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Abstract. Similarly to Maximum Satisfiability (MaxSAT), Minimum Satisfiability (MinSAT) is an optimization extension of
the Boolean Satisfiability (SAT) decision problem. In recent years, both problems have been studied in terms of exact and
approximation algorithms. In addition, the MaxSAT problem has been characterized in terms of Maximal Satisfiable Subsets
(MSSes) and Minimal Correction Subsets (MCSes), as well as Minimal Unsatisfiable Subsets (MUSes) and minimal hitting
set dualization. However, and in contrast with MaxSAT, no such characterizations exist for MinSAT. This paper addresses this
issue by casting the MinSAT problem in a more general framework. The paper studies Maximal Falsifiability, the problem of
computing a subset-maximal set of clauses that can be simultaneously falsified, and shows that MinSAT corresponds to the
complement of a largest subset-maximal set of simultaneously falsifiable clauses, i.e. the solution of the Maximum Falsifiability
(MaxFalse) problem. Additional contributions of the paper include novel algorithms for Maximum and Maximal Falsifiability,
as well as minimal hitting set dualization results for the MaxFalse problem. Moreover, the proposed algorithms are validated on
practical instances.
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1. Introduction

Maximum and Minimum Satisfiability (resp. Max-
SAT and MinSAT) are two well-known optimiza-
tion extensions of Boolean Satisfiability (SAT) (e.g.
[49,53,61]). While the goal of MaxSAT is to compute
an assignment that maximizes the number of satisfied
clauses, the goal of MinSAT is to compute an assign-
ment that minimizes the number of satisfied clauses.
Besides the plain versions, where all clauses are soft
and so relaxable, both MaxSAT and MinSAT admit
weighted versions as well as the existence of hard
clauses, i.e. clauses that must be satisfied. MinSAT has
been studied since the mid 1990s [8,9,46,57], with the
original focus being on the computational complexity
of the problem and on approximation algorithms. In re-
cent years there has been a renewed interest in Min-
SAT, with the focus being on branch-and-bound and it-
erative algorithms, but also on encodings of MinSAT
to MaxSAT [5,6,35,47,50,52,53,76].

*Corresponding author. E-mail: aign@sat.inesc-id.pt.

Like MaxSAT, MinSAT finds a growing number
of practical applications (e.g. [15,16,23,33,37,39,45]),
and it has also been used in complexity characteriza-
tions of other problems (e.g. [3,17,30,34]). More im-
portantly, given a MaxSAT problem where the soft
clauses are all unit, complementing the soft clauses
gives a MinSAT problem. As shown in recent work
(e.g. [6,53] among others), the resulting optimiza-
tion problems can be fairly different, and so reduc-
ing MaxSAT to MinSAT can in some settings produce
problem instances that are easier to solve. As a result,
one can expect the integration of MinSAT algorithms
in portfolios of MaxSAT algorithms in the near future.

MaxSAT has been extensively studied in the context
of reasoning about inconsistent sets of constraints. It
is well-known that each MaxSAT solution represents a
largest Maximal Satisfiable Subset (MSS) [13,56]. In-
tuitively, an MSS is a subset-maximal set of clauses
that is satisfiable. The complement of an MSS is a Min-
imal Correction Subset (MCS), i.e. a subset-minimal
relaxation of a formula that renders the formula satisfi-
able. Moreover, another well-known result is that each
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MCS is a minimal hitting set of the Minimal Unsatis-
fiable Subsets (MUSes), and each MUS is a minimal
hitting set of the MCSes [11,13,56,71]. In stark con-
trast with MaxSAT, and despite the vast body of work
on MinSAT, similar results for the case of MinSAT
are non-existent. What is the equivalent of an MSS
in the case of MinSAT? And of an MCS? And of an
MUS? Does there exist a minimal hitting set relation-
ship in the case of MinSAT? What are the implications
of these results? Given the large body of research and
applications of MSSes, MCSes and MUSes, it comes
through as fundamental to conduct a similar study in
the case of MinSAT. This is what this paper proposes
to do. Figure 1 compares the existing comprehensive
body of knowledge about clausal satisfiability, and this
includes MaxSAT and related problems, to the almost
non-existing body of knowledge about clausal falsifia-
bility, for which very little is currently known. The pa-
per addresses these fundamental questions and lays the
foundation for a more comprehensive characterization
of the MinSAT problem. In turn, a better understand-
ing of the MinSAT problem is expected to motivate
further practical applications inasmuch the same way
as for the MaxSAT case. A recent concrete example of
the practical applications of MinSAT (and related con-
cepts) is the reduction of maximum independent set
to MinSAT [37]. This paper is an extended version of
[38]. Its contributions are summarized as follows. First,
the paper introduces Maximal Falsifiability, which rep-
resents the problem of computing subset-maximal sets

