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Abstract. Autarkies are partial truth assignments that satisfy all
clauses having literals in the assigned variables. Autarkies provide
important information in the analysis of unsatisfiable formulas. In-
deed, clauses satisfied by autarkies cannot be included in minimal
explanations or in minimal corrections of unsatisfiability. Comput-
ing the maximum autarky allows identifying all such clauses. In re-
cent years, a number of alternative approaches have been proposed
for computing a maximum autarky. This paper develops new mod-
els for representing autarkies, and proposes new algorithms for com-
puting the maximum autarky. Experimental results, obtained on a
large number of problem instances, show orders of magnitude per-
formance improvements over existing approaches, and solving in-
stances that could not otherwise be solved.

1 INTRODUCTION

The analysis of over-constrained sets of constraints finds a wide
range of practical applications (e.g. [11, 26]). In the context of propo-
sitional formulas in conjunctive normal form (CNF), recent work ad-
dressed unsatisfiable formulas, either for finding minimal explana-
tions of inconsistency (Minimal Unsatisfiable Subsets, MUSes, e.g.
[3, 33]), or minimal relaxations for achieving satisfiability (Minimal
Correction Subsets, MCSes, e.g. [8, 28, 25]).

Autarkies (or autark assignments) are partial truth assignments
that satisfy all clauses having literals in the assigned variables [27].
These assigned variables are the autark variables. Autarkies were
first studied in an approach for improving the worst-case complexity
of solving propositional satisfiability (SAT) [27]. Nevertheless, later
work showed that autarkies play a key role in the analysis of unsatis-
fiable formulas [15, 16, 18, 13, 17]. Indeed, autark variables denote
variables that cannot be included in any MUS (and so, by hitting set
duality [30, 5, 2, 22], cannot be included in any MCS). As a result,
the identification of autark variables finds application in the analy-
sis of unsatisfiable subformulas. For example, autarkies can be used
for computing the lean kernel of a formula, i.e. the clauses that can
be used in resolution refutations. In recent years, the identification
of autark variables has been applied in MUS enumeration [23] and
MUS extraction [3, 6, 33]. Autark assignments have also been used
in developing fixed-parameter tractable MUS finding solutions [32]
and in the study of homomorphisms of CNF formulas [31]. More-
over, autarkies have also been studied in a number of SAT solving
approaches [9, 10], in addition to the original work [27].

Besides known uses of autarkies, other possible uses of autarkies
can be envisioned. For example, since autark variables are not in-
cluded in minimal explanations nor in minimal corrections of unsat-
isfiability, the identification of autark variables can be used for inves-
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tigating possible inefficiencies when encoding problems into CNF.
However, a key obstacle to the widespread use of approaches for
finding autark variables is that existing approaches are usually inef-
ficient for large formulas.

This paper develops a number of optimizations for computing au-
tark variables. These include three new models for representing au-
tark assignments, and several new algorithms for computing the max-
imum autark assignment. Compared to earlier work, the new algo-
rithms are shown to allow efficiently finding the maximum autark
assignment for large problem instances, including those used for val-
idating MUS extraction algorithms. From a practical perspective the
main goal of this work is to find autarkies efficiently (e.g. within a
few seconds) for relevant instances of SAT, e.g. those related with
computing MUSes or MCSes.

The paper is organized as follows. Section 2 introduces the nota-
tion and definitions used in the remainder of the paper. Section 3 de-
velops the models to represent autark assignments. Section 4 devel-
ops algorithms for computing maximum autark assignments, high-
lighting the relationship with maximum satisfiability (MaxSAT) and
minimal correction subsets (MCSes). Section 5 conducts a compre-
hensive experimental evaluation based on problem instances from the
MUS track of the 2011 SAT competition 4, which represent problem
instances commonly used for evaluating MUS extraction algorithms.
Finally, Section 6 concludes the paper.

