Reasoning-Based Learning of Interpretable ML Models Alexey Ignatiev¹, Joao Marques-Silva², Nina Narodytska³, and Peter J. Stuckey¹ ¹Monash University, Melbourne, Australia ²IRIT, CNRS, Toulouse, France ³VMware Research, CA, USA

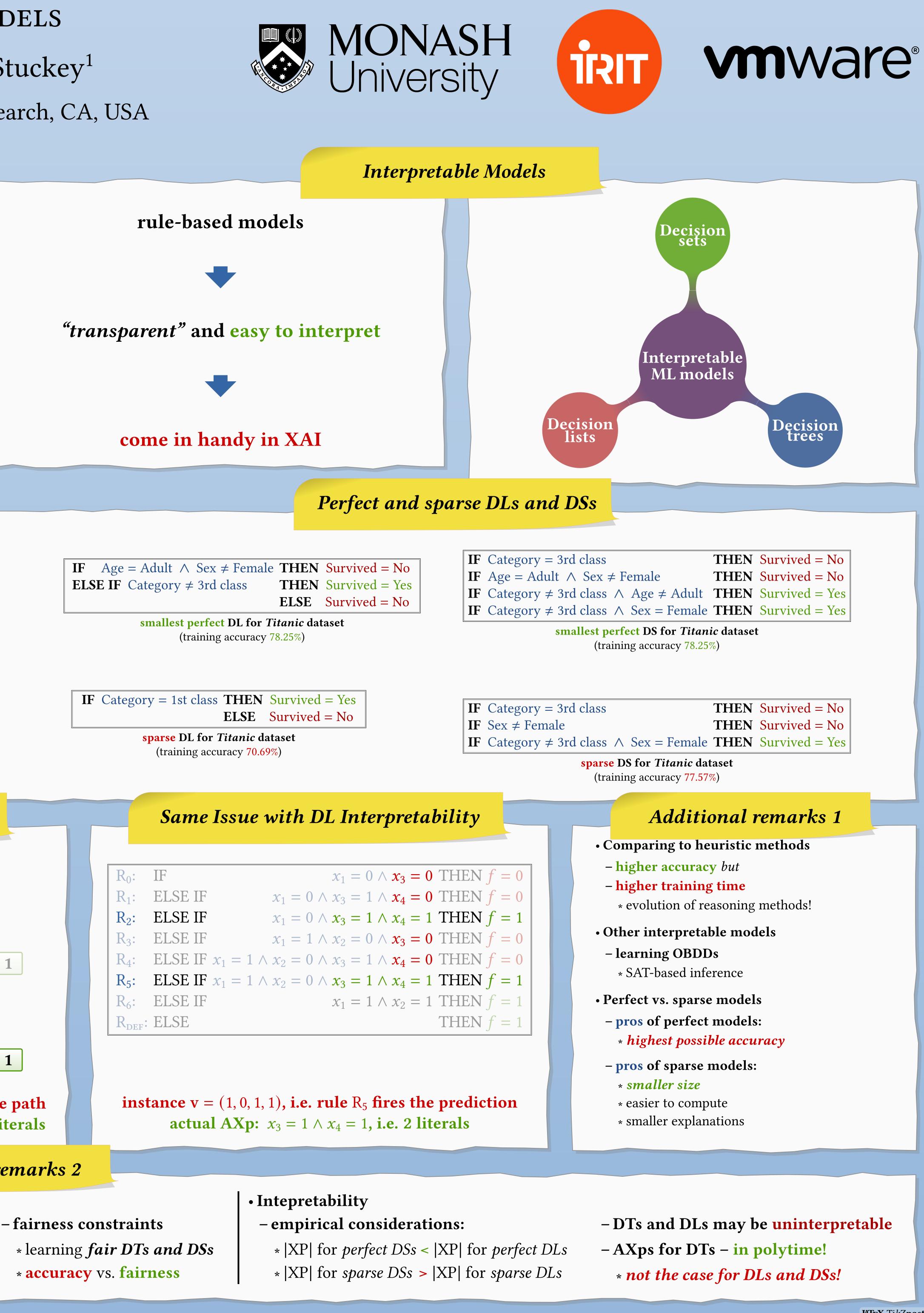
eXplain	able AI	W	hy? Status Qu	10
<section-header></section-header>	rning System		<section-header></section-header>	<section-header></section-header>
		Learns random phrases		
This is a cat.	 This is a cat: It has fur, whiskers, and claws. It has this feature: 	Doesn't understand s**t about what it learns		
Current Explanation	XAI Explanation	Occasionally speaks nonsense		
Age = Adult No Vived = Yes Survived = No Survived = No Survived = No Survived = Yes Survived = Yes Survived = Yes Survived = Yes	Sex = Female No Survived = No Survived = Yes Sparse DT for Titanic dataset (training accuracy 33.05%)	Nijssen et al., 2007Bessiere et al., 2009ØBertsimas et al., 2017Verwer et al., 2017Narodytska et al., 2018Verwer et al., 2019Hu et al., 2019Zhu et al., 2019Zhu et al., 2020Janota et al., 2020✓Avellaneda et al., 2020✓Hu et al., 2020✓Avellaneda et al., 2020✓Hu et al., 2020✓✓Aglin et al., 2020		
	ased approaches to DLs and D	Demirovic et al., 2020	DT Int	✓+ terpretability Issue
	rion optimality classification en iterals guarantee binary arbitrary MIP SAT N V V	Agine symmetry AaxSAT B-n-B breaking	x3 x x x x x x x x x x x x x x x x x x	x_1 x_2 x_3

	model		criterion		explicit repr.		setup			
	perfect	sparse	rules	lex	literals	single class	all classes	single run	two phases	IP
Kamath et al., 1992	✓		~			v		v		V
Lakkaraju et al., 2016		v	~				 	✓		
Ignatiev et al., 2018	v		~	~			v	✓		
Malioutov et al., 2018		v			/ -	 		✓		
Dash et al., 2018		v	~			 ✓ 		v		V
Ghosh et al., 2019		v			/ -	 ✓ 		~		
Ghosh et al., 2020		v +			/ -	 ✓ 		v		
Yu et al., 2020	~	v			~		v	✓		
Ignatiev et al., 2021	~		~		~		v		~	V

 Model expressivity and size - DLs are more succinct than DTs - DLs are more succinct than DNFs * a special case of DSs

- how to categorise DSs? * *empirically*, less succinct than DLs!

- OBDDs vs. other models?


engine IP SAT MaxSAT LS

instance v = (1, 0, 1, 1), i.e. 4 literals in the path actual explanation $x_3 = 1 \land x_4 = 1$, i.e. 2 literals

Additional remarks 2

 Fairness and other constraints - model properties can be *enforced* * in the form of **constraints** * easy to plug in!

