
Assessing Progress in SAT Solvers
Through the Lens of Incremental SAT ?

Stepan Kochemazov1, Alexey Ignatiev2, and Joao Marques-Silva3

1 ITMO University, St. Petersburg, Russia
veinamond@gmail.com

2 Monash University, Melbourne, Australia
alexey.ignatiev@monash.edu

3 IRIT, CNRS, Toulouse, France
joao.marques-silva@irit.fr

Abstract. There is a wide consensus, which is supported by the hard experi-
mental evidence of the SAT competitions, that clear progress in SAT solver per-
formance has been observed in recent years. However, in the vast majority of
practical applications of SAT, one is expected to use SAT solvers as oracles de-
ciding a possibly large number of propositional formulas. In practice, this is often
achieved through the use of incremental SAT. Given this fundamental use of SAT
solvers, this paper investigates whether recent improvements in solver perfor-
mance have an observable positive impact on the overall problem-solving effi-
ciency in settings where incremental SAT is mandatory or at least expected. Our
results, obtained on a number of well-known practically significant applications,
suggest that most improvements made to SAT solvers in recent years have no
positive impact on the overall performance when solvers are used incrementally.

1 Introduction
Boolean Satisfiability (SAT) solving can only be viewed as one of the most impor-

tant successes of computer science. SAT was the first decision problem to be proved NP-
complete in the early 70s [4]. As a result, and unless P = NP, SAT being NP-complete
implies in theory and in practice that the worst-case running time of SAT algorithms
grows exponentially with the number of variables. This was indeed the case until the
early 90s, with SAT solvers capable at best of deciding formulas with a few hundred
variables and a few thousand clauses. However, since the mid 90s, and building on the
well-known DPLL algorithm [5, 6], a stream of new algorithmic improvements led to
what is now known as CDCL (conflict-driven clause learning) SAT solvers4. CDCL
SAT solving revolutionized the size and complexity of the formulas that SAT solvers
can decide efficiently in practice. Indeed, it is well-known that in many applications,
modern CDCL SAT solvers routinely decide formulas with a few million variables and
tens of millions clauses. As a direct consequence of these algorithmic improvements,
? Stepan Kochemazov is supported by the Ministry of Science and Higher Education of Rus-

sian Federation, research project no. 075-03-2020-139/2 (goszadanie no. 2019-1339). Joao
Marques-Silva is supported by the AI Interdisciplinary Institute ANITI, funded by the French
program “Investing for the Future - PIA3” under Grant agreement no ANR-19-PI3A-0004.

4 It is generally accepted that the term CDCL was coined by L. Ryan [40].

mailto:veinamond@gmail.com
mailto:alexey.ignatiev@monash.edu
mailto:joao.marques-silva@irit.fr

2 S. Kochemazov, A. Ignatiev, and J. Marques-Silva

the last two decades have witnessed an ever increasing range of highly significant prac-
tical applications [3, Ch. 04]. (The techniques used in SAT solvers have also found
widespread use in other automated reasoners, including SMT [3, Ch. 33], ASP [9],
CP/LCG [37], ILP and even theorem provers [3].) This success makes SAT one of the
few NP-complete problems that has achieved widespread practical deployment. Among
the improvements made to DPLL-style SAT solvers, it is generally accepted that clause
learning [23,25,26] played a fundamental role, not only because of its remarkable abil-
ity to prune the search space for practical formulas, but also because it enables other
techniques to become very effective in practice. Other improvements of notice include
search restarts [10], branching heuristics [34], watched literals [34], phase saving [39]
and literal block distance [2]. (A detailed account can be found in different chapters of
the recent SAT handbook [3].) Furthermore, it is generally accepted that the hard ex-
perimental evidence offered by the SAT competitions supports the following assertion:
“There has been regular performance improvements in SAT solvers over the years”.

In terms of practical uses of SAT, incremental SAT is by far the most often used
option. The most widely used approach for instrumenting incremental SAT was pro-
posed originally in the MiniSat solver [7], using the so-called activation (or selection
variables). Since then, a wealth of practical applications of SAT have resorted to in-
cremental SAT solving (e.g. [3, Ch. 04] and references therein). The importance of
incremental SAT is underscored for example by specific optimizations in the engineer-
ing of recent SAT solvers [1,11,17]. As yet another example, the PySAT framework for
prototyping with SAT solvers makes extensive use of incremental SAT solving [12].

This paper seeks to understand how significant the recent progress made in SAT
solvers, as documented by the results from the SAT competitions, is to practical in-
cremental SAT solving. Although there is a well-known incremental track in the SAT
competitions, the problem we address is somewhat different. First, our investigation is
not limited to the applications considered in the incremental track of the SAT compe-
tition; indeed we consider applications of well-known importance, but which are not
contemplated in the incremental track. Second, we do not seek to find the best SAT
solver, but instead to assess whether specific algorithmic improvements made to SAT
solvers contribute visibly to improve solver performance, specifically when the goal
is incremental SAT solving5. Our results indicate that, contrary to the conclusions ob-
tained from the results of the SAT competition, most of the improvements made to SAT
solvers in recent years do not contribute in a visible way to improving the performance
of SAT solving. Furthermore, based on the prominent role of incremental SAT in practi-
cal problem solving, one overall recommendation of this work is that the assessment of
future SAT solvers should take into account their observed performance improvements
with respect to incremental SAT solving.

The paper is organized as follows. Section 2 briefly introduces the notation and def-
initions used throughout. Section 3 analyzes the results of the SAT competition, aiming
to draw the general conclusions that justify our assertion above. Section 4 outlines how
a SAT solver was instrumented to enable the proposed study. Section 5 presents the
experimental results we have obtained. Section 6 concludes the paper.

