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Abstract12

Widespread use of artificial intelligence (AI) algorithms and machine learning (ML) models on the13

one hand and a number of crucial issues pertaining to them warrant the need for explainable artificial14

intelligence (XAI). A key explainability question is: given this decision was made, what are the input15

features which contributed to the decision? Although a range of XAI approaches exist to tackle this16

problem, most of them have significant limitations. Heuristic XAI approaches suffer from the lack of17

quality guarantees, and often try to approximate Shapley values, which is not the same as explaining18

which features contribute to a decision. A recent alternative is so-called formal feature attribution19

(FFA), which defines feature importance as the fraction of formal abductive explanations (AXp’s)20

containing the given feature. This measures feature importance from the view of formally reasoning21

about the model’s behavior. Namely, given a system of constraints logically representing the ML22

model of interest, computing an AXp requires finding a minimal unsatisfiable subset (MUS) of the23

system. It is challenging to compute FFA using its definition because that involves counting over24

all AXp’s (equivalently, counting over MUSes), although one can approximate it. Based on these25

results, this paper makes several contributions. First, it gives compelling evidence that computing26

FFA is intractable, even if the set of contrastive formal explanations (CXp’s), which correspond to27

minimal correction subsets (MCSes) of the logical system, is provided, by proving that the problem28

is #P-hard. Second, by using the duality between MUSes and MCSes, it proposes an efficient29

heuristic to switch from MCS enumeration to MUS enumeration on-the-fly resulting in an adaptive30

explanation enumeration algorithm effectively approximating FFA in an anytime fashion. Finally,31

experimental results obtained on a range of widely used datasets demonstrate the effectiveness of32

the proposed FFA approximation approach in terms of the error of FFA approximation as well as33

the number of explanations computed and their diversity given a fixed time limit.34
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1 Introduction44

The rise of the use of artificial intelligence (AI) and machine learning (ML) methods to help45

interpret data and make decisions has exposed a keen need for these algorithms to be able46

to explain their decisions/judgements. Lack of explanation of opaque and complex models47

leads to lack of trust, and allows the models to encapsulate unfairness, discrimination and48

other unwanted properties learnt from the data or through training.49

For a classification problem, a key explainability question is: “given a decision was made50

(a class was imputed to some data instance), what are the features that contributed to the51

decision?”. A more complex question is: “given the decision was made, how important was52

each feature in making that decision?”. There are many heuristic approaches to answering this53

question, mostly based on sampling around the instance [49], and attempting to approximate54

Shapley values [32]. But there is strong evidence that Shapley values do not really compute55

the importance of a feature to a decision [16, 35].56

By building on techniques for handling over-constrained systems and minimal unsatis-57

fiability [2, 31, 3, 34, 29], formal approaches to explainability (formal explainable AI, FXAI)58

are able to compute formal abductive explanations (AXp’s) for a decision, that is a minimal59

set of features which are enough to ensure the same decision will be made [51, 21]. Namely,60

an abductive explanation can be associated with a minimal unsatisfiable subset (MUS) of61

a set of clauses logically representing the decision function of an ML classifier [20]. FXAI62

approaches can also compute formal contrastive explanations (CXp’s), that is a minimal63

set of features, which must change in order to change the decision [39, 20]. Similarly to64

the case of AXps’s, these can be associated with minimal correction subsets (MCSes) of a65

logical representation of the decision function [20]. Hence a wealth of algorithms originating66

from minimal unsatisfiability and over-constrained systems [2, 31, 3, 45, 28, 26, 34, 29] are67

directly applicable for the computation and enumeration of AXp’s and CXp’s [20, 36]. Here,68

enumeration of formal explanations builds on the use of the minimal hitting set duality69

between AXp’s and CXp’s [20] and the application of the well-known MARCO algorithm70

originally proposed for implicit hitting set based enumeration of MUSes of unsatisfiable CNF71

formulas [45, 27, 29]. Until recently there was no formal approach to ascribing importance72

to features.73

A recent and attractive approach to formal feature attribution, called FFA [56], is simple.74

Compute all the abductive explanations for a decision, then the importance of a feature for75

the decision is simply the proportion of abductive explanations in which it appears. FFA is76

crisply defined, and easy to understand, but it is challenging to compute, as deciding if a77

feature has a non-zero attribution is at least as hard as deciding feature relevancy [15, 56].78

Yu et al. [56] show that FFA can be efficiently computed by making use of the hitting79

set duality between AXp’s and CXp’s. By trying to enumerate CXp’s, a side effect of the80

algorithm is to discover AXp’s. In fact, the algorithm will usually find many AXp’s before81

finding the first CXp. The AXp’s are guaranteed to be diverse, since they need to be broad82

in scope to ensure that the CXp is large enough to hit all AXp’s that apply to the decision.83

Using AXp’s collected as a side effect of CXp enumeration is effective at the start of the84

enumeration. But as we find more and more AXp’s as side effects we eventually get to a point85

where many more CXp’s are generated than AXp’s. Experimentation shows that if we wish86

to enumerate all AXp’s then indeed we should not rely on the side effect behavior, but simply87

enumerate AXp’s directly. This leads to a quandary: to get fast accurate approximations of88

FFA we wish to enumerate CXp’s and generate AXp’s as a side effect. But to compute the89

final correct FFA we wish to compute all AXp’s, and we are better off directly enumerating90
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AXp’s.91

In this paper, we develop an anytime approach to computing approximate FFA, by92

starting with CXp enumeration, and then dynamically switching to AXp enumeration when93

the rate of AXp discovery by CXp enumeration drops. In doing so, we are able to quickly94

get accurate approximations, but also arrive to the full set of AXp’s quicker than pure CXp95

enumeration. As direct CXp enumeration is feasible to do without the need to resort to the96

hitting set duality [36], one may want to estimate FFA by first enumerating CXp’s. The97

second contribution of this paper is to investigate this alternative approach and to show98

that even if a(n) (in)complete set of CXp’s is given, determining FFA is computationally99

expensive being #P-hard even if all CXp’s are of size two.100

The paper is organized as follows. The next section introduces the notation used through-101

out the paper. The main results of the paper are given in Section 3, which (1) theoretically102

argues that exact FFA computation is computationally hard and (2) it shows how to effi-103

ciently approximate FFA during the entire explanation enumeration process, which is done104

by switching from CXp enumeration to AXp enumeration on the fly. Section 4 provides105

experimental evidence that the proposed switching scheme is beneficial in practice as it106

helps us get to better quality approximations of FFA if compared to the standard setups of107

MARCO. Finally, Section 5 concludes the paper.108

2 Preliminaries109

Here we introduce the required propositional satisfiability (SAT) related notation as well as110

background on formal explainable AI in order to define formal feature attribution (FFA).111

