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I
Explainable Artificial Intelligence (XAI)

Rapid advances in Artificial Intelligence (AI) and Machine Learning (ML)
algorithms.

Issue: opaque models → lack of trust.

Rise: Explainable Artificial Intelligence (XAI).

Solution:Post-hoc explanations.
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I
Post-hoc Explanations

Post-hoc explanations answer ‘why?’ questions and ‘how?’questions

Heuristic approach:

I Feature selection: Anchor.
I Feature Attribution: LIME, SHAP, etc.
I Issue:

I Explanation quality.
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I
Post-hoc Explanations

Post-hoc explanations answer ‘why?’ questions and ‘how?’questions

Formal approach:

I Correct and minimal.
I Feature selection: abductive explanation (AXp) and contrastive

explanation (CXp).
I Feature attribution: formal feature attribution (FFA).
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I
FFA

Formal feature attribution (FFA):

Provide the importance of each feature, i.e. the proportion of AXp’s in
which it appears.

FFA approach:

I Make use of the hitting set duality between AXp’s and CXp’s.
I Collect AXp’s as a side effect of CXp enumeration algorithm.
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I
FFA Observations

Observations from the FFA approach:

I Usually find many AXp’s before finding the first CXp.
I AXp’s are diverse → good approximation of FFA.
I AXp enumeration can get exact FFA faster.

Issue: Exact FFA is hard to compute.
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I
SAT

Boolean Satisfiability (SAT)

I Decision problem for propositional logic.
I Formula φ: Conjunctive normal form (CNF).

I Clause: a disjunction of literals.
I Literal: a Boolean variable b or ¬b.
I Example: (a ∨ ¬c) ∧ (b ∨ c).

I Satisfiable: there exists an assignment µ satisfying the formula.
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I
MaxSAT

Maximum Satisfiability (MaxSAT): maximize the number of satisfied
clauses.

Partial Unweighted MaxSAT: ϕ = H ∧ S.

I H: hard clauses, which must be satisfied.
I S: soft clauses, which represent a preference to satisfy those clauses.
I Aim: maximize the number of satisfied soft clauses.
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I
MUS and MCS

Let ϕ = H ∪ S and ϕ⊨⊥.

Minimal Unsatisfiable Subset (MUS):

A subset of clauses µ ⊆ S is a MUS iff H ∪ µ⊨⊥ and ∀µ′ ⊊ µ it holds
that H ∪ µ′ ⊭⊥.

Minimal Correction Subset (MCS):

A subset of clauses σ ⊆ S is a MCS iff H ∪ S \ σ ⊭⊥ and ∀σ′ ⊊ σ it
holds that H ∪ S \ σ′ ⊨⊥.
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I
Minimal Hitting Set Duality

Minimal hitting set (MHS) duality relationship between MUSes and
MCSes, i.e.

Uϕ = MHS(Cϕ) and Cϕ = MHS(Uϕ)

where

I Uϕ: MUSes.
I Cϕ: MCSes.
I MHS(S) returns the minimal hitting sets of S.
I Minimal sets that share an element with each subset in S.

11



I
Classification Example

A classification function τ : F → K .

I F : complete feature space.
I K : a set of classes.
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I
Classification Problem

T1 (≥ 50k)

Status = Married?

Education = Dropout? Rel. = Not-in-family?

-0.1569 0.0770 -0.1089 -0.3167

yes no

yes no yes no

T2 (≥ 50k)

Hours/w ≤ 40?

Status = Married? Status = Never-Married?

-0.0200 -0.2404 -0.1245 0.0486

yes no

yes no yes no

T3 (≥ 50k)

Education = Doctorate?

40 < Hours/w ≤ 45? Rel. = Own-child?

0.0605 0.3890 -0.2892 -0.0580

yes no

yes no yes no

Figure 1: Boosted tree model trained on the adult classification dataset.

Instance:

{Education=Bachelors, Status=Separated, Occupation=Sales,
Relationship=Not-in-family, Sex=Male, Hours/w≤40}

Score: −0.4073 = (−0.1089− 0.2404− 0.0580) < 0→ prediction < 50k
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I
Formal Explanation

Abductive explanation (AXp) X : subset-minimal set of features
sufficing to explain the prediction .

