Formal Feature

Fractiev¹, Peter J. Stuckey^{1,2}

Sh University, Australia

C. Australia

Silty

Street Controller

Sh Contributed Contributed Contributed Contributed Contributed Contributed Contributed Contributed Cont **Anytime Approximate Formal Feature Attribution**

Jinqiang Yu^{1,2}, Graham Farr¹, Alexey Ignatiev¹, Peter J. Stuckey^{1,2}

- 1. Department of Data Science and AI, Monash University, Australia
- 2. Australian Research Council OPTIMA ITTC, Australia

[Introduction](#page-1-0)

[Background](#page-7-0)

[Approximate Formal Feature Attribution](#page-21-0)

[Experimental Results](#page-26-0)

[Conclusions](#page-35-0)

Example 18 AMPLE 18 AMP Rapid advances in Artificial Intelligence (AI) and Machine Learning (ML) algorithms.

Issue: opaque models \rightarrow lack of trust.

Rise: Explainable Artificial Intelligence (XAI).

Solution:Post-hoc explanations.

 \mathcal{P}
IP, etc. **Post-hoc explanations** answer 'why?' questions and 'how?'questions **Heuristic approach**:

- **E** Feature selection: Anchor.
- ***** Feature Attribution: LIME, SHAP, etc.
- \cdot Issue:
	- **Explanation quality.**

 $\mathcal{O}(2)$
 $\mathcal{$ **Post-hoc explanations** answer 'why?' questions and 'how?'questions **Formal approach**:

- **EXECUTE:** Correct and minimal.
- Feature selection: abductive explanation (AXp) and contrastive explanation (CXp).
- **Feature attribution: formal feature attribution (FFA).**

Formal feature attribution (FFA):

The issues in the proportion of AXp's in the proportion of AXp's in the proportion of AXp's and CXp's.
Intervalse in the component of the proportion of the component of the component of the component of the component of th Provide the importance of each feature, i.e. the proportion of AXp's in which it appears.

FFA approach:

- Make use of the *hitting set duality* between AXp's and CXp's.
- Collect AXp's as a *side effect* of CXp enumeration algorithm.

Observations from the FFA approach:

- ach:

finding the first CXp.

pximation of FFA.

FFA faster.

e. Usually find many $AXp's$ before finding the first $CXp.$
- AXp's are diverse \rightarrow good approximation of FFA.
- AXp enumeration can get exact FFA faster.

Issue: Exact FFA is hard to compute.

[Introduction](#page-1-0)

[Background](#page-7-0)

[Approximate Formal Feature Attribution](#page-21-0)

[Experimental Results](#page-26-0)

[Conclusions](#page-35-0)

Boolean Satisfiability (SAT)

- Decision problem for propositional logic.
- Formula φ : Conjunctive normal form (CNF).
	- Clause: a disjunction of literals.
	- **Example 1** Literal: a Boolean variable b or $\neg b$.
	- \bullet Example: $(a \lor \neg c) \land (b \lor c)$.
- aal logic.

form (CNF).

rals.
 b or $\neg b$.
 j).

mment μ satisfying the formula.

⁸ **Satisfiable:** there exists an assignment μ satisfying the formula.

): maximize the number of satisfied
 $H \wedge S$.

satisfied.

a preference to satisfy those clauses.

atisfied soft clauses. **Maximum Satisfiability (MaxSAT)**: maximize the number of satisfied clauses.

Partial Unweighted MaxSAT: $\phi = \mathcal{H} \wedge \mathcal{S}$.

- $H:$ hard clauses, which *must* be satisfied.
- \cdot *S*: soft clauses, which represent a *preference* to satisfy those clauses.
- * Aim: maximize the number of satisfied soft clauses.

Let $\phi = \mathcal{H} \cup \mathcal{S}$ and $\phi \models \bot$.

