
Towards Universally Accessible SAT Technology
Alexey Ignatiev # Ñ

Monash University, Melbourne, Australia

Zi Li Tan #

Monash University, Melbourne, Australia

Christos Karamanos #

Monash University, Melbourne, Australia

Abstract
Boolean satisfiability (SAT) solvers are a family of highly efficient reasoning engines, which are

frequently used for solving a large and diverse variety of practical challenges. This applies to
multidisciplinary problems belonging to the class NP but also those arising at higher levels of
the polynomial hierarchy. Unfortunately, encoding a problem of user’s interest to a (series of)
propositional formula(s) in conjunctive normal form (CNF), let alone dealing with a SAT solver,
is rarely a simple task even for an experienced SAT practitioner. This situation gets aggravated
further when the user has little to no knowledge on the operation of the modern SAT solving
technology. In 2018, the PySAT framework was proposed to address the issue of fast and “painless”
prototyping with SAT solvers in Python allowing researchers to get SAT-based solutions to their
problems without investing substantial time in the development process and yet sacrificing only
a little in terms of performance. Since then, PySAT has proved a useful instrument for solving a
wide range of practical problems and is now a critical package for the PyPI infrastructure. In the
meantime, there have been advances in SAT solving and enhancements to PySAT functionality to
extend its modelling and solving capabilities in order to make modern SAT technology accessible and
deployable on a massive scale. This paper provides a high-level overview of the current architecture
of PySAT and some of its capabilities including arbitrary Boolean formula manipulation, CNF
preprocessing, and support for external user-defined propagators.

2012 ACM Subject Classification Software and its engineering → Software libraries and repositories;
Hardware → Theorem proving and SAT solving; Theory of computation → Constraint and logic
programming

Keywords and phrases PySAT, Python, Prototyping, Practical Applicability

Digital Object Identifier 10.4230/LIPIcs.SAT.2024.4

Supplementary Material Software (PySAT Homepage): https://pysathq.github.io/

1 Introduction

Conflict-driven clause learning (CDCL) SAT solving serves as an illustrious example of a
success story in Computer Science [32, 35, 36, 39, 58, 18, 19, 17, 42, 5, 4, 28, 9], providing a
family of highly efficient decision oracles usable for solving myriads of practical problems. On
the other hand, implementing solutions to practical problems based on the state-of-the-art
SAT technology often requires one to be a SAT expert, which hampers the widespread use of
SAT and its generalizations. Addressing the above issue was one of the motivations behind the
proposal of the PySAT framework [24] designed specifically to ease incremental SAT-based
prototyping. Since its inception, PySAT has become a valuable everyday instrument widely
used in practice for tackling various AI problems. In 2021, based on the daily downloads
statistics, PySAT has been included in the list of top-1% PyPI (Python Package Index)
packages [48, 49] being named one of the critical projects for PyPI infrastructure.

Since the release of PySAT, there have been numerous enhancements made both in the
framework and in the state of the art of SAT solving in general. Hence, the original paper [24]

© Alexey Ignatiev, Zi Li Tan, Christos Karamanos;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024).
Editors: Supratik Chakraborty and Jie-Hong Roland Jiang; Article No. 4; pp. 4:1–4:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alexey.ignatiev@monash.edu
https://alexeyignatiev.github.io
mailto:zi.li.tan.zt@gmail.com
mailto:karamanos.christos@gmail.com
https://doi.org/10.4230/LIPIcs.SAT.2024.4
https://pysathq.github.io/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Towards Universally Accessible SAT Technology

PySAT Architecture

solversformula engines examples alliescard

process

pb

PySAT API

Figure 1 PySAT framework. Modules solvers, formula, and card shipped with the original
version [24] appear in blue. Modules providing access to third-party tools appear in italics.

no longer serves as an up-to-date account of PySAT’s capabilities. To fill in this gap, this
paper reviews the current functionality of PySAT, focusing on its architecture and a few novel
components, namely, arbitrary Boolean formula manipulation, CNF formula (pre-)processing
and the capacity to accommodate external reasoning engines following the recent IPASIR-UP
interface [20]. The paper also experiments with the latter demonstrating that it may be
feasible and favorable to implement external propagators in Python as it appears to be a
good trade-off between the development challenges and the overall solver performance.