5 Similarly, in the area of Satisfiability Modulo Theories (SMT) reasoning [3], it is generally
accepted that not all optimizations made to SAT and SMT solvers find widespread use.

Assessing Progress in SAT Solvers Through the Lens of Incremental SAT 3

2 Preliminaries
Definitions & notation. The standard definitions used in SAT solving are assumed
throughout the paper [3]. A SAT solver decides the decision problem of propositional
logic (for formulas represented in conjunctive normal form (CNF)). For satisfiable for-
mulas, a SAT solver returns a model, i.e. an assignment that satisfies the formula. For
unsatisfiable formulas, most CDCL SAT solvers will return a non-minimal explanation
for unsatisfiability. Most modern CDCL SAT solvers offer an incremental interface,
without exception inspired by the incremental interface of MiniSat [7]. Incremental
SAT solving finds an ever increasing range of practical applications (a sample of which
are documented e.g. [3, Ch. 04]).

Related work. A number of papers have investigated improvements to the perfor-
mance of SAT solvers from different perspectives [8, 15]. However, none has investi-
gated how improvements made to SAT solvers impact incremental SAT solving. The
importance of incremental SAT solving is demonstrated by its ubiquitous use in e.g.
the PySAT framework [12]. Before PySAT was developed, incremental SAT was ex-
tensively used in a wide range of applications of SAT (a brief account is available
from [3, Ch. 04]). The importance of incremental SAT explains a number of recent
optimizations made to SAT solvers [1, 11, 17].

3 Motivation
It is natural to view the winners of recent SAT Competitions as state of the art in

CDCL SAT solving. They incorporate the most promising CDCL heuristics aimed at
improving solvers’ performance over a wide variety of benchmarks originating from
different application domains. There are two SAT solvers that played a special role in
SAT competitions over the years. They are MiniSat [7] and Glucose [2]. It will not be
an exaggeration to say that from 2005 to 2015 the list of competition winners in all
categories tended to include at least one version (or sometimes hack) of either one or
the other.

In 2015 the COMiniSatPS solver [36] combined the Luby series restarts [21] from
MiniSat and Glucose-style restarts into a single whole, where the solver switched be-
tween two modes, each exploiting one of the restart strategies in conjunction with
VSIDS activity values specific to each mode.

In 2016 MapleCOMSPS [20] supplanted Glucose as the source of many of the win-
ners of SAT Competitions 2016 to 2020. The key novel feature of MapleCOMSPS
was the use of learning rate branching heuristic (LRB) [19] instead of VSIDS joined
with Luby restarts in COMiniSatPS. It also replaced the scheme for switching between
modes employed by COMiniSatPS by a simple variant where the LRB+Luby restarts
mode is used exclusively during the first 2500 seconds.

In 2017 MapleCOMSPS has been extended with an expensive inprocessing [14]
technique for improving the quality of learnt clauses, termed learned clause minimiza-
tion [18, 22, 38], with the resulting solver called MapleLCMDist.

In 2018 the latter was augmented with the chronological backtracking [31, 35]
heuristic aimed at improving the solver behavior in specific cases, in form of MapleL-

4 S. Kochemazov, A. Ignatiev, and J. Marques-Silva

CMDistChronoBT. (The chronological backtracking scheme mimics the organization
of backtracking used in the GRASP SAT solver [25].)

The winner of SAT Race 2019 implemented on top of MapleLCMDistChronoBT
the so-called duplicate learnts heuristic [16] aimed at detecting and exploiting repeat-
edly learned clauses, resulting in the MapleLCMDistChronoBT-DL-v3 solver. It also
changed the parameters of LBD-based separation between tiers of learnt clauses and
used a new scheme for switching between solver modes, which is reminiscent to the
one used in MapleCOMSPS but is less frequent.

Finally, Relaxed LCMDCBDL newTech [41], that took the 2nd place at SAT Com-
petition 2020, incorporated into MapleLCMDistChronoBT-DL-v3 the stochastic local
search (SLS) component, complemented with rephasing technique6, and a novel ap-
proach that modifies the activity values of branching heuristic in a CDCL solver based
on some of the statistics accumulated by the SLS component. It also modified the
scheme for switching between solver modes.

There is a clear agreement that the performance of SAT Competition winners im-
proved significantly over the years7, thanks to the several major heuristics listed above,
among others. In this context, it is very surprising that many applications of SAT solvers
still employ the time-tested MiniSat and Glucose first introduced back in 2003 [7] and
2009 [2], respectively. For example, if we look at the participants of the recent MaxSAT
Evaluations [28–30], it turns out that the majority of them employ either Glucose (dif-
ferent versions), MiniSat 2.2 or COMiniSatPS as the underlying SAT solver. Of course,
there are many possible reasons for this, varying from unwillingness of developers to
replace the core components of working tools under pretext that they already work well
enough, to the fact that many SAT Competition winners of recent years do not provide
incremental interface out of the box. However, whatever the reasons behind this are,
it is important to question and evaluate whether the apparent progress in CDCL SAT
solvers indeed translates into the benefits in their practical applications.

Of course, it is impossible to cover all possible use cases of SAT solvers in a single
study. Therefore, in this paper we concentrate our attention on the ones that can be
employed incrementally, in particular, in maximum satisfiability (MaxSAT) solving and
minimal unsatisfiable subset (MUS) extraction.