of simultaneously falsifiable clauses. As shown in the
paper, maximal falsifiability enables developing for the
MinSAT case concepts similar to MSSes, MCSes and
MUSes in the MaxSAT setting. Second, the paper ad-
dresses MinSAT from the perspective of the largest
maximal falsifiable solution based on the connection
between MinSAT solutions and the so-called Maxi-
mum Falsifiability (MaxFalse) solutions. Third, the pa-
per develops algorithms for Maximal and Maximum
Falsifiability, thereby indirectly developing novel algo-
rithms for the MinSAT problem. Moreover, and for the
case of plain maximal falsifiability, the paper shows
that it can be reduced to the maximal independent set
problem. Thus, well-known linear time algorithms for
maximal independent set [44] can be used for com-
puting a single maximal falsifiability solution. Simi-
larly, algorithms for the enumeration of maximal inde-
pendent set [41,48] can be used for enumerating max-
imal falsifiability solutions. In addition, the paper also
shows that a minimal hitting set relationship, which for
the case of maximal satisfiability relates MCSes and
MUSes [11,13,56,71], also exists for the case of max-
imal falsifiability. Thus, enumeration problems related
with Maximal Falsifiability can be tackled by hitting
set dualization, similarly to what has been done in the
context of maximal satisfiability [11,56]. Finally, the
paper presents some preliminary results on both Maxi-
mal and Maximum Falsifiability algorithms.

The paper is organized as follows. Section 2 intro-
duces the basic definitions and notation used through-

Fig. 1. Clausal satisfiability problems characterization. (a) Problems related to clausal satisfiability. (b) How to characterize MinSAT? (Colors
are visible in the online version of the article; http://dx.doi.org/10.3233/AIC-150685.)
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out the paper. Section 3 introduces the Maximal and
Maximum Falsifiability problems as well as related
computational problems. Theoretical results for enu-
meration problems and minimal hitting sets are pre-
sented in Section 4. Section 5 develops algorithms
for Maximal Falsifiability, whereas Section 6 devel-
ops algorithms for Maximum Falsifiability (and so for
MinSAT). Section 7 provides experimental results for
Maximal and Maximum Falsifiability, and Section 8
concludes the paper.

2. Preliminaries

This section provides the notation and the definitions
used throughout the paper.

2.1. Boolean satisfiability

Boolean variables are represented by X = {x, y, z,

x1, y1, z1, . . .}. A literal for a variable x is either a posi-
tive literal x or its negation ¬x. Hereinafter, literals are
denoted by {l, l1, l2, . . .}. Boolean formulas are repre-
sented in calligraphic font, F , M, S , T , U , W , F ′,
etc. A Boolean formula in conjunctive normal form
(CNF) is defined as a finite set of finite sets of liter-
als. Whenever appropriate, a CNF formula will also be
understood as a conjunction of disjunctions of literals,
where each disjunction represents a clause. Formula
F is assumed to be defined over the set of variables
var(F). The clauses of a formula are represented by
{c, c1, c2, . . .}. A literal l is called pure in formula F
if there is a clause in formula F containing l but no
clause in F that contains a complementary literal ¬l.
An assignment is a mapping A : var(F) �→ {0, 1}.
The notion of assignment can be naturally extended to
literals by setting A(¬x) = 1 −A(x). A clause is said
to be satisfied by an assignment if one of its literals is
assigned value 1. A model of F is an assignment that
satisfies all clauses in F . If no model for formula F
exists, the formula is called unsatisfiable.

