1

117 / 168

eXplainable AI (XAI)

What is eXplainable AI (XAI)?

©DARPA
118 / 168

Approaches to XAI

interpretable ML models
(decision trees, lists, sets)

explanation of ML models “on the fly”

119 / 168

Approaches to XAI

interpretable ML models
(decision trees, lists, sets)

explanation of ML models “on the fly”

119 / 168

Interpretable ML models

Example Lecture Concert Expo Shop Hike?

e1 1 0 1 0 0
e2 1 0 0 1 0
e3 0 0 1 0 1
e4 1 1 0 0 0
e5 0 0 0 1 1
e6 1 1 1 1 0
e7 0 1 1 0 0
e8 0 0 1 1 1

(a)When should we hike and when not?

if ¬Lecture and ¬Concert then Hike
if Lecture then ¬Hike
if Concert then ¬Hike

(b) Example decision set

Lecture?

0

1

Concert?

0

1

1

0

0

(c) Example decision tree

120 / 168

Interpretable ML models

Example Lecture Concert Expo Shop Hike?

e1 1 0 1 0 0
e2 1 0 0 1 0
e3 0 0 1 0 1
e4 1 1 0 0 0
e5 0 0 0 1 1
e6 1 1 1 1 0
e7 0 1 1 0 0
e8 0 0 1 1 1

(a)When should we hike and when not?

if ¬Lecture and ¬Concert then Hike
if Lecture then ¬Hike
if Concert then ¬Hike

(b) Example decision set

Lecture?

0

1

Concert?

0

1

1

0

0

(c) Example decision tree

120 / 168

Interpretable ML models

Example Lecture Concert Expo Shop Hike?

e1 1 0 1 0 0
e2 1 0 0 1 0
e3 0 0 1 0 1
e4 1 1 0 0 0
e5 0 0 0 1 1
e6 1 1 1 1 0
e7 0 1 1 0 0
e8 0 0 1 1 1

(a)When should we hike and when not?

if ¬Lecture and ¬Concert then Hike
if Lecture then ¬Hike
if Concert then ¬Hike

(b) Example decision set

Lecture?

0

1

Concert?

0

1

1

0

0

(c) Example decision tree

120 / 168

Interpretable ML models

[IPNM18, NIPM18]

can be encoded into SAT

a series of SAT oracle calls

121 / 168

Smallest decision trees – encoding sizes in bytes

[NIPM18]

Model Weather Mouse Cancer Car Income

CP’09* 27K 3.5M 92G 842M 354G

IJCAI’18 190K 1.2M 5.2M 4.1M 1.2G

122 / 168

Smallest decision trees – encoding sizes in bytes

[NIPM18]

Model Weather Mouse Cancer Car Income

CP’09* 27K 3.5M 92G 842M 354G

IJCAI’18 190K 1.2M 5.2M 4.1M 1.2G

122 / 168

Post-hoc explanations

State of the art

heuristic approaches exist
(e.g. LIME or Anchor)

• local explanations
• no guarantees

(un-)reliable?

123 / 168

State of the art

heuristic approaches exist
(e.g. LIME or Anchor)

• local explanations

• no guarantees
(un-)reliable?

123 / 168

State of the art

heuristic approaches exist
(e.g. LIME or Anchor)

• local explanations
• no guarantees

(un-)reliable?

123 / 168

State of the art

heuristic approaches exist
(e.g. LIME or Anchor)

• local explanations
• no guarantees

(un-)reliable?

123 / 168

From ML model to logic

formula Mcube I literal π

I ∧M⊨ π

124 / 168

From ML model to logic

formula M

cube I literal π

I ∧M⊨ π

124 / 168

From ML model to logic

formula Mcube I

literal π

I ∧M⊨ π

124 / 168

From ML model to logic

formula Mcube I literal π

I ∧M⊨ π

124 / 168

From ML model to logic

formula Mcube I literal π

I ∧M⊨ π
124 / 168

Abductive explanations of ML models

[INMS19]

given a classifier M, a cube I and a prediction π,

compute a (cardinality- or subset-) minimal Em ⊆ I s.t.

Em ∧M ̸ ⊨⊥
and

Em ∧M⊨ π

iterative explanation procedure

125 / 168

Abductive explanations of ML models

[INMS19]

given a classifier M, a cube I and a prediction π,
compute a (cardinality- or subset-) minimal Em ⊆ I s.t.

Em ∧M ̸ ⊨⊥
and

Em ∧M⊨ π

iterative explanation procedure

125 / 168

Abductive explanations of ML models

[INMS19]

given a classifier M, a cube I and a prediction π,
compute a (cardinality- or subset-) minimal Em ⊆ I s.t.

Em ∧M ̸ ⊨⊥
and

Em ∧M⊨ π

iterative explanation procedure

125 / 168

Abductive explanations of ML models

[INMS19]

given a classifier M, a cube I and a prediction π,
compute a (cardinality- or subset-) minimal Em ⊆ I s.t.

Em ∧M ̸ ⊨⊥
and

Em ∧M⊨ π

iterative explanation procedure
125 / 168

Computing primes

1. Em ∧M ̸ ⊨⊥

— tautology
2. Em ∧M⊨ π ⇔ Em ⊨ (M→ π)

Em is a prime implicant of M→ π

126 / 168

Computing primes

1. Em ∧M ̸ ⊨⊥ — tautology

2. Em ∧M⊨ π ⇔ Em ⊨ (M→ π)

Em is a prime implicant of M→ π

126 / 168

Computing primes

1. Em ∧M ̸ ⊨⊥ — tautology
2. Em ∧M⊨ π

⇔ Em ⊨ (M→ π)

Em is a prime implicant of M→ π

126 / 168

Computing primes

1. Em ∧M ̸ ⊨⊥ — tautology
2. Em ∧M⊨ π ⇔ Em ⊨ (M→ π)

Em is a prime implicant of M→ π

126 / 168

Computing primes

1. Em ∧M ̸ ⊨⊥ — tautology
2. Em ∧M⊨ π ⇔ Em ⊨ (M→ π)

Em is a prime implicant of M→ π

126 / 168

Computing one subset-minimal explanation

Input: model M, initial cube I, prediction π

Output: Subset-minimal explanation Em

begin
for l ∈ I :

if Entails(I \ {l},M→ π) : # make an oracle call
I← I \ {l}

return I

end

127 / 168

Examples

(a) (b) (c) (d)

Figure 3: Possible minimal explanations for digit one.

(a) (b) (c) (d)

Figure 4: Possible minimal explanations for digit three.

128 / 168

XAI summary

principled approach to XAI

based on abductive reasoning
applies a reasoning oracle, e.g. SAT, SMT or MILP

provides minimality guarantees
global explanations!

129 / 168

XAI summary

principled approach to XAI

based on abductive reasoning

applies a reasoning oracle, e.g. SAT, SMT or MILP
provides minimality guarantees

global explanations!

129 / 168

XAI summary

principled approach to XAI

based on abductive reasoning
applies a reasoning oracle, e.g. SAT, SMT or MILP

provides minimality guarantees
global explanations!

129 / 168

XAI summary

principled approach to XAI

based on abductive reasoning
applies a reasoning oracle, e.g. SAT, SMT or MILP

provides minimality guarantees

global explanations!

129 / 168

XAI summary

principled approach to XAI

based on abductive reasoning
applies a reasoning oracle, e.g. SAT, SMT or MILP

provides minimality guarantees
global explanations!

