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Abstract. The problem of propositional formula minimization can be traced to
the mid of the last century, to the seminal work of Quine and McCluskey, with
a large body of work ensuing from this seminal work. Given a set of implicants
(or implicates) of a formula, the goal for minimization is to find a smallest set
of prime implicants (or implicates) equivalent to the original formula. This paper
considers the more general problem of computing a smallest prime representa-
tion of a non-clausal propositional formula, which we refer to as formula sim-
plification. Moreover, the paper proposes a novel, entirely SAT-based, approach
for the formula simplification problem. The original problem addressed by the
Quine-McCluskey procedure can thus be viewed as a special case of the prob-
lem addressed in this paper. Experimental results, obtained on well-known repre-
sentative problem instances, demonstrate that a SAT-based approach for formula
simplification is a viable alternative to existing implementations of the Quine-
McCluskey procedure.

1 Introduction

The Quine-McCluskey [47,48,36] procedure for the minimization of clausal formulae
(i.e. formulae either represented in Conjunctive Normal Form (CNF) or Disjunctive
Normal Form (DNF)) is widely known, being a standard topic in a number of text-
books (e.g. [22]), with a number of publicly available implementations. This problem
is referred to as formula minimization in this paper. Formula minimization finds a wide
range of practical applications [49,55,46,8,17,54,28,58,19,14,11,5], ranging from secu-
rity to biology. A typical implementation of Quine-McCluskey starts by computing all
the prime implicates (or implicants) of a CNF (or DNF) formula, and then implements a
set covering step, where a minimum number of prime implicates (implicants) is selected
that is equivalent to the original function. A more general scenario is when the original
formula is non-clausal. Clearly, one can still generate all the implicates (or implicants)
of the formula, then generate all the prime implicates (or prime implicants), and then
execute the set covering step. However, in practice the number of implicates may be
much larger than the number of prime implicates. In contrast to the more restricted
problem, this problem is referred to as formula simplification in this paper. Moreover,
regarding the existing implementations of Quine-McCluskey, these are not only limited
to clausal formula minimization but also usually restricted to a small number of vari-
ables. The latter is also the case for other formula simplification alternatives based on
Binary Decision Diagrams (BDDs) [10].
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This paper develops novel approaches for formula simplification as well as formula
minimization, both of which are entirely SAT-based1. The proposed approaches exploit
recent work on computing prime implicates (and implicants) with SAT solvers [45,27],
but also recent work on solving MaxSAT [40] and on computing smallest minimal un-
satisfiable subformulae (SMUS) [31,23,24,26]. For the formula minimization problem,
the main technical contribution is a new way to compute the prime implicates (or im-
plicants) of the formula. For the formula simplification problem, the main technical
contribution is the integration of prime enumeration with smallest MUS extraction.

Throughout the paper, and similarly to the most common description of the Quine-
McCluskey procedure, the focus will be to compute the prime implicants of a proposi-
tional formula (possibly represented in DNF) and then to select a minimum size set of
prime implicants equivalent to the original formula. However, the algorithms described
in the paper also apply when computing and minimizing the set of prime implicates,
possibly starting from a CNF representation.

The paper is organized as follows. Section 2 introduces the notation and definitions
used throughout the paper. Section 3 describes the novel approach to formula simplifi-
cation proposed in the paper. Preliminary experimental results are analyzed in Section 4.
Finally, Section 5 concludes the paper.

2 Preliminaries

Definitions standard in propositional satisfiability (SAT) and maximum satisfiability
(MaxSAT) solving are assumed [4]. In what follows, F denotes an arbitrary proposi-
tional formula. A term t is a conjunction of literals and a clause c is a disjunction of lit-
erals, while a literal l is either a Boolean variable or its negation. Whenever convenient,
terms and clauses are treated as sets of literals. A formula is said to be in conjunctive
or disjunctive normal form (CNF or DNF, respectively) if it is a conjunction of clauses
or disjunction of terms, respectively. Set theory notation will be also used with respect
to CNF and DNF formulae when necessary. Moreover, the term clausal will be used to
denote formulae represented as sets of sets of literals, i.e. either in CNF or DNF.