2 Framework Architecture

Originally, PySAT comprised three core modules: solvers, formula, and card — providing
access to state-of-the-art CDCL SAT solvers [34], CNF formula manipulation, and cardinality
constraint encodings [50], respectively. Since then the list of modules expanded and now
additionally includes modules process for formula processing (see Subsection 3.2), examples
offering a variety of problem solving scripts serving to exemplify the use of PySAT, engines
allowing a user to implement external propagators (see Subsection 3.3) as well as optional pb
and allies modules interfacing with third-party libraries. While pb provides access to a list
of pseudo-Boolean constraint encodings [50] by means of using the PyPBLib library [47, 41],
allies is meant to offer direct access to external tools developed by the SAT community.
Currently, a user can access the ApproxMCv4 approximate model counter [55, 54] and Unigen
almost-uniform sampler [12, 11, 54] through the allies module. A simplified view on the
current architecture of PySAT and its modules interconnection is shown in Figure 1.

3 Selected Novel Functionality

There have been numerous changes made in PySAT since its creation [24]. These in-
clude the support for additional SAT solvers, e.g., CaDiCaL 1.0.3, 1.5.3, and 1.9.5 [9] and
MiniSat-based [18] solvers Glucose 4.2.1 [4, 22], MapleSAT [28, 31], MapleCM [29], MapleL-
CMDistChronoBT [40], MergeSat 3.0 [30, 37], CryptoMiniSat [56], additional problem-solving
tools like an award-winning MaxSAT solver RC2 [25], smallest minimal unsatisfiable subset
(SMUS) extractor OptUx [27], and minimal hitting set enumerator Hitman [13]. As a single
paper cannot encompass all the novel changes made, this section briefly overviews three
selected components of the framework. (For a complete account of PySAT’s capabilities,
please refer to the online documentation.)

A. Ignatiev, Z. L. Tan, C. Karamanos 4:3

3.1 Arbitrary Boolean Formulas
In addition to the standard (W)CNF(+) functionality1 of the original release of PySAT,
the current version of the framework offers to users the ability to create arbitrary Boolean
formulas and, importantly, to clausify them on demand through Tseitin transformation [57].
This may be of special importance to non-SAT researchers who are willing to use SAT for
modeling and solving the problems from the scientific domains of their interests. To this end,
PySAT exposes atomic expressions and various kinds of logic connectives (all inheriting from
a base class Formula) as building blocks for creating complex Boolean formulas. For instance,
variables can be created as atomic formulas, i.e., objects of the type Atom; they can be
connected to one another using And, Or, Neg, and Implies, among a few other connectives.

▶ Example 1. A user may apply the bottom-up formula construction starting from variables,
along these lines: x, y, z = [Atom(c) for c in ’xyz’]; f = ~(~x >> y) | (x & z),
which will create a formula f ≜ ¬(¬x → y) ∨ (x ∧ z).2

Furthermore, a user may employ CNF objects as components of larger formulas connected
to the rest with any of the existing logic operators. To facilitate the use of arbitrary formulas,
their on-the-fly clausification, integration of the CNF objects, as well as cardinality and
pseudo-Boolean constraints handling, the framework offers a simple yet powerful manager of
integer variable identifiers referred to as IDPool.

▶ Example 2. Given formula f in Example 1, calling f.clausify() will produce a list of
clauses [[1, 2, -3], [3, -1], [3, -2], [1, -5], [4, -5], [5, -1, -4], [-3, 5]],
which invokes IDPool to automatically assign integer identifiers 1, 2, and 4 to variables x,
y, and z as well as identifiers -3 and 5 for the two terms of the disjunction ¬(¬x → y) and
x ∧ z, respectively.

3.2 CNF Processing
CNF formulas can be (pre-)processed producing equisatisfiable CNF formulas using the
facilities of PySAT’s module process. This includes running some of the well-known
preprocessing techniques such as bounded variable elimination, blocked clause elimination,
failed literal probing, among many others [10]. A user may specify how many rounds of CNF
processing should be applied as well as select the techniques to apply. In practice, applying
such techniques may lead to formulas that are simpler to deal with than the original formulas.
Furthermore, the power of formula processing may often suffice for proving unsatisfiability,
without the need for a subsequent SAT call. Otherwise, assignments satisfying a processed
formula can be mapped back to the original formula. Note that this module is implemented
by exposing the preprocessing functionality offered by the CaDiCaL SAT solver [9].