2.2. Maximum satisfiability

The standard definition of the well-known opti-
mization generalization of Boolean satisfiability called
maximum satisfiability (or MaxSAT) is used, which is
presented below.

Definition 1. Given a CNF formula F , the maxi-
mum satisfiability (MaxSAT) problem for F consists in
computing a maximum size (in terms of the number of
clauses) subformula F ′ ⊆ F such that F is satisfiable.

The following definitions also apply.

Definition 2 (Maximal satisfiable subset and minimal
correction (for satisfiability) subset). Sets S and C of
clauses s.t. S ⊆ F and C = F \ S are called a Max-
imal Satisfiable Subset (MSS) and a Minimal Correc-
tion Subset (MCS) of F , respectively, if S is satisfiable
and ∀c∈C set S ∪ {c} is unsatisfiable.

Definition 3 (Minimal unsatisfiable subset). A set U
of clauses, U ⊆ F , is called a Minimal Unsatisfiable
Subset (MUS) if U is unsatisfiable and ∀c∈U U \ {c}
is satisfiable. An MUS U of F of the smallest size is
called a smallest MUS (SMUS).

MUSes and MCSes of a CNF formula are connected
by the concept of minimal hitting set defined below.

Definition 4 (Minimal hitting set). Given a collection
� of sets from a universe U, a hitting set for � is a set
h such that ∀S∈�h ∩ S �= ∅. A hitting set h is called
minimal if none of its proper subsets is a hitting set.

The minimal hitting set duality between MUSes and
MCSes is well known (e.g. see [13,56,71]).

Proposition 1 (Minimal hitting set duality). Given a
CNF formula F , let MUSes(F) and MCSes(F) be the
set of all MUSes and MCSes of F , respectively. Then
the following holds:

(1) A subset U of F is an MUS iff U is a minimal
hitting set of MCSes(F).

(2) A subset C of F is an MCS iff C is a minimal
hitting set of MUSes(F).

The reader is referred to [13,56,71] for further de-
tails on MUSes and MCSes, as well as the minimal
hitting set duality between them.

Additionally, in the context of partial MaxSAT,
a formula F is viewed as a 2-tuple (H,R), where H
denotes the hard clauses, which must be satisfied, and
R denotes the soft (or relaxable) clauses. And so the
partial MaxSAT problem consists in computing a max-
imum subset of the soft clauses R that are satisfiable
along with all the clauses of H. A weight can be asso-
ciated with each clause, such that hard clauses have a
special weight 
. Hence, the weight function is a map
w : H ∪ R → {
} ∪ N such that ∀c∈Hw(c) = 
 and∑

c∈R w(c) < 
. If no weight function is specified,
it is assumed that ∀c∈Rw(c) = 1. Whenever required,
a relaxable clause c with weight w (i.e. w = w(c)) is
denoted by a pair (c, w).

2.3. Graph problems

The paper also considers a number of optimization
problems in graphs. Given an undirected graph G =
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(V ,E), an independent set (IS) of G is a set I ⊆ V such
that ∀u,v∈I , (u, v) /∈ E. A vertex cover is a set C ⊆ V

such that ∀(u,v)∈E , u ∈ C ∨v ∈ C. Finally, a clique (or
complete subgraph) is a set L ⊆ V such that ∀u,v∈L,
u �= v ⇒ (u, v) ∈ E. Given an independent set I ⊆ V ,
a well-known result is that V \ I is a vertex cover of G
and I is a clique of GC , the complemented graph.