4 Setup and Its Rationale
In order to evaluate whether or not the improvements made to SAT solvers in recent

years contribute to their performance in the incremental setting, it is first necessary
to choose a solver (or solvers) that could serve as (a) strong representative(s) of the
solver “generation”. It would be ideal to exploit the winner of the most recent SAT
Competition that implements all the recently proposed CDCL heuristics, can be easily
modified to enable or disable some of the heuristics whenever needed, and that can be
embedded into various tools that could apply it incrementally. Unfortunately, the winner
of the SAT Competition 2020, the Kissat solver does not support the incremental mode
according to the data available at the moment of writing, and thus is not eligible for

6 http://fmv.jku.at/chasing-target-phases/
7 http://fmv.jku.at/kissat/

http://fmv.jku.at/chasing-target-phases/
http://fmv.jku.at/kissat/

Assessing Progress in SAT Solvers Through the Lens of Incremental SAT 5

the experiments that we need to perform. However, Relaxed LCMDCBDL newTech
that took the 2nd place in the main track of SAT Competition 2020 satisfies all the
aforementioned criteria. Despite not supporting incremental SAT out of the box, it uses
the MiniSat codebase and thus can be easily upgraded.

For our experiment we prepared a variant of Relaxed LCMDCBDL newTech, which
we hereinafter refer to as RLNT8. Compared to the original, RLNT supports incre-
mental mode, has several small issues fixed and also allows to separately enable or
disable some of its major heuristics. In particular, we are interested in testing the imple-
mentations of stochastic local search and rephasing components (SLS) introduced in
Relaxed LCMDCBDL newTech, the duplicate learnts (DL) heuristic that appeared in
MapleLCMDistChronoBT-DL-v3, the chronological backtracking (CB) that became a
signature of MapleLCMDistChronoBT, the DISTANCE (DIST) and learnt clause min-
imization heuristics (LCM) first introduced in MapleLCMDist. These were modified in
order to be enabled or disabled via preprocessor conditional inclusive directives (e.g.
#define SLS and #ifdef SLS). As it happens, these heuristics represent the vital
development steps signifying the progress of SAT solvers in the last 4 SAT Competi-
tions and so can serve as inherent characteristics of the corresponding generations of
SAT solvers.

The listed heuristics employed in RLNT were not specifically adapted to the incre-
mental usage separately. Instead, the variables that govern scheduling of the procedures
that switch between solver modes, apply learnt clause minimization, apply rephasing,
and so on — these are all reset to initial values with each new call to the SAT solver.
The motivation for this adjustment is to alleviate the increase in intervals between, e.g.
learnt clause minimization, so that each call of a SAT solver preserves the accumu-
lated knowledge, but still uses all the heuristics as often as it would in the “standard”
non-incremental mode. In line with this, the call to the SLS component is scheduled
to happen at the start of each SAT solver invocation since this is the way it is used in
the original implementation. Due to the fact that it mainly affects rephasing, and also
that SLS subsolver calls take negligible amount of time, this implementation should
not introduce any adverse effects on the solver’s performance. It should be noted that
the changes between, say, the SAT competition 2016 winner MapleCOMSPS and Re-
laxed LCMDCBDL newTech certainly cannot be summarized to just the 5 heuristics
listed above. There have been also small changes to the handling of conflict clauses
with small literal block distance, and to the strategy employed to switch between solver
modes that combine branching heuristics with restart strategies (LRB+Luby restarts and
VSIDS + glucose restarts). It is natural to assume that these changes are worthwhile, but
it should be checked experimentally anyway. Therefore, in the following experiments
we opt to use the following SAT solvers:

– MapleCOMSPS – SAT Competition 2016 winner.
– MapleLCMDist – SAT Competition 2017 winner.
– MapleLCMDistChronoBT – SAT Competition 2018 winner.
– MapleLCMDistChronoBT-DL-v3 – SAT Race 2019 winner.
– Relaxed LCMDCBDL newTech – SAT Competition 2020 2nd place.
– RLNT-2020 – RLNT with SLS, DL, CB, LCM and DIST enabled.

8 https://github.com/veinamond/RLNT

https://github.com/veinamond/RLNT

6 S. Kochemazov, A. Ignatiev, and J. Marques-Silva

0 200 400 600 800
instances

0

1000

2000

3000

4000

5000

C
PU

tim
e

(s
)

Relaxed LCMDCBDL newTech
RLNT-2020
MapleLCMDistChrBt-DL-v3
RLNT-2018
RLNT-2019
MapleLCMDistChronoBT
RLNT-2017
RLNT-2016
MapleLCMDist
MapleCOMSPS
Glucose 3
MiniSat 2.2

(a) All benchmarks

200 250 300 350 400 450 500 550
instances

0

1000

2000

3000

4000

5000

C
PU

tim
e

(s
)

(b) Satisfiable benchmarks

200 250 300 350 400
instances

0

1000

2000

3000

4000

5000

C
PU

tim
e

(s
)

(c) Unsatisfiable benchmarks

Fig. 1: Evaluation of considered solvers over benchmarks from the main tracks of SAT Competi-
tions 2017-2020.

– RLNT-2019 – RLNT with DL, CB, LCM and DIST enabled.
– RLNT-2018 – RLNT with CB, LCM and DIST enabled.
– RLNT-2017 – RLNT with LCM and DIST enabled.
– RLNT-2016 – RLNT with SLS, CB, DL, LCM and DIST disabled.
– Glucose 3.0.
– MiniSat 2.2.

Thus, our conjecture is that RLNT-2019 should be functionally “equivalent” to the win-
ner of SAT Race 2019, RLNT-2018 to the winner of SAT Competition 2018, etc. (The
results of the following section confirm this.) To offset the newer solvers we will use
Glucose 3.0 and time-tested MiniSat 2.2, which both are often employed in many prac-
tical applications up to these days, although having been released back in 2013 and
2008, respectively.

4.1 SAT Competition Main Track Benchmarks
In this experiment we used the benchmarks from the main tracks of the SAT Compe-

titions 2017–2020; thus, the total number of benchmarks considered is 1550. The exper-

Assessing Progress in SAT Solvers Through the Lens of Incremental SAT 7

Table 1: The detailed statistics on the performance of considered solvers over benchmarks from
the main tracks of SAT Competitions 2017-2020.

