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Abstract
Explanations of Machine Learning models often address a
‘Why?’ question. These can are related with selecting feat-
ure-value pairs sufficient for the prediction. Recent work has
investigated explanations that address a ‘Why Not?’ ques-
tion, i.e. finding a change of feature values that guarantees
a change of prediction. These two forms of explanations of
ML models appear to be mostly unrelated. However, this pa-
per demonstrates otherwise and establishes a rigorous formal
relationship between ‘Why?’ and ‘Why Not?’ explanations.
The paper proves that for any given instance, ‘Why?’ expla-
nations are minimal hitting sets of ‘Why Not?’ explanations
and vice-versa. Moreover, the paper devises novel algorithms
for extracting and enumerating both forms of explanations.

1 Background

Recent work (Shih, Choi, and Darwiche 2018; Ignatiev,
Narodytska, and Marques-Silva 2019a; Darwiche and Hirth
2020; Marques-Silva et al. 2020; Huang et al. 2021) pro-
posed model-based approaches to computing rigorous ex-
planations of machine learning (ML) models, offering the
strongest formal guarantees with respect to the underlying
ML model. They contrast with the majority of heuristic
approaches to explainability represented by model-agnostic
explanations (Ribeiro, Singh, and Guestrin 2016; Lundberg
and Lee 2017; Ribeiro, Singh, and Guestrin 2018). Most
work on ML explainability aims to answer a ‘Why pre-
diction π?’ question. The answer to this question has
been referred to as PI-explanations (Shih, Choi, and Dar-
wiche 2018), abductive explanations (Ignatiev, Narodytska,
and Marques-Silva 2019a), and (minimal) sufficient rea-
sons (Darwiche and Hirth 2020). Another kind of explana-
tions aims to answer a ‘Why Not?’ question (Miller 2019);
these are known by the name of contrastive explanations.

This paper focuses on the relationship between local (i.e.
applied to a concrete data instance) abductive and con-
trastive explanations. First, it formally defines contrastive
explanations. Second, it demonstrates that local abductive
and contrastive explanations are related by a minimal hit-
ting set relationship, which builds on the seminal work of
R. Reiter (Reiter 1987). Crucially, this novel hitting set re-
lationship reveals a wealth of algorithms for computing and
for enumerating contrastive and abductive explanations.

Explainability in Machine Learning. We assume classifi-
cation problems with a set of classes K and an ML model M,
which is represented by a finite set of first-order logic (FOL)
sentences M. Consider a set of features F ; an instance is
an assignment of values to features. The space of instances
is defined by F. A prediction π ∈ K is associated with each
instance X ∈ F. Let us define a predicate Mπ ⊆ F, s.t.
Mπ(X) is true iff the input X is consistent with prediction
π given the ML model M. A consistent conjunction of fea-
ture literals τ is an implicant ofMπ , denoted by τ �Mπ , if

∀(X ∈ F).τ(X)→Mπ(X) (1)
is true. An implicant is called prime if none of its proper
subsets is an implicant. Local abductive explanations for an
instance X are prime implicants ofMπ consistent with X .
Analysis of Inconsistent Formulas. Consider inconsis-
tent formulas F , i.e. F �⊥, represented as conjunctions of
clauses. Also, let F = B ∪ R, where R contains relaxable
clauses (allowed not to be satisfied to restore consistency),
and B contains the non-relaxable clauses (these must be sat-
isfied). The following definition characterizes two dual no-
tions used in the analysis of inconsistent formulas.
Definition 1. Let F = B ∪ R s.t. F �⊥. U ⊆ R is
a Minimal Unsatisfiable Subset (MUS) iff B ∪ U �⊥ and
∀U ′(U , B∪U ′ 2⊥. T ⊆ R is a Minimal Correction Subset
(MCS) iff B ∪R \ T 2⊥ and ∀T ′(T , B ∪R \ T ′ �⊥.