129 / 168

What next?

What next?

enumeration of explanations?

preferences over explanations?
assessment heuristic approaches!

130 / 168

What next?

enumeration of explanations?
preferences over explanations?

assessment heuristic approaches!

130 / 168

What next?

enumeration of explanations?
preferences over explanations?

assessment heuristic approaches!

130 / 168

Assessing heuristic explanations

[NSM+19]

unconstrained feature space samples with ≤ 50% difference

131 / 168

PySAT and RC2

PySAT and RC2

PySAT is a Python framework for
quick prototyping with SAT oracles

https://pysathq.github.io/

RC2 is a MaxSAT solver that
won two complete categories
of MaxSAT Evaluations 2018 & 2019
(FLoC Olympic Games 2018)

https://maxsat-evaluations.github.io/

132 / 168

https://pysathq.github.io/
https://maxsat-evaluations.github.io/

PySAT and RC2

PySAT is a Python framework for
quick prototyping with SAT oracles

https://pysathq.github.io/

RC2 is a MaxSAT solver that
won two complete categories
of MaxSAT Evaluations 2018 & 2019
(FLoC Olympic Games 2018)

https://maxsat-evaluations.github.io/

132 / 168

https://pysathq.github.io/
https://maxsat-evaluations.github.io/

Overview of PySAT

[IMM18]

PySAT modules

solvers
module

cardenc
module

formula
module

PySAT API

• Open source, available on github
• Comprehensive list of SAT solvers
• Comprehensive list of cardinality encodings
• Fairly comprehensive documentation
• Several use cases

133 / 168

Overview of PySAT

[IMM18]

PySAT modules

solvers
module

cardenc
module

formula
module

PySAT API

• Open source, available on github

• Comprehensive list of SAT solvers
• Comprehensive list of cardinality encodings
• Fairly comprehensive documentation
• Several use cases

133 / 168

Overview of PySAT

[IMM18]

PySAT modules

solvers
module

cardenc
module

formula
module

PySAT API

• Open source, available on github
• Comprehensive list of SAT solvers
• Comprehensive list of cardinality encodings
• Fairly comprehensive documentation
• Several use cases

133 / 168

Available solvers

Solver Version
Glucose 3.0
Glucose 4.1
Lingeling bbc-9230380-160707
Minicard 1.2
Minisat 2.2 release
Minisat GitHub version
MapleCM SAT competition 2018
Maplesat MapleCOMSPS_LRB

... ...

• Solvers can either be used incrementally or non-incrementally
• Tools can use multiple solvers, e.g. for hitting set dualization or CEGAR-based QBF
solving

• URL: https://pysathq.github.io/docs/html/api/solvers.html

134 / 168

https://pysathq.github.io/docs/html/api/solvers.html

Formula manipulation

Features
CNF & Weighted CNF (WCNF)
Read formulas from file/string
Write formulas to file
Append clauses to formula
Negate CNF formulas
Translate between CNF and WCNF
ID manager

• URL: https://pysathq.github.io/docs/html/api/formula.html

135 / 168

https://pysathq.github.io/docs/html/api/formula.html

Available cardinality encodings

Name Type
pairwise AtMost1
bitwise AtMost1
ladder AtMost1

sequential counter AtMostk
sorting network AtMostk

cardinality network AtMostk
totalizer AtMostk
mtotalizer AtMostk
kmtotalizer AtMostk

• Also AtLeastK and EqualsK constraints

• URL: https://pysathq.github.io/docs/html/api/card.html

136 / 168

https://pysathq.github.io/docs/html/api/card.html

Installation & info

• Installation:
$ [sudo] pip2|pip3 install python-sat

• Website: https://pysathq.github.io/

137 / 168

https://pysathq.github.io/

Basic interface – Python3 shell

>>> from pysat.card import *
>>> am1 = CardEnc.atmost(lits=[1, -2, 3], encoding=EncType.pairwise)
>>> print(am1.clauses)
[[-1, 2], [-1, -3], [2, -3]]
>>>
>>> from pysat.solvers import Solver
>>> with Solver(name='m22', bootstrap_with=am1.clauses) as s:
... if s.solve(assumptions=[1, 2, 3]) == False:
... print(s.get_core())
[3, 1]

138 / 168

Basic interface – Python3 script

#!/usr/local/bin/python3
from sys import argv

from pysat.formula import CNF
from pysat.solvers import Glucose3, Solver

formula = CNF()
formula.append([-1, 2, 4])
formula.append([1, -2, 5])
formula.append([-1, -2, 6])
formula.append([1, 2, 7])

g = Glucose3(bootstrap_with=formula.clauses)

if g.solve(assumptions=[-4, -5, -6, -7]) == False:
print("Core: ", g.get_core())

139 / 168

Example: naive (deletion) MUS extraction

Input : Set F
Output: Minimal subsetM
begin
M← F
foreach c ∈M do

if ¬SAT(M\ {c}) then
M←M\ {c} // If ¬SAT(M\ {c}), then c ̸∈ MUS

returnM // FinalM is MUS
end

• Number of predicate tests: O(m) [CD91, BDTW93]

140 / 168

Naive MUS extraction I

def main():
cnf = CNF(from_file=argv[1]) # create a CNF object from file
(rnv, assumps) = add_assumps(cnf)

oracle = Solver(name='g3', bootstrap_with=cnf.clauses)

mus = find_mus(assumps, oracle)
mus = [ref - rnv for ref in mus]
print("MUS: ", mus)

if __name__== "__main__":
main() 141 / 168

Naive MUS extraction II

def add_assumps(cnf):
rnv = topv = cnf.nv
assumps = [] # list of assumptions to use
for i in range(len(cnf.clauses)):

topv += 1
assumps.append(topv) # register literal
cnf.clauses[i].append(-topv) # extend clause with literal

cnf.nv = cnf.nv + len(assumps) # update # of vars
return rnv, assumps

def main():
cnf = CNF(from_file=argv[1]) # create a CNF object from file
(rnv, assumps) = add_assumps(cnf)

oracle = Solver(name='g3', bootstrap_with=cnf.clauses)

mus = find_mus(assumps, oracle)
mus = [ref - rnv for ref in mus]
print("MUS: ", mus)

if __name__== "__main__":
main() 142 / 168

Naive MUS extraction III

from sys import argv

from pysat.formula import CNF
from pysat.solvers import Solver

def find_mus(assmp, oracle):
i = 0
while i < len(assmp):

ts = assmp[:i] + assmp[(i+1):]
if not oracle.solve(assumptions=ts):

assmp = ts
else:

i += 1
return assmp

143 / 168

Naive MUS extraction III

from sys import argv

from pysat.formula import CNF
from pysat.solvers import Solver

def find_mus(assmp, oracle):
i = 0
while i < len(assmp):

ts = assmp[:i] + assmp[(i+1):]
if not oracle.solve(assumptions=ts):

assmp = ts
else:

i += 1
return assmp

Demo

143 / 168

A less naive MUS extractor
def clset_refine(assmp, oracle):

assmp = sorted(assmp)
while True:

oracle.solve(assumptions=assmp)
ts = sorted(oracle.get_core())
if ts == assmp:

break
assmp = ts

return assmp
...
def main():

cnf = CNF(from_file=argv[1]) # create a CNF object from file
(rnv, assumps) = add_assumps(cnf)

oracle = Solver(name='g3', bootstrap_with=cnf.clauses)

assumps = clset_refine(assumps, oracle)
mus = find_mus(assumps, oracle)
mus = [ref - rnv for ref in mus]
print("MUS: ", mus)

if __name__== "__main__":
main() 144 / 168

PySAT and MAPF demo

[Sur12]

given K agents and K goals on a map of size N×M,

compute “shortest path” for all pairs (agent, goal)

plenty of works on solving MAPF with SAT!

