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Abstract. Inference of deterministic finite automata (DFA) finds a wide range of
important practical applications. In recent years, the use of SAT and SMT solvers
for the minimum size DFA inference problem (MinDFA) enabled significant
performance improvements. Nevertheless, there are many problems that are simply
too difficult to solve to optimality with existing technologies. One fundamental
difficulty of the MinDFA problem is the size of the search space. Moreover,
another fundamental drawback of these approaches is the encoding size. This
paper develops novel compact encodings for Symmetry Breaking of SAT-based
approaches to MinDFA. The proposed encodings are shown to perform comparably
in practice with the most efficient, but also significantly larger, symmetry breaking
encodings.
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1 Introduction
The inference of minimum-size deterministic finite automata (DFA) from (positive

and negative) examples of their behavior has been investigated since the early days
of computing, with continued improvements until the present day. The importance of
topic is illustrated not only by recent improvements to tools for computing minimum-
size DFAs [27,30], but also by recent and ever growing list of applications [29]. The
problem of computing the minimum-size DFA (MinDFA) witnessed seminal work in the
early 70s [6]. Moreover, a number of visible contributions were made in the 90s. These
include the use of graph coloring [8], constraint programming techniques [9,22], and
state merging approaches [18,17]. Approaches based on SAT and SMT were proposed
in the last decade, with promising results [12,13,25,21,20]. Nevertheless, the size of
existing propositional encodings do not scale for large DFA inference problems. The
use of SMT does not represent a clear improvement, since SMT solving approaches
? IZ was supported by RFBR (project 18-37-00425). AM, AI and JMS were supported by FCT
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for the MinDFA problem will also encode to propositional logic. This paper revisits
SAT encodings for the MinDFA problem as well as recent work on exploiting symmetry
breaking [30,25], and proposes a (novel) tighter propositional representation of state-
of-the-art symmetry breaking predicates, but it also devises new symmetry breaking
constraints which serve to achieve more effective pruning of the search space. The new
propositional encoding proposed in this paper enables clear performance gains over the
state of the art [13,14,26,30].

The paper is organized as follows. Section 2 introduces the definitions used through-
out the paper and briefly overviews related work. Section 3 develops new ideas to encode
symmetry breaking predicates. Section 4 compares a new tool for the MinDFA problem
with the existing state of the art, showing clear performance gains. Section 5 concludes
the paper.

2 Background
2.1 Preliminaries

Throughout the paper we assume that automata are defined over some set of symbols
Σ, also known as the alphabet. The number of symbols in the alphabet is L = |Σ|. For
earlier DFA inference examples, it was often the case that Σ = B = {0, 1} [18,22]. For
more recent DFA inference examples [28], larger alphabets are often considered.

A deterministic finite automaton (DFA) is a tupleD = (D,Σ, δ, d1, D
+, D−), where

D is a finite set of states, Σ is the (input) alphabet, δ : D × Σ → D is the transition
function, d1 is the initial state, D+ is the set of accepting states and D− = D \ D+

is the set of rejecting sets. For input strings π ∈ Σ∗ we define δ̂(d1, π) inductively as
follows [16]: (i) δ̂(d1, ε) = d1; (ii) If π = π′c, then δ̂(d1, π) = δ(δ̂(d1, π

′), c).
We assume the standard setting of inferring a minimum-size DFA given a set of

samples of its behavior [15,7], i.e. the training set, each sample represented by an input
string that is either accepted or rejected by some DFA U = (U,Σ, µ, u1, U

+, U−),
which is not known. This form of learning is often referred to as passive learning, as
opposed to active learning [2,20], which enables a learning algorithm (aiming to create
a target DFA) to formulate queries to some teacher (which knows of the unknown DFA).

A training set is a set of pairs T = {(π1, o1), . . . , (πR, oR)}, where each pair
(πr, or) ∈ Σ∗ × {0, 1} denotes the output or observed given input string πr. If or = 1
(or = 0), then πr is referred to as a positive (negative) example. Given a training set, we
can construct an APTA (augmented prefix tree acceptor) [24,1,13], defined as the DFA
T = (T,Σ, τ, t1, T

+, T−), where any input string sharing the same prefix ends up in
the same state. Concretely, given input strings π1 = πaπb1 and π2 = πaπb2 the common
prefix πa will be associated to a unique sequence of states in the APTA. For an APTA
T , we have T+ ∪ T− 6= T , and we define N = |T |. When clear from the context, the
states of T are referred to by their index, ti by i, i = 1, . . . , N . In some settings, θ(i)
will be used to denote the distance from the APTA root state t1 to state ti.