∀(x ∈ F).
[∧

i∈X
(xi = vi)

]
→(κ(x) = c)

Contrastive explanation (CXp) Y: subset-minimal set of features that
are necessary to change the prediction.

∃(x ∈ F).
[∧

i ̸∈Y
(xi = vi)

]
∧ (κ(x) ̸= c)

Minimal Hitting Set Duality: CXps minimally hit every AXp, and
vice-versa.
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I
AXp and CXp Examples

T1 (≥ 50k)

Status = Married?

Education = Dropout? Rel. = Not-in-family?

-0.1569 0.0770 -0.1089 -0.3167

yes no

yes no yes no

T2 (≥ 50k)

Hours/w ≤ 40?

Status = Married? Status = Never-Married?

-0.0200 -0.2404 -0.1245 0.0486

yes no

yes no yes no

T3 (≥ 50k)

Education = Doctorate?

40 < Hours/w ≤ 45? Rel. = Own-child?

0.0605 0.3890 -0.2892 -0.0580

yes no

yes no yes no

Figure 2: Boosted tree model trained on the adult classification dataset.

X1 = { Education, Hours/w }

IF Education = Bachelors
AND Hours/w ≤ 40
THEN Target <50k

(a) AXp X1.

X2 = { Education, Status }

IF Education = Bachelors
AND Status = Separated
THEN Target <50k

(b) AXp X2.
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I
AXp and CXp Examples

T1 (≥ 50k)

Status = Married?

Education = Dropout? Rel. = Not-in-family?

-0.1569 0.0770 -0.1089 -0.3167

yes no

yes no yes no

T2 (≥ 50k)

Hours/w ≤ 40?

Status = Married? Status = Never-Married?

-0.0200 -0.2404 -0.1245 0.0486

yes no

yes no yes no

T3 (≥ 50k)

Education = Doctorate?

40 < Hours/w ≤ 45? Rel. = Own-child?

0.0605 0.3890 -0.2892 -0.0580

yes no

yes no yes no

Figure 2: Boosted tree model trained on the adult classification dataset.

Y1 = { Education }

IF Education ̸= Bachelors

THEN Target can be changed to ≥50k

(a) CXp Y1.

Y2 = { Hours/w, Status }

IF Hours/w ̸≤ 40
AND Status ̸= Separated
THEN Target can be changed to ≥50k

(b) CXp Y2.
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I
Formal Feature Attribution (FFA)

Inspired by the implicit hitting set based algorithm eMUS/MARCO.

ffaκ(i , (v, c)) = |{X | X ∈ Aκ(v, c), i ∈ X )|
|Aκ(v, c)| (1)

where

I v: instance.
I c: prediction.
I X : AXp.
I Aκ(v, c): the set of AXp’s for v.
I i : feature.
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I
FFA Algorithm

Algorithm 1 Anytime Explanation Enumeration
Input: Classifier: κ, instance: v, prediction: c
Output: AXp’s: A, CXp’s: C

1: (A,C)← (∅, ∅) ▷Sets of AXp’s and CXp’s to collect.
2: while resources available do
3: Y ←MinimalHS(A,C) ▷Get a new MHS of A subject to C.
4: ▷Y is the CXp candidate.
5: if Y = ⊥ then break ▷Stop if none is computed.
6: ▷Check CXp condition for Y.
7: if ∃(x ∈ F).

[∧
i ̸∈Y(xi = vi)

]
∧ (κ(x) ̸= c) then

8: C← C ∪ {Y} ▷Y appears to be a CXp.
9: else

10: X ← ExtractAXp(F \ Y, κ, v, c)
11: A← A ∪ {X} ▷There must be a missing AXp X ⊆ F \ Y.

returnA, C

Algorithm 2 ExtractAXp
Input: Candidate: X , classifier: κ, instance: v, prediction: c
Output: AXp: X

1: for j ∈ X do
2: if ∀(x ∈ F).