▶ Example 3. The status of the result formula produced by the processor can be used to
indicate whether or not the processor determined the initial formula to be unsatisfiable. As an
example, consider an unsatisfiable input CNF formula (¬x1∨x2)∧(¬x2∨x3)∧(¬x1∨¬x3)∧(x1).
If fed with this formula, the processor returns a new (processed) formula object containing

1 CNF and WCNF formulas in PySAT [24] are represented as lists of clauses, each being a list of literals
such that a positive integer i acts as a literal xi while the negation ¬xi is represented by -i. CNF+
and WCNF+ formulas can also contain native cardinality constraints understandable by solvers like
MiniCard [38].

2 Observe how operators ~, &, |, and >> are overloaded to act as Neg, And, Or, and Implies, respectively.

SAT 2024

4:4 Towards Universally Accessible SAT Technology

an empty clause and whose status is set to false, signifying unsatisfiability of the original
formula, as follows:

>>> from pysat. process import Processor
>>> proc = Processor (bootstrap_with =[[-1, 2], [-2, 3], [-1, -3], [1]])
>>> processed = proc. process ()
>>> print (’{0}, {1} ’. format (processed .clauses , processed . status))
[[]] , False # result contains an empty clause and is unsatisfiable

▶ Example 4. Recall that the process module ensures equisatisfiability of an input formula
and result formula. Furthermore, a satisfying assignment for the original formula can be
restored given a satisfying assignment for the processed one. Consider a CNF formula
(¬x1 ∨ ¬x2) ∧ (x1 ∨ x2) ∧ (x1), which has a single model satisfying literals x1 and ¬x2. The
processor constructs an empty (processed) formula and declares that the original formula
is not determined to be unsatisfiable. Observe how one can get the unique assignment
mentioned above restored from an assignment obtained for the processed formula:

>>> from pysat. process import Processor
>>> from pysat. solvers import Solver
>>> proc = Processor (bootstrap_with =[[-1, -2], [1, 2], [1]])
>>> processed = proc. process ()
>>> print (’{0}, {1} ’. format (processed .clauses , processed . status))
[], True # result has no clauses and is not found to be unsatisfiable
>>> with Solver (bootstrap_with = processed) as solver :
... st , mod = solver .solve (), solver . get_model ()
... print(’status : {0}, model: {1} ’. format (st , proc. restore (mod)))
status : True , model: [1, -2] # result is confirmed to be satisfiable

and the correct model is restored

3.3 External Engines
Recent work [20] proposed an extension to the IPASIR interface [6] referred to as IPASIR-UP
and added support for the new interface in CaDiCaL [9]. IPASIR-UP allows a user to specify
an external propagator and attach it to a SAT solver supporting the interface. It has shown
to be helpful in various practical scenarios when non-clausal reasoning is useful, e.g., in
satisfiability modulo theories (SMT) solving [7, 8]. As a result, the interface is deemed highly
valuable for extending applicability of SAT, especially if supported by additional solvers.

As handling low-level interaction between a SAT solver and an external propagation engine
is a challenging and tedious task, PySAT takes on the mission to provide similar functionality
directly in Python. Although using a reasoning engine written in a high-level programming
language should arguably be slower than doing the same in a low-level language, this possibility
aligns with the aims of PySAT to make the advanced SAT technology easy to use in practice.

The PySAT API for implementing external propagators offered by module engines is
shown in Listing 1. (User-defined propagators should be defined as inheriting from the class
Propagator.) Initially, the idea was to expose exactly the same interface as dictated by
IPASIR-UP [20]. However, some of the methods in IPASIR-UP inherit the literal-by-literal
interface of IPASIR, e.g., clauses are transferred through multiple calls to the same method,
each passing a single literal. This overhead becomes noticeable if implemented in Python.
Therefore, the interface is slightly modified in PySAT aiming to reduce the overhead of making
repeated Python calls from C++ code. First, a clause is handed by the propagator to the
solver as a single list of literals, which applies to methods propagate(), provide_reason(),