demo for MAPF@Minecraft+PySAT:
https://reason.di.fc.ul.pt/~aign/storage/mcmapf2.mov

145 / 168

https://reason.di.fc.ul.pt/~aign/storage/mcmapf2.mov

PySAT and MAPF demo

[Sur12]

given K agents and K goals on a map of size N×M,

compute “shortest path” for all pairs (agent, goal)

plenty of works on solving MAPF with SAT!

demo for MAPF@Minecraft+PySAT:
https://reason.di.fc.ul.pt/~aign/storage/mcmapf2.mov

145 / 168

https://reason.di.fc.ul.pt/~aign/storage/mcmapf2.mov

PySAT and MAPF demo

[Sur12]

given K agents and K goals on a map of size N×M,

compute “shortest path” for all pairs (agent, goal)

plenty of works on solving MAPF with SAT!

demo for MAPF@Minecraft+PySAT:
https://reason.di.fc.ul.pt/~aign/storage/mcmapf2.mov

145 / 168

https://reason.di.fc.ul.pt/~aign/storage/mcmapf2.mov

PySAT and MAPF demo

[Sur12]

given K agents and K goals on a map of size N×M,

compute “shortest path” for all pairs (agent, goal)

plenty of works on solving MAPF with SAT!

demo for MAPF@Minecraft+PySAT:
https://reason.di.fc.ul.pt/~aign/storage/mcmapf2.mov

145 / 168

https://reason.di.fc.ul.pt/~aign/storage/mcmapf2.mov

6 SAT Oracles & Proof Complexity

146 / 168

Proof Complexity

• CDCL is the main technique for solving SAT
• When formulas are unsatisfiable, CDCL is equivalent to Resolution
• Success of CDCL demonstrates the reach of the Resolution proof system

• Some basic problems, like pigeon-hole principle, cannot have short Resolution
Refutations

• From proof complexity point of view, Resolution is regarded as a rather weak proof
system

• Recent efforts for developing efficient implementations of stronger proof systems:
• Extended Resolution (ExtRes)
• DRAT
• Cutting Planes (CP)
• Dual-Rail Maximum Satisfiability (DRMaxSAT)

147 / 168

Proof Complexity

• CDCL is the main technique for solving SAT
• When formulas are unsatisfiable, CDCL is equivalent to Resolution
• Success of CDCL demonstrates the reach of the Resolution proof system
• Some basic problems, like pigeon-hole principle, cannot have short Resolution
Refutations

• From proof complexity point of view, Resolution is regarded as a rather weak proof
system

• Recent efforts for developing efficient implementations of stronger proof systems:
• Extended Resolution (ExtRes)
• DRAT
• Cutting Planes (CP)
• Dual-Rail Maximum Satisfiability (DRMaxSAT)

147 / 168

Proof Complexity

• CDCL is the main technique for solving SAT
• When formulas are unsatisfiable, CDCL is equivalent to Resolution
• Success of CDCL demonstrates the reach of the Resolution proof system
• Some basic problems, like pigeon-hole principle, cannot have short Resolution
Refutations

• From proof complexity point of view, Resolution is regarded as a rather weak proof
system

• Recent efforts for developing efficient implementations of stronger proof systems:
• Extended Resolution (ExtRes)
• DRAT
• Cutting Planes (CP)
• Dual-Rail Maximum Satisfiability (DRMaxSAT)

147 / 168

Proof Complexity

• CDCL is the main technique for solving SAT
• When formulas are unsatisfiable, CDCL is equivalent to Resolution
• Success of CDCL demonstrates the reach of the Resolution proof system
• Some basic problems, like pigeon-hole principle, cannot have short Resolution
Refutations

• From proof complexity point of view, Resolution is regarded as a rather weak proof
system

• Recent efforts for developing efficient implementations of stronger proof systems:
• Extended Resolution (ExtRes)
• DRAT
• Cutting Planes (CP)
• Dual-Rail Maximum Satisfiability (DRMaxSAT)

147 / 168

Dual-Rail Maximum Satisfiability
(DRMaxSAT)

DRMaxSAT - General Idea

• Translates a CNF formula F using the Dual-Rail Encoding
• Uses a MaxSAT algorithm to obtain the cost of the encoded formula
• Determines the satisfiability of F based on the cost of the encoded formula

148 / 168

DRMaxSAT: Dual-Rail Encoding (DRE)

Dual-Rail Encoding (DRE) [DAC87, AI99]

Input: F CNF formula with N variables X = {x1, . . . , xN}

Output: MaxSAT problem < H,S >:

• for each xi ∈ X:
• associate new variables pi and ni

xi = 1 iff pi = 1, and xi = 0 iff ni = 1

• add to S the clauses (pi) and (ni)
• add to H the clause (¬pi ∨ ¬ni) (P clauses)

• for each clause c ∈ F add to H the clause c′:
• if xi ∈ c then ¬ni ∈ c′

• if ¬xi ∈ c then ¬pi ∈ c′

149 / 168

DRMaxSAT: Dual-Rail Encoding (DRE)

Dual-Rail Encoding (DRE) [DAC87, AI99]

Input: F CNF formula with N variables X = {x1, . . . , xN}

Output: MaxSAT problem < H,S >:

• for each xi ∈ X:
• associate new variables pi and ni

xi = 1 iff pi = 1, and xi = 0 iff ni = 1

• add to S the clauses (pi) and (ni)
• add to H the clause (¬pi ∨ ¬ni) (P clauses)

• for each clause c ∈ F add to H the clause c′:
• if xi ∈ c then ¬ni ∈ c′

• if ¬xi ∈ c then ¬pi ∈ c′

149 / 168

DRMaxSAT: Dual-Rail Encoding (DRE)

Dual-Rail Encoding (DRE) [DAC87, AI99]

Input: F CNF formula with N variables X = {x1, . . . , xN}

Output: MaxSAT problem < H,S >:

• for each xi ∈ X:
• associate new variables pi and ni

xi = 1 iff pi = 1, and xi = 0 iff ni = 1

• add to S the clauses (pi) and (ni)
• add to H the clause (¬pi ∨ ¬ni) (P clauses)

• for each clause c ∈ F add to H the clause c′:
• if xi ∈ c then ¬ni ∈ c′

• if ¬xi ∈ c then ¬pi ∈ c′

149 / 168

DRMaxSAT: Dual-Rail Encoding (DRE)

Dual-Rail Encoding (DRE) [DAC87, AI99]

Input: F CNF formula with N variables X = {x1, . . . , xN}

Output: MaxSAT problem < H,S >:

• for each xi ∈ X:
• associate new variables pi and ni

xi = 1 iff pi = 1, and xi = 0 iff ni = 1

• add to S the clauses (pi) and (ni)
• add to H the clause (¬pi ∨ ¬ni) (P clauses)

• for each clause c ∈ F add to H the clause c′:
• if xi ∈ c then ¬ni ∈ c′

• if ¬xi ∈ c then ¬pi ∈ c′

149 / 168

DRMaxSAT: DRE Example

F = {(¬x1 ∨ ¬x2), (x1), (x2), (¬x2)}

• MaxSAT problem < H,S >
• for x1:

