Anytime Approximate Formal Feature Attribution

Jingiang Yu^{1,2}, Graham Farr¹, Alexey Ignatiev¹, Peter J. Stuckey^{1,2}

- 1. Department of Data Science and Al. Monash University, Australia
- 2. Australian Research Council OPTIMA ITTC. Australia

Introduction

Background

Approximate Formal Feature Attribution

Experimental Results

Conclusions

Rapid advances in Artificial Intelligence (AI) and Machine Learning (ML) algorithms.

Issue: opaque models \rightarrow lack of trust.

Rise: Explainable Artificial Intelligence (XAI).

Solution: Post-hoc explanations.

Post-hoc explanations answer '*why*?' questions and '*how*?'questions **Heuristic approach**:

- * Feature selection: Anchor.
- * Feature Attribution: LIME, SHAP, etc.
- Issue:
 - Explanation quality.

Post-hoc explanations answer '*why*?' questions and '*how*?'questions **Formal approach**:

- Correct and minimal.
- Feature selection: abductive explanation (AXp) and contrastive explanation (CXp).
- * Feature attribution: formal feature attribution (FFA).

Formal feature attribution (FFA):

Provide the importance of each feature, i.e. the proportion of AXp's in which it appears.

FFA approach:

- * Make use of the *hitting set duality* between AXp's and CXp's.
- * Collect AXp's as a *side effect* of CXp enumeration algorithm.

Observations from the FFA approach:

- Usually find many AXp's before finding the first CXp.
- * AXp's are diverse \rightarrow good approximation of FFA.
- * AXp enumeration can get *exact* FFA faster.

Issue: *Exact* FFA is hard to compute.

Introduction

Background

Approximate Formal Feature Attribution

Experimental Results

Conclusions

Boolean Satisfiability (SAT)

- * Decision problem for propositional logic.
- * Formula φ : Conjunctive normal form (CNF).
 - Clause: a disjunction of literals.
 - Literal: a Boolean variable b or $\neg b$.
 - Example: $(a \lor \neg c) \land (b \lor c)$.
- * Satisfiable: there exists an assignment μ satisfying the formula.

Maximum Satisfiability (MaxSAT): maximize the number of satisfied clauses.

Partial Unweighted MaxSAT: $\phi = \mathcal{H} \land \mathcal{S}$.

- * \mathcal{H} : hard clauses, which *must* be satisfied.
- * S: soft clauses, which represent a *preference* to satisfy those clauses.
- * Aim: maximize the number of satisfied soft clauses.

Let $\phi = \mathcal{H} \cup \mathcal{S}$ and $\phi \models \bot$.

Minimal Unsatisfiable Subset (MUS):

A subset of clauses $\mu \subseteq S$ is a *MUS* iff $\mathcal{H} \cup \mu \vDash \bot$ and $\forall \mu' \subsetneq \mu$ it holds that $\mathcal{H} \cup \mu' \nvDash \bot$.

Minimal Correction Subset (MCS):

A subset of clauses $\sigma \subseteq S$ is a *MCS* iff $\mathcal{H} \cup S \setminus \sigma \nvDash \bot$ and $\forall \sigma' \subsetneq \sigma$ it holds that $\mathcal{H} \cup S \setminus \sigma' \vDash \bot$.

Minimal hitting set (MHS) duality relationship between MUSes and MCSes, i.e.

$$\mathbb{U}_{\phi} = \mathrm{MHS}(\mathbb{C}_{\phi}) \text{ and } \mathbb{C}_{\phi} = \mathrm{MHS}(\mathbb{U}_{\phi})$$

where

- * \mathbb{U}_{ϕ} : MUSes.
- \mathbb{C}_{ϕ} : MCSes.
- * MHS(S) returns the minimal hitting sets of S.
- * Minimal sets that share an element with each subset in S.

- A classification function $\tau \colon \mathcal{F} \to K$.
 - * \mathcal{F} : complete feature space.
 - ✤ K: a set of classes.

Classification Problem

Figure 1: Boosted tree model trained on the adult classification dataset.