The minimum-size DFA inference problem (MinDFA) is to identify a DFA S =
(S,Σ, σ, s1, S

+, S−), with a minimum number of states, such that for any training pair
(πr, or), σ̂(s1, πr) ∈ S+ iff or = 1 and σ̂(s1, πr) ∈ S− iff or = 0. For a prospective
DFA S, we define M = |S|.
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Function MINIMUMDFA(T )
Input :T : APTA
Output :S: minimum size DFA

1 M ← FindLowerBound(T )
2 while true do
3 S ← FindConsistentDFA(T ,M)
4 if S 6= ∅ then return S
5 M ←M + 1

Algorithm 1: General lower bound refinement algorithm

Throughout the paper [R] is used to denote the set {1, . . . , R}, for some positive
integer R. Moreover, we will use integers to refer to either symbols or states. For a
given alphabet, by associating states and symbols with integers facilitates imposing
a fixed lexicographic order, which will be required later in the paper (see Section 3).
Additionally, standard SAT definitions are assumed and used [5].

2.2 Minimum Size DFA Inference

This paper focuses on constraint-based exact approaches for the MinDFA problem.
Different constraint programming approaches for solving the MinDFA problem have
been proposed over the years. More recently, the use of SAT [12,13,14] and SMT [21,20]
has been investigated. A more detailed account of past work is available for example in
Neider’s PhD thesis [20, Chapter 3].

Algorithm 1 summarizes the most widely used approach for computing a minimum
size DFA consistent with a given APTA T (obtained from the training set). Initially a
lower bound on the size of the inferred DFA is computed. An often used heuristic is to
compute a maximal clique on states of the APTA that cannot be assigned to the same DFA
state [22,12,13,14,21,20,26]. Afterwards, starting from the lower bound and for each
possible value on the number of states of the DFA, some algorithm decides whether there
exists a DFA S which can be shown consistent with the samples of behavior summarized
as the APTA T . Algorithm 1 is referred to as LSUS (linear-search, UNSAT until SAT)
and is used in different settings. Other algorithms can be envisioned. These include
binary search, assuming some upper bound is known or can be identified (e.g. with
merge-based algorithms). Another alternative is unbounded search with a final binary
search step. These algorithms have been used in recent years for solving MaxSAT [19]
and for extracting MUSes [4]. The use of propositional encodings can be traced to the
work of Grinchtein, Leucker & Piterman [12]. By using two different representations
for integers, one in unary and the other in binary, this work proposes two propositional
encodings. For the unary representation, the encoding size is in O(N ×M2 +N2×M)
over O(N × M) variables1. For the binary representation, the encoding size is in
O(N ×M × logM + N2 ×M) on O(N × logM) variables. More recent work by
Heule&Verwer (HV) [13,14] proposed encodings that have been shown effective in
practice [28]. The HV encoding builds on the graph coloring analogy proposed in earlier

1 The encoding size shown is adapted from the results in [20], taking into account that both |T+|
and |T−| can grow with N = |T |. The size of |Σ| is assumed constant.
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Table 1. Constraints of the SAT encoding

Constraint Range
(
∑M

p=1mi,p) = 1 i ∈ [N ] Each state ti in T is matched with exactly
one state in S

mi,p → ap i ∈ [N ]; ti ∈ T +;
p ∈ [M ]

Each accepting state ti in T is matched
with an accepting state in S

mi,p → ¬ap i ∈ [N ]; ti ∈ T −;
p ∈ [M ]

Each rejecting state ti in T is matched with
a rejecting state in S

(
∑M

q=1 ev,p,q) = 1 v ∈ [L]; p ∈ [M ] There is exactly one transition from sp on
some symbol lv in S

mi,p∧mk,q → ev,p,q i, k ∈ [N ]; v ∈ [L];
σ(ti, lv) = tk;
p, q ∈ [M ]

A transition between ti and tk on lv in
T forces a transition between its mapped
nodes on the same lv in S

mi,p∧ev,p,q → mk,q i, k ∈ [N ]; v ∈ [L];
σ(ti, lv) = tk;
p, q ∈ [M ]

A transition between ti and tk on lv in T ,
with a transition between the mapped state
p and a state q on lv in S , forces a mapping
between tk and q

work [8]. The proposed encoding has size O(M3 +N ×M2) over O(M2 +N ×M)
variables. This encoding is revisited in Section 2.3.