SCR SAT UNSAT PAR-2

Relaxed LCMDCBDL newTech 980 585 395 4199
RLNT-2020 978 586 392 4203
MapleLCMDistChrBt-DL-v3 896 484 412 4772
RLNT-2018 890 479 411 4811
RLNT-2019 889 474 415 4822
MapleLCMDistChronoBT 879 461 418 4933
RLNT-2017 870 470 400 4961
RLNT-2016 849 465 384 5096
MapleLCMDist 849 449 400 5107
MapleCOMSPS 813 430 383 5303
Glucose 3 666 325 341 6238
MiniSat 2.2 603 356 247 6606

iments were performed on the nodes of the computing cluster [27], equipped with two
18-core Intel Xeon E5-2695 v4 CPUs and 128 GB RAM. All the competitors worked in
36 simultaneous threads with the time limit of 5000 seconds. As the evaluation criteria,
we used the Solution Count Ranking (SCR) and Penalized Average Runtime (PAR-2)
following the metrics used in the SAT Competitions.

The results of the evaluation are presented in the form of cactus plots in Figure 1 and
as a more detailed statistics in Table 1. From the presented results, it is easy to conclude
that in accordance with the SAT Competition criteria, the RLNT configurations perform
as well as (or better than) the corresponding SAT Competition winners with negligible
deviations. This confirms that the rationale behind the selected baseline solver as well
as the implementation choices made is reasonable. Also, one can easily observe the
trend according to which the recent competitions favor satisfiable benchmarks over un-
satisfiable, thus making the solvers which are stronger on satisfiable benchmarks look
better. The particularly distinctive difference between Relaxed LCMDCBDL newTech
(and RLNT-2020) and the remaining group is thanks to the SLS component that ap-
pears to be solely responsible for being able to tackle at least 80 benchmarks. Finally,
the performance of Glucose 3 and MiniSat 2.2 when contrasted with that of more mod-
ern solvers appears to be an issue. It is especially so if we look at the performance of
MiniSat 2.2 on unsatisfiable benchmarks compared to that of the competition.

Now let us see whether or not the overall picture will change when we move into
the incremental context.

4.2 SAT Competition Incremental Track Benchmarks

In this series of experiments we used the benchmarks and applications from the In-
cremental Track of SAT Competition 2020. The solvers participating in this track have
to support the IPASIR9 incremental interface. In the course of the evaluation, the solvers

9 https://github.com/biotomas/ipasir

https://github.com/biotomas/ipasir

8 S. Kochemazov, A. Ignatiev, and J. Marques-Silva

0

2000

4000
C

PU
 ti

m
e

(s
)

bones essentials ijtihad

0 20 40
0

2000

4000

C
PU

 ti
m

e
(s

)

lsp

0 20 40
instances

pasar

0 10 20 30

max

RLNT-2020
RLNT-2019
RLNT-2018

RLNT-2017
RLNT-2016
Riss-7.1.2

abcdsat i20
cadicalsc2020
cryptominisat5

Glucose 3
MiniSat 2.2

Fig. 2: Evaluation of considered solvers over benchmarks from the incremental track of SAT
Competitions 2020.

are compiled into an incremental library together with specific IPASIR-based applica-
tions that aim to cover various practical domains that may employ incremental solvers.
In 2020, the incremental track included the applications for (a) finding backbones of
a CNF SAT formula, (b) finding variables essential for the satisfiability of a formula,
(c) finding the longest simple path in a graph, (d) a simple MaxSAT solver, (e) Ijtihad
QBF solver and (f) the PASAR solver for solving planning instances. For each applica-
tion, there were 50 instances (which overlapped in the case of finding backbones and
the variables essential for satisfiability). Due to high requirements to the execution envi-
ronment, in particular for it to support C++ 17, we used PCs with 16-core AMD Ryzen
3950x CPUs and 32 GB RAM running Ubuntu 20.04, as the computing platform. The
solvers were launched in 16 threads.

The results of this experiment are summarized in Table 2 and cactus plots in Fig-
ure 2. It needs to be noted, that since incremental track is significantly less popular than
the main track (at least looking at the number of participants of each), it is less polished
and is harder to reproduce. In particular, the outputs and the success criterion for each
application have to be parsed by hand, the number of instances is small, and the major-
ity of instances are too simple. Moreover, there are frequent problems when the built
application produces a core-dump and it is unclear whether the application itself is to
blame or the solver was not built properly. This is the reason, for example, of the poor
performance of the CryptoMiniSat5 solver in the pasar application or of MiniSat 2.2 in
both ijtihad abd pasar applications: the majority of launches ended in a core-dump. (It

Assessing Progress in SAT Solvers Through the Lens of Incremental SAT 9

Table 2: The detailed statistics on the performance of considered solvers over benchmarks from
the incremental track of SAT Competitions 2020. The best results for each application are marked
with bold. Column S refers to the number of solved instances, P2 – to the PAR-2 score.

bones essentials lsp max ijtihad pasar

S P2 S P2 S P2 S P2 S P2 S P2

RLNT-2020 49 350 40 2219 43 1987 26 4869 11 6879 44 2325
RLNT-2019 48 580 40 2170 34 3546 27 4753 12 6845 45 2733
RLNT-2018 49 482 40 2168 34 3577 27 4739 13 6393 41 3254
RLNT-2017 49 441 40 2174 34 3542 27 4745 12 6845 45 2553
RLNT-2016 49 322 40 2086 33 3837 26 4826 14 6369 43 2902
Glucose 3 45 1108 40 2273 32 3845 24 5211 14 6895 42 3387
MiniSat 2.2 48 635 40 2180 34 3811 24 5212 2 9600 22 6380
Riss-7.1.2 45 1108 39 2388 32 3844 25 5013 13 7270 37 3907
abcdsat i20 48 627 39 2450 32 4205 25 4696 11 7830 36 4295
cadicalsc2020 45 1085 39 2323 34 3381 27 4756 15 6729 47 2400
cryptoMiniSat5 49 333 37 2737 34 3495 26 4478 15 5966 3 9496

is unclear to us how the organizers treated such situations in their evaluation.) Neverthe-
less, the results we obtained more-or-less follow the ones available at SAT Competition
2020 web page.10