2.1 Satisfiability and Minimal Unsatisfiability112

We assume standard definitions for propositional satisfiability (SAT) and maximum satis-113

fiability (MaxSAT) solving [5]. A propositional formula is said to be in conjunctive normal114

form (CNF) if it is a conjunction of clauses. A clause is a disjunction of literals. A literal is115

either a Boolean variable or its negation. Whenever convenient, clauses are treated as sets of116

literals while CNF formulas are treated as sets of clauses. A truth assignment maps each117

variable of a formula to a value from {0, 1}. Given a truth assignment, a clause is said to118

be satisfied if at least one of its literals is assigned value 1; otherwise, it is falsified by the119

assignment. A formula is satisfied if all of its clauses are satisfied; otherwise, it is falsified. If120

there exists no assignment that satisfies a CNF formula, then the formula is unsatisfiable.121

In the context of unsatisfiable formulas, the maximum satisfiability (MaxSAT) problem is122

to find a truth assignment that maximizes the number of satisfied clauses. While a number123

of variants of MaxSAT exist [5, Chapters 23 and 24], hereinafter, we are interested in Partial124

Unweighted MaxSAT, which can be formulated as follows. A formula ϕ is represented as a125

conjunction of hard clauses H, which must be satisfied, and soft clauses S, which represent a126

preference to satisfy those clauses, i.e. ϕ = H ∧ S (or ϕ = H ∪ S in the set theory notation).127

The Partial Unweighted MaxSAT problem consists in finding an assignment that satisfies all128

the hard clauses and maximizes the total number of satisfied soft clauses. In the analysis of129

an unsatisfiable formula ϕ, one is also often interested in identifying minimal unsatisfiable130

subsets (MUSes) and minimal correction subsets (MCSes) of ϕ, which can be defined as131

follows1.132

1 The problems we are tackling with these formalisms in this paper belong to decidable fragments of

SAT 2024
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▶ Definition 1 (Minimal Unsatisfiable Subset (MUS)). Let ϕ = H ∪ S denote an unsatisfiable133

set of clauses, i.e. ϕ⊨⊥. A subset of clauses µ ⊆ S is a Minimal Unsatisfiable Subset (MUS)134

iff H ∪ µ⊨⊥ and ∀µ′ ⊊ µ it holds that H ∪ µ′ ⊭⊥.135

Informally, an MUS can be seen as a minimal explanation of unsatisfiability for an unsatisfiable136

formula ϕ as it provides the minimal information that needs to be added to the hard clauses137

H to obtain unsatisfiability. Alternatively, one may be interested in correcting the formula138

by removing some of the clauses in S to achieve satisfiability.139

▶ Definition 2 (Minimal Correction Subset (MCS)). Let ϕ = H ∪ S denote an unsatisfiable140

set of clauses, i.e. ϕ⊨⊥. A subset of clauses σ ⊆ S is a Minimal Correction Subset (MCS)141

iff H ∪ S \ σ ⊭⊥ and ∀σ′ ⊊ σ it holds that H ∪ S \ σ′ ⊨⊥.142

Informally, an MCS can be seen as a minimal way to “correct” unsatisfiability of an un-143

satisfiable formula ϕ. A fundamental result in reasoning about unsatisfiable CNF formulas144

is the minimal hitting set (MHS) duality relationship between MUSes and MCSes [48, 6].145

That is if the sets of all MUSes and MCSes of formula ϕ are denoted as Uϕ and Cϕ then146

Uϕ = MHS(Cϕ) and Cϕ = MHS(Uϕ) where MHS(S) returns the minimal hitting sets of147

S, that is the minimal sets that share an element with each subset in S. More formally,148

HS(S) = {t ⊆ (∪S) | ∀s ∈ S, t ∩ s ̸= ∅} and mins(S) = {s ∈ S | ∀t ⊊ s, t ̸∈ S} returns the149

subset-minimal elements of a set of sets, and MHS(S) = mins(HS(S)). This result has been150

extensively used in the development of algorithms for MUSes and MCSes [2, 31, 29], and151

also applied in a number of different settings. Recent years have witnessed the emergence152

of a large number of novel algorithms for the extraction and enumeration of MUSes and153

MCSes [38, 1, 29, 37, 46, 13, 43, 4].154

2.2 Classification Problems155

We assume classification problems classify data instances into classes K where |K| = k ≥ 2.156

We are given a set of m features F , where the value of feature i ∈ F comes from a domain157

Di, which may be Boolean, (bounded) integer or (bounded) real. The complete feature space158

is defined by F ≜
∏m

i=1 Di.159

A data point in feature space is denoted v = (v1, . . . , vm) where vi ∈ Di, 1 ≤ i ≤ m. An160

instance of the classification problem is a pair of feature vector and its corresponding class,161

i.e. (v, c), where v ∈ F and c ∈ K.162

We use the notation x = (x1, . . . , xm) to represent an arbitrary point in feature space,163

where each xi will take a value from Di.164

A classifier is a total function from feature space to class: κ : F→ K. Many approaches165

exist to define classifiers including decision sets [9, 25], decision lists [50], decision trees [18],166

random forests [11], boosted trees [8], and neural nets [42, 17].167

▶ Example 3. Figure 1 shows a boosted tree (BT) model trained with the use of XGBoost [8]168

for a simplified version of the adult dataset [23]. BT models comprise an ensemble of decision169

trees; given an instance to classify, each decision tree in a BT model contributes a numeric170

weight to a particular class and the class with the largest total weight is selected as the171

model’s prediction. For a data instance v = {Education = Bachelors, Status = Separated,172

Occupation = Sales, Relationship = Not-in-family, Sex = Male, Hours/w ≤ 40}, the model173

first-order logic. While the definitions provided here are given for the propositional case, their extension
to the first-order case is straightforward.
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T1 (≥ 50k)

Status = Married?

Education = Dropout? Rel. = Not-in-family?

-0.1569 0.0770 -0.1089 -0.3167

yes no

yes no yes no

T2 (≥ 50k)

Hours/w ≤ 40?

Status = Married? Status = Never-Married?

-0.0200 -0.2404 -0.1245 0.0486

yes no

yes no yes no

T3 (≥ 50k)

Education = Doctorate?

40 < Hours/w ≤ 45? Rel. = Own-child?

0.0605 0.3890 -0.2892 -0.0580

yes no

yes no yes no

Figure 1 Example boosted tree model [8] trained on the well-known adult classification dataset.