• create p1 and n1
• add (p1), (n1) to S
• add (¬p1 ∨ ¬n1) to H

• for x2:
• create p2 and n2
• add (p2), (n2) to S
• add (¬p2 ∨ ¬n2) to H

150 / 168

DRMaxSAT: DRE Example

F = {(¬x1 ∨ ¬x2), (x1), (x2), (¬x2)}

• MaxSAT problem < H,S >

• for x1:
• create p1 and n1
• add (p1), (n1) to S
• add (¬p1 ∨ ¬n1) to H

• for x2:
• create p2 and n2
• add (p2), (n2) to S
• add (¬p2 ∨ ¬n2) to H

150 / 168

DRMaxSAT: DRE Example

F = {(¬x1 ∨ ¬x2), (x1), (x2), (¬x2)}

• MaxSAT problem < H,S >
• for x1:

• create p1 and n1
• add (p1), (n1) to S
• add (¬p1 ∨ ¬n1) to H

• for x2:
• create p2 and n2
• add (p2), (n2) to S
• add (¬p2 ∨ ¬n2) to H

150 / 168

DRMaxSAT: DRE Example

F = {(¬x1 ∨ ¬x2), (x1), (x2), (¬x2)}

• MaxSAT problem < H,S >

• for (¬x1 ∨ ¬x2):
• add (¬p1 ∨ ¬p2) to H

• for (x1), (x2), (¬x2):
• add (¬n1), (¬n2), (¬p2) to H

151 / 168

DRMaxSAT: DRE Example

F = {(¬x1 ∨ ¬x2), (x1), (x2), (¬x2)}

MaxSAT problem < H,S >

:

S ={(p1), (n1), (p2), (n1)}

H ={(¬p1 ∨ ¬n1), (¬p2 ∨ ¬n2),
(¬p1 ∨ ¬p2),
(¬n1), (¬n2), (¬p2)}

MaxSAT Cost: 3

152 / 168

DRMaxSAT: DRE Example

F = {(¬x1 ∨ ¬x2), (x1), (x2), (¬x2)}

MaxSAT problem < H,S > :

S ={(p1), (n1), (p2), (n1)}

H ={(¬p1 ∨ ¬n1), (¬p2 ∨ ¬n2),
(¬p1 ∨ ¬p2),
(¬n1), (¬n2), (¬p2)}

MaxSAT Cost: 3

152 / 168

DRMaxSAT: DRE Example

F = {(¬x1 ∨ ¬x2), (x1), (x2), (¬x2)}

MaxSAT problem < H,S > :

S ={(p1), (n1), (p2), (n1)}

H ={(¬p1 ∨ ¬n1), (¬p2 ∨ ¬n2),
(¬p1 ∨ ¬p2),
(¬n1), (¬n2), (¬p2)}

MaxSAT Cost: 3

152 / 168

DRMaxSAT: DRE Theorem

Theorem
F is satisfiable iff there is a truth assignment satisfying H that satisfies at least N clauses in
S . [SAT17]

Example: N = 2 and MaxSAT cost 3, thus F is unsatisfiable.

153 / 168

DRMaxSAT: DRE Theorem

Theorem
F is satisfiable iff there is a truth assignment satisfying H that satisfies at least N clauses in
S . [SAT17]

Example: N = 2 and MaxSAT cost 3, thus F is unsatisfiable.

153 / 168

DRMaxSAT: General Pseudo-Code

input: F
HEnc(F) = ⟨H,S⟩ ← DualRailEncode(F)
cost← ApplyMaxSAT(HEnc(F))

if cost ≤ |var(F)| then
return true

end
else
return false

end

154 / 168

DRMaxSAT: General Pseudo-Code

input: F
HEnc(F) = ⟨H,S⟩ ← DualRailEncode(F)
cost← ApplyMaxSAT(HEnc(F))

if cost ≤ |var(F)| then
return true

end

else
return false

end

154 / 168

DRMaxSAT: General Pseudo-Code

input: F
HEnc(F) = ⟨H,S⟩ ← DualRailEncode(F)
cost← ApplyMaxSAT(HEnc(F))

if cost ≤ |var(F)| then
return true

end
else
return false

end

154 / 168

DRMaxSAT: Theoretical Results

What is the power of DRMaxSAT?

Considered three MaxSAT approaches with DRMaxSAT:

• MaxSAT Resolution
• Core-guided MaxSAT Algorithms
• Implict Hitting Set MaxSAT Algorithms (MaxHS-like algorithms)

155 / 168

DRMaxSAT: Theoretical Results

What is the power of DRMaxSAT?

Considered three MaxSAT approaches with DRMaxSAT:

• MaxSAT Resolution
• Core-guided MaxSAT Algorithms
• Implict Hitting Set MaxSAT Algorithms (MaxHS-like algorithms)

155 / 168

DRMaxSAT: Summary of Theoretical Results on MaxSAT Resolution

Theorem
Multiple DRMaxSAT simulates tree-like Resolution. [Source: AAAI18]

Theorem
Weighted DRMaxSAT simulates general Resolution. [Source: AAAI18]

Theorem
DRMaxSAT refutes both PHP and 2PHP in polynomial time. [Source: SAT17,AAAI18]

Theorem
The DRMaxSAT proof system does not polynomially simulate CP. [Source: AAAI18]

• DRMaxSAT is strictly stronger than Resolution
• DRMaxSAT does not simulate Cutting Planes

156 / 168

DRMaxSAT: Summary of Theoretical Results on MaxSAT Resolution

Theorem
Multiple DRMaxSAT simulates tree-like Resolution. [Source: AAAI18]

Theorem
Weighted DRMaxSAT simulates general Resolution. [Source: AAAI18]

Theorem
DRMaxSAT refutes both PHP and 2PHP in polynomial time. [Source: SAT17,AAAI18]

Theorem
The DRMaxSAT proof system does not polynomially simulate CP. [Source: AAAI18]

• DRMaxSAT is strictly stronger than Resolution
• DRMaxSAT does not simulate Cutting Planes

156 / 168

DRMaxSAT: Summary of Theoretical Results on MaxSAT Resolution

Theorem
Multiple DRMaxSAT simulates tree-like Resolution. [Source: AAAI18]

Theorem
Weighted DRMaxSAT simulates general Resolution. [Source: AAAI18]

Theorem
DRMaxSAT refutes both PHP and 2PHP in polynomial time. [Source: SAT17,AAAI18]

Theorem
The DRMaxSAT proof system does not polynomially simulate CP. [Source: AAAI18]

• DRMaxSAT is strictly stronger than Resolution
• DRMaxSAT does not simulate Cutting Planes

156 / 168

DRMaxSAT: Summary of Theoretical Results on MaxSAT Resolution

Theorem
Multiple DRMaxSAT simulates tree-like Resolution. [Source: AAAI18]

Theorem
Weighted DRMaxSAT simulates general Resolution. [Source: AAAI18]

Theorem
DRMaxSAT refutes both PHP and 2PHP in polynomial time. [Source: SAT17,AAAI18]

Theorem
The DRMaxSAT proof system does not polynomially simulate CP. [Source: AAAI18]

• DRMaxSAT is strictly stronger than Resolution
• DRMaxSAT does not simulate Cutting Planes

156 / 168

DRMaxSAT: Summary of Theoretical Results with Core-guided Algorithms

Theorem
Core-guided MaxSAT with the dual-rail encoding p-simulates unrestricted Resolution.

