EFFICIENT MODEL BASED DIAGNOSIS WITH MAXIMUM SATISFIABILITY

Joao Marques-Silva^{1,2}, Mikoláš Janota¹, **Alexey Ignatiev**¹, and Antonio Morgado¹ July 31, 2015

¹ INESC-ID, IST, University of Lisbon, Portugal ² CASL, University College Dublin, Ireland

- 1. Model-based diagnosis
- 2. Dominator-oriented encoding
- 3. ITC99 benchmark instances
- 4. Experimental results
- 5. Summary and future work

Comps $\triangleq \{Z_1, Z_2, Z_3, Z_4, O_1, O_2\}$

 \mathcal{F}_{Z_2}

 \mathcal{F}_{Z_3}

 \mathcal{F}_{Z_4}

 \mathcal{F}_{O_1}

$$\mathcal{F}_{z_1} \triangleq \mathsf{CNF}(z_1 \leftrightarrow \neg(i_1 \wedge i_3))$$

- $\triangleq \mathsf{CNF}(z_2 \leftrightarrow \neg(i_3 \wedge i_4))$
- $\triangleq \mathsf{CNF}(z_3 \leftrightarrow \neg(i_2 \land z_2))$
 - $\triangleq \mathsf{CNF}(z_4 \leftrightarrow \neg (z_2 \wedge i_5))$
- $\triangleq \mathsf{CNF}(o_1 \leftrightarrow \neg (z_1 \land z_3))$
- $\mathcal{F}_{o_2} \triangleq \mathsf{CNF}(o_2 \leftrightarrow \neg(z_3 \land z_4))$

Comps $\triangleq \{Z_1, Z_2, Z_3, Z_4, O_1, O_2\}$

 \mathcal{F}_{Z_3}

 \mathcal{F}_{Z_4}

 \mathcal{F}_{O_1}

- $SD \triangleq \bigwedge_{c \in Comps}(Ab(c) \lor \mathcal{F}_c)$
- $\mathfrak{F}_{z_1} \triangleq \mathsf{CNF}(z_1 \leftrightarrow \neg(i_1 \wedge i_3))$
- $\mathcal{F}_{z_2} \triangleq \mathsf{CNF}(z_2 \leftrightarrow \neg(i_3 \wedge i_4))$
 - $\triangleq \mathsf{CNF}(z_3 \leftrightarrow \neg(i_2 \wedge z_2))$
 - $\triangleq \mathsf{CNF}(z_4 \leftrightarrow \neg (z_2 \wedge i_5))$
 - $\triangleq \mathsf{CNF}(o_1 \leftrightarrow \neg (z_1 \land z_3))$
- $\mathcal{F}_{o_2} \triangleq \mathsf{CNF}(o_2 \leftrightarrow \neg(z_3 \land z_4))$

Comps $\triangleq \{Z_1, Z_2, Z_3, Z_4, O_1, O_2\}$

 \mathcal{F}_{z_2}

 \mathcal{F}_{Z_3}

 \mathcal{F}_{Z_4}

 \mathcal{F}_{O_1}

$$\mathfrak{F}_{z_1} \quad \triangleq \quad \mathsf{CNF}(z_1 \leftrightarrow \neg(i_1 \wedge i_3))$$

- $\triangleq \mathsf{CNF}(z_2 \leftrightarrow \neg(i_3 \wedge i_4))$
- $\triangleq \mathsf{CNF}(z_3 \leftrightarrow \neg(i_2 \wedge z_2))$
 - $\triangleq \mathsf{CNF}(z_4 \leftrightarrow \neg (z_2 \wedge i_5))$
- $\triangleq \mathsf{CNF}(o_1 \leftrightarrow \neg (z_1 \land z_3))$
- $\mathcal{F}_{o_2} \triangleq \mathsf{CNF}(o_2 \leftrightarrow \neg(z_3 \land z_4))$