X 1 = { Education, Hours/w }
IF Education = Bachelors
AND Hours/w ≤ 40
THEN Target <50k

(a) AXp’s X1

X 2 = { Education, Status }
IF Education = Bachelors
AND Status = Separated
THEN Target <50k

(b) AXp’s X2

||||||||||

0.50
Status: Separated

||||||||||

0.50
Hours/w <= 40

||||||||||

1.00
Education: Bachelors

(c) FFA

Figure 2 Examples of both AXp’s (no more AXp’s exist) followed by FFA for the instance v
shown in Example 3 as well as formal feature attribution (FFA).

predicts <50k because the sum of the weights in the 3 trees for this instance equals −0.4073 =174

(−0.1089− 0.2404− 0.0580) < 0.175

2.3 Formal Explainability176

Given a data point v, classifier κ classifies it as class κ(v). A post-hoc explanation of the177

behavior of κ on data point v tries to explain the behavior of κ on this instance. We consider178

two forms of formal explanation answering why and why not (or how) questions.179

An abductive explanation (AXp) is a minimal set of features X such that any data point180

sharing the same feature values with v on these features is guaranteed to be assigned the181

same class c = κ(v) [51, 21]. Formally, X is a subset-minimal set of features such that:182

∀(x ∈ F).
[∧

i∈X
(xi = vi)

]
→(κ(x) = c) (1)183

▶ Example 4. In the context of Figure 1, the two AXp’s for the instance v are shown in184

Figure 2a and Figure 2b. AXp X1 indicates that specifying Education = Bachelors and185

Hours/w ≤ 40 guarantees that any compatible instance is classified as < 50k independent of186

the values of other features, e.g. Status and Relationship, since the maximal sum of weights187

is 0.0770 − 0.0200 − 0.0580 = −0.0010 < 0 as long as the feature values above are used.188

Observe that another AXp X1 for v is {Education, Status}, i.e. the model is guaranteed to189

predict < 50k for any instance in the feature space where features Education and Status190

have values Bachelors and Separated, respectively. Note that no more AXp’s exist for191

instance v. Since both of the two AXp’s for v consist of two features, it is difficult to judge192

which one is better without a formal feature importance assessment.193

▶ Example 5. Consider again the ensemble shown in Figure 1. It contains only features194

Status, Education, Relationship, and Hours/w, which can be denoted by integer variables s,195

e, r, and h, respectively. Note that all the other features of this dataset do not take part196

SAT 2024
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in the classification process and can be ignored. Let us map Status values married and197

never-married to value 1 and 2 of s while value 0 represents all other values. Similarly, we can198

assign values dropout, doctorate and any other value of feature Education to values 1, 2, and199

0 of variable e; values not-in-family, own-child, and any other value of feature Relationship200

to values 1, 2, and 0 of variable r. This way Ds = De = Dr = {0, 1, 2}. Finally, according201

to the tree ensemble, Dh = Z. As a result and assuming the values assigned by the trees202

are represented by variables ti ∈ R, the classification process for instance v in Example 3203

(predicted as < 50k) can be expressed as the following set of hard constraints, which are204

simple to represent in clausal form:205

H =



t1 = −0.1569 ↔ (s = 1 ∧ e = 1)
t1 = −0.0770 ↔ (s = 1 ∧ (e = 0 ∨ e = 2))
t1 = −0.1089 ↔ ((s = 0 ∨ s = 2) ∧ r = 1)

. . .

t2 = −0.2404 ↔ (h ≤ 40 ∧ (s = 0 ∨ s = 2))
. . .

t3 = −0.2892 ↔ ((e = 0 ∨ e = 1) ∧ r = 2)
t3 = −0.0580 ↔ ((e = 0 ∨ e = 1) ∧ (r = 0 ∨ r = 1))

t1 + t2 + t3 < 0

206

Observe that instance v can be specified as a set of soft unit clauses S = {(e = 0), (s =207

0), (r = 1), (h ≤ 40)}. Observe that formula H ∧ S is unsatisfiable having two MUSes208

{(e = 0), (h ≤ 40)} and {(e = 0), (s = 0)}, which correspond to the two AXp’s shown in209

Example 4.210

A dual concept of contrastive explanations (CXp’s) helps us understand how to reach211

another prediction [39, 20, 36]. A contrastive explanation (CXp) for the classification of data212

point v with class c = κ(v) is a minimal set of features that must change so that κ can213

return a different class. Formally, a CXp is a subset minimal set of features Y such that214

∃(x ∈ F).
[∧

i ̸∈Y
(xi = vi)

]
∧ (κ(x) ̸= c) (2)215

It is known [20] that formal abductive and contrastive explanations for ML predictions216

are related with the concepts of MUSes and MCSes (defined earlier) of an unsatisfiable217

formula encoding the ML classification process κ(v) = c, namely if one represents [κ(x) ̸= c]218

as hard clauses and [
∧m

i=1 (xi = vi)] as soft clauses. For this reason, the set A of all AXp’s219

X explaining classification κ(v) = c and the set C of all CXp’s Y explaining the same220

classification enjoy a minimal hitting set duality [20], similarly to MUSes and MCSes. That221

is A = MHS(C) and is C = MHS(A). This property can be made use of when computing or222

enumerating AXp’s and/or CXp’s [20, 33, 36].223

▶ Remark 6. Thanks to the relation between AXp’s (resp., CXp’s) for a given ML prediction224

on the one hand and MUSes (resp., MCSes) of formula encoding the decision process on the225

other hand, all the ideas and algorithms considered in this paper can be directly applied in226

any context where MUSes and MCSes are of use.227

▶ Example 7. Consider the BT model and instance v in Example 2. Observe that Y =228

{Education} is a CXp for instance v since the prediction for this instance can be changed229

if feature Education is allowed to take another value, e.g. changing the value of feature230

Education to Doctorate triggers that the sum of the weights in the 3 trees becomes −0.1089−231

0.2404 + 0.3890 = 0.0397 > 0. By further examining the model and v, more subsets of232
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features can be identified as CXp’s for v. The complete set of CXp’s for this instance233

is {{Education}, {Status, Hours/w}}, which minimally hits the set of AXp’s shown in234

Example 4. Also observe that the set of CXp’s corresponds to the set of MCSes of formula235

H ∧ S shown in Example 5: {(e = 0)} and {(h ≤ 40), (s = 0)}.236

2.4 Formal Feature Attribution237

Given the definition of AXp’s above, we can now illustrate the formal feature attribution (FFA)238

function by Yu et al [56]. Denoted as ffaκ(i, (v, c)), it returns for a classification κ(v) = c239

how important feature i ∈ F is in making this classification, defined as the proportion of240