Minimal Unsatisfiable Subset (MUS):

JS):

iff $\mathcal{H} \cup \mu \vDash \bot$ and $\forall \mu' \subsetneq \mu$ it holds
):

iff $\mathcal{H} \cup \mathcal{S} \setminus \sigma \nvDash \bot$ and $\forall \sigma' \subsetneq \sigma$ it
 10 \overline{A} subset of clauses $\mu \subseteq \mathcal{S}$ is a \overline{MUS} iff $\mathcal{H} \cup \mu \vDash \bot$ and $\forall \mu' \subsetneq \mu$ it holds that $\mathcal{H} \cup \mu' \nvDash \bot$.

Minimal Correction Subset (MCS):

 \overline{A} subset of clauses $\sigma \subseteq \mathcal{S}$ is a MCS iff $\mathcal{H} \cup \mathcal{S} \setminus \sigma \nvDash \bot$ and $\forall \sigma' \subsetneq \sigma$ it holds that $\mathcal{H} \cup \mathcal{S} \setminus \sigma' \vDash \bot$.

v relationship between MUSes and

))

Itting sets of S.

ent with each subset in S.

11 **Minimal hitting set (MHS)** duality relationship between MUSes and MCSes, i.e.

$$
\mathbb{U}_{\phi} = \mathrm{MHS}(\mathbb{C}_{\phi}) \text{ and } \mathbb{C}_{\phi} = \mathrm{MHS}(\mathbb{U}_{\phi})
$$

where

- I U*ϕ*: MUSes.
- I C*ϕ*: MCSes.
- \cdot MHS(S) returns the minimal hitting sets of S.
- \bullet Minimal sets that share an element with each subset in S.

A classification function $\tau: \mathcal{F} \to \mathcal{K}$.

- $\cdot \mathcal{F}$: complete feature space.
- $K: a set of classes.$

Classification Problem

Figure 1: Boosted tree model trained on the *adult* classification dataset.

Instance:

{Education=Bachelors, Status=Separated, Occupation=Sales,

Relationship=Not-in-family, Sex=Male, Hours/w<40}

Score: $-0.4073 = (-0.1089 - 0.2404 - 0.0580) < 0 →$ prediction $< 50k$

Abductive explanation (AXp) \mathcal{X} : subset-minimal set of features sufficing to explain the prediction .

$$
\forall (\mathbf{x} \in \mathbb{F}). \left[\bigwedge\nolimits_{i \in \mathcal{X}} (x_i = v_i)\right] \rightarrow (\kappa(\mathbf{x}) = c)
$$

subset-minimal set of features
 $= v_i$) $\rightarrow (\kappa(\mathbf{x}) = c)$

subset-minimal set of features that

nn.
 $= v_i$) $\land (\kappa(\mathbf{x}) \neq c)$

s minimally hit every AXp, and

14 **Contrastive explanation** (CXp) $Y:$ subset-minimal set of features that are necessary to change the prediction.

$$
\exists (\mathbf{x} \in \mathbb{F}). \left[\bigwedge_{i \notin \mathcal{Y}} (x_i = v_i) \right] \wedge (\kappa(\mathbf{x}) \neq c)
$$

Minimal Hitting Set Duality: CXps minimally hit every AXp, and vice-versa.

AXp and CXp Examples

Figure 2: Boosted tree model trained on the *adult* classification dataset.

(a) $AXp \mathcal{X}_1$.

 $X_2 = \{$ Education, Status }

 IF Education = Bachelors
AND Status = Separated $Status = Separate$ THEN Target *<*50k

(b) $AXp \; \mathcal{X}_2$.

AXp and CXp Examples

Figure 2: Boosted tree model trained on the *adult* classification dataset.

 $\mathcal{Y}_1 = \{$ Education } IF Education \neq Bachelors THEN Target can be changed to $>50k$ (a) $CXp \mathcal{Y}_1$. $\mathcal{Y}_2 = \{$ Hours/w, Status } IF Hours/w ≰ 40 AND Status \neq Separated THEN Target can be changed to $>50k$ (b) CXp \mathcal{Y}_2 .

Inspired by the implicit hitting set based algorithm eMUS/MARCO.

e **Attributeing set** based algorithm eMUS/MARCO.
\n
$$
f_{\text{A}_{\kappa}}(i, (\mathbf{v}, c)) = \frac{|\{\mathcal{X} \mid \mathcal{X} \in \mathbb{A}_{\kappa}(\mathbf{v}, c), i \in \mathcal{X})|}{|\mathbb{A}_{\kappa}(\mathbf{v}, c)|}
$$
\n(1)\n\nce.