2.3 SAT-Based MinDFA
Given an APTA T and a bound M on the number of states of the inferred DFA S,

this subsection provides a derivation of the HV encoding [13,14], based on a different
motivation. By careful analysis of this formulation, we achieve a more compact propo-
sitional encoding. Instead of relating the MinDFA problem with graph coloring, we
formulate it as the problem of matching the N states of the APTA T to the M states of a
target DFA S. The sets of variables of the propositional encoding are as follows:
1. mi,p which is 1 iff state ti in T is matched with state sp in S.
2. ev,p,q which is 1 iff there is a transition from sp to sq on symbol lv in S.
3. ap which is 1 iff sp is accepting in S.

The constraints of the proposed encoding are summarized in Table 1. Observe that for
encoding the Equals1 constraints, [14] uses a clause to encode an AtLeast1 constraint,
and the Pairwise Encoding for encoding an AtMost1 constraint. A simple improvment is
to use a more compact encoding, among the many that exist. Concrete examples include
sequential counters [23], cardinality networks [3], the ladder encoding [11], sorting
networks [10], among several other options. As can be concluded, the proposed encoding
grows with O(N ×M2). Thus, the encoding is asymptotically (somewhat) tighter than
the encoding proposed in [13], in that the encoding of the cardinality constraints changes
from O(M3) to O(M2). This difference can be significant for large values of M . As
observed in earlier work [13,14], for some benchmarks [18], the target DFA has hundreds
of states, and so an encoding in O(M3) is expected to be beyond the memory capacity
of existing compute servers. It is straightforward to map the sets of clauses in the HV
formulation [13,14] into the constraints described above. The main difference is that we
explicitly use a tighter encoding for the AtMost1 constraints, which are listed as sets
of clauses (capturing the well-known pairwise encoding) in [13]. Additionally, the HV
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formulation [13] considers different sets of redundant constraints to the basic formulation
above. A technique that has been proposed for the SAT formulation is the breaking of
symmetries of the DFA constructed [26,30]. Symmetry breaking for the SAT formulation
is described in depth in Section 3, together with new improvements.

3 Efficient Symmetry Breaking
This section revisits recent symmetry breaking for the MinDFA problem, which

imposes an order on the states of the DFA [26,30]. Although effective in practice,
the existing propositional encoding is not tight, and so unlikely to scale for larger
DFAs. Section 3.2 develops a significantly tighter encoding. Section 3.3 devises novel
constraints that serve to furhter prune the search space that a SAT solver needs to explore.

3.1 Propositional Formulation for Breaking Symmetries
This section summarizes the recent work on breaking symmetries of the DFA being

constructed, by imposing an ordering on the states of the DFA [26,30]. In this section
we follow the original formulation [26]. The approach can be formalized as follows.
Assume a target DFA S = (S,Σ, σ, s1, S

+, S−). The states of the DFA S are required
to be numbered according to the tree induced by a breadth-first search (BFS) of the target
DFA. As a result, the formulation of symmetry breaking depends only on the states and
transitions of the target DFA S (independent of the APTA T ). In this section we require
some fixed (e.g. lexicographic) ordering on the symbols of Σ. Any order of the symbols
is valid. The symbols will be numbered from 1 to L, but the numbers respect the fixed
ordering.

The propositional variables used in the formulation are as follows:
1. pq,r, with 1 ≤ r < q ≤M . pq,r = 1 iff state r is the parent of q in the BFS tree.
2. tp,q , with 1 ≤ p < q ≤M . tp,q = 1 iff there is a transition from p to q in S.
3. mv,p,q, with v ∈ Σ and 1 ≤ p < q ≤ M . mv,p,q = 1 iff there is a transition from

state p to state q on symbol lv and there is no such transition with a lexicographically
smaller symbol.
The clauses of the propositional formulation are summarized in Equations (1 – 6).∧