Theorem
Core-guided MaxSAT with the dual-rail encoding refutes both PHP and 2PHP in polynomial
time. [Source: SAT17,AAAI18]

• Core-guided MaxSAT with the dual-rail encoding is strictly stronger than Resolution

157 / 168

DRMaxSAT: Summary of Theoretical Results with Core-guided Algorithms

Theorem
Core-guided MaxSAT with the dual-rail encoding p-simulates unrestricted Resolution.

Theorem
Core-guided MaxSAT with the dual-rail encoding refutes both PHP and 2PHP in polynomial
time. [Source: SAT17,AAAI18]

• Core-guided MaxSAT with the dual-rail encoding is strictly stronger than Resolution

157 / 168

DRMaxSAT: Summary of Theoretical Results with Core-guided Algorithms

Theorem
Core-guided MaxSAT with the dual-rail encoding p-simulates unrestricted Resolution.

Theorem
Core-guided MaxSAT with the dual-rail encoding refutes both PHP and 2PHP in polynomial
time. [Source: SAT17,AAAI18]

• Core-guided MaxSAT with the dual-rail encoding is strictly stronger than Resolution

157 / 168

DRMaxSAT: Summary of Theoretical Results with MaxHS-like Algorithms

Theorem
MaxHS-like MaxSAT Algorithms with the dual-rail encoding refutes both PHP and 2PHP in
polynomial time. [Source: SAT19]

158 / 168

DRMaxSAT: Experimental Results

What is the behaviour of DRMaxSAT in practice?

Several problems/principles hard for resolution:

• (PHP) Pigeonhole Principle
• (2PHP) Doubled Pigeonhole Principle
• (MCB) Mutilated Chessboard Principle
• (URQ) Urquhart/Tseitin formulas
• (COMB) Combination formulas PHPm+1

m ∨ URQn,i

159 / 168

DRMaxSAT: Experimental Results

What is the behaviour of DRMaxSAT in practice?

Several problems/principles hard for resolution:

• (PHP) Pigeonhole Principle
• (2PHP) Doubled Pigeonhole Principle
• (MCB) Mutilated Chessboard Principle
• (URQ) Urquhart/Tseitin formulas
• (COMB) Combination formulas PHPm+1

m ∨ URQn,i

159 / 168

DRMaxSAT: Experimental Results - PHP

[Source: SAT17]

0 20 40 60 80 100
instances

10−3

10−2

10−1

100

101

102

103

C
PU

tim
e

(s
)

mscg (no P)
maxhs
lmhs
wbo (no P)
mscg
eva (no P)
eva
lmhs-nes (no P)
lmhs-nes
wbo

160 / 168

DRMaxSAT: Experimental Results - 2PHP

[Source: AAAI18]

0 10 20 30 40 50 60 70
instances

10−3

10−2

10−1

100

101

102

103

C
PU

tim
e

(s
)

maxhs (no P)
mscg (no P)
lmhs (no P)
lmhs-nes (no P)
wbo (no P)
eva (no P)
lgl
lp-wcnf
lp-cnf

lmhs
glucose
wbo
lgl-nocard
lmhs-nes
mscg
eva
maxhs

161 / 168

DRMaxSAT: Experimental Results - MCB

[Source: AAAI18]

0 10 20 30 40 50
instances

10−3

10−2

10−1

100

101

102

103

C
PU

tim
e

(s
)

maxhs
mscg (no P)
lmhs
lmhs-nes (no P)
wbo (no P)
lmhs-nes

eva (no P)
mscg
eva
lgl-nocard
glucose
wbo

162 / 168

DRMaxSAT: Experimental Results - URQ & COMB

[Source: SAT17]

0 10 20 30 40 50
instances

10−2

10−1

100

101

102

103

C
PU

tim
e

(s
)

maxhs
lmhs
lmhs-nes
lgl
wbo
lp-wcnf
mscg
lgl-nogauss
glucose
eva

0 20 40 60 80 100
instances

10−1

100

101

102

103

C
PU

tim
e

(s
)

lmhs
lmhs-nes
maxhs
lgl-nocard
lgl

lp-wcnf
wbo
glucose
mscg
eva

URQ COMB

163 / 168

7 A Glimpse of the Future

164 / 168

Take home messages

• Remarkable improvements in (CDCL) SAT solver performance
• SAT is a low-level, but very powerful problem solving paradigm

• Wide range of applications of SAT oracles
• High profile applications, e.g. verification of ML models & XAI
• Solving problems (well) beyond NP
• Recent inroads in proof complexity

• Ongoing arms race for proof systems stronger than resolution/clause learning, e.g. extended
resolution, cutting planes and DRMaxSAT

• Also, there are other success stories, e.g. ILP

165 / 168

Take home messages

• Remarkable improvements in (CDCL) SAT solver performance
• SAT is a low-level, but very powerful problem solving paradigm

• Wide range of applications of SAT oracles
• High profile applications, e.g. verification of ML models & XAI
• Solving problems (well) beyond NP
• Recent inroads in proof complexity

• Ongoing arms race for proof systems stronger than resolution/clause learning, e.g. extended
resolution, cutting planes and DRMaxSAT

• Also, there are other success stories, e.g. ILP

165 / 168

Take home messages

• Remarkable improvements in (CDCL) SAT solver performance
• SAT is a low-level, but very powerful problem solving paradigm

• Wide range of applications of SAT oracles
• High profile applications, e.g. verification of ML models & XAI
• Solving problems (well) beyond NP
• Recent inroads in proof complexity

• Ongoing arms race for proof systems stronger than resolution/clause learning, e.g. extended
resolution, cutting planes and DRMaxSAT

• Also, there are other success stories, e.g. ILP

165 / 168

Some final notes

• There is an ongoing revolution on problem solving with SAT oracles
• E.g. QBF, model-based diagnosis, explainability, theorem proving, program synthesis, XAI, ...
• But also with ILP & SMT oracles

• The use of SAT/ILP/SMT oracles is impacting problem solving for many different
complexity classes

• With well-known representative problems, e.g. QBF, #SAT, etc.
• More to be expected

• E.g. the age of modular reasoning?

• Many fascinating oracle-related research topics out there !
• Additional connections with rigorous reasoning in ML expected

166 / 168

Some final notes

• There is an ongoing revolution on problem solving with SAT oracles
• E.g. QBF, model-based diagnosis, explainability, theorem proving, program synthesis, XAI, ...
• But also with ILP & SMT oracles

• The use of SAT/ILP/SMT oracles is impacting problem solving for many different
complexity classes

• With well-known representative problems, e.g. QBF, #SAT, etc.
• More to be expected

• E.g. the age of modular reasoning?

• Many fascinating oracle-related research topics out there !
• Additional connections with rigorous reasoning in ML expected

166 / 168

Sample of tools

• PySAT
• SAT solvers:

• MiniSat
• Glucose

• MaxSAT solvers:
• RC2
• MSCG
• OpenWBO
• MaxHS

• MUS extractors:
• MUSer

• MCS extractors:
• mcsXL
• LBX
• MCSls

• Many other tools available from the ReasonLab server
167 / 168

https://pysathq.github.io/
https://github.com/niklasso/minisat
http://www.labri.fr/perso/lsimon/glucose/
https://reason.di.fc.ul.pt/wiki/doku.php?id=rc2
https://reason.di.fc.ul.pt/wiki/doku.php?id=mscg
http://sat.inesc-id.pt/open-wbo/
http://www.maxhs.org
https://reason.di.fc.ul.pt/wiki/doku.php?id=muser
https://reason.di.fc.ul.pt/wiki/doku.php?id=mcsxl
https://reason.di.fc.ul.pt/wiki/doku.php?id=lbx
https://reason.di.fc.ul.pt/wiki/doku.php?id=mcsls
https://reason.di.fc.ul.pt/wiki/doku.php?id=soft

Questions?