[∧
i∈X \{j}(xi = vi)

]
→(κ(x) = c) then

3: X ← X \ {j}
returnX 17



I
FFA Example

T1 (≥ 50k)

Status = Married?

Education = Dropout? Rel. = Not-in-family?

-0.1569 0.0770 -0.1089 -0.3167

yes no

yes no yes no

T2 (≥ 50k)

Hours/w ≤ 40?

Status = Married? Status = Never-Married?

-0.0200 -0.2404 -0.1245 0.0486

yes no

yes no yes no

T3 (≥ 50k)

Education = Doctorate?

40 < Hours/w ≤ 45? Rel. = Own-child?

0.0605 0.3890 -0.2892 -0.0580

yes no

yes no yes no

Figure 4: Boosted tree model trained on the adult classification dataset.

X1 = { Education, Hours/w }

IF Education = Bachelors
AND Hours/w ≤ 40
THEN Target <50k

(a) AXp X1.

X2 = { Education, Status }

IF Education = Bachelors
AND Status = Separated
THEN Target <50k

(b) AXp X2.

||||||||||

0.50
Status: Separated

||||||||||

0.50
Hours/w <= 40

||||||||||

1.00
Education: Bachelors

(c) FFA.
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I
LIME, SHAP and FFA Examples

T1 (≥ 50k)

Status = Married?

Education = Dropout? Rel. = Not-in-family?

-0.1569 0.0770 -0.1089 -0.3167

yes no

yes no yes no

T2 (≥ 50k)

Hours/w ≤ 40?

Status = Married? Status = Never-Married?

-0.0200 -0.2404 -0.1245 0.0486

yes no

yes no yes no

T3 (≥ 50k)

Education = Doctorate?

40 < Hours/w ≤ 45? Rel. = Own-child?

0.0605 0.3890 -0.2892 -0.0580

yes no

yes no yes no

Figure 6: Boosted tree model trained on the adult classification dataset.

||||||||||

0.03
Hours/w <= 40

||||||||||

-0.03
Relationship: Not-in-family

||||||||||

0.07
Status: Separated

(a) LIME.

|||||||||
0.01
Education: Bachelors

|||||||||
0.09

Status: Separated

|||||||||
0.11

Hours/w <= 40

|||||||||
-0.12

Relationship: Not-in-family

(b) SHAP.

||||||||||

0.50
Status: Separated

||||||||||

0.50
Hours/w <= 40

||||||||||

1.00
Education: Bachelors

(c) FFA.

Issue of LIME and SHAP: Some irrelevant features have non-zero attribution,
e.g. relationship
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I
Switching from CXp to AXp Enumeration

Issue in the FFA approach: Exact FFA hard to compute.

Inspirations:

I AXp enumeration → getting exact FFA faster.
I Diverse AXp’s → good FFA approximations.
I AXp enumeration → AXp’s are not diverse.
I CXp enumeration → diverse AXp’s → quick convergence.

Proposed approach:

I Anytime approach to computing approximate FFA
I Start with CXp enumeration
I Switch to AXp enumeration at some point.
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I
Algorithm with Switching

Algorithm 3 Adaptive Explanation Enumeration

1: (E0,E1)← (∅, ∅) ▷CXp’s and AXp’s to collect
2: ρ← 0 ▷Target phase of enumerator, initially CXp
3: while true do
4: µ←MinimalHS(E1−ρ,Eρ, ρ) ▷MHS of E1−ρ s.t. Eρ.
5: if µ = ⊥ then break ▷Stop if none is computed.
6: ▷Check CXp condition for Y.
7: if IsTargetXp(µ, τ, v, c) then
8: Eρ ← Eρ ∪ {µ} ▷There must be a missing AXp X ⊆ F \ Y.
9: else

10: ▷Collect target expl. µ

11: ν ← ExtractDualXp(F \ µ, τ, v, c)
12: E1−ρ ← E1−ρ ∪ {ν} ▷Collect dual expl. ν