A. Ignatiev, Z. L. Tan, C. Karamanos 4:5

Listing 1 Interface for implementing external propagators in PySAT provided by module engines.

class Propagator (object):
def on_assignment (self , lit: int , fixed: bool = False) -> None:

pass # receive a new literal assigned by the solver

def on_new_level (self) -> None:
pass # get notified about a new decision level

def on_backtrack (self , to: int) -> None:
pass # process backtracking to a given level

def check_model (self , model: list[int]) -> bool:
pass # check if a given assignment is indeed a model

def decide (self) -> int:
return 0 # make a decision and (if any) inform the solver

def propagate (self) -> list[int]:
return [] # propagate and return inferred literals (if any)

def provide_reason (self , lit: int) -> list[int]:
pass # explain why a given literal was propagated

def add_clause (self) -> list[int]:
return [] # add an(y) external clause to the solver

and add_clause(). Internally, the C++ wrapper still follows the original interface by putting
the literals into a queue. Second, PySAT gets rid of the original has_external_clause()
check assuming that no clause is available if add_clause() returns []. Finally, to avoid
situations when a propagator does not communicate any useful information to the solver
and runs for nothing, PySAT allows the propagator to disable itself on the fly (it is up to
the author of a propagator to decide when it should happen) such that it will be invoked
only when a SAT solver comes up with an assignment to be checked by check_model().
On-the-fly re-enabling of the propagator whenever it is favorable is also possible.

4 Distribution

The framework is distributed as an open-source project3 with detailed installation instructions
allowing a user to compile all the necessary and/or optional C++ components of the framework
and get PySAT ready for use on their local machine. The easiest way to get PySAT is to
install a pre-compiled binary wheel, i.e., Python package, from the PyPI repository [48] as
follows:

$ pip install python-sat
Besides the source code distribution, the list of released binary wheels is quite extensive

and contains 119 pre-built distributions targeting various versions of Linux, macOS, and
Windows operating systems. Finally, PySAT is a part of the Pyodide project [46] whose aim

3 https://pysathq.github.io

SAT 2024

https://pysathq.github.io

4:6 Towards Universally Accessible SAT Technology

is to supply a version of Python compiled to WebAssembly and deliver a large collection
of scientific computing packages available for execution entirely in a web browser. A nice
side effect of this is that a user can implement their SAT-based solutions in Python and/or
Javascript, to be operated in a browser, thus potentially expanding practical applicability of
the SAT technology without the need to ever install PySAT.

5 Experimenting with External Engines

This section aims at showcasing the use of external propagator functionality offered in PySAT
given two practical scenarios. We are essentially interested in testing how costly it is to
run an external engine alongside CaDiCaL in practice and whether it defeats the purpose
of implementing propagators in Python. With this in mind, we implemented an example
propagator referred to as BooleanEngine, which should be general enough to attach various
kinds of constraints on Boolean variables, including unweighted and weighted linear (i.e.,
cardinality and pseudo-Boolean, respectively) constraints or XOR-propagators, among other
kinds of constraints. We implemented both weighted and unweighted linear constraints for
the purpose of the experiment. Hereinafter, BooleanEngine reasoning on linear constraints
is referred to as the linear engine. Here, we would like to remind the reader that the point
is not to show that implementing a propagator in Python will necessarily outperform a
low-level solution but rather to show that it may pay off in terms of the time invested in the
development process, sacrificing little of the overall performance. Both experiments were run
on a MacBook Pro running macOS Sonoma 14.3.1 with a 10-core Apple M1 Pro CPU and
32GByte RAM.
▶ Remark 5. The experimental results are presented in the form of cactus and scatter plots,
e.g., see Figure 2a and Figure 2b, respectively. A cactus plot depicts multiple lines, each
representing a particular competitor in terms of the statistic information on how many
instances (on the X-axis) are successfully solved by this competitor within a given time limit
(on the Y -axis). A scatter plot depicts in instance-by-instance comparison of two approaches
by means of a set of points with coordinates (x, y), each representing a particular problem
instance such that coordinate x signifies the time spent by one of the approaches (shown on
the X-axis) dealing with this particular instance while coordinate y denotes the time spent
on this instance by its competitor (shown on the Y -axis). Note that the green band in the
scatter plots denotes the area where no approach outperforms the other by more than an
order of magnitude.