2≤q≤M (pq,1 ∨ pq,2 ∨ · · · ∨ pq,q−1) (1)∧
1≤r<s<q<M (pq,s → ¬pq+1,r) (2)∧

1≤r<q≤M (tr,q ↔ e1,r,q ∨ · · · ∨ eL,r,q) (3)∧
1≤r<q≤M (pq,r ↔ tr,q ∧ ¬tr−1,q ∧ · · · ∧ ¬t1,q) (4)∧

1≤r<q≤M
∧

1≤v≤L (mv,r,q ↔ ev,r,q ∧ ¬ev−1,r,q ∧ · · · ∧ ¬e1,r,q) (5)∧
1≤r<q<M

∧
1≤u<v≤L (pq,r ∧ pq+1,r ∧mv,r,q → ¬mu,r,q+1) (6)

There are six types of conjunction of clauses considered. (1) relates to the states, and
with the exception of the initial state (numbered 1), each clause says that a state must
have a parent with smaller number. (2) says that a state q must be enqueued (in the BFS
traversal) before the next state q + 1, and so the parent r of q + 1 cannot be less than the
parent s of q. (3) and (4) define the tq,r variables based on the ev,q,r variables and relate
them to the parent variables pq,r. (5) defines the mv,p,q variables using DFA transitions,
and the (6) imposes consecutive states q and q + 1 with the same parent r to be arranged
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in the order of the symbols. It is plain to conclude that the size of the encoding grows
with O(M3 +M2L+M2L2). Observe that the contribution of M3, which dominates
the other components assuming L � M , results from (2) and (4). Moreover, when
|Σ| = 2, [26] proposes to replace (5) and (6) with∧

1≤r<q<M

(pq,r ∧ pq+1,r → e1,r,q) (7)

3.2 A Tighter SAT Encoding

A propositional encoding in O(M3 +M2L2 +M2L) is impractical for the larger
DFA inference instances [18,28]. This section shows how to modify the symmetry
breaking propositional encoding of Section 3.1 such that the encoding size becomes
O(M2L). The new encoding develops alternative representations for (2) and the (4), but
also for (5) and (6). In addition, one needs to require:∑q−1

r=1 pq,r = 1 1 < q ≤M (8)

We first investigate the encoding of (2) and (4). We can view the values of pq,r, with
1 ≤ r ≤ q − 1, as a binary string, with q − 1 bits, and compare this string with the one
of pq+1,r, with 1 ≤ r ≤ q, and so with q bits. We introduce pq,q = 0, and so can also
view the values of pq,r as a binary string with q bits (same size).

Observe that (2) encodes the value associated to the binary string of the pq,r variables
to be smaller or equal than the value associated to the binary string of the pq+1,r variables.
To compare the binary strings, we inspect the bits in order, starting at position q, and
moving down to position 1. We consider variables ngq,r, such that ngq,r = 1 iff the
most significant q − r + 1 bits of the string associated with pq,r are lexicographically
no greater than those of pq+1,r. The value associated to the binary string of the pq,r
variables is smaller or equal than the value associated to the binary string of the pq+1,r

variables iff ngq,1 = 1 holds. Since we enforce pq,q = 0, then we must have ngq,q = 1.
Moreover, we also require ngq,1 ↔ 1. Thus we obtain:

(ngq,1 ↔ 1) ∧ (ngq,q ↔ 1) ∧
∧

1≤r<q

(ngq,r ↔ ngq,r+1 ∧ eqq,r ∨ pq,r ∧ ¬pq+1,r) (9)

where, eqq,r ↔ (pq,r ↔ pq+1,r).
Second, a similar approach can be exploited for encoding of (4). We introduce

variables ntr,q , where ntr,q = 1 iff there exists no ts,q = 1 with s < r. Thus, ntr,q can
be defined inductively as follows:

(nt0,q ↔ 1) ∧
∧

1<r<q

(ntr,q ↔ ntr−1,q ∧ ¬tr,q) (10)

Thus, (4) can be rewritten, using the ntr,q variables as follows:
pq,r ↔ tr,q ∧ ntr−1,q (11)

As can be concluded, by using auxiliary variables ngq,r and ntr,q , and equations (9),
(10) and (11), we achieve an overall propositional encoding in O(M2L+M2L2).

However, we can tighten further the propositional encoding for breaking symmetries
using a BFS tree. This is achieved by devising alternative encodings for (5) and (6). As
shown next, this yields a propositional encoding in O(M2L). With respect to (5), we
use the additional variables nev,r,q such that nev,r,q = 1 iff all variables eu,r,q = 0 with
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Fig. 1. (Worst case) BFS tree with the largest state numbers that can be the children of some other
state. Note that 1 ≤ j < L.

u < v, i.e. there are no variables eu,r,q taking value 1, when u < v.