13: ▷The difference!
14: if IsSwitchNeeded(Eρ,E1−ρ, w , α, ε) then
15: ρ← 1− ρ ▷Flip phase of MinimalHS

returnE1, E0 ▷Result AXp’s and CXp’s 22



I
Switching Criteria

Criterion 1: Switch when CXp’s on average are much smaller than AXp’s, i.e.
when ∑

X ∈Aw |X |∑
Y∈Cw |Y|

≥ α, (2)

Criterion 2: Switch when the average CXp size “stabilizes”.∣∣∣∣|Ynew| −
∑

Y∈Cw |Y|
w

∣∣∣∣ ≤ ε, (3)

Rational:

I Normally |X | > |Y|
I CXp extraction: check satisfiable → cheap.
I AXp extraction: check unsatisfiable → expensive.
I Before switching: ensure AXp’s diverse.
I After switching: single call for AXp, multiple calls for CXp extraction.
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I
Switching Criteria

Criterion 1: Switch when CXp’s on average are much smaller than AXp’s, i.e.
when ∑

X ∈Aw |X |∑
Y∈Cw |Y|

≥ α, (2)

Criterion 2: Switch when the average CXp size “stabilizes”.∣∣∣∣|Ynew| −
∑

Y∈Cw |Y|
w

∣∣∣∣ ≤ ε, (3)

Switch when meeting either of the two criteria!
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I
Experimental Setup

Datasets: 3 Images and 2 text data

Metrics:

I Errors: Manhattan distance, i.e. the sum of absolute differences
across all features.

I Kendall’s Tau: Similarity of two rankings. Ranging [−1, 1]. The
higher the closer.

I Rank-biased overlap (RBO): Similarity of two rankings. Ranging
[0, 1]. The higher the closer.

I Kullback–Leibler (KL) divergence: Statistical distance between
two probability distributions. Ranging from 0 to ∞.

I Number of AXp’s
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I
Runtime

Average Runtime:

I MARCO-S (Our approach): 3509.50s (9.26s − 30881.55s)
I MARCO-A (AXp enumeration): 3255.30s (2.15s − 29191.42s)
I MARCO-C (CXp enumeration): 19311.87s (9.39s − 55951.57s)
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I
Error Results

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Time

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
rr

or

MARCO-A MARCO-C MARCO-S

0.00 0.02 0.04

0.25

0.50

0.75

1.00

(a) Mean

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Time

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
rr

or

MARCO-A MARCO-C MARCO-S

0.00 0.01 0.02 0.03

0.25

0.50

0.75

1.00

(b) Median

Figure 8: FFA approximation error over time.

I MARCO-S: Propose approach I MARCO-A: AXp enumeration
I MARCO-C: CXp enumeration
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I
Kendall’s Tau Results
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Figure 9: Kendall’s Tau over time.

I MARCO-S: Propose approach I MARCO-A: AXp enumeration
I MARCO-C: CXp enumeration
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RBO Results
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Figure 10: RBO over time.

I MARCO-S: Propose approach I MARCO-A: AXp enumeration
I MARCO-C: CXp enumeration
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I
KL Divergence Results
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Figure 11: KL divergence over time.

I MARCO-S: Propose approach I MARCO-A: AXp enumeration
I MARCO-C: CXp enumeration
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I
Number of AXp’s Results
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Figure 12: Number of AXp’s over time.

I MARCO-S: Propose approach I MARCO-A: AXp enumeration
I MARCO-C: CXp enumeration
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Number of AXp’s Examples
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Figure 13: Number of AXp’s over time in example instances.

I MARCO-S: Propose approach I MARCO-A: AXp enumeration
I MARCO-C: CXp enumeration
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I
Conclusions

I The proposed approach can replicate the behavior of the superior
competitor → efficient and good approximation of FFA.

I Start with CXp enumeration → diverse AXp’s.
I Switching to AXp enumeration → extracting AXp’s faster.
I The proposed mechanism can be readily adapted to a multitude of

other problems, e.g. in over-constrained systems or model-based
diagnosis (MBD)
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Thank you!
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