AXp’s for the classification Aκ(v, c), which include feature i, i.e.241

ffaκ(i, (v, c)) = |{X | X ∈ Aκ(v, c), i ∈ X )|
|Aκ(v, c)| (3)242

▶ Example 8. Recall Example 4. As there are 2 AXp’s for instance v, namely {Education, Sta-243

tus} and {Education, Hours/w}, the prediction can be attributed to the 3 features with244

non-zero FFA shown in Figure 2c. Namely, features Education, Status, and Hours/w have245

the attribution values of 1, 0.5, and 0.5, respectively.246

2.5 Computing FFA247

Inspired by the implicit hitting set [7] based algorithm eMUS/MARCO [45, 26, 19] for248

enumerating MUSes and MCSes of an unsatisfiable CNF formula, Yu et al [56] define an249

anytime algorithm for computing FFA shown in Algorithm 1. The algorithm collects AXp’s250

A and CXp’s C. They are initialized to empty. While we still have resources, we generate a251

minimal hitting set Y ∈ MHS(A) of the current known AXp’s A and not already in C with252

the call MinimalHS(A,C). If no (new) hitting set exists then we are finished and exit the253

loop. Otherwise we check if (2) holds in which case we add the candidate to the set of CXp’s254

C. Otherwise, we know that F \ Y is a correct (non-minimal) abductive explanation, i.e. it255

satisfies (1). We use the call ExtractAXp to minimize the resulting explanation, returning256

an AXp X which is added to the collection of AXp’s A. ExtractAXp tries to remove257

features j from F \ Y one by one while still satisfying (1). When resources are exhausted,258

the loop exits and we return the set of AXp’s and CXp’s currently discovered.259

2.6 Graph-Related Notation260

The paper uses some (undirected) graph-theoretic concepts. A graph is defined as a tuple,261

G = (V, E), where V is a finite set of vertices and E is a finite set of unordered pairs of262

vertices. For simplicity, uv denotes an edge {u, v} of E. Given a graph G = (V, E), a vertex263

cover X ⊆ V is such that for each uv ∈ E, {u, v} ∩ X ̸= ∅. A minimal vertex cover is a264

vertex cover that is minimal wrt. set inclusion.265

2.7 The Complexity of Counting266

The class #P consists of functions that count accepting computations of polynomial-time267

non-deterministic Turing machines [53]. A problem is #P-hard if every problem in #P is268

polynomial-time Turing reducible to it; if it also belongs to #P then it is #P-complete.269

#P-hardness is usually regarded as stronger evidence of intractability than NP-hardness270

or indeed hardness for any level of the Polynomial Hierarchy.271

SAT 2024
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Algorithm 1 Anytime Explanation Enumeration as defined by Yu et al [56].
1: procedure XpEnum(κ, v, c)
2: (A,C)← (∅, ∅)
3: while resources available do
4: Y ←MinimalHS(A,C)
5: if Y = ⊥ then break
6: if ∃(x ∈ F).

[∧
i ̸∈Y(xi = vi)

]
∧ (κ(x) ̸= c) then

7: C← C ∪ {Y}
8: else
9: X ← ExtractAXp(F \ Y, κ, v, c)

10: A← A ∪ {X}
return A, C

11: procedure ExtractAXp(X , κ, v, c)
12: for j ∈ X do
13: if ∀(x ∈ F).

[∧
i∈X \{j}(xi = vi)

]
→(κ(x) = c) then

14: X ← X \ {j}
return X

3 Approximate Formal Feature Attribution272

Facing the need to compute (exact or approximate) FFA values, one may think of a possibility273

to first enumerate CXp’s and then apply the minimal hitting set duality between AXp’s274

and CXp’s to determine FFA, without explicitly computing A = MHS(C). This looks275

plausible given that CXp enumeration can be done directly, without the need to enumerate276

AXp’s [20]. However, as Section 3.1 argues, computing FFA given a set of CXp’s turns out277

to be computationally difficult, being (roughly) at least as hard as counting the minimal278

hitting sets MHS(C). Hence, Section 3.2 approaches the problem from a different angle by279

efficient exploitation of the eMUS- or MARCO-like setup [45, 27, 29, 20] and making the280

algorithm switch from CXp enumeration to AXp enumeration on the fly.281

3.1 Duality-Based Computation is Hard282

We show that determining ffaκ(i, (v, c)) from C is #P-hard even when all CXp’s have size283

two. In that special case, the CXp’s may be treated as the edges of a graph, which we denote284

by G(F , κ, v, c), with vertex set F . The minimal hitting set duality between the CXp’s and285

AXp’s then implies that the AXp’s X ∈ MHS(C) are precisely the minimal vertex covers of286

G(F , κ, v, c). It is known that determining the number of minimal vertex covers in a graph is287

#P-complete (even for bipartite graphs); this is implicit in [47], as noted for example in [52,288

p. 400].289

When all CXp’s have size 2, the formal feature attribution ffaκ(i, (v, c)) is just the290

proportion of minimal vertex covers of G(F , κ, v, c) that contain the vertex i, i.e. the vertex291

of G(F , κ, v, c) that represents the feature i ∈ F . To help express this in graph-theoretic292

language, write #mvc(G) for the number of minimal vertex covers of G. Write #mvc(G, v)293

and #mvc(G,¬v) for the numbers of minimal vertex covers of G that do and do not contain294

vertex v ∈ V (G), respectively. Define295

ffa(G, v) := #mvc(G, v)
#mvc(G) . (4)296
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Then297

ffaκ(i, (v, c)) = ffa(G(F , κ, v, c), i).298

Observe that #mvc(G) = #mvc(G, v) + #mvc(G,¬v). Then we may rewrite (4) as299

ffa(G, v) = #mvc(G, v)
#mvc(G, v) + #mvc(G,¬v) . (5)300

▶ Theorem 9. Determining ffa(G, v) is #P-hard.301

Proof. We give a polynomial-time Turing reduction from the #P-complete problem of302

counting minimal vertex covers to the problem of determining ffa for a node in a graph.303

Suppose we have an oracle that, when given a graph and a vertex, returns the ffa of the304

vertex in one time-step.305

Let G be a graph for which we want to count the minimal vertex covers. Let v be a306

non-isolated vertex of G. (If none exists, the problem is trivial.) Put307

x = #mvc(G,¬v),308

y = #mvc(G, v),309

so that #mvc(G) = x + y. It is routine to show that x, y > 0. Initially, x and y are unknown.310

Our reduction will use an ffa-oracle to gain enough information to determine x and y. We311

will then obtain #mvc(G) = x + y.312

First, query the ffa-oracle with G and vertex v. It returns313

p := y

x + y
,314

by (5). We can then recover the ratio x/y = p−1 − 1.315

Then we construct a new graph G
[2]
v from G as follows. Take two disjoint copies G1 and316

G2 of G. Let v1 be the copy of vertex v in G1. For every w ∈ V (G2), add an edge v1w317

between v1 and w. We query the ffa-oracle with G
[2]
v and vertex v1. Let q = ffa(G[2]

v , v1) be318

the value it returns.319

If a minimal vertex cover X of G
[2]
v contains v1 then all the edges from v1 to G2 are320

covered. The restriction of X to G1 must be a minimal vertex cover of G1 that contains321

v1, and the number of these is just #mvc(G, v) = y. The restriction of X to G2 must just322

be a vertex cover of G2, without any further restriction, and the number of these is just323