5.1 Model Enumeration for Cardinality Constraints
Hereinafter, the first experiment is devoted to running the engine with cardinality constraints.
In this case, we randomly generate 1000 systems of (unweighted) linear inequalities over 20
variables, i.e., each such inequality is of the form

∑20
i=1 wi · li ≤ v, where li ∈ {xi, ¬xi} such

that xi ∈ {0, 1} and wi ∈ {0, 1}, v ∈ {0, 1, . . . , 20}. Inconsistent systems are filtered out,
which results in 911 remaining problem instances. These remaining instances are either given
to CaDiCaL augmented with the linear engine or given to pure CaDiCaL dealing with CNF
formulas encoding the linear systems using cardinality networks [3].

Given that a solver may be lucky in finding a single satisfying assignment, the experiment
is set to enumerate all models of the corresponding formulas. Depending on the formula, the
number of models to enumerate varies from 1 to 1,044,905. Model enumeration is done by
adding clauses blocking previously found models. For a fair comparison, the performance of
a tool is measured as the overall time spent during the enumeration process, thus, ignoring

A. Ignatiev, Z. L. Tan, C. Karamanos 4:7

0 200 400 600 800 1000
instances

0

100

200

300

400

500

600
CP

U
tim

e (
s)

CaDiCaL 1.9.5 with linear engine
CaDiCaL 1.9.5 with cardinality networks

(a) Overall performance

10 5 10 4 10 3 10 2 10 1 100 101 102 103

CaDiCaL 1.9.5 with linear engine

10 5

10 4

10 3

10 2

10 1

100

101

102

103

Ca
Di

Ca
L

1.9
.5

wi
th

ca
rdi

na
lity

 ne
tw

ork
s

600 sec. timeout

60
0 s

ec
. ti

me
ou

t

(b) Instance-by-instance comparison

Figure 2 Linear engine vs cardinality networks.

the encoding time. The timeout value set for enumerating the models of a single formula is
10 minutes.

The performance of both competitors, i.e., CaDiCaL with and without the external linear
propagator, is depicted in Figure 2. As can be observed, the configuration running the linear
engine outperforms the competitor operating on CNF encodings of the inequality systems.
In particular, the winner manages to solve all the instances spending at most 20.27 seconds
per instance while the competitor on average spends much more time per instance and times
out on 28 out of 911 instances.

5.2 Computing Formal Explanations for Tree Ensembles
The second experiment considers a more practical setting where we use CaDiCaL augmented
with the external linear engine for computing and enumerating formal abductive explan-
ations [52, 26, 33] for tree ensembles trained with the XGBoost algorithm [14]. Without
diving into details, the task here is given a machine learning (ML) classification function
κ : F → K mapping points in feature space F defined over n = |F| features j ∈ F to a class
in K and a particular prediction κ(v) = c, v ∈ F, and c ∈ K, to compute a subset-minimal
subset of features X ⊆ F such that

∀(x ∈ F).
[∧

j∈X
(xj = vj)

]
→(κ(x) = c)

Computing such a subset X requires one to make multiple calls to a reasoning oracle dealing
with a logical representation of classifier κ. We reuse the propositional encoding of tree
ensemble models proposed in [23] where feature domains and tree paths are CNF-encoded
and each node in a tree is represented by a Boolean variable while a class weight w ∈ R
assigned by a tree’s terminal node t is modeled as a weighted soft clause (t, w). However, the
use of the linear engine alongside CaDiCaL enables us to model the class selection process of
boosted trees directly using pseudo-Boolean constraints, which compare the sums of weights
for various classes, rather than by means of a MaxSAT objective function as in [23].