One conclusion to be drawn from the presented data is that the RLNT configurations
perform in the incremental setting as well as the participants of the incremental track
of SAT Competition 2020, and in several cases outperform them. It means that the
RLNT solver and its configurations can be viewed as the state-of-the-art representatives
of the modern SAT solvers. Thus, we are justified to use them for the following in-
depth evaluation presented below. Another conclusion is that Glucose 3, although it is
not a winner in any of the subtracks, is on par with most of the competitors for all
the considered benchmarks. Of particular interest is the fact that in contrast to SAT
Competition Main Track benchmarks, in the incremental track environment, MiniSat
2.2 is on par with its peers (with the exception of pasar and ijtihad applications where
it has likely suffered from some implementation issue). Finally, one can observe that
the incremental track of the SAT Competition 2020 does not provide a solid number
of benchmarks that could demonstrate the performance differences (if any) among the
competitors of the incremental track, leaving much to be desired. All these points bring
us to the need to evaluate the progress in SAT solving in a thorough evaluation from the
perspective of two well-known practical use-case scenarios for incremental SAT, which
is covered next.

5 Experimental Evidence
This section details the experimental results obtained with the use of the devel-

oped configurations of RLNT in the two concrete practical settings of (1) maximum
satisfiability (MaxSAT) solving and (2) minimal unsatisfiable subset (MUS) extraction,
10 https://satcompetition.github.io/2020/results.html

https://satcompetition.github.io/2020/results.html

10 S. Kochemazov, A. Ignatiev, and J. Marques-Silva

where incremental calls to a SAT oracle are of crucial importance. Concretely, in all
the following experiments we tested the 5 configurations of RLNT (2016–2020) and
compared them to the Glucose 3 SAT solver [1], which has been widely used in various
incremental settings. Finally, we additionally considered the “good old” MiniSat 2.2 11

solver [7] to see how it stands against more advanced SAT solvers.
All the SAT solvers are integrated in the PySAT framework [12] and are used in a

unified fashion through the same API. The conducted experiments involve testing three
practical problem solvers: (1) an award-winning core-guided MaxSAT solver RC2 [13,
28–30] 12 (namely, competition configurations RC2-A and RC2-B), (2) a linear search
SAT-UNSAT algorithm for MaxSAT [33] 13 (in the following referred to as LSU), and
(3) a simple deletion-based MUS extractor [12, 24]14 (referred to as MUSx). All the
problem solvers used are a part of the PySAT framework.

Note that the rationale behind the choice of the problem solvers is to test the per-
formance of the underlying SAT oracles when dealing with (1) mostly unsatisfiable
oracle calls, (2) mostly satisfiable oracle calls, and (3) mixed (satisfiable and unsatisfi-
able) oracle calls. Hereinafter, given a problem solver ∗, its configuration that exploits
the Glucose 3 (resp. MiniSat 2.2) solver is marked as ∗G3 (resp. ∗M22) while the con-
figurations using one of the RLNT solvers are marked by the corresponding year, as
∗year.

Our experimental setup replicates the setup of the annual MaxSAT Evaluations [28–
30]. In particular, the experiments were performed on the StarExec cluster15. Each pro-
cess was run on an Intel Xeon E5-2609 2.40GHz processor with 128 GByte of memory,
in CentOS 7.7. The memory limit for each individual process was set to 32 GByte. The
time limit used was set to 3600s for each individual process to run.

5.1 RC2 MaxSAT & Mostly Unsatisfiable Calls

The RC2 MaxSAT solver [13] belongs to the large family of core-guided MaxSAT
solvers [33] and provides an efficient implementation of the OLL/RC2 algorithm [32].
For this reason, each iteration performed by the solver involves calling a SAT oracle
incrementally given an unsatisfiable formula that is slightly modified at each iteration
of the algorithm. The solver proceeds until the final iteration, which determines the
working formula to be satisfiable. The solver can also be instructed to apply a few addi-
tional heuristics [13], some of which may increase the number of satisfiable oracle calls;
however, unsatisfiable oracle calls made by RC2 still prevail. Note that the competition
configurations RC2-A and RC2-B make use of the Glucose 3 SAT solver. Also note
that this part of the experiment tested RC2 on the complete set of benchmarks (both
unweighted and weighted) from the MSE’20.

Figure 3 shows two cactus plots depicting the performance of the RC-A and RC2-B
solvers on the MSE’20 benchmarks when using either Glucose 3 or one of the variants
of RLNT as an underlying SAT oracle. According to Figure 3a, in total, the best per-

11 https://github.com/niklasso/minisat
12 https://pysathq.github.io/docs/html/api/examples/rc2.html
13 https://pysathq.github.io/docs/html/api/examples/lsu.html
14 https://pysathq.github.io/docs/html/api/examples/musx.html
15 https://www.starexec.org/

https://github.com/niklasso/minisat
https://pysathq.github.io/docs/html/api/examples/rc2.html
https://pysathq.github.io/docs/html/api/examples/lsu.html
https://pysathq.github.io/docs/html/api/examples/musx.html
https://www.starexec.org/

Assessing Progress in SAT Solvers Through the Lens of Incremental SAT 11

500 550 600 650 700 750 800
instances

0

500

1000

1500

2000

2500

3000

3500

C
PU

tim
e

(s
)

RC2-A2016

RC2-AG3

RC2-A2018

RC2-A2019

RC2-A2017

RC2-AM22

RC2-A2020

(a) Performance of RC2-A

500 550 600 650 700 750 800 850
instances

0

500

1000

1500

2000

2500

3000

3500

C
PU

tim
e

(s
)

RC2-BG3

RC2-B2016

RC2-B2019

RC2-B2017

RC2-B2018

RC2-BM22

RC2-B2020

(b) Performance of RC2-B

Fig. 3: RC2 with various SAT solvers on MSE’20 unweighted and weighted benchmarks.