Comps $\triangleq \{z_1, z_2, z_3, z_4, o_1, o_2\}$

 \mathcal{F}_{Z_2}

 \mathcal{F}_{Z_4}

 \mathcal{F}_{O_1}

$$\mathcal{F}_{z_1} \triangleq \mathsf{CNF}(z_1 \leftrightarrow \neg(i_1 \wedge i_3))$$

- $\triangleq \mathsf{CNF}(z_2 \leftrightarrow \neg(i_3 \wedge i_4))$
- $\mathfrak{F}_{z_3} \triangleq \mathsf{CNF}(z_3 \leftrightarrow \neg(i_2 \wedge z_2))$
 - $\triangleq \mathsf{CNF}(z_4 \leftrightarrow \neg (z_2 \wedge i_5))$
 - $\triangleq \mathsf{CNF}(o_1 \leftrightarrow \neg (z_1 \land z_3))$
- $\mathcal{F}_{o_2} \triangleq \mathsf{CNF}(o_2 \leftrightarrow \neg(z_3 \land z_4))$

Comps $\triangleq \{z_1, z_2, z_3, z_4, o_1, o_2\}$

 \mathcal{F}_{Z_2}

 \mathcal{F}_{Z_3}

 $\mathcal{F}_{Z_{h}}$

 \mathcal{F}_{O_1}

$$\mathcal{F}_{z_1} \triangleq \mathsf{CNF}(z_1 \leftrightarrow \neg(i_1 \wedge i_3))$$

- $\triangleq \mathsf{CNF}(z_2 \leftrightarrow \neg(i_3 \wedge i_4))$
- $\triangleq \mathsf{CNF}(z_3 \leftrightarrow \neg(i_2 \land z_2))$
 - $\triangleq \mathsf{CNF}(z_4 \leftrightarrow \neg (z_2 \wedge i_5))$
- $\triangleq \mathsf{CNF}(o_1 \leftrightarrow \neg (z_1 \land z_3))$
- $\mathcal{F}_{o_2} \triangleq \mathsf{CNF}(o_2 \leftrightarrow \neg(z_3 \land z_4))$

Comps $\triangleq \{z_1, z_2, z_3, z_4, o_1, o_2\}$

 \mathcal{F}_{Z_2}

 \mathcal{F}_{Z_3}

 \mathcal{F}_{Z_4}

$$SD \triangleq \bigwedge_{c \in Comps} (Ab(c) \lor \mathcal{F}_c)$$

$$\mathcal{F}_{z_1} \triangleq \mathsf{CNF}(z_1 \leftrightarrow \neg(i_1 \wedge i_3))$$

$$\triangleq \mathsf{CNF}(z_2 \leftrightarrow \neg(i_3 \wedge i_4))$$

$$\triangleq \mathsf{CNF}(z_3 \leftrightarrow \neg(i_2 \land z_2))$$

- $\triangleq \mathsf{CNF}(z_4 \leftrightarrow \neg (z_2 \wedge i_5))$
- $\mathfrak{F}_{o_1} \triangleq \mathsf{CNF}(o_1 \leftrightarrow \neg(z_1 \land z_3))$
- $\mathcal{F}_{o_2} \triangleq \mathsf{CNF}(o_2 \leftrightarrow \neg(z_3 \land z_4))$

Comps $\triangleq \{Z_1, Z_2, Z_3, Z_4, O_1, O_2\}$

 \mathcal{F}_{Z_2}

 \mathcal{F}_{Z_3}

 \mathcal{F}_{Z_4}

$$\mathcal{F}_{z_1} \triangleq \mathsf{CNF}(z_1 \leftrightarrow \neg(i_1 \wedge i_3))$$