#mvc(G) = x + y. These two restrictions of X can be chosen independently to give all324

possibilities for X. So325

#mvc(G[2]
v , v1) = y(x + y).326

If a minimal vertex cover X of G
[2]
v does not contain v1 then the edges v1w, w ∈ V (G2),327

are not covered by v1. So each w ∈ V (G2) must be in X, which serves to cover not only328

those edges but also all edges in G2. The restriction of X to G1 must just be a vertex cover329

of G1 that does not contain v1, and there are #mvc(G,¬v) = x of these. Again, the two330

restrictions of X are independent. So331

#mvc(G[2]
v ,¬v1) = x.332

Therefore333

q = y(x + y)
x + y(x + y) ,334
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by (5) (applied this time to G
[2]
v ), so335

x + y = x/y

q−1 − 1 = p−1 − 1
q−1 − 1 .336

We can therefore compute x + y from the values p and q returned by our two oracle calls.
We therefore obtain #mvc(G). The entire computation is polynomial-time. ⊓⊔

▶ Corollary 10. Determining ffaκ(i, (v, c)) from the set of CXp’s is #P-hard, even if all337

CXp’s have size 2.338

Unfortunately, Theorem 9 and Corollary 10 suggest that relying solely on the direct339

enumeration of CXp’s in the fashion of the first phase of CAMUS-like algorithms [30, 31]340

when computing formal feature attribution does not make the problem simple. One will still341

need one to implicitly or explicitly enumerate AXp’s to be able to compute FFA.342

3.2 Switching from CXp to AXp Enumeration343

As discussed in Section 2, [56] proposed to apply implicit hitting set enumeration for344

approximating FFA thanks to the duality between AXp’s and CXp’s. The approach builds345

on the use of the MARCO algorithm [45, 27, 29] in the anytime fashion, i.e. collects the346

sets of AXp’s and CXp’s and stops upon reaching a given resource limit. As MARCO can347

be set to target enumerating either AXp’s or CXp’s depending on user’s preferences, the348

dual explanations will be collected by the algorithm as a side effect. Quite surprisingly, the349

findings of [56] show that for the purposes of practical FFA approximation it is beneficial to350

target CXp enumeration and get AXp’s by duality. An explanation offered for this by [56] is351

that MARCO has to collect a large number of dual explanations before the minimal hitting352

sets it gets may realistically be the target explanations.353

Our practical observations confirm the above. Also note that the AXp’s enumerated by354

MARCO need to be diverse if we want to quickly get good FFA approximations. Due to355

the incremental operation of the minimal hitting set enumeration algorithms, this is hard to356

achieve if we target AXp enumeration. But if we aim for CXp’s then we can extract diverse357

AXp’s by duality, which helps us get reasonable FFA approximations quickly converging to358

the exact FFA values.359

Nevertheless, our experiments with the setup of [56] suggest that AXp enumeration in360

fact tends to finish much earlier than CXp enumeration despite “losing” at the beginning.361

This makes one wonder what to opt for if good and quickly converging FFA approximation362

is required: AXp enumeration or CXp enumeration. On the one hand, the latter quickly363

gives a large set of diverse AXp’s and good initial FFA approximations. On the other hand,364

complete AXp enumeration finishes much faster, i.e. exact FFA is better to compute by365

targeting AXp’s.366

Motivated by this, we propose to set up MARCO in a way that it starts with CXp367

enumeration and then seamlessly switches to AXp enumeration using two simple heuristic368

criteria. It should be first noted that to make efficient switching in the target explanations,369

we employ pure SAT-based hitting set enumerator, where an incremental SAT solver is called370

multiple times aiming for minimal or maximal models [12], depending on the phase. This371

allows us to keep all the explanations found so far without ever restarting the hitting set372

enumerator.373

As we observe that AXp’s are normally larger than CXp’s, both criteria for switching374

the target build on the use of the average size of the last w AXp’s and the last w CXp’s375

enumerated in the most recent iterations of the MARCO algorithm. (Recall that our MARCO376
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setup aims for subset-minimal explanations rather than cardinality-minimal explanations, i.e.377

neither target nor dual explanations being enumerated are cardinality-minimal.) This can378

be seen as inspecting “sliding windows” of size w for both AXp’s and CXp’s. In particular,379

assume that the sets of the last w AXp’s and CXp’s are denoted as Aw and Cw, respectively.380

First, switching can be done as soon as we observe that CXp’s on average are much381

smaller than AXp’s, i.e. when382 ∑
X ∈Aw |X |∑
Y∈Cw |Y|

≥ α, (6)383

384

where α ∈ R is a predefined numeric parameter. The rationale for this heuristic is as follows.385

Recall that extraction of a subset-minimal dual explanation is done by ExtractDualXp()386

by means of deciding the validity of the corresponding predicate, either (1) or (2), while387

iteratively removing features from the feature set completementary to the candicate set, i.e.388

F \ µ (see Section 2.5). As such, if the vast majority of CXp’s are much smaller than their389

AXp counterparts, which implies that |F \ µ| ≫ |µ|, then extracting these dual AXp’s from390

F \ µ may be expensive as it leads to a large number of SAT oracle calls (namely |F \ µ|391

calls) per dual AXp to extract. Hence, we prefer to switch the enumerator to the opposite392

phase such that ExtractDualXp() deals with a smaller number of decision oracle calls on393

average. Note that having small dual CXp’s will also result in the lion’s share of these oracle394

calls being satisfiable, i.e. potentially cheap.395

Second, we can switch when the average CXp size “stabilizes”. Here, let us denote a new396

CXp being just computed as Ynew. Then the second criterion can be examined by checking397

if the following holds:398 ∣∣∣∣|Ynew| −
∑

Y∈Cw |Y|
w

∣∣∣∣ ≤ ε, (7)399

400

with ε ∈ R being another numeric parameter. This condition is meant to signify the point401

when the set of dual AXp’s we have already accumulated is diverse enough for all the CXp’s402

to be of roughly equal size, which is crucial for good FFA approximations. Once we have403

reached a high level of FFA approximation, it makes sense to switch the target phase to AXp404

as it normally finishes exhaustive explanation enumeration earlier. Overall, the switching405

can be performed when either of the two conditions (6)–(7) is satisfied.406

Algorithm 2 shows the pseudo-code of the adaptive explanation enumeration algorithm.407

Additionally to the classifier’s representation κ, instance v to explain and its class c, it408

receives 3 numeric parameters: window size w ∈ N and switching-related constants α, ε ∈ R.409