2 PRELIMINARIES
Standard SAT definitions are assumed (e.g. [4]). A CNF formula F ,
with |F| = m, is a conjunction of clauses, interpreted as a set of
clauses. A clause is a disjunction of literals, interpreted as a set of
literals. A literal is a variable or its negation. Clauses in F are de-
noted by ci, 1 ≤ i ≤ m. The set of variables of F is denoted by
var(F), also represented as X , with |X| = n. The total number of
literals in the formula is L. The variables occurring in a clause ci are
denoted by var(ci) ⊆ X . The variables occurring as a positive literal
in clause ci are denoted by P (ci) ⊆ var(F). The variables occurring
as a negative literal in clause ci are denoted byN(ci) ⊆ var(F). It is
assumed clauses are non-tautologous, i.e. P (ci)∩N(ci) = ∅. A truth
assignment is a partial mapping from a set of variables to {0, 1}. The
standard definition of interpretation is assumed.

2.1 Unsatisfiable Formulas & Autarkies
The paper assumes standard Maximum Satisfiability (MaxSAT) def-
initions [21]. Moreover, related definitions of Maximal Satisfiable
Subsets (MSSes), Minimal Correction Subsets (MCSes) and Mini-
mal Unsatisfiable Subsets (MUSes) are assumed [5, 2, 22], includ-
ing the well-known relationship with minimal diagnoses [30]. A

4 http://www.satcompetition.org/2011/.
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MAXAUTARK PROOFBASED(F)
Input: F : Formula
Output: A: Autark variables

1 repeat
2 (st , π)← SAT(F)
3 if not st then
4 Z ← ComputeVars(π)
5 F ← RemoveClauses(F , Z)
6 until st
7 return var(F)

Algorithm 1: Computing the maximum autark assignment

number of algorithms for computing MCSes/MSSes have recently
been proposed [8, 28, 25], that build and improve upon earlier
work [12, 2, 29].

A set of variables A′ is autark if there exists a (partial) truth as-
signment to the variables in A′ such that any clause containing lit-
erals in the variables of A′ is satisfied [27]. This partial truth as-
signment is referred to as an autarky (or an autark (truth) assign-
ment). The clauses satisfied by an autarky are referred to as an au-
tark clause-set [13]. The largest autark clause-set is the largest set
of clauses satisfied by any autarky. The set of autark variables defin-
ing the largest autark clause-set is referred to as the largest autark
(variable) set, and is denoted by A. This paper addresses the compu-
tation of the largest autark set, from which the largest autark clause-
set is readily obtained. The truth assignment identifying the largest
autark set is referred to as the maximum autarky or maximum autark
assignment. Autark variables have a number of relevant properties.
First, autark variables cannot be included in any MUS of a CNF
formula F (e.g. [15, 13, 17]). Similarly, by hitting set duality (e.g.
[30, 5, 2, 22]), autark variables cannot be included in any MCS of F .
Furthermore, it is well-known that the maximum autarky is unique
(e.g. [15, 13]). Kleine Büning and Kullmann [13] provide a recent
account of approaches for computing autarkies.

2.2 Previous Work
A number of algorithms have been proposed for computing the
largest autark set (and associated largest autark clause-set). To our
best knowledge, the earliest approach is based on the iterative identi-
fication of the set of clauses used in a resolution proof, their removal
and also removal of resulting empty clauses [16]. Algorithm 1 shows
the main steps of this algorithm. While the formula is unsatisfiable,
a resolution proof (π) is used to identify which variables are used
in the proof. These variables are removed from any clause, and any
empty clause is also removed. This process is repeated until the for-
mula becomes satisfiable, at which step the algorithm terminates and
reports the remaining variables as autark.

More recently, approaches based on optimizing a cost function
were proposed [23, 13]. The first of these approaches [23] is based
on constructing a modified formula FAut

01 , representing valid autark
assignments to F , and then solving an optimization problem subject
to FAut

01 . The set of clauses associated with this approach for com-
puting the maximum autark assignment will be referred to as model
Γ01, and is described next.