Instance:

{Education=Bachelors, Status=Separated, Occupation=Sales,

Relationship=Not-in-family, Sex=Male, Hours/w≤40}

Score: $-0.4073 = (-0.1089 - 0.2404 - 0.0580) < 0 \rightarrow \text{prediction} < 50k$

Abductive explanation (AXp) \mathcal{X} : subset-minimal set of features sufficing to explain the prediction .

$$\forall (\mathbf{x} \in \mathbb{F}). \left[\bigwedge_{i \in \mathcal{X}} (x_i = v_i) \right] \rightarrow (\kappa(\mathbf{x}) = c)$$

Contrastive explanation (CXp) \mathcal{Y} : subset-minimal set of features that are necessary to change the prediction.

$$\exists (\mathbf{x} \in \mathbb{F}). \left[\bigwedge_{i \notin \mathcal{Y}} (x_i = v_i) \right] \land (\kappa(\mathbf{x}) \neq c)$$

Minimal Hitting Set Duality: CXps minimally hit every AXp, and vice-versa.

AXp and CXp Examples

Figure 2: Boosted tree model trained on the *adult* classification dataset.

 $\begin{array}{ll} \mathcal{X}_1 = \{ \mbox{ Education, Hours/w} \} \\ \mbox{IF} & \mbox{Education} = \mbox{Bachelors} \\ \mbox{AND} & \mbox{Hours/w} \leq 40 \\ \mbox{THEN} & \mbox{Target} < 50 k \end{array}$

(a) AXp X₁.

 $\mathcal{X}_2 = \{ \mathsf{Education}, \mathsf{Status} \}$

IF Education = Bachelors AND Status = Separated THEN Target <50k

(b) AXp X₂.

AXp and CXp Examples

Figure 2: Boosted tree model trained on the *adult* classification dataset.

 $\mathcal{Y}_1 = \{$ Education $\}$ $\mathcal{Y}_2 = \{$ Hours/w, Status $\}$ IFEducation \neq BachelorsIFHours/w $\not\leq 40$ THENTarget can be changed to $\geq 50k$ THENTarget can be changed to $\geq 50k$ (a) CXp \mathcal{Y}_1 .(b) CXp \mathcal{Y}_2 .

Inspired by the implicit hitting set based algorithm eMUS/MARCO.

$$\operatorname{ffa}_{\kappa}(i,(\mathbf{v},c)) = \frac{|\{\mathcal{X} \mid \mathcal{X} \in \mathbb{A}_{\kappa}(\mathbf{v},c), i \in \mathcal{X})|}{|\mathbb{A}_{\kappa}(\mathbf{v},c)|}$$
(1)

where

- v: instance.
- c: prediction.
- ✤ X: AXp.
- * $\mathbb{A}_{\kappa}(\mathbf{v}, c)$: the set of AXp's for \mathbf{v} .
- *i*: feature.

FFA Algorithm

Algorithm 1 Anytime Explanation Enumeration **Input**: Classifier: κ , instance: **v**, prediction: c Output: AXp's: A, CXp's: C 1: $(\mathbb{A}, \mathbb{C}) \leftarrow (\emptyset, \emptyset)$ ⊳Sets of AXp's and CXp's to collect. 2: while resources available do $\mathcal{Y} \leftarrow \text{MINIMALHS}(\mathbb{A}, \mathbb{C}) \qquad \triangleright \text{Get a new MHS of } \mathbb{A} \text{ subject to } \mathbb{C}.$ 3: $\triangleright \mathcal{Y}$ is the CXp candidate. 4: if $\mathcal{V} = \bot$ then break ▷Stop if none is computed. 5: 6: \triangleright Check CXp condition for \mathcal{Y} . if $\exists (\mathbf{x} \in \mathbb{F})$. $\left[\bigwedge_{i \notin \mathcal{V}} (x_i = v_i) \right] \land (\kappa(\mathbf{x}) \neq c)$ then 7: $\mathbb{C} \leftarrow \mathbb{C} \cup \{\mathcal{V}\}$ $\triangleright \mathcal{V}$ appears to be a CXp. 8: 9: else $\mathcal{X} \leftarrow \text{EXTRACTAXP}(\mathcal{F} \setminus \mathcal{Y}, \kappa, \mathbf{v}, c)$ 10. $\mathbb{A} \leftarrow \mathbb{A} \cup \{\mathcal{X}\} \qquad \triangleright \text{There must be a missing } AXp \ \mathcal{X} \subseteq \mathcal{F} \setminus \mathcal{Y}.$ 11: return \mathbb{A} . \mathbb{C}

