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What is eXplainable Al (XAl)?

Machine Learning System
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This is a cat:

¢ It has fur, whiskers, and claws.
¢ It has this feature:

This is a cat.

Current Explanation XAl Explanatlon
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W We summarize the potential impact|
that the European Union’s new General
Data Protection Regulation will have on
the routine use of machine-learning|
algorithms. Slated to take effect as law
across the European Union in 2018, it
will place restrictions on automated
individual decision making (that is,
algorithms that make decisions based
on user-level predictors) that “signifi-
cantly affect” users. When put into
practice, the law may also effectively cre-
ate a right to explanation, whereby a
user can ask for an explanation of an
Ig ic decision that signif
affects them. We argue that while this
law may pose large challenges for indus-
try, it highli; opportunities for com-
puter scientists to take the lead in
designing algorithms and evaluation
frameworks that avoid discrimination
and enable explanation.
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MEETS FORMAL METHODS

W We summarize the potential impact|
that the European Union’s new General
Data Protection Regulation will have on
the routine use of machine-learning|
algorithms. Slated to take effect as law
across the European Union in 2018, it
will place restrictions on automated
individual decision making (that is,
algorithms that make decisions based
on user-level predictors) that “signifi-
cantly affect” users. When put into
practice, the law may also effectively cre-
ate a right to explanation, whereby a
user can ask for an explanation of an
ic decision that signif
aﬂ"ects them. We argue that while this
law may pose large challenges for indus-
try, it highlights opportunities for com-
puter scientists to take the lead in
designing algorithms and evaluation
frameworks that avoid discrimination
and enable explanation.
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given a classifier F, a cube C and a prediction &,
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and
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7

iterative explanation procedure



Computing primes
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Computing primes

1. ¢, NF FL — tautology
2. Chn NFEE & CpE(F — &)

NV

Cr is a prime implicant of 7 — &



Computing one subset-minimal explanation

Input: F under M, initial cube C, prediction &
Output: Subset-minimal explanation Cp,

1 begin

> forleC:

3 if Entails(C\ {l}, F — &, M):
4 C <+ C\{l}

5 return C

6 end



Computing one cardinality-minimal explanation

cardinality-minimal explanations can be computed

(following implicit-hitting set based approach®)

Tignatiev, A; Morgado, A; and Marques-Silva, ). 2016. Propositional abduction with implicit hitting sets. In ECAI,
1327-1335



Computing one cardinality-minimal explanation

cardinality-minimal explanations can be computed

(following implicit-hitting set based approach®)
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see the paper

Tignatiev, A; Morgado, A; and Marques-Silva, ). 2016. Propositional abduction with implicit hitting sets. In ECAI,
1327-1335



Experimental setup

- implementation in Python
- supports SMT solvers through PySMT
- Yices2 used

+ supports CPLEX 12.8.0

Fischetti, M., and Jo, J. 2018. Deep neural networks and mixed integer linear optimization. Constraints
23(3):296-309.
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Experimental setup

- implementation in Python
- supports SMT solvers through PySMT
- Yices2 used
+ supports CPLEX 12.8.0
- RelU-based neural networks?
- one hidden layer with i € {10,15,20} neurons
- benchmarks selected from:

- UCI Machine Learning Repository
- Penn Machine Learning Benchmarks
- MNIST Digits Database

- Machine configuration:

- Intel Core i7 2.8GHz, 8GByte
- time limit — 1800s
- memory limit — 4GByte

Fischetti, M., and Jo, J. 2018. Deep neural networks and mixed integer linear optimization. Constraints
23(3):296-309.



Some of the experimental results

Minimal explanation

Minimum explanation

Dataset
size  SMT(s) MILP(s) size SMT(s) MILP(s)
m 1 0.03 0.05 = = =
australian (14) a 879 1.38 0.33 — — —
M 14 17.00 1.43 = = =
m 13 0.13 0.14 = = =
backache (32) a 19.28 5.08 0.85 - — —
M 26 22.21 2.75 = = =
m 3 0.02 0.04 3 0.02 0.03
breast-cancer (9) a  5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81
m 4 0.05 0.07 4 = 0.07
cleve (13) a 8.62 3.32 0.32 7.89 = 5.14
M 13 60.74 0.60 13 = 39.06
m 6 0.02 0.04 4 0.01 0.04
hepatitis (19) a 11.42 0.07 0.06 9.39 .07 2.89
M 19 0.26 0.20 19 27.05 22.23
m 3 0.01 0.02 3 0.01 0.02
voting (16) a 4.56 0.04 0.13 3.46 0.3 0.25
M M 0.10 0.37 n 1.25 1.77
m 3 0.02 0.02 3 0.02 0.04
spect (220 a 7.3 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73
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Comparing quality to state of the art?

- “Congressional Voting Records” dataset
(1011100000011 06 1)—datasample (16 features)

smallest size explanations computed by 3:
o ¢ 0611 o000 1106 )—09literals
° 0111 o060 116 )—09literals

subset-minimal explanations computed by our approach:

¢ 1 0 0 0 ) — 4literals
o ¢ 1 0 o ) — 3 literals
- ( 01 0 0 @ ) —5literals
- ( 01 o 0 1) — 5 literals

3shih, A; Choi, A; and Darwiche, A. 2018. A symbolic approach to explaining Bayesian network classifiers. In
[JCAI, 5103-5111



There are many explanations of different quality

(a) digit 1 (b) simple expl. (c) central pixels (d) light pixels

a) digit 3 b) simple expl. (c) central pixels d) light pixels
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- tested on RelLU-based NNs

- other ML models?

- better scalability
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- more advanced reasoners?
- abstraction refinement?
- explanation enumeration? + preferences?
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Questions?