The motivation for model Γ01 (and other related models) is to
select variables to be included in the autark set, such that the con-
dition for autark assignment is satisfied. Given the set of variables
X , var(F), the following sets of variables are used: (i) the original
set of variables X; (ii) the set of selected (or active) variables X+;
(iii) the set of variables associated with positive literals X1; (iv) the
set of variables associated with negative literals X0; and (v) a set of

variables Y associated with the clauses. The semantics of the new
sets of variables is as follows. yi ∈ Y is 1 if and only if clause ci is
to be satisfied by the autark assignment. x+j ∈ X

+ is 1 if and only
if variable xj is selected to be included in the autark set, i.e. variable
xj is active. x1j ∈ X1 is 1 if and only if xj is in the autark set (i.e.
active) and the value of xj is 1. x0j ∈ X0 is 1 if and only if xj is in
the autark set (i.e. active) and the value of xj is 0. The set of clauses
FAut

01 of model Γ01 is defined as follows:
1. For each clause ci ∈ F :

yi →
∨

xk∈P (ci)

x1k ∨
∨

xk∈ N(ci)

x0k (1)

2. For each clause ci ∈ F , and for each variable xj ∈ var(ci):

x+j → yi (2)

3. For each variable xj ∈ var(F), add the CNF-encoding of the
following constraints:

x0j ↔ x+j ∧ ¬xj
x1j ↔ x+j ∧ xj

(3)

Recall that the activation variables (x+j ) indicate whether a variable is
included in the autark set of variables. If a variable is included in the
autark set of variables, then all the clauses with a literal in xj must
also be active (and satisfied by a literal of an active variable). This
constraint is captured by (2). The variables representing the positive
and negative literals can be different from 0 only if the associated ac-
tivation variable is 1. In this case, these variables take the value of the
corresponding literals. This constraint is captured by (3). Moreover,
if a clause is active, one of its literals must be assigned value 1, i.e.
one of the active variables must have a literal assigned value 1 that
satisfies the clause. This constraint is captured by (1). Thus, given
any satisfying truth assignment to the variables of the above formula,
the set of active variables (i.e. xj variables such that x+j = 1) denote
autark variables. Finally, the cost function is captured with (unit) soft
clauses, one for each of the Y variables (i.e. the target set).

An alternative model (referred to as model Γ02 in this paper) has
been proposed more recently [13], even though no experimental re-
sults are reported. This model uses three variables for each original
variable (which can be viewed as X0, X1 and X+), but also pro-
poses the use of the Y variables to enable the computation of the
maximum autarky. The relationship between the three new variables
for each original variable xj is captured by the following constraints:

x0j + x1j + ¬x+j ≤ 1

x0j + x1j + ¬x+j ≥ 1
(4)

These constraints can be encoded to CNF using 7 clauses. Additional
constraints used in model Γ02 are described in the next section (see
(6), (7)) and are summarized in Table 1.

3 MODELING AUTARKIES

This section develops three alternative models for computing autark
sets, which are more compact than the models described in Sec-
tion 2.2, and which allow a number of different algorithms to be
used as described in Section 4. All proposed models can be viewed
as simplified versions of model Γ01 [23] (which is summarized in
Section 2.2). The models start from a CNF formula F and create a
formula FAut. The sets of variables used as well as the resulting CNF



Table 1: Models for computing autarkies
Model N Sets of variables Target set Set of clauses FAut

N # Variables # Clauses

Γ01 X,X0, X1, X+, Y Y (1), (2), (3) 4n+m m+ L+ 6n

Γ02 X0, X1, X+, Y Y (6), (7), (2), (4) 3n+m 2L+ 7n

Γ1 X,X0, X1, X+ X+ (5), (3) 4n L+ 6n

Γ2 X0, X1, X+ X+ (6), (7), (8), (9) 3n L+ 4n

Γ3 X0, X1 X0 ∪X1 (6), (7), (8) 2n L+ n

formula differ in each model.
The first new model (Γ1) is a simplified version of model Γ01 in

that the Y variables are eliminated. The clauses FAut
1 of model Γ1

are defined as follows:
1. For each clause ci ∈ F :

(a) For each variable xj ∈ var(ci), add clauses:

x+j →
∨

xk∈ P (ci)

x1k ∨
∨

xk∈ N(ci)

x0k (5)

2. For each variable xj ∈ var(F), add the CNF-encoding of the
constraints in (3).

Observe that model Γ1 can be obtained from Γ01 by resolving away
the Y variables. Nevertheless, this simplification also results in fur-
ther insights, that enables developing more compact models.