Algorithm 2 ExtractAXp

Input: Candidate: \mathcal{X} , classifier: κ , instance: \mathbf{v} , prediction: cOutput: AXp: \mathcal{X} 1: for $j \in \mathcal{X}$ do 2: if $\forall (\mathbf{x} \in \mathbb{F})$. $\left[\bigwedge_{i \in \mathcal{X} \setminus \{j\}} (x_i = v_i) \right] \rightarrow (\kappa(\mathbf{x}) = c)$ then 3: $\mathcal{X} \leftarrow \mathcal{X} \setminus \{j\}$ return \mathcal{X}

FFA Example

Figure 4: Boosted tree model trained on the *adult* classification dataset.

LIME, SHAP and FFA Examples

Figure 6: Boosted tree model trained on the *adult* classification dataset.

Issue of LIME and SHAP: Some *irrelevant* features have non-zero attribution,

Introduction

Background

Approximate Formal Feature Attribution

Experimental Results

Conclusions

Issue in the FFA approach: *Exact* FFA hard to compute. **Inspirations**:

- * AXp enumeration \rightarrow getting *exact* FFA faster.
- * Diverse AXp's \rightarrow good FFA approximations.
- * AXp enumeration \rightarrow AXp's are not diverse.
- * CXp enumeration \rightarrow diverse AXp's \rightarrow quick convergence.

Proposed approach:

- * Anytime approach to computing approximate FFA
- Start with CXp enumeration
- * Switch to AXp enumeration at some point.

Algorithm with Switching

Algorithm 3 Adaptive Explanation Enumeration

1:
$$(\mathbb{E}_{0}, \mathbb{E}_{1}) \leftarrow (\emptyset, \emptyset)$$

 $CXp's and AXp's to collect$
2: $\rho \leftarrow 0$
 $Target phase of enumerator, initially CXp$
3: while true do
4: $\mu \leftarrow MINIMALHS(\mathbb{E}_{1-\rho}, \mathbb{E}_{\rho}, \rho)$
 $MHS of \mathbb{E}_{1-\rho} s.t. \mathbb{E}_{\rho}$.
5: if $\mu = \bot$ then break
 $DStop if none is computed$.
6: $DCheck CXp condition for \mathcal{Y}$.
7: if IsTARGETXP(μ, τ, \mathbf{v}, c) then
8: $\mathbb{E}_{\rho} \leftarrow \mathbb{E}_{\rho} \cup \{\mu\}$
 $DThere must be a missing $AXp \ \mathcal{X} \subseteq \mathcal{F} \setminus \mathcal{Y}$.
9: else
10: $DCollect target expl. \mu$
11: $\nu \leftarrow EXTRACTDUALXP(\mathcal{F} \setminus \mu, \tau, \mathbf{v}, c)$
12: $\mathbb{E}_{1-\rho} \leftarrow \mathbb{E}_{1-\rho} \cup \{\nu\}$
 $DCollect dual expl. \nu$
13: $DThe difference!$
14: if IsSWITCHNEEDED($\mathbb{E}_{\rho}, \mathbb{E}_{1-\rho}, w, \alpha, \varepsilon$) then
15: $\rho \leftarrow 1 - \rho$
 $DFlip phase of MINIMALHS return \mathbb{E}_{1}, \mathbb{E}_{0}$
 $DResult AXp's and CXp's$$