The set of CXp’s (resp. AXp’s) is represented by E0 (resp. E1) while the target phase of410

the hitting set enumerator is denoted by ρ ∈ {0, 1}, i.e. at each iteration Algorithm 2 aims411

for Eρ explanations. As initially ρ = 0, the algorithm targets CXp enumeration. Each of its412

iterations starts by computing a minimal hitting set µ of the set E1−ρ subject to Eρ (see413

line 5), i.e. we want µ to be a hitting set of E1−ρ different from all the target explanations in414

Eρ found so far. If no hitting set exists, the process stops as we have enumerated all target415

explanations. Otherwise, each new µ is checked for being a target explanation, which is done416

by invoking a reasoning oracle to decide the validity either of (1) if we target AXp’s, or of (2)417

if we target CXp’s. If the test is positive, the algorithm records the new explanation µ in Eρ.418

Otherwise, using the standard apparatus of formal explanations, it extracts a subset-minimal419

dual explanation ν from the complementary set F \ µ, which is then recorded in E1−ρ. Each420

iteration is additionally augmented with a check whether we should switch to the opposite421

phase 1− ρ of the enumeration. This is done in line 12 by testing whether at least one of the422

conditions (6)–(7) is satisfied.423
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Algorithm 2 Adaptive Explanation Enumeration
1: procedure AdaptiveXpEnum(κ, v, c, w, α, ε)
2: (E0,E1)← (∅, ∅) ▷ CXp’s and AXp’s to collect
3: ρ← 0 ▷ Target phase of enumerator, initially CXp
4: while true do
5: µ←MinimalHS(E1−ρ,Eρ, ρ)
6: if µ = ⊥ then break
7: if IsTargetXp(µ, κ, v, c) then
8: Eρ ← Eρ ∪ {µ} ▷ Collect target explanation µ

9: else
10: ν ← ExtractDualXp(F \ µ, κ, v, c)
11: E1−ρ ← E1−ρ ∪ {ν} ▷ Collect dual explanation ν

12: if IsSwitchNeeded(Eρ,E1−ρ, w, α, ε) then
13: ρ← 1− ρ ▷ Flip phase of MinimalHS

return E1, E0 ▷ Result AXp’s and CXp’s

▶ Remark 11. Flipping enumeration phase ρ can be seamlessly done because we apply pure424

SAT-based hitting enumeration [12] where both Eρ and E1−ρ are represented as sets of425

negative and positive blocking clauses, respectively. As such, by instructing the SAT solver426

to opt for minimal or maximal models,2 we can flip from computing hitting sets of E1−ρ427

subject to Eρ to computing hitting sets of Eρ subject to E1−ρ, and vice versa. Importantly,428

this can be done while incrementally keeping the internal state of the SAT solver, i.e. no429

learnt information gets lost after the phase switch. Also, note that although the algorithm430

allows us to apply phase switching multiple times, our practical implementation switches431

once because AXp enumeration normally gets done much earlier than CXp enumeration, i.e.432

there is no point in switching back.433

4 Experimental Results434

This section evaluates the proposed approach to anytime FFA approximation for the gradient435

boosted tree (BT) ML models on various publicly available data using a range of metrics.436

Here we report the results integrating all the experimental data averaged across all data437

instances in Section 4.2. The results for individual datasets can be found in Section 4.3.438

4.1 Experimental Setup439

The experiments were performed on an Intel Xeon 8260 CPU running Ubuntu 20.04.2 LTS,440

with the 8GByte memory limit.441

Prototype Implementation. The proposed approach was prototyped as a set of Python442

scripts, building on the approach of [56]. The proposed approach is referred to as MARCO-443

S, where the MARCO algorithm switches from CXp to AXp enumeration based on the444

conditions (6)–(7). The policy we use is to switch if either condition holds as we found445

2 Recall that in SAT solving, a minimal model is a satisfying assignment that respects subset-minimality
wrt. the set of positive literals, i.e. where none of the 1’s can be replaced by a 0 such that the result is
still a satisfying assignment [5]. Maximal models can be defined similarly wrt. subset-minimality of
negative literals.
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Figure 3 FFA approximation error over time.

examples where each individual criterion was poor. For this, “sliding windows" of size w = 50446

are used. Parameter α is set as α = 2 in (6) to signify the extent by which the size of AXp’s447

should be larger than the size of CXp’s while parameter ε = 1 in (7) denoting the stability448

of the average CXp size.449

Datasets and Machine Learning Models. The experiments include five well-known image450

and text datasets. We use the widely known MNIST [10, 44] dataset, which features hand-451

written digits from 0 to 9, with two concrete binary classification problems created: 1 vs. 3452

and 1 vs. 7. Note that we treat MNIST “1vs3” and MNIST “1vs7” as two different datasets.453

Also, we consider the image dataset PneumoniaMNIST [55] differentiating normal X-ray454

cases from the cases of pneumonia. Since extracting exact FFA values for aforementioned455

image datasets turns out to be hard [56], we perform a size reduction, downscaling these456

images from 28 × 28 × 1 to 10 × 10 × 1. Additionally, 2 text datasets are considered in457

the experiments: Sarcasm [40, 41] and Disaster [14]. The Sarcasm dataset contains news458

headlines collected from websites, along with binary labels indicating whether each headline459

is sarcastic or non-sarcastic. The Disaster dataset consists of the contents of tweets with460

labels about whether a user announces a real disaster or not. The five considered datasets are461

randomly divided into 80% training and 20% test data. To evaluate the performance of the462

proposed approach, 15 test instances in each test set are randomly selected. Therefore, the463

total number of instances used in the experiments is 75. In the experiments, gradient boosted464

trees (BTs) are trained by XGBoost [8], where each BT consists of 25 to 40 trees of depth465

3 to 5 per class. Test accuracy for MNIST (both “1vs3” and “1vs7”), PneumoniaMNIST,466

Sarcasm, and Disaster datasets is 0.99, 0.83, 0.69, and 0.74, respectively.467

Competitors and Metrics. We compare the proposed approach (MARCO-S) against the468

original MARCO algorithms targeting AXp (MARCO-A) or CXp (MARCO-C) enumeration.469

We evaluate the FFA generated by these approaches by comparing it to the exact FFA through470

a variety of metrics, including errors, Kendall’s Tau [22], rank-biased overlap (RBO) [54], and471

Kullback–Leibler (KL) divergence [24]. The error is quantified using Manhattan distance, i.e.472

the sum of absolute differences across all features in an instance. The comparison of feature473

ranking is assessed by Kendall’s Tau and RBO, while feature distributions are compared474
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Figure 4 Kendall’s Tau over time.
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Figure 5 RBO over time.

by KL divergence.3 Kendall’s Tau and RBO produce values within the range of [−1, 1]475

and [0, 1], respectively, where higher values in both metrics indicate stronger agreement or476

similarity between the approximate FFA and the exact FFA. KL-divergence ranges from477

0 to ∞, with the value approaching 0 reflecting better alignment between approximate478

FFA distribution and the exact FFA distribution. Note that if a feature in the exact FFA479

distribution holds a non-zero probability but is assigned a zero probability in the approximate480

one, the KL value becomes ∞. Finally, we also compare the efficiency of generating AXp’s481

in the aforementioned approaches.482

3 Kendall’s Tau is a correlation coefficient metric that evaluates the ordinal association between two
ranked lists, providing a similarity measure for the order of values, while RBO quantifies similarity
between two ranked lists, considering both the order and depth of the overlap. KL-divergence measures
the statistical distance between two probability distributions.
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Figure 6 KL divergence over time.
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Figure 7 Number of AXp’s over time.