Definition 1. A term In is called an implicant of F if In �F . An implicant In of F is
called prime if any subset I ′n ( In is not an implicant of F .

Definition 2. A clause Ie is called an implicate of F if F � Ie. An implicate Ie of F is
called prime if any subset I ′e ( Ie is not an implicate of F .

The sets of all prime implicants and prime implicates of a Boolean formula F are
denoted by PIn(F) and PIe(F), respectively. A subset P of PIn(F) (or PIe(F)) such
that P ≡ F is said to be a prime cover of F . Observe that given F and a prime
implicant In �F , the clause ¬In is a prime implicate of ¬F , and the other way around.
Moreover, a similar connection between PIn(F) and PIe(¬F) also holds. Additionally,
the concept of an essential prime implicant is exploited in the paper. A prime implicant
is called essential if it is included in any set of prime implicants covering F . With
respect to CNF formulae, the following definitions related to MUSes and MCSes are
also used:

1 Earlier work [52] used SAT as part of the ESPRESSO algorithm [7].
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Fig. 1: General steps of the approach

Definition 3. Given a CNF formula F , a set of clauses U ⊆ F is called a minimal
unsatisfiable subset (MUS) if U is unsatisfiable and any subset U ′ ⊂ U is satisfiable. A
minimum size MUS of F is called a smallest MUS (SMUS).

Definition 4. A subset C of a CNF formula F is a minimal correction subset (MCS) if
F \ C is satisfiable and ∀C′ ⊆ C ∧ C′ 6= ∅, (F \ C) ∪ C′ is unsatisfiable.

These notions can be extended to the case of group oriented CNF formulae [33,41]. A
group oriented CNF formula contains groups of clauses instead of single clauses, i.e.
F = D ∪ G, where G = G1 ∪ . . . ∪ Gk is a set of k groups while D is a don’t care
group. Accordingly, a group MUS of F is a subset of groups G′ ⊆ G such that formula
D ∪⋃

G∈G′ G is unsatisfiable and ∀G′′ ⊂ G′ formula D ∪⋃
G∈G′′ G is satisfiable.

3 Formula Simplification with SAT

The approach proposed below follows the general steps of the original Quine-McCluskey
algorithm [47,48,36] outlined in Figure 1. Given a propositional formula F in an non-
clausal form, it (i) enumerates all prime implicants PIn(F) (or prime implicates PIe(F));
and (ii) computes a minimum size subset P ⊆ PIn(F) (or P ⊆ PIe(F)) such that
P ≡ F . Hereinafter, the discussion is conducted with respect to computing a mini-
mum size DNF representation of F (i.e. using prime implicants of F). However, all of
the proposed techniques can be easily adapted for the case of computing a minimum
size CNF of F (i.e. with the use of prime implicates). Indeed, this results from the
well-known connection between prime implicants of F and prime implicates of ¬F
(see Section 2). For this reason and whenever convenient, some particular ideas are
explained for implicate-based formula simplification.

3.1 Prime Implicant/Implicate Enumeration

The SAT-based approach being proposed relies on the efficient prime compilation of
Boolean formulae. Although (and in contrast to [47,48,36]) the paper is mainly focused
on non-clausal Boolean formulae, this section provides a description of the simplified
version of the algorithm targeting clausal formulae. The reader is referred to [45] for
further details and properties of the general algorithm.

Prime Compilation of Clausal Formulae Although in general the extraction of a
prime implicant requires a linear number of calls to a SAT solver, for the case of CNF
formulae minimizing a model can be done in polynomial time. The algorithm used in
this paper for the extraction of prime implicates is based on the algorithm primer-b re-
cently introduced in [45]. When executed on a non-clausal formula, primer-b produces
the complete set of prime implicates and (as a by-product) a prime implicant cover. At
each step, primer-b identifies a new partial assignment to be tested. As highlighted in



earlier work [45], when a partial assignment falsifies the formula, then its negation is
guaranteed to be a prime implicate. Instead, if it satisfies the formula, the correspond-
ing model has to be reduced to a prime implicant. However, when we deal with CNF
formulae, the model can be reduced without employing a SAT solver by means of a
procedure running in polynomial time. Suppose that m is a model for a CNF formula
F . Then we have to scan all the literals in m one at a time. Let l be the last picked literal.
If when setting l to don’t care, the implicant still satisfies the formula, then literal l is
removed. Otherwise, it is a part of the prime implicant under construction. Note that in
order to test if a literal is necessary, it is enough to check only the clauses containing
it. This can be easily done by using an occurrence list, which for each literal stores the
set of clauses where it appears. Additionally, more sophisticated techniques [13] can be
also applied for improving the performance of the algorithm.