\nthe set of AXp's for **v**.

where

- *** v**: instance.
- \cdot c: prediction.
- \star λ : AXp.
- \triangle $\mathbb{A}_{\kappa}(\mathbf{v}, c)$: the set of AXp's for **v**.
- \cdot i: feature.

FFA Algorithm

Enumeration

Enumeration
 \triangleright Sets of AXp's and CXp's to collect.
 \triangleright Set a new MHS of A subject to C.
 \triangleright St ite CXp candidate.
 \triangleright Stop if none is computed.
 $\land (\kappa(\mathbf{x}) \neq c)$ then
 \triangleright 2 appears to be a C **Algorithm 1** Anytime Explanation Enumeration **Input**: Classifier: *^κ*, instance: **^v**, prediction: ^c **Output**: AXp's: ^A, CXp's: ^C 1: $(A, C) \leftarrow (0, 0)$ *>Sets of AXp's and CXp's to collect.* 2: **while** resources available **do** 3: $\mathcal{Y} \leftarrow \text{MINIMALHS}(\mathbb{A}, \mathbb{C})$ *<i>⊳Get a new MHS of A subject to* \mathbb{C} *.* 4: *[▷]*^Y is the CXp candidate. 5: **if** $\mathcal{Y} = \perp$ **then break** \triangleright *>Stop if none is computed.* 6: *▷***Check CXp condition for** *y*.
7: **if** $\exists (\mathbf{x} \in \mathbb{F})$, $[\Lambda_{\infty}, (\mathbf{x} \in \mathbf{x})]$ 7: **if** \exists (**x** \in \mathbb{F}). $\left[\bigwedge_{i \notin \mathcal{Y}} (x_i = v_i)\right] \wedge (\kappa(\mathbf{x}) \neq c)$ then 8: $\mathbb{C} \leftarrow \mathbb{C} \cup \{ \mathcal{Y} \}$ *v* appears to be a CXp. 9: **else** 10: $\mathcal{X} \leftarrow \text{EXTRACTAXP}(\mathcal{F} \setminus \mathcal{Y}, \kappa, \mathbf{v}, c)$ 11: $A \leftarrow A \cup \{X\}$ *⊳ There must be a missing AXp X* $\subseteq \mathcal{F} \setminus \mathcal{Y}$ *.* **return**A, C

Algorithm 2 ExtractAXp

Input: Candidate: ^X , classifier: *^κ*, instance: **^v**, prediction: ^c **Output**: AXp: ^X 1: **for** ^j ∈ X **do** 2: **if** $\forall (\mathbf{x} \in \mathbb{F})$. $\left[\bigwedge_{i \in \mathcal{X} \setminus \{j\}} (x_i = v_i)\right] \rightarrow (\kappa(\mathbf{x}) = c)$ then 3: $\mathcal{X} \leftarrow \mathcal{X} \setminus \{i\}$ **return**X

FFA Example

Figure 4: Boosted tree model trained on the *adult* classification dataset.

LIME, SHAP and FFA Examples

Figure 6: Boosted tree model trained on the *adult* classification dataset.

Issue of LIME and SHAP: Some irrelevant features have non-zero attribution,

[Introduction](#page-1-0)

[Background](#page-7-0)

[Approximate Formal Feature Attribution](#page-21-0)

[Experimental Results](#page-26-0)

[Conclusions](#page-35-0)

**Internation

FFA** hard to compute.
 act FFA faster.

proximations.

not diverse.

p's → quick convergence.

 3 approximate FFA

some point.

21 **Issue in the FFA approach**: Exact FFA hard to compute. **Inspirations**:

- \cdot AXp enumeration \rightarrow getting *exact* FFA faster.
- Diverse $AXp's \rightarrow good FFA$ approximations.
- \bullet AXp enumeration \rightarrow AXp's are not diverse.
- \bullet CXp enumeration \rightarrow diverse AXp's \rightarrow quick convergence.