The maximum independent set (MIS) problem con-
sists in computing a maximum size IS of a graph.
This problem can be generalized to the case when
a weight is associated with each vertex. More im-
portantly, given the above relationships between ISes,
VCes and cliques, a solution of the MIS problem for
graph G also represents, respectively, a solution for the
well-known minimum vertex cover (MVC) of graph G,
as well as a maximum clique (MaxCLQ) of the com-
plemented graph GC .

2.4. Cardinality-optimality vs. subset-optimality

Regarding the considered optimization problems in
propositional logic and also in graphs where one deals
with cardinality-optimal solutions (i.e. with solutions
of the largest/smallest possible size), it is common
to refer to these problems with respect to optimum
(i.e. maximum/minimum) solutions, e.g. maximum sat-
isfiability, maximum independent set, minimum vertex
cover, maximum clique, etc. Alternatively, one can opt
to optimize with respect to subset-optimal (i.e. maxi-
mal/minimal) solutions when it is needed to compute
a subset that cannot be increased (or decreased) any-
more. For example and regarding MaxSAT, a prob-
lem of computing one MSS/MCS of a CNF formula
is called the maximal satisfiability problem. Regard-
ing the mentioned optimization problems in graphs,
namely MIS, MVC and MaxCLQ, the problems of
computing a subset-maximal independent set, a subset-
minimal vertex cover, and a subset-maximal clique are
called maximal independent set (MxIS), minimal ver-
tex cover (MnVC) and maximal clique (MxCLQ), re-
spectively.

Note that a subset-optimal solution for any of the
considered problems is usually seen as an approxima-
tion of the cardinality-optimal solutions and is known
to be much easier to compute. As an example, a well-
known result is that a maximal independent set (and,
hence, a maximal vertex cover as well as a maxi-
mal clique) can be computed in linear time [44] while
the maximum independent problem is known to be
NP-complete [29,43]. Additionally, the topic of enu-
meration of subset-maximal solutions in different con-
texts has been extensively studied, e.g. for MaxSAT
[10,58,60,64], as well as for MIS [1,41,48,75].

3. Maximal and maximum falsifiability

This section starts by introducing the plain maxi-
mal and maximum falsifiability problems. In this case,
H = ∅ and so F = R, i.e. all clauses are soft (and
so relaxable) and their cost is 1. Generalizations of the
basic problems are considered later in this section.

Definition 5 (All-falsifiable). A set of clauses U is all-
falsifiable if there exists a truth assignment A such that
A falsifies all clauses in U .

Proposition 2. A set of clauses U is all-falsifiable iff
all the literals of U are pure.

Proof. Let U be all-falsifiable. Assume, that not all the
literals of U are pure. This means that there exist a lit-
eral l and clauses ci and cj in U such that l ∈ ci and
¬l ∈ cj . But every complete truth assignment A satis-
fies at least one of these clauses, because literals l and
¬l cannot be falsified simultaneously. Hence, our ini-
tial assumption – that not all the literals of U are pure –
must be false.

Let all the literals of U be pure. And let us choose a
complete assignment A as follows: A(var(l)) = ¬l,
∀l∈U . Then assignment A falsifies all clauses of U , i.e.
U is all-falsifiable. �

Definition 6 (Maximal falsifiable subset). Given a for-
mula F , a Maximal Falsifiable Subset (MFS) of F is a
subset M ⊆ F such that:

(1) M is all-falsifiable.
(2) For any subformula P , F ⊇ P � M, P is not

all-falsifiable.

Note that analogously to maximal satisfiable subsets
(MSSes) in the context of MaxSAT, a formula can have
many maximal falsifiable subsets. Thus, one might be
interested in enumerating MFSes in order to approxi-
mate the solution of the maximum falsifiability prob-
lem defined below.

Definition 7 (Maximum falsifiability). Given a for-
mula F , Maximum Falsifiability (MaxFalse) denotes
the problem of computing the largest (in terms of the
number of clauses) MFS of F .