This experiment is twofold. First, it compares the performance of CaDiCaL augmented
with the linear engine against the MaxSAT and SMT approaches [23] to computing a single

SAT 2024

4:8 Towards Universally Accessible SAT Technology

10 5 10 4 10 3 10 2 10 1 100 101 102

CaDiCaL 1.9.5 with linear engine

10 5

10 4

10 3

10 2

10 1

100

101

102

Z3

(a) Comparison against Z3

10 5 10 4 10 3 10 2 10 1 100 101 102

CaDiCaL 1.9.5 with linear engine

10 5

10 4

10 3

10 2

10 1

100

101

102

RC
2

(b) Comparison against RC2

Figure 3 CaDiCaL with linear engine vs MaxSAT and SMT on the task of explanation extraction.

explanation for the XGBoost models trained on a variety of publicly available datasets. (The
SMT approach makes use of Z3 solver [16, 21] while the MaxSAT approach employs an
optimized version of RC2 [25, 23].) The models trained comprise 50 trees per class, each
of depth 1–5; the training (test, resp.) accuracy of these models is above 97% (85%, resp.).
The experiment targets explaining 200 randomly selected instances from the corresponding
datasets,4 which resulted in 3755 individual problem instances. Second, it checks scalability
of explanation enumeration with the MaxSAT vs CaDiCaL with external linear engine,5 both
set to enumerate 100 explanations for each of the models and instances considered above.

The results of single explanation computation is detailed in Figure 3. Observe that the
slowest among the considered approaches is SMT while the fastest overall is MaxSAT. We
should also mention that CaDiCaL with the linear engine is significantly less robust than
MaxSAT as the time spent to extract an explanation with CaDiCaL varies much more.
Finally, the use of the linear engine starts having performance drops if we increase models
sizes; no such performance drops occur for MaxSAT or SMT.

The performance in explanation enumeration is detailed in Figure 4. Interestingly, this is
where CaDiCaL with the external engine thrives and tends to outperform MaxSAT despite
the fact that the engine is called hundreds of thousands of times per problem instance, which
may be seen as surprising.

6 Related Work

While PySAT was originally inspired by PySMT’s [21] capability of interfacing with various
SMT solvers, there are Python APIs targeting individual SAT solvers, e.g., PyMiniSolvers [45]
providing an API to MiniSat and MiniCard, pycosat [43] with the Python interface to PicoSAT,
satispy [51] offering an API for MiniSat and lingeling, pylgl [44] for working with lingeling,

4 If a dataset has fewer than 200 instances, we explain each of the n < 200 available instances.
5 The implementation of [23] does not support explanation enumeration with SMT, which is why we do

not compare against SMT in the explanation enumeration mode.

A. Ignatiev, Z. L. Tan, C. Karamanos 4:9

3000 3100 3200 3300 3400 3500 3600 3700 3800
instances

0

50

100

150

200

250

300

350

400

450
CP

U
tim

e (
s)

RC2
CaDiCaL 1.9.5 with linear engine

(a) Overall performance

10 4 10 3 10 2 10 1 100 101 102 103

CaDiCaL 1.9.5 with linear engine

10 4

10 3

10 2

10 1

100

101

102

103

RC
2

(b) Instance-by-instance comparison

Figure 4 MaxSAT vs CaDiCaL with linear engine on the task of explanation enumeration.

and pycryptosat providing access to CryptoMiniSat [56, 53, 15]. Another framework called
OptiLog [2, 1] offers a unified interface to multiple SAT solvers as well as access to cardinality
and pseudo-Boolean constraint encodings. However, while OptiLog provides a user with a
unified interface iSAT (through C++ and Python) to attach a SAT solver of their interest
as well as with a way to configure, fine-tune, and benchmark it, PySAT’s goal is different.
Namely, PySAT is a fully open-source Python framework aiming to simplify prototyping
with SAT oracles, even for researchers with little experience with SAT solving. It delivers a
large range of solvers pre-installed accessible through the same API as well as a wealth of
facilities to manipulate Boolean formulas and implement user-defined constraint reasoners.

7 Conclusions

It has been a number of years since the original release of the PySAT framework [24].
This paper provides a brief overview of its current capabilities. Besides a larger number
of SAT solvers and problem-solving scripts integrated into the toolkit, these capabilities
include facilities to manipulate arbitrary Boolean formulas and linear constraints as well as
external reasoning engines by exploiting IPASIR-UP [20], and formula (pre-)processing and
clausification [57]. PySAT is an easy-to-deploy and fully open-source Python package, whose
mission is to make the advances of SAT universally accessible for solving problems arising in
a wide range of scientific domains. Hopefully, the broader SAT community will assist this by
contributing to PySAT with additional features and with proposals for further improvements.