10−1 100 101 102 103 104

RC2-AG3

10−1

100

101

102

103

104

R
C

2-
A

20
16

3600 sec. timeout

36
00

se
c.

tim
eo

ut

(a) RC2-AG3 vs RC2-A2016 (best)

10−1 100 101 102 103 104

RC2-AG3

10−1

100

101

102

103

104

R
C

2-
A

20
20

3600 sec. timeout

36
00

se
c.

tim
eo

ut

(b) RC2-AG3 vs RC2-A2020 (worst)

Fig. 4: Performance of RC2-AG3 compared to RC2-A with best and worst RLNT.

formance of RC2-A is achieved when using RLNT-2016. It solves 792 instances and
in average spends 1293.2 seconds per instance. The default, RC2-AG3 is not far away
with 790 instances solved and the average time spent being 1290.8 seconds. The worst
performance is demonstrated when RLNT-2020 is in use; here, the average time used
per instance is 1549.8 seconds and the number of instances successfully solved is 741.
As an additional remark, the MiniSat 2.2 based version is not far behind the top per-
forming competitors – it solves 779 instances and spends 1327.5 seconds per instance
on average. As can be seen in Figure 3b, similar results are obtained by RC2-B. The
worst performance is shown by RC2-B2020, which solves 695 benchmarks and spends
1805.8 seconds per formula on average. The default configuration RC2-BG3 outper-

12 S. Kochemazov, A. Ignatiev, and J. Marques-Silva

10−1 100 101 102 103 104

RC2-BG3

10−1

100

101

102

103

104

R
C

2-
B

20
16

3600 sec. timeout

36
00

se
c.

tim
eo

ut
(a) RC2-BG3 vs RC2-B2016 (best)

10−1 100 101 102 103 104

RC2-BG3

10−1

100

101

102

103

104

R
C

2-
B

20
20

3600 sec. timeout

36
00

se
c.

tim
eo

ut

(b) RC2-BG3 vs RC2-B2020 (worst)

Fig. 5: Performance of RC2-BG3 compared to RC2-B with best and worst RLNT.

forms the other competitors with 826 instances solved in 1222.7 seconds on average
while RC2-B2016 comes second with 825 instances solved in 1213.3 seconds on av-
erage. RC2-BM22 solves 768 instances with the average time of 1385.1 seconds. The
scatter plots shown in Figure 4 and Figure 5 detail the performance comparison of the
default version of RC2-AG3 and RC2-BG3 against the best- and worst-performing com-
petitor running RLNT. As can be observed, there is no clear winner in the pair RC2-∗G3
vs RC2-∗2016 while for the lion’s share of benchmarks the default versions of the solver
working on top of Glucose 3 significantly outperform RC2-∗ with the most advanced
RLNT-2020.

5.2 LSU MaxSAT & Mostly Satisfiable Calls

The LSU MaxSAT algorithm performs a linear search strategy iterating over the
possible numbers of satisfied soft clauses and decreasing this number as long as the
underlying solver reports the current formula to be satisfiable. As a result, all but one
iterations of the algorithm involve satisfiable oracle calls. Similarly to RC2, we used the
MSE’20 benchmarks for testing the performance of LSU. One difference, however, is
that our implementation of LSU supports only unweighted formulas, i.e. the weighted
formulas are discarded.

The performance of LSU is summarized in the cactus plot shown in Figure 6a.
Observe that although the version with Glucose 3 is outperformed by a few other com-
petitors, it is not too far behind. Concretely, it solves 317 benchmarks, each within
1699 seconds on average. The best performing LSU2019 solves 327 instances, with the
average running time of 1714.2 seconds. The worst configuration is LSU2020, which can
cope with 312 formulas in 1771.9 seconds on average. Finally, observe that LSUM22
also solves 312 instances and the average time spent per formula is 1751.3 seconds.
The scatter plots shown in Figure 7a and Figure 7b detail performance comparison of
LSUG3 against LSU2019 and LSU2020 (as best- and worst-performing configurations of

Assessing Progress in SAT Solvers Through the Lens of Incremental SAT 13

200 225 250 275 300 325 350
instances

0

500

1000

1500

2000

2500

3000

3500

C
PU

tim
e

(s
)

LSU2019

LSU2017

LSU2018

LSU2016

LSUG3

LSUM22

LSU2020

(a) Performance of LSU

600 650 700 750 800 850 900 950
instances

0

500

1000

1500

2000

2500

3000

3500

C
PU

tim
e

(s
)

MUSx2019

MUSxG3

MUSx2018

MUSx2016

MUSx2017

MUSx2020

MUSxM22

(b) Performance of MUSx

Fig. 6: Performance of LSU and MUSx with various SAT solvers.

10−1 100 101 102 103 104

LSUG3

10−1

100

101

102

103

104

L
SU

20
19

3600 sec. timeout

36
00

se
c.

tim
eo

ut

(a) LSUG3 vs LSU2019 (best)

10−1 100 101 102 103 104

LSUG3

10−1

100

101

102

103

104

L
SU

20
20

3600 sec. timeout

36
00

se
c.

tim
eo

ut

(b) LSUG3 vs LSU2020 (worst)

Fig. 7: Performance of LSUG3 compared to LSU with best and worst RLNT.