Definition 8 (Minimum satisfiability). Given a for-
mula F , Minimum Satisfiability (MinSAT) is the prob-
lem of computing the smallest number of simultane-
ously satisfied clauses of F (while the other clauses of
F are falsified).
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Proposition 3. M represents a MaxFalse solution iff
F \ M represents a MinSAT solution.

Notice that the proof of Proposition 3 is quite trivial
and, thus, is omitted here. Nevertheless, Proposition 3
indicates that, in addition to recent algorithms for Min-
SAT [5,47,50,52,53], possible alternatives include ded-
icated algorithms for the MaxFalse problem, and also
solutions based on the enumeration of MFSes.

Besides MFSes, additional minimal sets are of inter-
est. One example is a minimal set of clauses which, if
removed from F , yield an all-falsifiable set of clauses.

Definition 9 (Minimal correction (for falsifiability)
subset). Given a formula F , a Minimal Correction (for
Falsifiability) Subset (MCFS) is a set C ⊆ F such that:

(1) F \ C is all-falsifiable.
(2) ∀c∈C , F \ (C \ {c}) is not all-falsifiable.

Definition 10 (Minimal non-falsifiable subset). Given
a formula F , a Minimal Non-Falsifiable Subset
(MNFS) is a set N ⊆ F such that:

(1) N is not all-falsifiable.
(2) ∀c∈N , N \ {c} is all-falsifiable.

Example 1. Consider the following formula:

c1 c2 c3 c4 c5

F � (x1) ∧ (¬x1) ∧ (¬x1 ∨ x2) ∧ (¬x2) ∧ (x3).

Observe that the sets M = {c2, c3, c5}, C = {c1, c4}
and N = {c1, c2} denote, respectively, examples of
an MFS, an MCFS and an MNFS. Indeed, all clauses
of M can be falsified by a partial assignment A =
{x1,¬x2,¬x3}. One can immediately notice that in
contrast to M, it is not possible to simultaneously fal-
sify all clauses of M ∪ {c1} and M ∪ {c4} because
these sets of clauses contain complementary literals ei-
ther for variable x1 or x2. Hence, by Definition 9, the
set C = F \ M = {c1, c4} represents a minimal cor-
rection subset (i.e. MCFS) of F . Another observation
is that clauses c1 and c2 cannot be falsified simultane-
ously (because of variable x1) but can be falsified sep-
arately of each other and, thus, they comprise an ex-
ample of a minimal non-falsifiable subset (i.e. MNFS)
of F . Other examples of MNFSes of F include the sets
{c1, c3} (because of variable x1) and {c3, c4} (because
of variable x2).

Observe that the definitions of MFSes, MCFSes and
MNFS presented above in the context of maximal falsi-

Table 1

The connection between MaxSAT and MaxFalse/MinSAT

MaxSAT MaxFalse/MinSAT

Goal: maximize the number of
simultaneously satisfied clauses

Goal: maximize the number of
simultaneously falsified clauses

MSS
(Maximal Satisfiable Subset)

MFS
(Maximal Falsifiable Subset)

MCS
(Minimal Correction

(for Satisfiability) Subset)

MCFS
(Minimal Correction

(for Falsifiability) Subset)

MUS
(Minimal Unsatisfiable Subset)

MNFS
(Minimal Non-Falsifiable Subset)

fiability are tightly related to the widely used concepts
of MSSes, MCSes and MUSes introduced in the area
of maximal satisfiability. This connection is shown in
Table 1. Whereas the MaxSAT problem consists in
computing the maximum number of clauses that are si-
multaneously satisfied, the MaxFalse problem targets
on determining the maximum number of simultane-
ously falsified clauses. Analogously, the concept of a
maximal satisfiable subset (MSS) in MaxSAT corre-
sponds to the concept of a maximal falsifiable sub-
set (MFS) in MaxFalse. The same relation connects
the notion of a minimal unsatisfiable subset (MUS) in
MaxSAT and the notion of a minimal non-falsifiable
subset (MNFS) in MaxFalse as well as correction sub-
sets (MCSes in MaxSAT and MCFSes in MaxFalse).