(ne1,r,q ↔ ¬e1,r,q) ∧
∧

1<v<L

(nev,r,q ↔ ¬ev,r,q ∨ nev−1,r,q) (12)

Thus given (12), (5) can be rewritten as follows:∧
1≤r<q≤M

∧
1≤v≤L

(mv,r,q ↔ ev,r,q ∧ nev−1,r,q) (13)

With respect to (6), we use the additional variables zmv,r,q such that zmv,r,q = 1
iff all variables mu,r,q are 0-valued, mu,r,q = 0, for u < v.

(zm1,r,q ↔ ¬m1,r,q) ∧
∧

1<v<L

(zmv,r,q ↔ ¬mv,r,q ∧ zmv−1,r,q) (14)

Thus given (14), (6) can be rewritten as follows:∧
1≤r<q≤M

∧
1≤v≤L

(pq,r ∧ pj+1,r ∧mv,r,q → zmv−1,r,q+1) (15)

One can thus conclude that the resulting propositional encoding size is in O(M2L).

3.3 Exploiting BFS-Based Breaking of Symmetries
This section investigates techniques for developing additional constraints when

imposing the ordering of states dictated by a BFS tree of the DFA. Figure 1 shows a
possible BFS tree illustrating the largest state numbers that can be the children of some
other state. The additional constraints proposed in this section will relate with Figure 1.
BFS-induced Properties. Although we have introduced pq,r such that r < q ≤M , it
is possible to refine the range of q given r.
Property 1. Given a state r, with 1 ≤ r ≤ M , in the BFS tree, r can be the parent of
states in the range r + 1 to rL+ 1.

Figure 1 illustrates the argument for the upper bound on the number of the children
of r. We can conclude that the value of pq,r can be non-zero for r + 1 ≤ q ≤ rL+ 1,
which also impacts the possible values of some of the ev,r,q and the tr,q variables.
Property 2. For q > rL+ 1 and v ∈ [L], then pq,r = 0, ev,r,q = 0, and tr,q = 0.

Given that the BFS tree assumes a fixed ordering not only on the states but also on
the input alphabet, it is possible to identify other transitions that must be forced to value
0 (based on the ordering of the symbols). Hence, we have the following.
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Property 3. ev,r,rL+2−j = 0 for j ∈ [L− 1] and v ∈ [L− j].
The above observations enable to devise the additional constraints described in the

remainder of this section. The constraints are organized as shape or range, but also result
from information from the APTA and the BFS distance.

Shape Constraints. The possible values of pq,r respect a continuity property, dictated
by the BFS traversal, in that all children of r are consecutively numbered, and there can
be at most L of these. This continuity property can be encoded using additional variables.
Let lnpq,r be assigned value 1 iff r is the parent of q + 1 but not of q (lnp stands for
left-no-parent). Thus,

¬pq,r ∧ pq+1,r → lnpq,r (16)
Moreover, we have the following:

(lnpq,r → ¬pq,r) ∧
∧

r+1<q≤M

(lnpq,r → lnpq−1,r) (17)

Thus, lnpq,r is 1 from q = 1 until the value of q such that pq+1,r holds.
In a similar fashion, let rnpq,r be assigned value 1 if and only if r is the parent of

q − 1 but not of q (in this case, rnp stands for right-no-parent). Thus,
pq−1,r ∧ ¬pq,r → rnpq,r (18)

Similarly to the previous case, one can exploit the rnpq,r variables, and derive the
following constraints:

rnpq,r → rnpq+1,r r ≤ q < M
rnpq,r → ¬pq,r
rnpq,r → ¬ev,q,r v ∈ [L]

(19)

Thus, rnpq,r is 1 from q =M until the value of q such that pq−1,r holds.
Another observation is that r can be the parent of at most L states, due to L outgoing

transitions. As a result, we get,
pq,r → rnpq+L,r if q + L ≤M
pq,r → lnpq−L,r if q − L ≥ r + 1

(20)