- $\triangleq \mathsf{CNF}(z_2 \leftrightarrow \neg(i_3 \wedge i_4))$
- $\triangleq \mathsf{CNF}(z_3 \leftrightarrow \neg(i_2 \land z_2))$
- $\triangleq \mathsf{CNF}(z_4 \leftrightarrow \neg (z_2 \wedge i_5))$
- $\mathcal{F}_{o_1} \triangleq \mathsf{CNF}(o_1 \leftrightarrow \neg(z_1 \land z_3))$
- $\mathcal{F}_{o_2} \triangleq \mathsf{CNF}(o_2 \leftrightarrow \neg(z_3 \land z_4))$

 $Comps \triangleq \{z_1, z_2, z_3, z_4, o_1, o_2\}$

S

 \mathcal{F}_{Z_2}

 \mathcal{F}_{Z_4}

 \mathcal{F}_{o_1}

$$\mathsf{D} \triangleq \bigwedge_{\mathsf{c}\in\mathsf{Comps}}(\mathsf{Ab}(\mathsf{c})\vee\mathfrak{F}_{\mathsf{c}})$$

$$\mathcal{F}_{z_1} \triangleq \mathsf{CNF}(z_1 \leftrightarrow \neg(i_1 \wedge i_3))$$

$$\triangleq \mathsf{CNF}(z_2 \leftrightarrow \neg(i_3 \wedge i_4))$$

$$\mathcal{F}_{z_3} \triangleq \mathsf{CNF}(z_3 \leftrightarrow \neg(i_2 \land z_2))$$

 $\triangleq \mathsf{CNF}(z_4 \leftrightarrow \neg (z_2 \wedge i_5))$

$$\triangleq \mathsf{CNF}(o_1 \leftrightarrow \neg (z_1 \land z_3))$$

$$\mathcal{F}_{o_2} \triangleq \mathsf{CNF}(o_2 \leftrightarrow \neg(z_3 \land z_4))$$

 $Obs = \{ \langle i_1, i_2, i_3, i_4, i_5 \rangle = \langle 1, 0, 1, 1, 1 \rangle, \quad \langle o_1, o_2 \rangle = \langle 0, 1 \rangle \}$

 $Comps \triangleq \{z_1, z_2, z_3, z_4, o_1, o_2\}$

$$SD \triangleq \bigwedge_{c \in Comps}(Ab(c) \lor \mathcal{F}_c)$$

$$\mathfrak{F}_{z_1} \quad \triangleq \quad \mathsf{CNF}(z_1 \leftrightarrow \neg(i_1 \wedge i_3))$$

$$\triangleq \mathsf{CNF}(z_2 \leftrightarrow \neg(i_3 \wedge i_4))$$

$$\mathfrak{F}_{z_3} \triangleq \mathsf{CNF}(z_3 \leftrightarrow \neg(i_2 \wedge z_2))$$

 $\mathcal{F}_{z_4} \triangleq \mathsf{CNF}(z_4 \leftrightarrow \neg (z_2 \wedge i_5))$

$$\mathcal{F}_{o_1} \triangleq \mathsf{CNF}(o_1 \leftrightarrow \neg(z_1 \land z_3))$$

$$\mathcal{F}_{o_2} \triangleq \mathsf{CNF}(o_2 \leftrightarrow \neg(z_3 \land z_4))$$

Obs = { $\langle i_1, i_2, i_3, i_4, i_5 \rangle$ = $\langle 1, 0, 1, 1, 1 \rangle$, $\langle 0_1, 0_2 \rangle$ = $\langle 0, 1 \rangle$ }

 \mathcal{F}_{Z_2}

 $\begin{array}{rcl} \mathsf{Comps} & \triangleq & \{z_1, z_2, z_3, z_4, o_1, o_2\} \\ & \mathsf{SD} & \triangleq & \bigwedge_{c \in \mathsf{Comps}}(\mathsf{Ab}(c) \lor \mathscr{F}_c) \\ & \mathsf{Obs} & \triangleq & \{i_1, \neg i_2, i_3, i_4, i_5, \neg o_1, o_2\} \\ & \mathsf{SD} \land \mathsf{Obs} \land \bigwedge_{c \in \mathsf{Comps}} \neg \mathsf{Ab}(c) \vDash \bot \end{array}$