RLNT). According to these plots, Glucose 3 tends to be significantly faster than both
RLNT-2019 and RLNT-2020, although RLNT-2019 manages to solve more instances
overall.

5.3 MUS Extraction & Mixed Oracle Calls

The MUS extractor MUSx implements the simple deletion-based algorithm, which
is bootstrapped with an unsatisfiable core of a formula and iterates over all clauses of
the core trying to incrementally get rid of them one-by-one to get an MUS [12, 24].
Therefore and depending on whether the target clause belongs to an MUS, the outcome
of the corresponding SAT oracle call may vary. Hence, this part of the experiment aims

14 S. Kochemazov, A. Ignatiev, and J. Marques-Silva

10−1 100 101 102 103 104

MUSxG3

10−1

100

101

102

103

104

M
U

Sx
20

19

3600 sec. timeout

36
00

se
c.

tim
eo

ut
(a) MUSxG3 vs MUSx2019 (best)

10−1 100 101 102 103 104

MUSxG3

10−1

100

101

102

103

104

M
U

Sx
20

20

3600 sec. timeout

36
00

se
c.

tim
eo

ut

(b) MUSxG3 vs MUSx2020 (worst)

Fig. 8: Performance of MUSxG3 compared to MUSx with best and worst RLNT.

at representing a practical scenario where the outcomes of incremental SAT solver calls
are mixed. As the standard MUS benchmarks date back to 2011 and most of them are
not challenging enough, we opted to generate a large collection of new MUS bench-
marks based on the MSE’20 benchmark set. Concretely, we ran RC2 and dumped the
working formulas representing the two last unsatisfiable oracle calls. (In practice, these
calls are typically the hardest for a SAT solver.) The generation procedure resulted in
1103 formulas in total. Note that in order to make a fair comparison, for each benchmark
MUSx was bootstrapped with an initial unsatisfiable core, which was always obtained
by Glucose 3. This was done to ensure that the reduction phase computes exactly the
same MUS guaranteed by the same initial unsatisfiable core as well as the same order
of clauses to traverse.

Figure 6b overviews the performance of MUSx given the competing SAT engines.
MUSx2019 outperforms the competitors and successfully deals with 934 formulas, within
802.2 sec. on average. MUSxG3 comes second with 933 instances solved spending
779.1 sec. on average. Although the version based on MiniSat 2.2 is slower than all
the other configurations for this family of benchmarks (it solves 890 instances with
the average time per instance being 926.2 seconds), once again, the worst RLNT-based
configuration uses RLNT-2020. It solves 893 benchmarks spending 983.5 seconds per
benchmark. Scatter plots comparing the performance of MUSxG3 against the best- and
worst-performing RLNT-based configurations MUSx2019 and MUSx2020 are shown
in Figure 8a and Figure 8b, respectively. Observe that MUSxG3 is much faster than
both competitors, which is especially clear in the case of MUSx2020.

5.4 Final Remarks

Observe that none of the tested configurations of RLNT brings any consistent (and
significant) performance improvements to the considered problem solvers. Motivated
by this observation, we decided to measure and report the PAR-2 metric for all the tested

Assessing Progress in SAT Solvers Through the Lens of Incremental SAT 15

Table 3: PAR-2 measure for each of the tested SAT solvers.

MiniSat 2.2 Glucose 3 RLNT-2016 RLNT-2017 RLNT-2018 RLNT-2019 RLNT-2020

RC2-A 2536.8 2466.3 2462.5 2544.6 2536.7 2543.9 2875.7
RC2-B 2628.1 2287.7 2281.3 2406.0 2406.1 2387.5 3272.8
LSU 3391.1 3307.4 3302.7 3306.3 3318.7 3259.7 3411.7

MUSx 1621.4 1333.9 1345.7 1386.3 1361.8 1353.8 1665.7

Overall 2303.2 2061.9 2056.3 2151.8 2153.2 2134.3 2754.0

SAT solvers per each of the performed experiments as well as across all benchmarks,
which is presented in Table 3. As the table suggests, the best overall performance is
demonstrated by the solvers with RLNT-2016 “on board” although its advantage over
Glucose 3 is negligible. This enables us to conclude that most of the heuristics recently
proposed for SAT solvers have no significant (or none at all) positive impact on the
performance of practical problem solvers in settings when SAT oracles are to be used
incrementally.

6 Conclusions
This paper studies improvements made to SAT solvers in recent years, and analyzes

their impact on performance when the SAT solvers are used for solving incremental
SAT. Based on Relaxed LCMDCBDL newTech a new SAT solver RLNT was devel-
oped, to allow the activation/deactivation of specific heuristics and to allow incremental
SAT uses. Thus, RLNT is able to be executed under a vast number of possible configura-
tions. The experimental results, on the SAT competition problem instances, demonstrate
that RLNT is on par with the best performing SAT solvers. As for the incremental SAT
track, the experimental results suggest that recent improvements made to SAT solvers
offer no clear gains. Furthermore, the experimental results on two well-known applica-
tions of incremental SAT, confirm that most recent improvements have no observable
contribution to improving SAT solving performance in incremental settings.

The conclusions drawn from the experimental results can be challenged if other uses
of incremental SAT are considered. We feel that MaxSAT and MUS extraction are fairly
representative, since a large number of SAT calls is usually required, both with satis-
fiable and unsatisfiable outcomes. Further validation of our conclusions would require
considering additional applications that build on incremental SAT solving. Moreover,
the results presented in the paper represent a first step towards a deeper understand-
ing of the interplay between incremental SAT and optimizations used for improving
the efficiency of SAT solvers. Additional experiments and analyzes will enable a more
comprehensive understanding of this interplay. From a SAT practitioner’s perspective,
we believe this work demonstrates the need for a discussion within the SAT commu-
nity on the improvements made to SAT solvers in light of (practical) incremental SAT
solving, including more focus on this issue in the annual SAT Competitions. We also
believe this work can serve to start such a discussion.