A relevant result is the relationship between plain
maximal falsifiability and maximal independent sets.
Given F , let GF = (V ,E) be an undirected graph such
that each clause of F is represented by a vertex of GF .
Moreover, there exists an edge between two vertices in
GF iff the corresponding clauses have complemented
literals. Clearly (see Proposition 2) clauses with com-
plemented literals cannot be simultaneously falsified.
Hence, an MFS of F represents a MxIS of GF and a
MxClique of the complemented graph. Moreover, an
MCFS corresponds to an MnVC of GF . Thus, for plain
maximal falsifiability, an MFS can be computed in lin-
ear time [44].

The relationship between MFSes and MxISes yields
a somewhat straightforward hitting set relationship.
For any maximal independent set I , V \ I represents a
minimal vertex cover. An immediate observation is:

Proposition 4. Given a graph G = (V ,E) with a set
of MnVCes C, the minimal hitting sets of C are the
edges of G and the minimal hitting sets of the edges of
G are the MnVCes C of G.

As a result, for the case of plain maximal falsifiabil-
ity the following holds:
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Proposition 5. Let F be a set of soft clauses. Then:

• The MNFSes of F are the minimal hitting sets of
the MCFSes F and vice-versa.

• Each MNFS of F consists of exactly two clauses
and represents an edge in the graph GF defined
above.

• The number of MNFSes of F is O(m2), where m

denotes the number of clauses in F .

Reductions of MaxClique to MaxSAT are well
known (e.g. [51]). For example, such reductions also
allow solving MIS, MVC with MaxSAT algorithms.
A new encoding of MIS into MinSAT can be devised,
which does not use hard clauses. Given an undirected
graph G = (V ,E), one can construct a set of clauses
F such that each vertex vi ∈ V is represented by a
clause ci ∈ F . For each edge e = (vi, vj ) a new
variable xe is introduced in F such that xe ∈ ci and
¬xe ∈ cj . This naive encoding of a graph into a set
of clauses gives a way to solve not only the MIS prob-
lem with the use of MaxFalse/MinSAT technology but
also the MVC and MaxCLQ problems tightly related
to MIS. Taking into account the wide range of practical
applications of the considered graph problems (e.g. see
[2,12,14,18–22,31,40–42,48,65,66,68–70,72–75] and
references therein), one can apply MaxFalse/MinSAT
algorithm for solving a number of important prob-
lems, e.g. including radio network optimization [22],
multi-hop wireless network optimization [40], DNA
sequence similarity [42], optimization in all-optical
networks [70], among many others. The naive encod-
ing of a graph into a set of clauses as well as a num-
ber of improvements to this encoding were proposed
for dealing with the MIS problem and characterized in
detail in [37].

Example 2. Consider the graph G = (V ,E), with
V = {v1, v2, v3, v4} and E = {(v1, v2), (v1, v3),

(v2, v3), (v2, v4)}, shown in Fig. 2(a). Each vertex
vi is represented by a clause ci and for each edge
(vi, vj ) a new variable xvi ,vj

is introduced. The graph
can be represented by a set of clauses F (Fig. 2(b))
in the following way: c1 = xv1,v2 ∨ xv1,v3 , c2 =
¬xv1,v2 ∨ xv2,v3 ∨ xv2,v4 , c3 = ¬xv1,v3 ∨¬xv2,v3 , c4 =
¬xv2,v4 . Note that an edge of graph G corresponds to
a pair of clauses that have complementary literals, i.e.
an MNFS of formula F , while a maximal independent
set of G corresponds to an MFS of F . Moreover, a ta-
ble showing the correspondence between other well-
known graph concepts and their “counterparts” for the
CNF encoding is shown in Fig. 2(c).