3.2 Computing a Smallest Prime Cover

This section describes the second phase of the proposed approach, which consists in the
following. Given a complete set of prime implicants of a Boolean formula, it computes
its subset of the smallest size such that the subset is equivalent to the original formula.

Prime Covering Non-Clausal Formulae Let us assume that for a given non-clausal
formula F , the complete set of prime implicants PIn(F) is computed as described in
Section 3.1. Now one needs to find a minimum size subset P ⊆ PIn(F) such that
P ≡ F . Clearly, by definition of a prime implicant, for any subset P (and, thus, for
the smallest one) the following holds: P �F . Therefore, it is enough to check whether
F �P , which can be done by testing if formula ¬P ∧ F is unsatisfiable. Observe that
PIn(F) ≡ F and, thus, F �PIn(F). Hence, formula

¬PIn(F) ∧ F (1)

is obviously unsatisfiable. This means that finding a minimum size cover P of F con-
sists in computing a smallest size group MUS (e.g. see [33,41]) of formula (1) where
subformula F is a don’t care group, i.e. F is irrelevant for the size of the solution, and
so only clauses ¬In ∈ ¬PIn(F) are taken into account. This problem can be solved
with an off-the-shelf SMUS extractor (e.g. [34,38,31,23,24,26]).

Note that a smallest size group MUS of formula (1) corresponds to a minimum size
prime cover P of F with respect to the number of prime implicants in P . However, one
might prefer to compute a minimum cover in terms of the total number of occurrence
of literals in it. For this, a weighted group MUS formula can be considered, i.e. each
clause ¬In ∈ ¬PIn(F) is associated with a cost equal to |In|. Now, a smallest cost
group MUS of (1) corresponds to a minimum cost prime cover of F .

Observe that essential prime implicants of F can be identified by group MCS ex-
traction (e.g. see [43,35] and references therein) on the considered formula (1). This is
stated in the following proposition.

Proposition 1. Any unit MCS (i.e. an MCS containing just one clause) of formula (1)
corresponds to an essential prime implicant of formula F .

Proof. Due to the minimal hitting set duality between MCSes and MUSes of a (group)
CNF formula [50,33], a clause of a unit MCS of the formula is included into any MUS



of the formula. Since, by construction of (1), group unsatisfiable subformulae (hence,
MUSes as well) define prime covers of F , unit MCSes of (1) define prime implicants
of F that must be included into any prime cover of F . Thus, by definition of essential
prime implicants, unit MCSes correspond to essential prime implicants of F . ut

Unit MCSes (if any) can be identified with the use of MaxSAT (e.g. [31,23,24,26]).
This requires a SAT call for extracting an unsatisfiable core of (1), relaxing the corre-
sponding clauses in the core, and enumerating models of the relaxed formula. Each unit
MCS is defined by such a model and, thus, requires one SAT call per MCS. Thus,
assuming that F has n essential primes, they can be enumerated with n + 1 calls
to a SAT oracle. Observe that this approach should be practically more efficient than
the well-known alternative of separately checking each prime implicant for essential-
ity [53,51,22], especially if |PIn(F)| is much larger than the number of essential primes.

Moreover, identification of the essential primes can be used for the further sim-
plification of the group SMUS problem. Indeed, since essential prime implicants are
included in any cover of F , they can be excluded from ¬PIn(F) and added to the don’t
care group. Let E denote the set of all essential primes of F , andQ = PIn(F)\E . Then
consider formula ¬Q ∧ (F ∧ E) where F ∧ E represents the don’t care group. For any
group SMUS P ′ of this formula, the corresponding group SMUS of (1) is P ′ ∪ E .