The second model proposed in this paper, referred to as model
Γ2, reduces the set of variables used to X0, X1 and X+. This can
be achieved by noticing the semantics of the variables X0 and X1.
x0j ∈ X0 is 1 if and only if xj is in the autark set and the value used
is 0. Similarly, x1j ∈ X1 is 1 if and only if xj is in the autark set and
the value used is 1. Thus, since for each variable xj , the variables
x0j and x1j already encode the value of the original variable xj , then
the original variables can be discarded. Moreover, X+ is defined as
above: xj ∈ X+ is 1 if and only if xj is selected to be included in
the autark set. Consequently, the set of clauses FAut

2 of model Γ2 is
defined as follows:
1. For each clause ci ∈ F :

(a) For each variable xj ∈ P (ci), add clauses:

x0j →
∨

xk∈ P (ci)\{xj}

x1k ∨
∨

xk∈ N(ci)

x0k (6)

(b) For each variable xj ∈ N(ci), add clauses:

x1j →
∨

xk∈ P (ci)

x1k ∨
∨

xk∈ N(ci)\{xj}

x0k (7)

2. For each variable xj ∈ var(F), add clauses (representing an At-
Most1 constraint):

(¬x1j ∨ ¬x0j ) (8)

3. For each variable xj ∈ var(F), add clauses:

x+j ↔ (x1j ∨ x0j ) (9)

Although Γ2 eliminates the setX of original variables, there are also
important differences to the clauses used. The information encoded
in the variables in X0 and X1 is used to define the X+ in terms of
these variables. This constraint is captured by (9). A key observation
is that at most one of x0j and x1j can be assigned value 1. This con-
straint is captured by (8). Finally, if a variable is active, any clause
where it assigns a literal to 0 must be satisfied by some other literal.
This constraint is captured by (6) and (7).

Regarding model Γ2 a few (optional) modifications can be consid-
ered. First, given the optimization algorithms described in the next
section, the equivalence (9) can be replaced with two clauses:

(¬x1j ∨ x+j ) ∧ (¬x0j ∨ x+j ) (10)

Moreover, observe that equations (8) and (9) could be merged into:

x+j ↔ ¬(x1j ↔ x0j ) (11)

This modification introduces a (possibly large) number of XOR
constraints, which are usually problematic for clause learning SAT
solvers. As a result, model Γ2 uses equations (8) and (9) instead.
Nevertheless, it would be possible to consider the alternative formu-
lation, for example by using a SAT solver with dedicated techniques
for reasoning with XOR constraints [20, 19].

The third and final model, referred to as Γ3, is a simplification of
model Γ2. Observe that variables in X+ are only relevant for identi-
fying which variables are active, and so included in the set of autark
variables. However, as long as either x0j or x1j is assigned value 1
(and, due to constraint (8), these variables cannot both be assigned
value 1), then we know that variable xj is active and so included in
the set of autark variables. Given the above, model Γ3 uses solely the
sets of variables X0 and X1. As a result, the clauses given by (9) are
not included in the set of clauses FAut

3 of model Γ3. Everything else
mimics model Γ2.

Example 1. Consider the unsatisfiable formula:

F = {(x1 ∨ x2), (¬x1 ∨ x2), (¬x2), (¬x1 ∨ x3)} (12)

representing clauses c1, c2, c3, c4, respectively, and let X =
{x1, x2, x3}. The new sets of variables are: X0 = {x01, x02, x03} and
X1 = {x11, x12, x13}. From (8), the set of clauses FAut

3 created given
model Γ3 is as follows:

{(¬x01 ∨ ¬x11), (¬x02 ∨ ¬x12), (¬x03 ∨ ¬x13)} (13)

Moreover, from (6) and (7), the following clauses are created:

{(¬x01 ∨ x12), (¬x02 ∨ x11), (¬x11 ∨ x12), (¬x02 ∨ x01),

(¬x12), (¬x11 ∨ x13), (¬x03 ∨ x01)}
(14)

Table 1 summarizes the proposed models and compares them with
the reference models, Γ01 [23] and Γ02 [13], both of which are sum-
marized in Section 2.2. The first column shows the model number.
The second column lists the sets of variables used. The third column
indicates the target set, i.e. the set of variables which is to be used
for computing the maximum autark assignment (e.g. by optimizing
with respect to the sum of variables in the target set). The fourth col-
umn lists the sets of constraints associated with each model. Finally,
the fifth and sixth columns show the total number of variables and
clauses, respectively. The total numbers of variables and clauses are



obtained directly from the sets of clauses associated with each model.
Observe that, for model Γ2 it would be possible to reduce the total
number of clauses to L + 3n, by using (10) instead of (9). More-
over, it should be noted that, when compared to models Γ01 and Γ02,
model Γ3 reduces significantly the number of variables (to less than
half) but also the number of clauses (under the assumption L is not
much larger than m).