References
1 Josep Alos, Carlos Ansótegui, Josep M. Salvia, and Eduard Torres. OptiLog V2: model, solve,

tune and run. In SAT, pages 25:1–25:16, 2022.
2 Carlos Ansótegui, Jesus Ojeda, António Pacheco, Josep Pon, Josep M. Salvia, and Eduard

Torres. OptiLog: A framework for SAT-based systems. In SAT, pages 1–10, 2021.
3 Roberto Asín, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-Carbonell. Cardin-

ality networks and their applications. In SAT, pages 167–180, 2009.

SAT 2024

4:10 Towards Universally Accessible SAT Technology

4 Gilles Audemard, Jean-Marie Lagniez, and Laurent Simon. Improving Glucose for incremental
SAT solving with assumptions: Application to MUS extraction. In SAT, pages 309–317, 2013.

5 Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT solvers.
In IJCAI, pages 399–404, 2009.

6 Tomás Balyo, Armin Biere, Markus Iser, and Carsten Sinz. SAT race 2015. Artif. Intell.,
241:45–65, 2016.

7 Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability
modulo theories. In Handbook of Satisfiability, pages 1267–1329. IOS Press, 2021.

8 Clark W. Barrett and Cesare Tinelli. Satisfiability modulo theories. In Handbook of Model
Checking, pages 305–343. Springer, 2018.

9 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Proc. of SAT
Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1, pages 51–53, 2020.

10 Armin Biere, Matti Järvisalo, and Benjamin Kiesl. Preprocessing in SAT solving. In Handbook
of Satisfiability, pages 391–435. IOS Press, 2021.

11 Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, and Moshe Y.
Vardi. On parallel scalable uniform SAT witness generation. In TACAS, pages 304–319, 2015.

12 Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. Balancing scalability and
uniformity in SAT witness generator. In DAC, pages 60:1–60:6, 2014.

13 Karthekeyan Chandrasekaran, Richard M. Karp, Erick Moreno-Centeno, and Santosh S.
Vempala. Algorithms for implicit hitting set problems. In SODA, pages 614–629, 2011.

14 Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In KDD, pages
785–794, 2016.

15 CryptoMiniSat. https://github.com/msoos/cryptominisat/.
16 Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In TACAS,

pages 337–340, 2008.
17 Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and clause

elimination. In SAT, pages 61–75, 2005.
18 Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In SAT, pages 502–518, 2003.
19 Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT solving. Electronic

Notes in Theoretical Computer Science, 89(4):543–560, 2003.
20 Katalin Fazekas, Aina Niemetz, Mathias Preiner, Markus Kirchweger, Stefan Szeider, and

Armin Biere. IPASIR-UP: user propagators for CDCL. In SAT, pages 8:1–8:13, 2023.
21 Marco Gario and Andrea Micheli. PySMT: a solver-agnostic library for fast prototyping of

SMT-based algorithms. In SMT Workshop, 2015.
22 Glucose 3, Glucose 4.1, and Glucose 4.2.1. http://www.labri.fr/perso/lsimon/glucose/.
23 Alexey Ignatiev, Yacine Izza, Peter J. Stuckey, and João Marques-Silva. Using MaxSAT for

efficient explanations of tree ensembles. In AAAI, pages 3776–3785, 2022.
24 Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A Python toolkit for

prototyping with SAT oracles. In SAT, pages 428–437, 2018.
25 Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. RC2: an efficient MaxSAT solver.

J. Satisf. Boolean Model. Comput., 11(1):53–64, 2019.
26 Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. Abduction-based explanations

for machine learning models. In AAAI, pages 1511–1519, 2019.
27 Alexey Ignatiev, Alessandro Previti, Mark H. Liffiton, and Joao Marques-Silva. Smallest MUS

extraction with minimal hitting set dualization. In CP, pages 173–182, 2015.
28 Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning rate based

branching heuristic for SAT solvers. In SAT, pages 123–140, 2016.
29 Mao Luo, Chu-Min Li, Fan Xiao, Felip Manyà, and Zhipeng Lü. An effective learnt clause

minimization approach for CDCL SAT solvers. In IJCAI, pages 703–711, 2017.
30 Norbert Manthey. The MergeSat solver. In SAT, pages 387–398, 2021.
31 MapleSAT. https://maplesat.github.io/.

https://github.com/msoos/cryptominisat/
http://www.labri.fr/perso/lsimon/glucose/
https://maplesat.github.io/

A. Ignatiev, Z. L. Tan, C. Karamanos 4:11

32 Joao Marques-Silva. Search algorithms for satisfiability problems in combinational switching
circuits. PhD thesis, University of Michigan, 1995.