The lnpq,r and rnpq,r variables serve to force pq,r variables to be assigned value 0.
However, under some circumstances, we can infer that some pq,r variables must be
assigned value 1. For example, for the range of values of q for which both lnpq,r and
rnpq,r are 0, the value of pq,r must be 1. Thus,

¬lnpq1,r ∧ ¬rnpq2,r → pq′,r

q1 < q′ < q2
q1 < q2 ≤ min(q1 + L− 1, rL+ 1,M)

r + 1 ≤ q1 < min(rL+ 1,M)
(21)

For any q1, q2 can range from q1 + 1 to at most q1 + L. Similarly, we can write,

pq,r ∧ ps,r → ps−1,r
q < s ≤ min(q + L− 1, rL+ 1,M)

r + 1 ≤ q < min(rL+ 1,M)
(22)

As above, for any r, s can range from r + 1 to at most r + L.

Range Constraints. Given a reference state r, we have shown above that the states of
which r can be a parent of range from r+ 1 until rL+ 1. Moreover, we also know there
is a continuity property, which causes r to be the parent of at most L states, numbered
consecutively. This information can be used for constraining the pq,r variables, between
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states for which r cannot be a parent, as follows,
pq,r → ¬pq+L,r q ∈ {l | (l ≥ r + 1) ∧ (l + L ≤M) ∧ (l + L ≤ rL+ 1)} (23)

In addition, we get the following stronger condition by directly forcing the value of
ev,r,q variables,

pq,r → ¬ev,r,q+L
q ∈ {l | (l ≥ r + 1) ∧ (l + L ≤M) ∧ (l + L ≤ rL+ 1)}

v ∈ [L]
(24)

Furthermore, we can exploit Property 3, and the imposed ordering of the symbols in the
BFS to identify a similar extension to (24) as follows,

pq,r → ¬ev,r,q+j

r + 1 ≤ q ≤ min(rL+ 1,M)
j ∈ {l | l ∈ [L− 1] ∧ (q + l ≤M) ∧ (q + l ≤ rL+ 1)}

v ∈ [j]
(25)

Minimum BFS Distance. Given the way the BFS vertices are visited, one can guar-
antee a minimum BFS shortest path distance for each state. For state q, the shortest
BFS path length is given by Dmin(q) = dlogL (q(L− 1) + 1)− 1e, with q > 1, i.e. no
matter how the BFS is organized starting at state 1, the shortest path from 1 to q is never
less than Dmin(q). As a result, if Dmin(q) > θ(i), then mi,q = 0. Observe that, under
any possible setting in the DFA, the shortest path to q is larger than the distance to state
i in the APTA. Thus, to get to q it would require more transitions that those allowed to
get from inital state to i.

Exploiting APTA Information. By exploiting the variables and constraints used for
breaking symmetries and using a BFS tree on the target DFA, we can devise additional
constraints. Observe that, if the depth of a state i in the APTA is some value K, then in
the DFA, we must be able to move from 1 to q in K of fewer transitions. However, if the
shortest path from 1 to q in the DFA exceeds the depth K of vertex of i in the APTA,
then it would be impossible to move from state 1 to state q in K or fewer transitions.

We consider the propositional variables dq,j , with q ∈ [M ] and 1 ≤ j < q, such
that dq,j = 1 iff the length of the shortest path in the BFS tree from state 1 to q is j.
Moreover, we consider propositional variables seq,j , with q ∈ [M ] and 1 ≤ j < q, such
that seq,j = 1 iff the length of the shortest path in the BFS tree from state 1 to q is
smaller than or equal to j. We can use an inductive definition for seq,j as follows:

seq,0 ↔ 0 and seq,j ↔ seq,j−1 ∨ dq,j (26)
Similarly to Section 3.2, we devise a tight encoding for the definition of the dq,j variables,
suitable for larger problem instances. The insight is to introduce additional variables,
which are inductively defined. Let erq,r,j be such that erq,r,j = 1 iff there exists some
index r < q such that pq,r = 1 and dr,j = 1.

erq,r,j ↔ pq,r ∧ dr,j ∨ erq,r+1,j j < r < q − 1
erq,q−1,j ↔ pq,q−1 ∧ dq−1,j

(27)

we can now derive constraints on the mi,p variables. Let ti be a state of the APTA such
that the depth of ti is I . We can define dq,j as follows:

dq,j ↔ ¬seq,j−1 ∧ erq,j,j−1 (28)
¬seq,I → ¬mi,q (29)