4 COMPUTING AUTARKIES
This section describes algorithms for computing the maximum au-
tark set. These algorithms exploit the models proposed in the previ-
ous section, as well as earlier models [23, 13]. Another alternative
approach is Algorithm 1, described in Section 2.2. For the models
described in Section 3 and in Section 2.2 (see Table 1), a simple al-
gorithm consists of iteratively checking whether each variable in the
target set can take value 1. For models Γ1, Γ2 and Γ3 each such vari-
able indicates an original variable that is part of the autark set. For
model Γ01 [23], each variable denotes a clause and, if the clause is
active, then some of its variables are also active and are added to
the set of autark variables. Observe that for model Γ01, although the
proposed target set is Y [23], set X+ could also be used as the tar-
get set. Clearly, this algorithm requiresO(|T |) calls to a SAT solver,
where T is the target set. The purpose of this section is to develop
alternative approaches that require fewer calls to a SAT solver.

4.1 Using Maximum Satisfiability
The computation of the largest autark (variable or clause) set can
be modeled with partial maximum satisfiability. For each variable
t in the target set T create a soft clause (t), denoting a preference
to include the element (clause or variable) associated with variable
t in the autark set. (Observe that the target set depends on which
model is considered, as shown in Table 1.) The hard clauses are
given by the clauses associated with each model. Thus, one can com-
pute the largest autark set by solving partial MaxSAT. Moreover, ob-
serve that MaxSAT was used in earlier approaches [23], namely with
model Γ01. However, whereas earlier work used a linear search al-
gorithm [23], we can in fact use any MaxSAT algorithm. Therefore,
the number of calls to a SAT solver can range between O(log |T |)
and O(|T |) (or possibly O(|A|)), where T is the target set and A
is the set of autark variables. The main drawback of using partial
MaxSAT is that most MaxSAT solvers must encode cardinality con-
straints [4] to CNF, and this can become an issue if the number of
autark variables is not negligible, resulting in large right-hand sides
for cardinality constraints. However, as shown in the next section, the
use of MaxSAT is actually unnecessary.

4.2 Using Minimal Correction Subsets
An alternative to MaxSAT is to compute an MCS. The key insight
is that the MaxSAT formula associated with computing the largest
autark set has a unique MSS/MCS. Thus, it suffices to compute an
MSS/MCS instead of solving MaxSAT.

Proposition 1. For MaxSAT instances representing the computation
of the largest autark set, there is a unique MSS/MCS.

Proof. (Sketch) A well-known result in the theory of autark assign-
ments is that the largest autark set A is unique and any autark set is
contained in A [15, 13]. Any satisfying assignment computed for
any of the models (i.e. Γ01, . . . ,Γ3) represents an autark assignment,
and so the associated set of variables is contained in A. An MSS

MAXAUTARK MCSBASED(FAut, T)

Input: FAut: Model; T : Target set
Output: A: Autark variables

1 A← ∅
2 repeat
3 D ← (∨t∈T t)

4 (st , µ)← SAT(FAut ∪ {D})
5 if st then
6 A← A ∪ RemoveSatElems(µ, T )
7 T ← T \A
8 until not st
9 return A

Algorithm 2: Computing the largest autark set

for the MaxSAT problems associated with any of the models (i.e.
Γ01, . . . ,Γ3) must represent an autark set of variables (since the
hard clauses are satisfied), and so it is contained in A. Since an MSS
is subset maximal, then it must be A. 2

As a result, instead of using MaxSAT, one can simply compute an
MCS for any of the models described in the previous sections. Sev-
eral MCS extraction algorithms have been proposed in recent years,
e.g. [2, 29, 8, 28, 25]. Thus, any of these algorithms can be used for
computing the largest autark set. Similar to the MaxSAT case, the
number of calls to a SAT solver can range between O(log |T |) and
O(|T |) (or evenO(|A|)), where T is the target set andA is the set of
autark variables. However, since in practice the percentage of autark
variables is usually small (and so |A| � |T |), our goal is to develop
solutions that require a number of calls to the SAT solver that grows
with |A|.