Proposed approach:

- \bullet Anytime approach to computing approximate FFA
- \cdot Start with CXp enumeration
- **■** Switch to AXp enumeration at some point.

Algorithm with Switching

Algorithm 3 Adaptive Explanation Enumeration

orithm with Switching		
Algorithm 3 Adaptive Explanation enumeration		
1: $(\mathbb{E}_0, \mathbb{E}_1) \leftarrow (\emptyset, \emptyset)$	$\triangleright \mathbb{C} \times p$'s and $\mathbb{A} \times p$'s to collect	
2: $\rho \leftarrow 0$	$\triangleright \mathbb{T} \text{arget phase of enumerator, initially } \mathbb{C} \times p$	
3: while true do	$\mu \leftarrow \text{MINIMALHS}(\mathbb{E}_{1-\rho}, \mathbb{E}_{\rho}, \rho)$	$\triangleright \text{MHS of } \mathbb{E}_{1-\rho} \text{ s.t. } \mathbb{E}_{\rho}.$
5: if $\mu = \pm$ then break	$\triangleright \text{Stop if none is computed.}$	
6: $\triangleright \text{Check } \mathbb{C} \times p \text{ condition for } \mathcal{Y}.$		
7: if $\text{ISTARET}\times p(\mu, \tau, \mathbf{v}, c)$ then		
8: $\mathbb{E}_{\rho} \leftarrow \mathbb{E}_{\rho} \cup \{\mu\}$	$\triangleright \text{There must be a missing } \mathbb{A} \times p \times \mathbb{C} \neq \mathbb{V} \}$.	
9: else		
10: $\triangleright \text{Collect target expl. } \mu$	$\triangleright \text{There must be a missing } \mathbb{A} \times p \times \mathbb{C} \neq \mathbb{V} \}$.	
11: $\nu \leftarrow \text{EXTRACTDUALX} \mathbb{P}(\mathcal{F} \setminus \mu, \tau, \mathbf{v}, c)$		
12: $\mathbb{E}_{1-\rho} \leftarrow \mathbb{E}_{1-\rho} \cup \{\nu\}$	$\triangleright \text{Collect dual expl. } \nu$	

Criterion 1: Switch when CXp's on average are much smaller than AXp's, i.e. when

's on average are *much* smaller than
$$
AXp's
$$
, i.e.
\n
$$
\frac{\sum_{\mathcal{X} \in A^w} |\mathcal{X}|}{\sum_{\mathcal{Y} \in C^w} |\mathcal{Y}|} \ge \alpha,
$$
\n(2)
\naverage CXp size "stabilizes".
\n
$$
\left|\frac{\sum_{\mathcal{Y} \in C^w} |\mathcal{Y}|}{w}\right| \le \varepsilon,
$$
\n(3)
\n
$$
\frac{\sum_{\mathcal{Y} \in C^w} |\mathcal{Y}|}{w} \ge \varepsilon,
$$
\n
$$
\frac{\text{stifiable } \rightarrow \text{cheap.}}{\text{satifiable } \rightarrow \text{expensive.}}
$$
\n
$$
AXp's \text{ diverse.}
$$
\n1 for AXp , multiple calls for CXp extraction.

Criterion 2: Switch when the average CXp size "stabilizes".

$$
\left| |\mathcal{Y}_{\text{new}}| - \frac{\sum_{\mathcal{Y} \in \mathbb{C}^w} |\mathcal{Y}|}{w} \right| \leq \varepsilon, \tag{3}
$$

Rational:

- \triangleq Normally $|\mathcal{X}| > |\mathcal{Y}|$
- \bullet CXp extraction: check satisfiable \rightarrow cheap.
- \bullet AXp extraction: check unsatisfiable \rightarrow expensive.
- \triangle Before switching: ensure AXp's diverse.
- * After switching: single call for AXp, multiple calls for CXp extraction.