A fundamental result in reasoning about inconsistent
clause sets is the minimal hitting set (MHS) duality rela-
tionship between MUSes and MCSes (Reiter 1987; Birn-
baum and Lozinskii 2003): MCSes are MHSes of MUSes
and vice-versa. This result has been extensively used in the
development of algorithms for MUSes and MCSes (Bailey
and Stuckey 2005; Liffiton and Sakallah 2008; Liffiton et al.
2016), and also applied in a number of various settings.

2 Contributions: Explanations and Duality
As mentioned above, recent work (Shih, Choi, and Darwiche
2018; Ignatiev, Narodytska, and Marques-Silva 2019a; Dar-
wiche and Hirth 2020) proposed to relate model-based ab-
ductive explanations explanations with prime implicants.
Definition 2 (Abductive Explanation). Given an instance τ ,
with a prediction π, and an ML model represented with a
predicateMπ , i.e. τ �Mπ , an abductive explanation (AXp)
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is a minimal subset of literals σ ⊆ τ such that σ �Mπ .
We propose the following definition of a (local) con-

trastive explanation, which captures the intuitive notion of
the contrastive explanation discussed in (Miller 2019).
Definition 3 (Contrastive Explanation). Given an instance
τ , with a prediction π, and an ML model represented by a
predicateMπ , i.e. τ �Mπ , a contrastive explanation (CXp)
is a minimal subset of literals ρ ⊆ τ such that τ \ ρ2Mπ .
Explainability and Inconsistent Formulas. Consider a
set of feature values τ with a prediction is π, i.e. τ �Mπ .
Equivalently, τ ∧ ¬Mπ �⊥. Thus,

τ ∧ ¬Mπ (2)
is inconsistent, with the background knowledge being B ,
¬Mπ and the relaxable clauses being R , τ . As proposed
in (Shih, Choi, and Darwiche 2018; Ignatiev, Narodytska,
and Marques-Silva 2019a), a (local abductive) explanation
is a subset-minimal set σ of the literals in τ , such that, σ ∧
¬Mπ �⊥. Therefore, the following holds:
Proposition 1. Local abductive explanations are MUSes of
the pair (B,R), τ ∧ ¬Mπ , whereR , τ and B , ¬Mπ .

Now, consider an MCS ρ ⊆ τ of equation 2. As a result,∧
l∈τ\ρ(l) ∧ ¬Mπ 2⊥. Hence, given Definition 3, observe

that the following holds:
Proposition 2. Local contrastive explanations are MCSes
of the pair (B,R), τ ∧¬Mπ , whereR , τ and B , ¬Mπ .
Duality. Given the results above, and the hitting set duality
between MUSes and MCSes (Reiter 1987; Birnbaum and
Lozinskii 2003), we have the following.
Theorem 1. AXps are MHSes of CXps and vice-versa.

Propositions 1–2, and Theorem 1 can serve to exploit the
vast body of work on the analysis of inconsistent formulas
for computing both CXps and AXps and, arguably more im-
portantly, to enumerate explanations (Ignatiev et al. 2020;
Marques-Silva et al. 2021; Huang et al. 2021).

Note that earlier work (Ignatiev, Narodytska, and
Marques-Silva 2019b) established a relation between prime
implicants and implicates as a way to relate global AXps
and so-called counterexamples. In contrast, this work delved
into the fundamentals of reasoning about inconsistency, con-
cretely the duality between MCSes and MUSes, and estab-
lished a relation between local AXps and CXps.

3 Relevance to KR & Significance

The importance of our work (Ignatiev et al. 2020) has been
underlined recently. Indeed, the minimal hitting set dual-
ity between AXps and CXps served to prove that deciding
membership of a feature in some explanation is in polyno-
mial time in the case of decision tree ML models (Huang
et al. 2021). Furthermore, the duality relationship between
AXps and CXps is the central property driving the explana-
tion enumeration algorithms proposed for graph-based ML
models (Huang et al. 2021) as well as monotone classi-
fiers (Marques-Silva et al. 2021). Finally, we believe the
results of our work may be crucial in the context of clas-
sifiers represented in other knowledge compilation (KC)

languages (Darwiche and Marquis 2002) and prove overall
helpful at the intersection of KR and ML.
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