One can conclude that the modified constraints have an encoding size in O(N ×M2).
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Fig. 2. Detailed performance of dfasat, DFA-Inductor, and DFA-Inductor 2

4 Experimental Results
This section evaluates the ideas described above, namely a compact SAT encoding

and symmetry breaking predicates for solving the MinDFA problem. For this, the ideas
were implemented on top of a known MinDFA solver called DFA-Inductor [26,30]
written in Java2. The new prototype is referred to as DFA-Inductor 2. For comparison,
two competitors were considered: the original DFA-Inductor and also dfasat [13]. All
the selected tools apply the Glucose 4.13 SAT solver iteratively and non-incrementally,
i.e. each call to the oracle is made from scratch. All the conducted experiments were per-
formed in Ubuntu Linux on an AMD Opteron 6378 2.40GHz processor with 496GByte of
memory. For each individual process, the time limit was set to 600s and the memory limit
to 1GByte. For the comparison, a number of benchmark instances were randomly gener-
ated, following the procedure described in [30]. Concretely, starting from a randomly
generated APTA of even sizeN ,N ∈ [20, 36], 50×N samples were generated. The size
of the Σ is two. For each even number N ∈ [20, 36], exactly 100 benchmark instances
were created such that given value N , the resulting DFA for each of the corresponding
100 instances is guaranteed to be N . This way, the number of benchmark families de-
fined by values N is 9. Thus, the total number of instances considered is 900. Figure 2a
shows a cactus plot depicting the performance of all the selected solvers. As one can
observe, dfasat is significantly outperformed by the compact encoding implemented in
DFA-Inductor. In total, dfasat is able to solve only 51 benchmark instances (out of 900).
Also observe that the symmetry breaking predicates described above further improve
the performance of DFA-Inductor (see DFA-Inductor 2 compared to DFA-Inductor in
the Figure 2a). A comparison between DFA-Inductor and DFA-Inductor 2 is detailed
in Figure 2b and also in Table 2. Except for a few outliers, the symmetry breaking
predicates of DFA-Inductor 2 are responsible for 20-40% performance improvement
on average. Also it is important to note that the harder the problems are, the smaller

2 https://github.com/ctlab/DFA-Inductor
3 http://www.labri.fr/perso/lsimon/glucose/

https://github.com/ctlab/DFA-Inductor
http://www.labri.fr/perso/lsimon/glucose/
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Table 2. The effect of applying the symmetry breaking predicates described above. The solver
configuration using the proposed symmetry breaking is referred to as DFA-Inductor 2 and compared
to the base configuration, i.e. DFA-Inductor. If an instance is timed out, its contribution to
the average time of the corresponding benchmark family is assumed to be 600 seconds. The
corresponding values are written in italic.

N DFA-Inductor DFA-Inductor 2

min avg max # solved min avg max # solved

20 86.8 148.3 221.0 100 33.3 91.9 228.4 100
22 85.5 147.1 — 99 49.2 100.4 — 99
24 128.6 181.5 287.8 100 80.4 136.8 262.5 100
26 158.1 251.8 — 99 114.8 209.3 — 99
28 223.4 317.9 534.5 100 164.2 268.9 — 99
30 307.2 443.8 — 91 227.1 389.2 — 95
32 326.0 506.5 — 76 249.2 447.4 — 86
34 414.5 591.1 — 13 392.1 569.9 — 41
36 — 600.0 — 0 448.4 594.8 — 12

is the performance gap between the two configurations. Although this can be seen as
a drawback, the phenomenon requires further investigation on the use of symmetry
breaking with various SAT solvers and a multitude of families benchmark sets. In total,
the number of instances solved by DFA-Inductor and DFA-Inductor 2 is 678 and 731,
respectively, thus, comprising a gap of 53 benchmark instances. Therefore, symmetry
breaking brings more 7.2% instances solved.

5 Conclusions
This paper proposes a number of novel techniques for encoding and reasoning

about symmetries when exploiting SAT oracles for inferring minimum-size DFAs. The
experimental results provide evidence of the improvements that can be achieved when
compared with the state of the art [30,26], also enabling significant gains over the
best exact methods proposed in recent years [13]. The novel symmetry-breaking ideas
described in the paper can be applied to other approaches for inferring minimum-size
DFAs, including the use of SMT solvers [20], and also in other settings.
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