Clausal Formulae Minimization This section briefly explains how one can deal with
a particular case of clausal formulae. Recall that given a clausal formula F , the ap-
proach being proposed is able to compute the exact minimum size representation of F .
Although the general technique described in Section 3.2 can be also applied to clausal
formulae, a specialized MaxSAT-based approach to clausal formulae minimization can
be proposed, which can be more efficient in practice.

Following the ideas of [47,48,36], one can formulate a set covering problem: given
a set of terms F = T1 ∪ . . . ∪ Tm and a complete set of its prime implicants PIn(F),
one needs to compute a smallest size set of prime implicants P ⊆ PIn(F) such that
for each Ti ∈ F there is a prime implicant Ij ∈ P covering term Ti, i.e. Ij ⊆ Ti.
The relation between the set covering problem and MaxSAT was originally put forward
in [18,44]. The translation from the set covering problem to MaxSAT is well-known
and has been studied elsewhere (e.g. see [56,2]). Note that compared to the general case
SMUS-based approach, using this MaxSAT formulation of the problem is preferred
for clausal formulae due to a better complexity characterization (decision versions of
MaxSAT and SMUS are complete for NP [18,44] and ΣP

2 [30,21], respectively).

Approximated Solutions Once the SMUS and MaxSAT formulations of the simplifi-
cation phase of the approach are introduced, one can immediately notice that various
techniques can be applied in order to get approximate solutions of the considered prob-
lems. For SMUS, these include MUS extraction (e.g. see [3,42]) and MUS enumeration
(see [32]) algorithms. As for MaxSAT, a number of MCS enumeration techniques ap-
proximating MaxSAT solutions were proposed in the past (e.g. [43,35,20]).

4 Preliminary Results

This section evaluates the proposed approach to Boolean formula simplification. The
experiments were performed in Ubuntu Linux on an Intel Xeon E5-2630 2.60GHz pro-
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Fig. 2: Performance of BICA and ESPRESSO on PLA instances

cessor with 64GByte of memory. The time limit was set to 3600s and the memory limit
to 10GByte. The approach proposed above was implemented in a prototype called BICA
(Boolean simplifier for non-clausal formulae). The BICA Boolean formula simplifier is
written as a Python script, which instruments the flow of the proposed approach and
calls the existing binaries both for doing the prime compilation phase and the minimum
covering phase. Prime implicate enumeration is done by calling PRIMER [45], while
minimum covering is done with the FORQES SMUS extractor [26] for non-clausal for-
mulae, and with the MSCG MaxSAT solver [25,39] if the formulae are clausal. Also
note that PRIMER is implemented on top of the MINISAT2 SAT solver [15] while the
underlying SAT solver of MSCG and FORQES is Glucose 3.03 [1]. Further details on
the experimental evaluation including the chosen benchmark sets are presented below.

4.1 PLA Benchmarks

In order to assess the efficiency of the new approach applied to clausal Boolean formu-
lae, two sets of PLA circuit benchmark sets were considered. The first set was originally
described in [7] and includes 123 easy and 19 hard instances [16]. The second bench-
mark set called MCNC91 suite was proposed in [57] and comprises 41 PLA circuits.
Since the approach being proposed currently cannot be applied to multi-output Boolean
circuits and in order to compare it with the well-known implementation of the Quine-
McCluskey procedure called Espresso [7,16], each of the considered instances was split
in the following way. Given a PLA circuit with n inputs and m outputs, m single-output
PLA circuits were created, each having n inputs. The total number of resulting PLA cir-
cuits constructed this way and considered in the evaluation is 3744.

The new approach was compared to the exact version of Espresso [7,16], which is
referred to as ESPRESSO and implements the Quine-McCluskey algorithm. Figure 2

2 https://github.com/niklasso/minisat
3 http://www.labri.fr/perso/lsimon/glucose
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Fig. 3: Performance of BICA and ESPRESSO on Interpolation instances

shows the performance of ESPRESSO compared to BICA for the considered set of
clausal instances. As one can see in Figure 2a, both solvers can minimize most of the
circuits. BICA is able to solve 3740 instances (out of 3744), ESPRESSO is not far with
3731 formulae minimized. However, the detailed scatter plot shown in Figure 2b indi-
cates that BICA generally performs better than ESPRESSO (up to 4 orders of magnitude).