Dataset Min Mean Max

MNIST1vs3 2916 15780.87 46576
MNIST1vs7 461 4028.27 10790
PneumoniaMNIST 21 8802.87 30996
Sarcasm 1056 12542.13 20024
Disaster 128 22853.20 35804
(a) Numbers of MUSes/AXp’s.

Dataset Min Mean Max

MNIST1vs3 992 17158.07 55108
MNIST1vs7 394 3558.80 9228
PneumoniaMNIST 30 6148.67 42308
Sarcasm 73 487.73 641
Disaster 88 4792.20 7028
(b) Numbers of MCSes/CXp’s.

Table 1 The absolute numbers of MUSes (AXp’s) and MCSes (CXp’s) for different datasets.

4.2 Overview of Experimental Results483

This section compares the proposed approach against the original MARCO algorithms for484

both AXp enumeration and CXp enumeration within the examined datasets. Figures 3485

to 7 illustrate the results of approximate FFA in terms of the five aforementioned metrics,486
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namely, errors, Kendall’s Tau, RBO, KL divergence, and the number of AXp’s. These results487

are obtained by averaging values across all instances. Note that since KL-divergence is ∞488

when there exists a feature in the exact FFA distribution that holds a non-zero probability489

but is assigned a zero probability in the approximate one, to address this issue we assign490

0.5 as the KL-divergence value instead of ∞ in this case.4 The average runtime to extract491

exact FFA is 3255.30s (from 2.15s to 29191.42s), 19311.87s (from 9.39s to 55951.57s), and492

3509.50s (from 9.26s to 30881.55s) for MARCO-A, MARCO-C, and MARCO-S, respectively.493

Switching from CXp to AXp enumeration in MARCO-S occurs on average at 106.77s. Note494

that since MARCO-A and MARCO-S tend to finish the enumeration process much earlier495

than MARCO-C, we also plot the median information because it better reflects the typical496

performance of these approaches in practice (which may be hard to see on the average data).497

Since the runtime required to get exact FFA varies, we normalized the runtime in each498

instance into [0, 1], where the longest time across three compared approaches in each instance499

is normalized to 1. Furthermore, we normalized the number of AXp’s in each instance into the500

interval of [0, 1], as Table 1a shows that the numbers of AXp’s (MUSes) vary across different501

instances and datasets. (Similarly, Table 1b indicates that the numbers of CXp’s (MCSes)502

also differ across instances and datasets.) FFA approximation errors are also normalized into503

[0, 1] for each instance. Finally, switching from CXp to AXp enumeration in MARCO-S504

occurs at the time point of 0.0055 on the normalized scale (recall that it equals ≈106.77s).505

Approximation Errors. Figure 3 displays the average and median errors of approximate506

FFA across all instances over time. Observe that in the early period, MARCO-C obtains507

more accurate approximate FFA regarding errors compared with MARCO-A, while beyond508

the 0.02 time fraction, the latter surpasses the former and eventually achieves 0 error faster,509

which also indicates that MARCO-A requires less time to acquire the exact FFA. Motivated510

by the above observation, the proposed approach aims at replicating the “best of two worlds”511

during the FFA approximation process. Observe that MARCO-S commences with CXp512

enumeration and so replicates the superior behavior of MARCO-C during the initial stage.513

Over time, MARCO-S triggers a switch criterion and transitions to targeting AXp’s, thus514

emulating the behavior of the better competitor beyond the early stage, i.e. MARCO-A.515

Finally, MARCO-S acquires FFA with 0 error (i.e. exact FFA) as efficiently as MARCO-A.516

Feature Ranking. The results of Kendall’s Tau and RBO are depicted in Figures 4 and 5.517

Initially, MARCO-C outperforms MARCO-A in terms of both feature ranking metrics. As518

time progresses, MARCO-A starts to surpass MARCO-C since 0.01 time fraction until the519

point of acquiring the exact FFA. Figures 4 and 5 demonstrate that initially MARCO-520

S manages to keep close to the better performing MARCO-C. When MARCO-A starts521

dominating, MARCO-S switches the target phase from CXp’s to AXp’s, replicating the522

superior performance displayed by MARCO-A.523

Distribution. Figure 6 depicts the average and median results of KL divergence over time.524

Similar to feature ranking, MARCO-C is initially capable of computing an FFA distribution525

closer to the exact FFA distribution. Beyond the initial stage, MARCO-A exhibits the ability526

to generate closer FFA distribution. Once again, MARCO-S replicates the superior behavior527

between MARCO-A and MARCO-C most of the time. During the initial stage, MARCO-S528

4 According the experimental results we obtained, the maximum of non-infinity KL-divergence values is
not greater than 0.5.
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Approach MNIST-1vs3 MNIST-1vs7 Pneumoniamnist Sarcasm Disaster

MARCO-A 9350.79 2844.15 1972.41 669.91 1439.24
MARCO-C 14787.22 7412.40 8343.55 33391.29 32624.89
MARCO-S 9970.55 2959.15 2016.49 975.31 1626.01

Table 2 Average runtime(s) in each dataset.

reproduces the behavior of MARCO-C, and switch to target AXp’s directly when the switch529

criterion is met. Surprisingly, MARCO-S outperforms both competitors throughout (almost)530

the entire time interval.531

Number of AXp’s. The average and median results of the normalized number of AXp’s are532

illustrated in Figure 7. MARCO-A generates AXp’s faster and finishes earlier than MARCO-533

C. Observe that the proposed approach MARCO-S is able to avoid the inferior performance534

between MARCO-A and MARCO-C throughout the process. Initially, MARCO-S replicates535

the behavior of MARCO-C and then switches to target AXp’s to replicate the performance536

of MARCO-A.537

Summary. MARCO-S can replicate the behavior of the superior competitor for most of the538

computation duration, leading to efficient and good approximation of FFA. As illustrated539

by Figures 3–6 in terms of FFA errors, Kendall’s Tau, RBO, and KL divergence, starting540

from CXp enumeration and switching to AXp enumeration based on the criteria (6)–(7)541

successfully replicates the behavior of the winning configuration of MARCO, thus getting542

close to the virtual best solver. Although in terms of the number of AXp’s shown in Figure 7543