16 S. Kochemazov, A. Ignatiev, and J. Marques-Silva

References
1. Audemard, G., Lagniez, J., Simon, L.: Improving glucose for incremental SAT solving with

assumptions: Application to MUS extraction. In: SAT. pp. 309–317 (2013)
2. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: IJCAI.

pp. 399–404 (2009)
3. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability – 2nd

Edition. IOS Press (2021)
4. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC. pp. 151–158 (1971)
5. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Com-

mun. ACM 5(7), 394–397 (1962)
6. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–

215 (1960)
7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: SAT. pp. 502–518 (2003)
8. Fichte, J.K., Hecher, M., Szeider, S.: A time leap challenge for SAT-solving. In: CP. pp.

267–285 (2020)
9. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Syn-

thesis Lectures on Artificial Intelligence and Machine Learning, Morgan & Claypool Pub-
lishers (2012)

10. Gomes, C.P., Selman, B., Kautz, H.A.: Boosting combinatorial search through randomiza-
tion. In: AAAI. pp. 431–437 (1998)

11. Hickey, R., Bacchus, F.: Speeding up assumption-based SAT. In: SAT. pp. 164–182 (2019)
12. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: A Python toolkit for prototyping with

SAT oracles. In: SAT. pp. 428–437 (2018)
13. Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: an efficient MaxSAT solver. J. Satisf.

Boolean Model. Comput. 11(1), 53–64 (2019)
14. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: IJCAR. LNCS, vol. 7364, pp.

355–370 (2012)
15. Katebi, H., Sakallah, K.A., Marques-Silva, J.: Empirical study of the anatomy of modern

SAT solvers. In: SAT. pp. 343–356 (2011)
16. Kochemazov, S., Zaikin, O., Semenov, A.A., Kondratiev, V.: Speeding up CDCL inference

with duplicate learnt clauses. In: ECAI. pp. 339–346 (2020)
17. Lagniez, J., Biere, A.: Factoring out assumptions to speed up MUS extraction. In: SAT. pp.

276–292 (2013)
18. Li, C., Xiao, F., Luo, M., Manyà, F., Lü, Z., Li, Y.: Clause vivification by unit propagation in

cdcl sat solvers. Artif. Intell. 279 (2020)
19. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching heuristic

for SAT solvers. In: SAT. pp. 123–140 (2016)
20. Liang, J.H., Oh, C., Ganesh, V., Czarnecki, K., Poupart, P.: MapleCOMSPS, MapleCOM-

SPS LRB, MapleCOMSPS CHB. In: Proc. of SAT Competition 2016. vol. B-2016-1, pp.
52–53 (2016)

21. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of las vegas algorithms. Inf. Process.
Lett. 47(4), 173–180 (1993)

22. Luo, M., Li, C., Xiao, F., Manyà, F., Lü, Z.: An effective learnt clause minimization approach
for CDCL SAT solvers. In: IJCAI. pp. 703–711 (2017)

23. Marques-Silva, J.: Search algorithms for satisfiability problems in combinational switching
circuits. Ph.D. thesis, University of Michigan (1995)

24. Marques-Silva, J., Lynce, I.: On improving MUS extraction algorithms. In: SAT. pp. 159–
173 (2011)

25. Marques-Silva, J., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In:
ICCAD. pp. 220–227 (1996)

Assessing Progress in SAT Solvers Through the Lens of Incremental SAT 17

26. Marques-Silva, J., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfia-
bility. IEEE Trans. Computers 48(5), 506–521 (1999). https://doi.org/10.1109/12.769433,
https://doi.org/10.1109/12.769433

27. Irkutsk Supercomputer Center of SB RAS, http://hpc.icc.ru
28. MaxSAT Evaluation 2018. https://maxsat-evaluations.github.io/2018/
29. MaxSAT Evaluation 2019. https://maxsat-evaluations.github.io/2019/
30. MaxSAT Evaluation 2020. https://maxsat-evaluations.github.io/2020/
31. Möhle, S., Biere, A.: Backing backtracking. In: SAT. pp. 250–266 (2019)
32. Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardinality con-

straints. In: CP. pp. 564–573 (2014)
33. Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and core-

guided MaxSAT solving: A survey and assessment. Constraints An Int. J. 18(4), 478–534
(2013)

34. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
efficient SAT solver. In: DAC. pp. 530–535 (2001)

35. Nadel, A., Ryvchin, V.: Chronological backtracking. In: SAT. pp. 111–121 (2018)
36. Oh, C.: Between SAT and UNSAT: The fundamental difference in CDCL SAT. In: SAT. pp.

307–323 (2015)
37. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation. Con-

straints An Int. J. 14(3), 357–391 (2009)
38. Piette, C., Hamadi, Y., Saı̈s, L.: Vivifying propositional clausal formulae. In: ECAI. p.

525–529 (2008)
39. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability

solvers. In: SAT. pp. 294–299 (2007)
40. Ryan, L.: Efficient algorithms for clause-learning SAT solvers. Master’s thesis, School of

Computing Science, Simon Fraser University
41. Zhang, X., Cai, S.: Relaxed backtracking with rephasing. In: Proc. of SAT Competition 2020.

vol. B-2020-1, pp. 15–16 (2020)

https://doi.org/10.1109/12.769433
https://doi.org/10.1109/12.769433
http://hpc.icc.ru
https://maxsat-evaluations.github.io/2018/
https://maxsat-evaluations.github.io/2019/
https://maxsat-evaluations.github.io/2020/

	Assessing Progress in SAT Solvers Through the Lens of Incremental SAT