168 / 168

References i

[ABGL12] Carlos Ansótegui, Maria Luisa Bonet, Joel Gabàs, and Jordi Levy.
Improving SAT-based weighted MaxSAT solvers.
In CP, pages 86–101, 2012.

[ABL09] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy.
Solving (weighted) partial MaxSAT through satisfiability testing.
In SAT, pages 427–440, 2009.

[ABL10a] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy.
A new algorithm for weighted partial MaxSAT.
In AAAI, 2010.

[ABL+10b] Josep Argelich, Daniel Le Berre, Inês Lynce, Joao Marques-Silva, and Pascal Rapicault.
Solving linux upgradeability problems using boolean optimization.
In LoCoCo, volume 29 of EPTCS, pages 11–22, 2010.

[ABL13] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy.
SAT-based MaxSAT algorithms.
Artif. Intell., 196:77–105, 2013.

[AL08] Josep Argelich and Inês Lynce.
CNF instances from the software package installation problem.
In RCRA, volume 451 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

169 / 168

References ii

[ALS09] Josep Argelich, Inês Lynce, and João P. Marques Silva.
On solving boolean multilevel optimization problems.
In IJCAI, pages 393–398, 2009.

[AMM15] M. Fareed Arif, Carlos Mencía, and Joao Marques-Silva.
Efficient MUS enumeration of horn formulae with applications to axiom pinpointing.
In SAT, volume 9340 of Lecture Notes in Computer Science, pages 324–342. Springer, 2015.

[ANO+12] Ignasi Abío, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell, and Valentin
Mayer-Eichberger.
A new look at BDDs for pseudo-boolean constraints.
J. Artif. Intell. Res., 45:443–480, 2012.

[ANOR09] Roberto Asín, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-Carbonell.
Cardinality networks and their applications.
In SAT, pages 167–180, 2009.

[ANOR11] Roberto Asín, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-Carbonell.
Cardinality networks: a theoretical and empirical study.
Constraints, 16(2):195–221, 2011.

[AS09] Gilles Audemard and Laurent Simon.
Predicting learnt clauses quality in modern SAT solvers.
In IJCAI, pages 399–404, 2009.

170 / 168

References iii

[Bat68] Kenneth E. Batcher.
Sorting networks and their applications.
In AFIPS Spring Joint Computing Conference, volume 32 of AFIPS Conference Proceedings, pages 307–314.
Thomson Book Company, Washington D.C., 1968.

[BBR09] Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel.
New encodings of pseudo-boolean constraints into CNF.
In SAT, pages 181–194, 2009.

[BDTW93] R. R. Bakker, F. Dikker, F. Tempelman, and P. M. Wognum.
Diagnosing and solving over-determined constraint satisfaction problems.
In IJCAI, pages 276–281, 1993.

[BF15] Armin Biere and Andreas Fröhlich.
Evaluating CDCL restart schemes.
In Sixth Pragmatics of SAT workshop, 2015.

[Bie08] Armin Biere.
PicoSAT essentials.
JSAT, 4(2-4):75–97, 2008.

[BK15] Fahiem Bacchus and George Katsirelos.
Using minimal correction sets to more efficiently compute minimal unsatisfiable sets.
In CAV (2), volume 9207 of Lecture Notes in Computer Science, pages 70–86. Springer, 2015.

171 / 168

References iv

[BKS04] Paul Beame, Henry A. Kautz, and Ashish Sabharwal.
Towards understanding and harnessing the potential of clause learning.
J. Artif. Intell. Res., 22:319–351, 2004.

[BLM12] Anton Belov, Inês Lynce, and Joao Marques-Silva.
Towards efficient MUS extraction.
AI Commun., 25(2):97–116, 2012.

[BMS00] Luís Baptista and Joao Marques-Silva.
Using randomization and learning to solve hard real-world instances of satisfiability.
In CP, volume 1894 of Lecture Notes in Computer Science, pages 489–494. Springer, 2000.

[BP10] Daniel Le Berre and Anne Parrain.
The Sat4j library, release 2.2.
JSAT, 7(2-3):59–6, 2010.

[BS05] James Bailey and Peter J. Stuckey.
Discovery of minimal unsatisfiable subsets of constraints using hitting set dualization.
In PADL, pages 174–186, 2005.

[CD91] John W. Chinneck and Erik W. Dravnieks.
Locating minimal infeasible constraint sets in linear programs.
INFORMS Journal on Computing, 3(2):157–168, 1991.

172 / 168

References v

[Coo71] Stephen A. Cook.
The complexity of theorem-proving procedures.
In STOC, pages 151–158. ACM, 1971.

[CT95] Zhi-Zhong Chen and Seinosuke Toda.
The complexity of selecting maximal solutions.
Inf. Comput., 119(2):231–239, 1995.

[CZ10] Michael Codish and Moshe Zazon-Ivry.
Pairwise cardinality networks.
In LPAR (Dakar), volume 6355 of Lecture Notes in Computer Science, pages 154–172. Springer, 2010.

[DB11] Jessica Davies and Fahiem Bacchus.
Solving MAXSAT by solving a sequence of simpler SAT instances.
In CP, pages 225–239, 2011.

[DB13a] Jessica Davies and Fahiem Bacchus.
Exploiting the power of MIP solvers in MAXSAT.
In SAT, pages 166–181, 2013.

[DB13b] Jessica Davies and Fahiem Bacchus.
Postponing optimization to speed up MAXSAT solving.
In CP, pages 247–262, 2013.

173 / 168

References vi

[dK89] Johan de Kleer.
A comparison of ATMS and CSP techniques.
In IJCAI, pages 290–296. Morgan Kaufmann, 1989.

[DLL62] Martin Davis, George Logemann, and Donald W. Loveland.
A machine program for theorem-proving.
Commun. ACM, 5(7):394–397, 1962.

[DP60] Martin Davis and Hilary Putnam.
A computing procedure for quantification theory.
J. ACM, 7(3):201–215, 1960.

[dSNP88] J. L. de Siqueira N. and Jean-Francois Puget.
Explanation-based generalisation of failures.
In ECAI, pages 339–344, 1988.

[ES03] Niklas Eén and Niklas Sörensson.
An extensible SAT-solver.
In SAT, pages 502–518, 2003.

[ES06] Niklas Eén and Niklas Sörensson.
Translating pseudo-boolean constraints into SAT.
JSAT, 2(1-4):1–26, 2006.

174 / 168

References vii

[FM06] Zhaohui Fu and Sharad Malik.
On solving the partial MAX-SAT problem.
In SAT, volume 4121 of Lecture Notes in Computer Science, pages 252–265. Springer, 2006.

[FP01] Alan M. Frisch and Timothy J. Peugniez.
Solving non-boolean satisfiability problems with stochastic local search.
In IJCAI, pages 282–290. Morgan Kaufmann, 2001.

[FS02] Torsten Fahle and Meinolf Sellmann.
Cost based filtering for the constrained knapsack problem.
Annals OR, 115(1-4):73–93, 2002.