To guarantee that the number of calls grows with |A|, our approach
is similar to the recently proposed CLD algorithm for MCS extrac-
tion [25]. Algorithm 2 shows the proposed algorithm for computing
a largest autark set. At each iteration of the algorithm, clause D con-
tains all elements from the target set not yet included in A. A SAT
solver checks the satisfiability of FAut

N (for some model N ) union
clause D, and returns true if the formula is satisfiable or false if the
formula is unsatisfiable, i.e. st set to true or false, respectively. The
SAT solver also returns a truth assignment µ in case the formula is
satisfiable. In this case, the truth assignment is used to update both
the autark set of variables A and the target set T . While elements
from the target set T can be satisfied, these are removed from set T
and added to set A. The process terminates when no more elements
from the target set can be satisfied, i.e. all autark variables are already
included in set A. In the worst-case, the number of times the loop is
executed, and so the number of calls to the SAT solver, is |A|+ 1.

In practice, it is preferable to encode the problem of computing the
largest autark set as partial MaxSAT, and use an off-the-shelf state-
of-the-art MaxSAT solver or MCS extractor, thus allowing the com-
putation of the largest autark set to exploit techniques developed for
either MaxSAT solving or MCS extraction. For example, the MCS
extractor MCSls [25] configured with algorithm CLD will implement
Algorithm 2. Moreover, MCSls implements a few additional tech-
niques aiming to reduce the number of calls to the SAT solver [25].
The next section evaluates a number of alternative approaches for
computing the largest autark set, that build on the ideas described in
this and the previous section.

5 RESULTS
The models proposed in Section 3 as well as model Γ01 have been
implemented and evaluated both with MaxSAT solvers and MCS
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Figure 1: Cactus plot and statistics for the different configurations

extractors. Moreover, for comparison purposes, updated versions of
SIFTER [23] as well as SCRAPER [16, 18, 23] (see Algorithm 1 in
Section 2.2) have been implemented. (Observe that the original ver-
sions of these tools are not publicly available). These updated ver-
sions use recent SAT solvers as well as new SAT solving techniques.
The problem instances considered were taken from the MUS track of
the 2011 SAT competition. This represents a suite of 300 problem in-
stances, obtained from several practical applications, with instances
ranging from a few thousand variables and clauses to instances with
millions of variables and clauses. Thus the problem instances consid-
ered are significantly more challenging than the ones considered in
earlier work [23]. Moreover, the number of autark variables ranges
from 0 to a few thousand for some of the larger instances. All experi-
ments were run on an HPC cluster, each node having two processors
E5-2620 @2GHz, with each processor having 6 cores, and with a to-
tal of 128 GByte of physical memory. Each process was limited to
4GByte of RAM and to a time limit of 1800 seconds.

The following solvers were used in the experiments. The MaxSAT
solver used is QMaxSAT5 0.21 [14], since it is the best (non-
portfolio) partial MaxSAT solver in the 2013 MaxSAT Evaluation6.
QMaxSAT 0.21 uses Glucose 2.0 [1] as the backend SAT solver. The
MCS extractor used is MCSls7 [25]. MCSls uses MiniSat [7], ver-
sion 2.2 (Nov 2012), as the backend SAT solver. For the computation
of autarkies by iterated proof extraction, i.e. a re-implementation of
SCRAPER [16, 18, 23], the SAT solver used is MiniSat [7], version
2.2 (Sep 2013). Observe that MiniSat is used in incremental mode,
the set of assumptions in the final learned clause represents the unsat-
isfiable core (obtained with resolution operations) and so no explicit
proof trace is recorded. This is in general significantly more efficient
than the original proof-tracing algorithm [18].

The experiments consider both QMaxSAT (MxS) and MCSls
(MCS) with models Γ01, Γ1, Γ2 and Γ3. For example, QMaxSAT
running Γ01 can be viewed as a state-of-the-art implementation of
SIFTER [23], even though QMaxSAT also implements a number of
additional MaxSAT solving features [14]. As a result, we also im-
plemented our own version of SIFTER, aiming to mimic the original
implementation [23]. SIFTER is based on MiniSat 2.2, it is run in
non-incremental mode, it does not exploit upper bound information,
but uses the same cardinality encoding as QMaxSAT.