 \checkmark

 $\begin{aligned} & \text{find } \Delta \subseteq \text{Comps s.t.} \\ & \text{SD} \land \text{Obs} \land \bigwedge_{c \in \Delta} \text{Ab}(c) \land \bigwedge_{c \in \text{Comps} \setminus \Delta} \neg \text{Ab}(c) \nvDash \bot \end{aligned}$

 $\mathbf{+}$

 $\begin{aligned} & \text{find } \Delta \subseteq \text{Comps s.t.} \\ & \text{SD} \land \text{Obs} \land \bigwedge_{c \in \Delta} \text{Ab}(c) \land \bigwedge_{c \in \text{Comps} \setminus \Delta} \neg \text{Ab}(c) \nvDash \bot \end{aligned}$

 $\Delta = \{Z_2, O_1\}$

➡

find $\Delta \subseteq \text{Comps s.t.}$ SD \land Obs $\land \bigwedge_{c \in \Delta} Ab(c) \land \bigwedge_{c \in \text{Comps} \setminus \Delta} \neg Ab(c) \nvDash \bot$ $\Delta = \{z_2, o_1\}$ — minimize Δ with MaxSAT

DOMINATOR-ORIENTED ENCODING

v *dominates* $u \iff all$ paths from u to O include v

v *dominates* $u \iff all$ paths from u to O include v

v *dominates* $u \iff all$ paths from u to O include v

v *dominates u* \iff *all* paths from *u* to *O* include *v*

diagnosis Δ is a TLD if it *does not contain* dominated gates

v *dominates u* \iff *all* paths from *u* to *O* include *v*

diagnosis Δ is a TLD if it *does not contain* dominated gates

z₁ is *dominated* and its output is *fixed*

z₁ is *dominated* and its output is *fixed*

z₁ is *dominated* and its output is *fixed*

z₁ is *dominated* and its output is *fixed*

Z1 is a *backbone node*

z₁ is *dominated* and its output is *fixed*

Z1 is a *backbone node*

FILTERED EDGES AND NODES

FILTERED EDGES AND NODES

e is blocked or its fanout node is filtered

e is blocked or its fanout node is filtered

A node is *filtered* if all of its fanout edges are *filtered*

e is blocked or its fanout node is filtered

A node is *filtered* if all of its fanout edges are *filtered*

e is blocked or its fanout node is filtered

A node is *filtered* if all of its fanout edges are *filtered*

- 1 **global:** (SD, Comps, Obs)
- 2 repeat

6

- 3 FindDominators()
- 4 FindBackboneComponents()
- 5 FindBlockedConnections()
 - if MaxNumberIterations(): break
- 7 until NoMoreChanges()
- 8 GenMaxsatModel()

Algorithm 1: MBD to MaxSAT compilation

1. computing dominators

- 1. computing dominators
- 2. backbone nodes + blocked edges

- 1. computing dominators
- 2. backbone nodes + blocked edges
 - 3. filtered nodes + filtered edges

- 1. computing dominators
- 2. backbone nodes + blocked edges
 - 3. filtered nodes + filtered edges

possible structural decompositions

- 1. computing dominators
- 2. backbone nodes + blocked edges
 - 3. filtered nodes + filtered edges

possible structural decompositions

subproblems can be solved separately

Standard way to compute Δ :

- 1. $\sum_{c \in \text{Comps}} Ab(c) \leq k$
- 2. iterate over k

But,

Standard way to compute Δ :

• |Comps| is large (up to millions)

- 1. $\sum_{c \in \text{Comps}} \text{Ab}(c) \leq k$
- 2. iterate over k

Standard way to compute Δ :

- 1. $\sum_{c \in \text{Comps}} Ab(c) \leqslant k$
- 2. iterate over k

But,

• |Comps| is large (up to millions)

•
$$\sum_{c \in \text{Comps}} \text{Ab}(c) \leq k - \text{bad}$$

Standard way to compute Δ :