4.2 Bi-decomposition Interpolation Benchmarks

The following benchmark set comes from the area of bi-decomposition of a Boolean
function (e.g. see [9]). An earlier work on using interpolants for Boolean function
decomposition is for example [29], where the function’s components are computed
through Craig’s interpolation [12]. Thus, given such interpolants representing the func-
tion’s components, one can try to simplify them in order to get a simpler decomposed
representation of the original Boolean function. The interpolant formulae were gener-
ated for the standard ISCAS, ITC, and LGSynth benchmark suites. The total number of
the considered interpolant formulae is 4815.

Note that the interpolants are given in a non-clausal form. In this case, one cannot
use ESPRESSO directly. First, the formulae need to be translated into a clausal form.
For this purpose, the well-known logic synthesis system ABC [6] was used, namely its
ability to collapse a circuit with the use of BDDs. Figure 3a shows a cactus plot illus-
trating the performance of both BICA and ABC+ESPRESSO for the considered inter-
polation benchmarks. Analogously to the PLA benchmarks, both competitors perform
quite well being able to solve almost all the instances. BICA simplifies 4744 formu-
lae while ABC+ESPRESSO solves 4748 instances. Figure 3b indicates that there is no
clear winner in this case even though ABC+ESPRESSO has some advantage over BICA.
A reason for this can be that the CUDD BDD package4 used in ABC is usually able

4 http://vlsi.colorado.edu/~fabio/CUDD/

http:// vlsi.colorado.edu/~fabio/CUDD/


Table 1: Performance of BICA and ABC+ESPRESSO on QG6 instances

# solved max. time (s) min. time (s) avg. time (s)
BICA 63 3600 0.56 1592.65

ABC+ESPRESSO 0 3600 3600 3600

to clausify the considered circuits within a very short time (less than a second). Also,
the number of terms reported by CUDD is usually very close to the optimum, which
simplifies the Quine-McCluskey procedure performed by ESPRESSO.

4.3 Quasigroup Classification Benchmarks

This set of non-clausal benchmarks called QG6 was proposed in [37] when encoding
classification theorems for quasigroups. Out of 256 formulae we chose 83 that are satis-
fiable. Note that these 83 benchmark instances have either 252 or 360 variables, which
is larger than the number of inputs in all circuits considered in Section 4.1 and Sec-
tion 4.2. Similarly to the interpolation benchmarks, ABC+ESPRESSO was used as an
alternative to BICA. However, it was not able to simplify any of these formulae, which
is not surprising because these instances are hard for BDDs (this may be caused by the
number of variables). (For this reason, no plots are presented for QG6 benchmarks and
Table 1 is shown instead). In contrast, BICA is able to simplify 63 (out of 83) formulae.

In summary, the experimental results indicate that the proposed approach is a viable
alternative to the existing implementations of the Quine-McCluskey procedure for the
case of clausal Boolean formulae. Moreover and as stated in Section 4.3, being focused
on non-clausal formulae and based on the state-of-the-art SAT technology, the new
approach performs reasonably well for non-clausal formulae with a large number of
variables, which can be out of reach for the alternative approaches, e.g. the ones based
on BDDs, or ABC and Espresso.

5 Conclusions

This paper develops entirely SAT-based solutions for propositional formula minimiza-
tion and simplification. In both cases the set of prime implicates (or implicants) is com-
puted using recent work on prime implicate (or implicant) enumeration. For the clausal
formula minimization problem, a minimum-size subset of the prime implicates that cov-
ers an initial set of implicates is obtained with a set covering approach, which is done
with MaxSAT. For non-clausal formula simplification, the problem is more challenging,
and the problem is shown to be solved by computing a smallest MUS.

The experimental results are encouraging. For two classes of problem instances,
the new approach outperforms a well-known implementation of Quine-McCluskey,
whereas for another class of problem instances it loses to the Quine-McCluskey pro-
cedure. Future work will investigate settings in which SAT-based formula minimization
and simplification can be shown to be the preferred option.
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