Figure 1 shows a cactus plot comparing the 10 configurations de-
5 https://sites.google.com/site/qmaxsat/.
6 http://maxsat.ia.udl.cat/.
7 http://logos.ucd.ie/wiki/doku.php?id=mcsls.

scribed above. The table next to the plot shows the number of solved
instances. The MCS-based approach using either Γ2 or Γ3 solve the
most instances. The performance improvement over the MaxSAT ap-
proach, using model Γ2 (and with larger differences for Γ3), is illus-
trated by the rightmost scatter plot in Figure 2. These results confirm
the importance of using MCS extraction instead of MaxSAT solv-
ing. Notice that the observed outliers can be explained by instances
with fewer autarkies and a more efficient SAT solver (Glucose 2.0)
being used by QMaxSAT. The two other scatter plots (and the cac-
tus plot) also confirm the performance improvement over what can
be considered existing solutions for computing maximum autarkies,
namely SIFTER, SCRAPER and QMaxSAT using model Γ01. Indeed,
the configuration that solves more instances (i.e. MCS with model
Γ2), is able to solve approximately 34% more instances (i.e. from
222 to 297) than the best among existing solutions (i.e. our imple-
mentation of SCRAPER). There is a small performance gap between
SIFTER and Qmaxsat with Γ01, due the different SAT solvers and the
non-incremental interface in SIFTER. Moreover, the performance gap
between MCSls with model Γ01 and with model Γ3 (or Γ2) demon-
strates the improvements achieved by using the new models. Finally,
although MCSls with Γ2 solves one more instance than with Γ3, it
is also the case that Γ3 in general performs better than Γ2. By con-
sidering the 296 problem instances solved by both models, Γ3 solves
these instances in 9640s, whereas Γ2 solves the same instances in
11063s, i.e. an overall reduction of 12.8%. For MaxSAT-based ap-
proaches, the larger number of soft clauses required by Γ3 can be an
issue, as illustrated by the results of QMaxSAT with Γ2 and Γ3.

Of the 300 instances, MCSls with model Γ3 (Γ2) solves 219 (226)
instances in less than 20 seconds, and 25 (27) instances require more
than 100 seconds. In contrast, QMaxSAT with model Γ01 solves 76
instances in less than 20 seconds, and for 148 instances it requires
more than 100 seconds. These differences highlight the performance
gains introduced by both the new models (Γ2 and Γ3) and the use of
MCS extraction.

6 CONCLUSIONS
The identification of maximum autark assignments represents an-
other tool for the analysis of unsatisfiable formulas. This paper devel-
ops three new optimization models for computing the largest autark
set, all of which are shown to be more compact than existing mod-
els [23, 13]. Moreover, this paper shows that, instead of computing
the maximum autark assignment with MaxSAT (or iterative identi-

https://sites.google.com/site/qmaxsat/
http://maxsat.ia.udl.cat/
http://logos.ucd.ie/wiki/doku.php?id=mcsls
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Figure 2: Scatter plots comparing selected configurations: MxS Γ01 vs. MCS Γ3, SCRAPER vs. MCS Γ3, and MxS Γ2 vs. MCS Γ2

fication of resolution proofs), it suffices to compute an MCS of a
partial MaxSAT formula. The consequences of this insight are sig-
nificant since, in practice, the computation of an MCS is expected to
be simpler than solving MaxSAT. Experimental results demonstrate
that the new models and the use of MCS extraction provide consis-
tent performance improvements, often with gains exceeding an order
of magnitude. Moreover, existing approaches often do not scale for
large problem instances, whereas the new algorithms are shown to
scale significantly better.

Despite the observed performance improvements, it is also the
case that a few instances either cannot be solved or require long
run times. For these more challenging problem instances, additional
techniques should be investigated. These could include algorithm
configuration and algorithm portfolios [34, 24], for selecting a likely
effective algorithm, as well as formula preprocessing techniques. In
addition, the connection with MCSes allows tapping on any addi-
tional improvement made to MCS extraction algorithms.
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