[Gav07] Marco Gavanelli.
The log-support encoding of CSP into SAT.
In CP, volume 4741 of Lecture Notes in Computer Science, pages 815–822. Springer, 2007.

[Gel09] Allen Van Gelder.
Improved conflict-clause minimization leads to improved propositional proof traces.
In SAT, pages 141–146, 2009.

[Gen02] Ian P. Gent.
Arc consistency in SAT.
In ECAI, pages 121–125. IOS Press, 2002.

175 / 168

References viii

[GF93] Georg Gottlob and Christian G. Fermüller.
Removing redundancy from a clause.
Artif. Intell., 61(2):263–289, 1993.

[GJ96] Richard Génisson and Philippe Jégou.
Davis and putnam were already checking forward.
In ECAI, pages 180–184, 1996.

[GN02] Evguenii I. Goldberg and Yakov Novikov.
BerkMin: A fast and robust SAT-solver.
In DATE, pages 142–149. IEEE Computer Society, 2002.

[GSC97] Carla P. Gomes, Bart Selman, and Nuno Crato.
Heavy-tailed distributions in combinatorial search.
In CP, volume 1330 of Lecture Notes in Computer Science, pages 121–135. Springer, 1997.

[HJL+15] Marijn Heule, Matti Järvisalo, Florian Lonsing, Martina Seidl, and Armin Biere.
Clause elimination for SAT and QSAT.
J. Artif. Intell. Res., 53:127–168, 2015.

[HLSB06] Fred Hemery, Christophe Lecoutre, Lakhdar Sais, and Frédéric Boussemart.
Extracting MUCs from constraint networks.
In ECAI, pages 113–117, 2006.

176 / 168

References ix

[HMM11] Federico Heras, António Morgado, and Joao Marques-Silva.
Core-guided binary search algorithms for maximum satisfiability.
In AAAI. AAAI Press, 2011.

[Hua07] Jinbo Huang.
The effect of restarts on the efficiency of clause learning.
In IJCAI, pages 2318–2323, 2007.

[IJM14] Alexey Ignatiev, Mikolas Janota, and Joao Marques-Silva.
Towards efficient optimization in package management systems.
In ICSE, pages 745–755, 2014.

[IMM+14] Alexey Ignatiev, António Morgado, Vasco M. Manquinho, Inês Lynce, and Joao Marques-Silva.
Progression in maximum satisfiability.
In ECAI, volume 263 of Frontiers in Artificial Intelligence and Applications, pages 453–458. IOS Press, 2014.

[IMM16] Alexey Ignatiev, António Morgado, and Joao Marques-Silva.
Propositional abduction with implicit hitting sets.
In ECAI, volume 285 of Frontiers in Artificial Intelligence and Applications, pages 1327–1335. IOS Press,
2016.

[IMM17] Alexey Ignatiev, António Morgado, and Joao Marques-Silva.
Cardinality encodings for graph optimization problems.
In IJCAI, pages 652–658, 2017.

177 / 168

References x

[IMM18] Alexey Ignatiev, António Morgado, and Joao Marques-Silva.
PySAT: A python toolkit for prototyping with SAT oracles.
In SAT, volume 10929 of Lecture Notes in Computer Science, pages 428–437. Springer, 2018.

[IMWM19] Alexey Ignatiev, Antonio Morgado, Georg Weissenbacher, and Joao Marques-Silva.
Model-based diagnosis with multiple observations.
In IJCAI, pages 1108–1115, 2019.

[INMS19] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
Abduction-based explanations for machine learning models.
In AAAI, 2019.

[IPM15] Alexey Ignatiev, Alessandro Previti, and Joao Marques-Silva.
SAT-based formula simplification.
In SAT, volume 9340 of Lecture Notes in Computer Science, pages 287–298. Springer, 2015.

[IPNM18] Alexey Ignatiev, Filipe Pereira, Nina Narodytska, and João Marques-Silva.
A SAT-based approach to learn explainable decision sets.
In IJCAR, volume 10900 of Lecture Notes in Computer Science, pages 627–645. Springer, 2018.

[JHB12] Matti Järvisalo, Marijn Heule, and Armin Biere.
Inprocessing rules.
In IJCAR, volume 7364 of Lecture Notes in Computer Science, pages 355–370. Springer, 2012.

178 / 168

References xi

[Jun04] Ulrich Junker.
QUICKXPLAIN: preferred explanations and relaxations for over-constrained problems.
In AAAI, pages 167–172, 2004.

[Kas90] Simon Kasif.
On the parallel complexity of discrete relaxation in constraint satisfaction networks.
Artif. Intell., 45(3):275–286, 1990.

[LGPC16a] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki.
Exponential recency weighted average branching heuristic for SAT solvers.
In AAAI, pages 3434–3440, 2016.

[LGPC16b] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki.
Learning rate based branching heuristic for SAT solvers.
In SAT, pages 123–140, 2016.

[LLX+17] Mao Luo, Chu-Min Li, Fan Xiao, Felip Manyà, and Zhipeng Lü.
An effective learnt clause minimization approach for CDCL SAT solvers.
In IJCAI, pages 703–711, 2017.

[LOM+18] Jia Hui Liang, Chanseok Oh, Minu Mathew, Ciza Thomas, Chunxiao Li, and Vijay Ganesh.
Machine learning-based restart policy for CDCL SAT solvers.
In SAT, pages 94–110, 2018.

179 / 168

References xii

[LPMM16] Mark H. Liffiton, Alessandro Previti, Ammar Malik, and Joao Marques-Silva.
Fast, flexible MUS enumeration.
Constraints, 21(2):223–250, 2016.

[LS08] Mark H. Liffiton and Karem A. Sakallah.
Algorithms for computing minimal unsatisfiable subsets of constraints.
J. Autom. Reasoning, 40(1):1–33, 2008.

[MBC+06] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jerome Vouillon, Berke Durak, Xavier Leroy, and Ralf
Treinen.
Managing the complexity of large free and open source package-based software distributions.
In ASE, pages 199–208, 2006.

[MDM14] António Morgado, Carmine Dodaro, and Joao Marques-Silva.
Core-guided MaxSAT with soft cardinality constraints.
In CP, volume 8656 of Lecture Notes in Computer Science, pages 564–573. Springer, 2014.

[MHM12] António Morgado, Federico Heras, and João Marques-Silva.
Improvements to core-guided binary search for MaxSAT.
In SAT, volume 7317 of Lecture Notes in Computer Science, pages 284–297. Springer, 2012.

[MIM14] António Morgado, Alexey Ignatiev, and João Marques-Silva.
MSCG: robust core-guided MaxSAT solving.
JSAT, 9:129–134, 2014.

180 / 168

References xiii

[MJB13] Joao Marques-Silva, Mikolás Janota, and Anton Belov.
Minimal sets over monotone predicates in boolean formulae.
In CAV, volume 8044 of Lecture Notes in Computer Science, pages 592–607. Springer, 2013.

[MJIM15] Joao Marques-Silva, Mikolás Janota, Alexey Ignatiev, and António Morgado.
Efficient model based diagnosis with maximum satisfiability.
In IJCAI, pages 1966–1972. AAAI Press, 2015.

[MMSP09] Vasco M. Manquinho, Joao Marques-Silva, and Jordi Planes.
Algorithms for weighted boolean optimization.
In SAT, volume 5584 of Lecture Notes in Computer Science, pages 495–508. Springer, 2009.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient SAT solver.
In DAC, pages 530–535. ACM, 2001.