MARCO-A consistently outperforms MARCO-C, those AXp’s are not diverse enough to allow544

MARCO-A to beat MARCO-C in other relevant metrics. This is alleviated by MARCO-S,545

which manages to get enough diverse AXp’s initially and then switches to target AXp’s to546

catch up with the performance of MARCO-A.547

4.3 Detailed Experimental Results548

This section compares the proposed approach (MARCO-S against the original MARCO549

algorithms for targeting AXp’s (MARCO-A) and CXp’s (MARCO-C) in each considered550

dataset. Figures 8 to 10 depict the average results of the comparison between the approximate551

FFA and the exact FFA using 3 metrics, namely, RBO, KL divergence, and the number552

of AXp’s. The results show the mean values across 15 selected instances in a dataset.553

The average runtime of the three methods to acquire the exact FFA in each datadset is554

summarized in Table 2.555

Feature Ranking. Figure 8 illustrates the results of RBO in each dataset. Observe that in556

all datasets but Sarcasm, MARCO-C performs better initially than MARCO-A, except in the557

Sarcasm dataset. Over time, MARCO-A gradually overtakes MARCO-C until reaching the558

point of obtaining the exact FFA. This figure demonstrates that MARCO-S maintains close559

to the superior performance exhibited by MARCO-C initially and then switches to targeting560

AXp’s, replicating the superior performance demonstrated by MARCO-A. Nevertheless, in561

the Sarcasm dataset, MARCO-A consistently displays the superior performance. In the562

Sarcasm dataset, switching from CXp to AXp enumeration beyond the initial stage avoids563

reproducing the inferior performance between MARCO-A and MARCO-C in most of time.564
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Figure 8 Mean RBO over time in each dataset.
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Figure 9 Mean KL-divergence over time in each dataset.

Distribution. The average results of KL divergence over time are depicted in Figure 9.565

MARCO-C is initially capable of generating an FFA distribution more similar to the exact566
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Figure 10 Mean number of AXp’s over time in each dataset.
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Figure 11 Number of AXp’s over time in example instances.

FFA distribution in MNIST-1vs3 and MNIST-1vs7 datasets. Afterwards, MARCO-A exhibits567

the ability to compute FFA distribution more similar to the exact FFA attribution. However,568

MARCO-A consistently generate a closer FFA distribution than MARCO-C in the other569

datasets. Once again, MARCO-S emulates the superior behavior between MARCO-A and570

MARCO-C in most of time or avoids replicating the inferior performance for a long time571

due to the switch mechanism. MARCO-S initially reproduces the behavior of MARCO-C,572

and switches to target AXp’s when meeting the switch criterion. Surprisingly, MARCO-S573

exhibits the best performance among the competitors in most of the entire time interval in574

MNIST-1vs3 and MNIST-1vs7.575

Number of AXp’s. Figure 10 shows the average results of the normalized number of576

AXp’s in each dataset. Observe that compared with MARCO-A, MARCO-C is capable577

of generating AXp’s more efficiently during the early stage in MNIST-1vs3 and MNIST-578

1vs7 datasets, but MARCO-A starts to outperform MARCO-C as time progresses. In579
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the other three datasets, MARCO-A achieves similar or better performance in the entire580

process. As demonstrated by Figure 10, the proposed approach MARCO-S is able to avoid581

the inferior performance between MARCO-A and MARCO-C for most of the duration.582

Initially, MARCO-S emulates the behavior of MARCO-C, and transitions to target AXp’s to583

replicate the performance of MARCO-A afterwards, preventing the reproduction of inferior584

performance. Remarkably, in the MNIST-1vs7 dataset, MARCO-S emerges as the best-585

performing approach for most of time. Figure 11 presents numbers of AXp’s over time in586

three example instances, demonstrating that MARCO-S can avoid the inferior performance587

between MARCO-A and MARCO-C for most of time in these three instances.588

Summary. In alignment with the results presented in Section 4.2, MARCO-S is able to589

replicate the behavior of the superior competitor between MARCO-A and MARCO-C590

throughout most of the computation period, resulting in fast and good approximation of FFA.591

Figures 8 and 9 display that switching from CXp to AXp enumeration based on criteria 6–7592

can reproduce the performance of the top MARCO configuration, closely approaching their593

virtual best solver. While MARCO-A consistently exhibits better than MARCO-C in some594

datasets in terms of the number of AXp’s depicted in Figure 10, the lack of diversity among595

these AXp’s prevents MARCO-A from outperforming MARCO-C in other relevant metrics.596

MARCO-S addresses this diversity issue by initially obtaining a diverse set of AXp’s and597

then transitioning to targeting them, thereby matching the performance of MARCO-A.598

5 Conclusions599

Formal feature attribution (FFA) defines a crisp and easily understood notion of feature600

importance to a decision. It builds on the concepts of formal abductive and contrastive601

explanations [36], which can be related to the concepts of minimal unsatisfiable subsets602

(MUSes) and minimal correction subsets (MCSes) in the context of SAT solving. Unfortu-603

nately, for many classifiers and datasets FFA is challenging to compute exactly. As our paper604

demonstrates, it remains hard even if the set of CXp’s is provided. Hence, there is a need605

for anytime approaches to compute FFA. One approach to compute and approximate FFA606

values is by exploiting the duality between AXp’s and CXp’s and applying the MARCO-style607

algorithms [45, 27, 29] of exhaustive AXp (resp., MUS) and CXp (resp., MCS) enumeration.608

As exhaustive explanation enumeration can be done by targeting either AXp’s or CXp’s, it is609

not always clear which approach is more efficient in practice from the perspective of the raw610

number of explanations but also from the view of the quality of FFA value approximations.611

Surprisingly, using CXp enumeration to generate AXp’s leads to fast good approximations of612

FFA, but in the longer term it is worse than simply enumerating AXp’s. This paper shows613

how to combine the approaches by diligently switching the phase of enumeration, without614

losing information computed in the underlying MARCO enumeration algorithm. This gives615

a highly practical approach to computing FFA.616

The proposed mechanism can be readily adapted to a multitude of other problems, e.g. in617

the domains of over-constrained systems or model-based diagnosis (MBD), where one wants618

to collect a diverse and representative set of MUSes or explanations as the same minimal619

hitting set duality exists in unsatisfiability and MBD between the concepts of MUSes and620

MCSes, and explanations and diagnoses, respectively [6, 48].621
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