Criterion 1: Switch when CXp's on average are *much* smaller than AXp's, i.e. when

$$\frac{\sum_{\mathcal{X}\in\mathbb{A}^{w}}|\mathcal{X}|}{\sum_{\mathcal{Y}\in\mathbb{C}^{w}}|\mathcal{Y}|} \ge \alpha,$$
(2)

Criterion 2: Switch when the average CXp size "stabilizes".

$$\left|\left|\mathcal{Y}_{\mathsf{new}}\right| - \frac{\sum_{\mathcal{Y} \in \mathbb{C}^w} |\mathcal{Y}|}{w}\right| \le \varepsilon,\tag{3}$$

Rational:

- Normally $|\mathcal{X}| > |\mathcal{Y}|$
- * CXp extraction: check satisfiable \rightarrow cheap.
- * AXp extraction: check unsatisfiable \rightarrow expensive.
- * Before switching: ensure AXp's diverse.
- * After switching: single call for AXp, multiple calls for CXp extraction.

Criterion 1: Switch when CXp's on average are *much* smaller than AXp's, i.e. when

$$\frac{\sum_{\mathcal{X}\in\mathbb{A}^{w}}|\mathcal{X}|}{\sum_{\mathcal{Y}\in\mathbb{C}^{w}}|\mathcal{Y}|} \ge \alpha,$$
(2)

Criterion 2: Switch when the average CXp size "stabilizes".

$$\left|\left|\mathcal{Y}_{\mathsf{new}}\right| - \frac{\sum_{\mathcal{Y} \in \mathbb{C}^{w}} |\mathcal{Y}|}{w}\right| \le \varepsilon,\tag{3}$$

Switch when meeting *either* of the two criteria!

Introduction

Background

Approximate Formal Feature Attribution

Experimental Results

Conclusions

Datasets: 3 Images and 2 text data

Metrics:

- Errors: Manhattan distance, i.e. the sum of absolute differences across all features.
- Kendall's Tau: Similarity of two rankings. Ranging [-1,1]. The higher the closer.
- Rank-biased overlap (RBO): Similarity of two rankings. Ranging
 [0, 1]. The higher the closer.
- Kullback–Leibler (KL) divergence: Statistical distance between two probability distributions. Ranging from 0 to ∞.
- Number of AXp's

Average Runtime:

- MARCO-S (Our approach): 3509.50s (9.26s 30881.55s)
- MARCO-A (AXp enumeration): 3255.30s (2.15s 29191.42s)
- MARCO-C (CXp enumeration): 19311.87s (9.39s 55951.57s)

Error Results

Figure 8: FFA approximation error over time.

- * MARCO-S: Propose approach * MARCO-A: AXp enumeration
- MARCO-C: CXp enumeration

Kendall's Tau Results

Figure 9: Kendall's Tau over time.

- * MARCO-S: Propose approach * MARCO-A: AXp enumeration
- MARCO-C: CXp enumeration

RBO Results

Figure 10: RBO over time.

- * MARCO-S: Propose approach * MARCO-A: AXp enumeration
- * MARCO-C: CXp enumeration

KL Divergence Results

Figure 11: KL divergence over time.

- * MARCO-S: Propose approach * MARCO-A: AXp enumeration
- * MARCO-C: CXp enumeration

Number of AXp's Results

Figure 12: Number of AXp's over time.

- * MARCO-S: Propose approach * MARCO-A: AXp enumeration
- * MARCO-C: CXp enumeration

Number of AXp's Examples

Figure 13: Number of AXp's over time in example instances.

- * MARCO-S: Propose approach * MARCO-A: AXp enumeration
- MARCO-C: CXp enumeration

Introduction

Background

Approximate Formal Feature Attribution

Experimental Results

Conclusions

- * The proposed approach can replicate the behavior of the superior competitor \rightarrow efficient and good approximation of FFA.
- * Start with CXp enumeration \rightarrow diverse AXp's.
- * Switching to AXp enumeration \rightarrow extracting AXp's faster.
- The proposed mechanism can be readily adapted to a multitude of other problems, e.g. in over-constrained systems or model-based diagnosis (MBD)

Thank you!