[MP08] Joao Marques-Silva and Jordi Planes.
Algorithms for maximum satisfiability using unsatisfiable cores.
In DATE, pages 408–413. ACM, 2008.

[MS95] J. Marques-Silva.
Search Algorithms for Satisfiability Problems in Combinational Switching Circuits.
PhD thesis, University of Michigan, May 1995.

181 / 168

References xiv

[MSL11] Joao Marques-Silva and Inês Lynce.
On improving MUS extraction algorithms.
In SAT, volume 6695 of Lecture Notes in Computer Science, pages 159–173. Springer, 2011.

[MSS93] Joao Marques-Silva and Karem A. Sakallah.
Space pruning heuristics for path sensitization in test pattern generation.
Technical Report CSE-TR-178-93, University of Michigan, 1993.

[MSS94] Joao Marques-Silva and Karem A. Sakallah.
Dynamic search-space pruning techniques in path sensitization.
In DAC, pages 705–711. ACM Press, 1994.

[MSS96a] Joao Marques-Silva and Karem A. Sakallah.
Conflict analysis in search algorithms for propositional satisfiability.
Technical Report RT-04-96, INESC, May 1996.

[MSS96b] Joao Marques-Silva and Karem A. Sakallah.
GRASP - a new search algorithm for satisfiability.
In ICCAD, pages 220–227, 1996.

[MSS99] Joao Marques-Silva and Karem A. Sakallah.
GRASP: A search algorithm for propositional satisfiability.
IEEE Trans. Computers, 48(5):506–521, 1999.

182 / 168

References xv

[NB14] Nina Narodytska and Fahiem Bacchus.
Maximum satisfiability using core-guided maxsat resolution.
In AAAI, pages 2717–2723. AAAI Press, 2014.

[NIPM18] Nina Narodytska, Alexey Ignatiev, Filipe Pereira, and Joao Marques-Silva.
Learning optimal decision trees with SAT.
In IJCAI, pages 1362–1368, 2018.

[NSM+19] Nina Narodytska, Aditya A. Shrotri, Kuldeep S. Meel, Alexey Ignatiev, and Joao Marques-Silva.
Assessing heuristic machine learning explanations with model counting.
In SAT, pages 267–278, 2019.

[PD07] Knot Pipatsrisawat and Adnan Darwiche.
A lightweight component caching scheme for satisfiability solvers.
In SAT, volume 4501 of Lecture Notes in Computer Science, pages 294–299. Springer, 2007.

[PD09] Knot Pipatsrisawat and Adnan Darwiche.
On the power of clause-learning SAT solvers with restarts.
In CP, volume 5732 of Lecture Notes in Computer Science, pages 654–668. Springer, 2009.

[PD11] Knot Pipatsrisawat and Adnan Darwiche.
On the power of clause-learning SAT solvers as resolution engines.
Artif. Intell., 175(2):512–525, 2011.

183 / 168

References xvi

[PG86] David A. Plaisted and Steven Greenbaum.
A structure-preserving clause form translation.
J. Symb. Comput., 2(3):293–304, 1986.

[Pre07] Steven David Prestwich.
Variable dependency in local search: Prevention is better than cure.
In SAT, pages 107–120, 2007.

[Rei87] Raymond Reiter.
A theory of diagnosis from first principles.
Artif. Intell., 32(1):57–95, 1987.

[Rob65] John Alan Robinson.
A machine-oriented logic based on the resolution principle.
J. ACM, 12(1):23–41, 1965.

[SB09] Niklas Sörensson and Armin Biere.
Minimizing learned clauses.
In SAT, volume 5584 of Lecture Notes in Computer Science, pages 237–243. Springer, 2009.

[Sel03] Meinolf Sellmann.
Approximated consistency for knapsack constraints.
In CP, pages 679–693, 2003.

184 / 168

References xvii

[Sin05] Carsten Sinz.
Towards an optimal CNF encoding of boolean cardinality constraints.
In CP, pages 827–831, 2005.

[SMV+07] Sean Safarpour, Hratch Mangassarian, Andreas G. Veneris, Mark H. Liffiton, and Karem A. Sakallah.
Improved design debugging using maximum satisfiability.
In FMCAD, pages 13–19. IEEE Computer Society, 2007.

[SSS12] Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann.
Learning back-clauses in SAT.
In SAT, pages 498–499, 2012.

[Stu13] Peter J. Stuckey.
There are no CNF problems.
In SAT, pages 19–21, 2013.

[Sur12] Pavel Surynek.
A sat-based approach to cooperative path-finding using all-different constraints.
In SOCS, 2012.

[SZGN17] Xujie Si, Xin Zhang, Radu Grigore, and Mayur Naik.
Maximum satisfiability in software analysis: Applications and techniques.
In CAV, pages 68–94, 2017.

185 / 168

References xviii

[Tri03] Michael A. Trick.
A dynamic programming approach for consistency and propagation for knapsack constraints.
Annals OR, 118(1-4):73–84, 2003.

[Tse68] G.S. Tseitin.
On the complexity of derivations in the propositional calculus.
In H.A.O. Slesenko, editor, Structures in Constructives Mathematics and Mathematical Logic, Part II, pages
115–125, 1968.

[TSJL07] Chris Tucker, David Shuffelton, Ranjit Jhala, and Sorin Lerner.
OPIUM: optimal package install/uninstall manager.
In ICSE, pages 178–188, 2007.

[TTKB09] Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori Banbara.
Compiling finite linear CSP into SAT.
Constraints, 14(2):254–272, 2009.

[vMW08] Hans van Maaren and Siert Wieringa.
Finding guaranteed MUSes fast.
In SAT, pages 291–304, 2008.

[Wal00] Toby Walsh.
SAT v CSP.
In CP, volume 1894 of Lecture Notes in Computer Science, pages 441–456. Springer, 2000.

186 / 168

References xix

[War98] Joost P. Warners.
A linear-time transformation of linear inequalities into conjunctive normal form.
Inf. Process. Lett., 68(2):63–69, 1998.

[ZM03] Lintao Zhang and Sharad Malik.
Validating SAT solvers using an independent resolution-based checker: Practical implementations and
other applications.
In DATE, pages 10880–10885. IEEE Computer Society, 2003.

[ZMMM01] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Malik.
Efficient conflict driven learning in boolean satisfiability solver.
In ICCAD, pages 279–285. IEEE Computer Society, 2001.

[ZS00] Hantao Zhang and Mark E. Stickel.
Implementing the Davis-Putnam method.
J. Autom. Reasoning, 24(1/2):277–296, 2000.

187 / 168

	Basic Definitions
	CDCL SAT Solvers
	Clause Learning, UIPs & Minimization
	Search Restarts
	Lazy Data Structures
	Why CDCL Works?

	Modeling with SAT
	Recap Clausification of Boolean Formulas
	Hard and Soft Constraints
	Linear Constraints
	Encoding CSPs
	Modeling Examples

	Problem Solving with SAT Oracles
	Minimal Unsatisfiability
	MUS Enumeration
	Maximum Satisfiability
	Iterative SAT Solving
	Core-Guided Algorithms
	Minimum Hitting Sets

	Sample of Applications
	Package dependency
	Solving MaxClique with SAT
	etblue1Xplainable AI (XAI)
	Post-hoc explanations
	What tblue1next?
	PySAT and RC2

	SAT Oracles & Proof Complexity
	Dual-Rail Maximum Satisfiability (DRMaxSAT)

	A Glimpse of the Future