33 João Marques-Silva and Alexey Ignatiev. Delivering trustworthy AI through formal XAI. In
AAAI, pages 12342–12350, 2022.

34 Joao Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning SAT solvers.
In Handbook of Satisfiability, pages 133–182. IOS Press, 2021.

35 Joao Marques-Silva and Karem A. Sakallah. GRASP - a new search algorithm for satisfiability.
In ICCAD, pages 220–227, 1996.

36 Joao Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional
satisfiability. IEEE Trans. Computers, 48(5):506–521, 1999.

37 MergeSat. https://github.com/conp-solutions/mergesat.
38 MiniCard 1.2. https://github.com/liffiton/minicard/.
39 Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.

Chaff: Engineering an efficient SAT solver. In DAC, pages 530–535, 2001.
40 Alexander Nadel and Vadim Ryvchin. Chronological backtracking. In SAT, pages 111–121,

2018.
41 Tobias Philipp and Peter Steinke. PBLib - A library for encoding pseudo-Boolean constraints

into CNF. In SAT, pages 9–16, 2015.
42 Knot Pipatsrisawat and Adnan Darwiche. A lightweight component caching scheme for

satisfiability solvers. In SAT, pages 294–299, 2007.
43 pycosat. https://github.com/conda/pycosat.
44 pylgl. https://github.com/abfeldman/pylgl/.
45 PyMiniSolvers. https://github.com/liffiton/PyMiniSolvers/.
46 Pyodide. https://pyodide.org/.
47 PyPBLib. https://pypi.org/project/pypblib/.
48 PyPI. https://pypi.python.org/.
49 PyPI 2FA Security Key Giveaway. https://pypi.org/security-key-giveaway/.
50 Olivier Roussel and Vasco M. Manquinho. Pseudo-Boolean and cardinality constraints. In

Handbook of Satisfiability, pages 1087–1129. IOS Press, 2021.
51 satispy. https://github.com/netom/satispy/.
52 Andy Shih, Arthur Choi, and Adnan Darwiche. A symbolic approach to explaining Bayesian

network classifiers. In IJCAI, pages 5103–5111, 2018.
53 Mate Soos. Enhanced gaussian elimination in dpll-based SAT solvers. In POS@SAT, pages

2–14, 2010.
54 Mate Soos, Stephan Gocht, and Kuldeep S. Meel. Tinted, detached, and lazy CNF-XOR

solving and its applications to counting and sampling. In CAV, pages 463–484, 2020.
55 Mate Soos and Kuldeep S. Meel. BIRD: engineering an efficient CNF-XOR SAT solver and its

applications to approximate model counting. In AAAI, pages 1592–1599, 2019.
56 Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to cryptographic

problems. In SAT, pages 244–257, 2009.
57 G. S. Tseitin. On the complexity of derivations in the propositional calculus. Studies in

Mathematics and Mathematical Logic, Part II:115–125, 1968.
58 Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Malik. Efficient conflict

driven learning in boolean satisfiability solver. In ICCAD, pages 279–285, 2001.

SAT 2024

https://github.com/conp-solutions/mergesat
https://github.com/liffiton/minicard/
https://github.com/conda/pycosat
https://github.com/abfeldman/pylgl/
https://github.com/liffiton/PyMiniSolvers/
https://pyodide.org/
https://pypi.org/project/pypblib/
https://pypi.python.org/
https://pypi.org/security-key-giveaway/
https://github.com/netom/satispy/

	1 Introduction
	2 Framework Architecture
	3 Selected Novel Functionality
	3.1 Arbitrary Boolean Formulas
	3.2 CNF Processing
	3.3 External Engines

	4 Distribution
	5 Experimenting with External Engines
	5.1 Model Enumeration for Cardinality Constraints
	5.2 Computing Formal Explanations for Tree Ensembles

	6 Related Work
	7 Conclusions