- 1. $\sum_{c \in \text{Comps}} Ab(c) \leqslant k$
- 2. iterate over k

But,

• |Comps| is large (up to millions)

•
$$\sum_{c \in \text{Comps}} \text{Ab}(c) \leq k - \text{bad}$$

• most of $c \in \text{Comps} \notin \text{ any } \Delta$

Standard way to compute Δ :

- 1. $\sum_{c \in \text{Comps}} Ab(c) \leqslant k$
- 2. iterate over k

But,

• |Comps| is large (up to millions)

•
$$\sum_{c \in \text{Comps}} \text{Ab}(c) \leq k - \text{bad}$$

• most of $c \in \text{Comps} \notin \text{any } \Delta$, i.e. Ab(c) = 0

Standard way to compute Δ :

- 1. $\sum_{c \in \text{Comps}} Ab(c) \leqslant k$
- 2. iterate over k

But,

• |Comps| is large (up to millions)

• most of $c \in \text{Comps} \notin \text{any } \Delta$, i.e. Ab(c) = 0

➡

core-guided MaxSAT can exploit this

Standard way to compute Δ :

- 1. $\sum_{c \in \text{Comps}} Ab(c) \leqslant k$
- 2. iterate over k

But,

• |Comps| is large (up to millions)

• most of $c \in \text{Comps} \notin \text{any } \Delta$, i.e. Ab(c) = 0

➡

core-guided MaxSAT can exploit this:

• $Ab(c) = 0 \quad \forall c \in Comps$ by default

Standard way to compute Δ :

- 1. $\sum_{c \in \text{Comps}} Ab(c) \leqslant k$
- 2. iterate over k

But,

• |Comps| is large (up to millions)

• most of $c \in \text{Comps} \notin \text{any } \Delta$, i.e. Ab(c) = 0

➡

core-guided MaxSAT can exploit this:

- $Ab(c) = 0 \quad \forall c \in Comps$ by default
- relax on demand, i.e. Ab(c) = 1 when needed

ITC99 BENCHMARK INSTANCES

new challenging suite - ITC99:

new challenging suite - ITC99:

• 8 ITC99 circuits

new challenging suite - ITC99:

• 8 ITC99 circuits

• ×1000 scenarios per circuit

new challenging suite - ITC99:

• 8 ITC99 circuits

- ×1000 scenarios per circuit
 - 1–50 errors per scenario

new challenging suite - ITC99:

• 8 ITC99 circuits

- ×1000 scenarios per circuit
 - 1–50 errors per scenario
 - 8000 instances

new challenging suite - ITC99:

• 8 ITC99 circuits

- ×1000 scenarios per circuit
 - 1–50 errors per scenario
 - 8000 instances

• -2097 instances (hard for SATbD/SCryptoDiagnoser) = 5903

EXPERIMENTAL RESULTS

EXPERIMENTAL EVALUATION

- Benchmarks suites:
 - 1. ISCAS85 (16174 instances)
 - 2. ITC99 (5903 instances)

EXPERIMENTAL EVALUATION

- Benchmarks suites:
 - 1. ISCAS85 (16174 instances)
 - 2. ITC99 (5903 instances)
- new DOE approach with
 - 1. eva500a (*eva*)
 - 2. open-wbo-inc (wboinc)

EXPERIMENTAL EVALUATION

- Benchmarks suites:
 - 1. ISCAS85 (16174 instances)
 - 2. ITC99 (5903 instances)
- new DOE approach with
 - 1. eva500a (*eva*)
 - 2. open-wbo-inc (wboinc)
- SATbD/SCryptoDiagnoser (scrypto) state of the art
- Benchmarks suites:
 - 1. ISCAS85 (16174 instances)
 - 2. ITC99 (5903 instances)
- new DOE approach with
 - 1. eva500a (*eva*)
 - 2. open-wbo-inc (wboinc)
- SATbD/SCryptoDiagnoser (*scrypto*) state of the art
- preprocessing time excluded!