Criterion 1: Switch when CXp's on average are much smaller than AXp's, i.e. when

\n
$$
c
$$
's on average are *much* smaller than $AXp's$, i.e. $\frac{\sum_{\mathcal{X} \in A^w} |\mathcal{X}|}{\sum_{\mathcal{Y} \in \mathbb{C}^w} |\mathcal{Y}|} \geq \alpha,$ \n

\n\n (2)\n

\n\n average CXp size "stabilizes".
\n
$$
w| - \frac{\sum_{\mathcal{Y} \in \mathbb{C}^w} |\mathcal{Y}|}{w} \leq \varepsilon,
$$
\n

\n\n (3)\n

\n\n tting *either* of the two criteria!\n

Criterion 2: Switch when the average CXp size "stabilizes".

$$
\left| |\mathcal{Y}_{\text{new}}| - \frac{\sum_{\mathcal{Y} \in \mathbb{C}^w} |\mathcal{Y}|}{w} \right| \le \varepsilon, \tag{3}
$$

Switch when meeting *either* of the two criteria!

[Introduction](#page-1-0)

[Background](#page-7-0)

[Approximate Formal Feature Attribution](#page-21-0)

[Experimental Results](#page-26-0)

[Conclusions](#page-35-0)

Datasets: 3 Images and 2 text data

Metrics:

- **Errors**: Manhattan distance, i.e. the sum of absolute differences across all features.
- I **Kendall's Tau**: Similarity of two rankings. Ranging [−1*,* 1]. The higher the closer.
- Follow the sum of absolute differences

o rankings. Ranging $[-1, 1]$. The

Similarity of two rankings. Ranging
 ence: Statistical distance between

mging from 0 to ∞ .

25 **Rank-biased overlap (RBO)**: Similarity of two rankings. Ranging [0*,* 1]. The higher the closer.
- **Kullback–Leibler (KL) divergence**: Statistical distance between two probability distributions. Ranging from 0 to ∞ .
- ***** Number of AXp's

Average Runtime:

- I MARCO-S (Our approach): 3509.50s (9.26s − 30881.55s)
- I MARCO-A (AXp enumeration): 3255.30s (2.15s − 29191.42s)
- 9.50s (9.26s 30881.55s)
3255.30s (2.15s 29191.42s)
19311.87s (9.39s 55951.57s)
26 I MARCO-C (CXp enumeration): 19311.87s (9.39s − 55951.57s)

Error Results

Figure 8: FFA approximation error over time.

- * MARCO-S: Propose approach * MARCO-A: AXp enumeration
- **MARCO-C: CXp enumeration**

Kendall's Tau Results

Figure 9: Kendall's Tau over time.

- MARCO-S: Propose approach MARCO-A: AXp enumeration
- **MARCO-C: CXp enumeration**

RBO Results

Figure 10: RBO over time.

- * MARCO-S: Propose approach * MARCO-A: AXp enumeration
- **I** MARCO-C: CXp enumeration

KL Divergence Results

Figure 11: KL divergence over time.

- * MARCO-S: Propose approach * MARCO-A: AXp enumeration
- **MARCO-C: CXp enumeration**

Number of AXp's Results

Figure 12: Number of AXp's over time.

- * MARCO-S: Propose approach * MARCO-A: AXp enumeration
- **MARCO-C: CXp enumeration**

Number of AXp's Examples

Figure 13: Number of AXp's over time in example instances.

- MARCO-S: Propose approach MARCO-A: AXp enumeration
- **MARCO-C: CXp enumeration**

[Introduction](#page-1-0)

[Background](#page-7-0)

[Approximate Formal Feature Attribution](#page-21-0)

[Experimental Results](#page-26-0)

[Conclusions](#page-35-0)

- The proposed approach can replicate the behavior of the superior competitor \rightarrow efficient and good approximation of FFA.
- \cdot Start with CXp enumeration \rightarrow diverse AXp's.
- Switching to AXp enumeration \rightarrow extracting AXp 's faster.
- licate the behavior of the superior
d approximation of FFA.
diverse AXp's.
→ extracting AXp's faster.
e readily adapted to a multitude of
strained systems or model-based
 $\frac{1}{3}$ The proposed mechanism can be readily adapted to a multitude of other problems, e.g. in over-constrained systems or model-based diagnosis (MBD)

$\frac{1}{35}$ Thank you!