- Benchmarks suites:
 - 1. ISCAS85 (16174 instances)
 - 2. ITC99 (5903 instances)
- new DOE approach with
 - 1. eva500a (*eva*)
 - 2. open-wbo-inc (wboinc)
- SATbD/SCryptoDiagnoser (*scrypto*) state of the art
- preprocessing time excluded!
- Machine configuration:
 - Intel Xeon E5-2630 2.60GHz with 64GByte RAM

- Benchmarks suites:
 - 1. ISCAS85 (16174 instances)
 - 2. ITC99 (5903 instances)
- new DOE approach with
 - 1. eva500a (*eva*)
 - 2. open-wbo-inc (wboinc)
- SATbD/SCryptoDiagnoser (*scrypto*) state of the art
- preprocessing time excluded!
- Machine configuration:
 - Intel Xeon E5-2630 2.60GHz with 64GByte RAM
 - running Ubuntu Linux

- Benchmarks suites:
 - 1. ISCAS85 (16174 instances)
 - 2. ITC99 (5903 instances)
- new DOE approach with
 - 1. eva500a (*eva*)
 - 2. open-wbo-inc (wboinc)
- SATbD/SCryptoDiagnoser (*scrypto*) state of the art
- preprocessing time excluded!
- Machine configuration:
 - Intel Xeon E5-2630 2.60GHz with 64GByte RAM
 - running Ubuntu Linux
 - 600s timeout

- Benchmarks suites:
 - 1. ISCAS85 (16174 instances)
 - 2. ITC99 (5903 instances)
- new DOE approach with
 - 1. eva500a (*eva*)
 - 2. open-wbo-inc (wboinc)
- SATbD/SCryptoDiagnoser (*scrypto*) state of the art
- preprocessing time excluded!
- Machine configuration:
 - Intel Xeon E5-2630 2.60GHz with 64GByte RAM
 - running Ubuntu Linux
 - 600s timeout
 - 4GB memout

ISCAS85 SUITE

16174 instances	scrypto	eva	wboinc
% solved	100.0	100.0	100.0
% scrypto wins	_	23.4	0.1
% eva wins	76.6	—	0.0
% wboinc wins	99.9	100.0	—

Table 1: Statistics for ISCAS85 suite

Figure 2: Cactus plot for ITC99 suite

Figure 3: Scatter plots for ITC99 suite

5903 instances	scrypto	eva	wboinc
% solved	62.4	89.7	90.6
% scrypto wins	_	2.2	0.4
% eva wins	97.8	_	13.4
% wboinc wins	99.6	86.6	—

Table 2: Statistics for ITC99 suite

SUMMARY AND FUTURE WORK

• new DOE approach to MBD:

- new DOE approach to MBD:
 - core-guided MaxSAT

- new DOE approach to MBD:
 - core-guided MaxSAT
 - computation of TLDs

- new DOE approach to MBD:
 - core-guided MaxSAT
 - computation of TLDs +
 - hard components
 - backbone nodes
 - blocked edges
 - filtered nodes and edges

- new DOE approach to MBD:
 - core-guided MaxSAT
 - computation of TLDs +
 - hard components
 - backbone nodes
 - blocked edges
 - filtered nodes and edges
- new challenging MBD suite (5903 instances)

- new DOE approach to MBD:
 - core-guided MaxSAT
 - computation of TLDs +
 - hard components
 - backbone nodes
 - blocked edges
 - $\cdot\,$ filtered nodes and edges
- new challenging MBD suite (5903 instances)
- further optimizations for the DOE

- new DOE approach to MBD:
 - core-guided MaxSAT
 - computation of TLDs +
 - hard components
 - backbone nodes
 - blocked edges
 - filtered nodes and edges
- new challenging MBD suite (5903 instances)
- further optimizations for the DOE
- application to other related practical problems

QUESTIONS?