(a)

F =

⎧⎪⎪⎨
⎪⎪⎩

c1 = xv1,v2 ∨ xv1,v3 ,

c2 = ¬xv1,v2 ∨ xv2,v3 ∨ xv2,v4 ,

c3 = ¬xv1,v3 ∨ ¬xv2,v3 ,

c4 = ¬xv2,v4

⎫⎪⎪⎬
⎪⎪⎭

(1)

(b)

Graph G Formula F
Edge MNFS

(Minimal Non-Falsifiable Subset)

MIS
(Maximum IS)

MaxFalse solution

MxIS
(Maximal IS)

MFS
(Maximal Falsifiable Subset)

MVC
(Minimum VC)

MinSAT solution

MnVC
(Minimal VC)

MCFS
(Minimal Correction (for Falsifiability) Subset)

(c)

Fig. 2. From maximal independent set to maximal falsifiability.
(a) Graph G (see Example 2). (b) Set of clauses F for graph G.
(c) The relation of F and graph G. (Colors are visible in the online
version of the article; http://dx.doi.org/10.3233/AIC-150685.)

We now consider other formulations of maximal fal-
sifiability, where H �= ∅ and where each soft clause c

is associated a positive weight. As a result, a weight is
also associated with each MFS, MCFS and MNFS.

Similar to the MaxSAT case, the problems consid-
ered for MaxFalse/MinSAT are plain (H = ∅ and unit
weights), partial (H �= ∅ and unit weights), weighted
(H = ∅ and arbitrary weights) and partial weighted
(H �= ∅ and arbitrary weights) MaxFalse/MinSAT. Ob-
serve that these definitions follow earlier work for the
concrete case of MinSAT (e.g. [53]).

MFSes for (partial) (weighted) maximal falsifiabil-
ity problems are defined similarly to plain case, but H
is required to be satisfied for the truth assignment that
identifies the MFS. Moreover, the weighted versions
of the MaxFalse and MinSAT problems are defined as
follows.

Definition 11 (Partial weighted maximum falsifiabil-
ity). Given a formula F , with hard clauses H, H is
satisfiable, and soft clauses R, Maximum Falsifiabil-

http://dx.doi.org/10.3233/AIC-150685
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ity (MaxFalse) denotes the problem of computing the
MFS of F with the largest weight.

Definition 12 (Partial weighted minimum satisfiabil-
ity). Given a formula F , with hard clauses H and
soft clauses R, Minimum Satisfiability (MinSAT) is the
problem of computing a subset of clauses of R with
the smallest weight, that together with H are simulta-
neously satisfiable (while the other clauses of R are
falsified).

A simple observation is that although weights can be
associated with MFSes, MCFSes and MNFSes, their
number is independent of the weight function (e.g. see
[62]).

For the cases where H �= ∅, the problems of com-
puting MFSes and MxISes are no longer equivalent.
Observe that, when H �= ∅, finding an MFS be-
comes NP-hard. A proof is immediate, since we can re-
duce SAT to MaxFalse: H corresponds to the original
clauses and there are no soft clauses. Section 4 revisits
the difference between MFSes and MxISes in the case
H �= ∅, and also general minimal hitting results.

As it was mentioned above, a number of encod-
ings of MinSAT to MaxSAT were proposed in the past
[5,6,35,47,50,52,53,76]. One of the most efficient en-
codings of MinSAT is the so-called 
-encoding [35].
Given a set of clauses F it consists in associating each
clause ci ∈ F with an auxiliary variable ti ∈ T and
considering a new partial CNF formula H ∪ R, where
H = {ti ≡ ci | ci ∈ F} and R = {¬ti | ti ∈ T }.
Observe that following the ideas of [35], one can im-
mediately conclude the following proposition holds.

Proposition 6. Let F be a set of clauses and 
-
Enc(F) be the 
-encoded partial MaxSAT formula of
the MinSAT problem for F . The following holds:

(1) N ⊆ F is an MNFS of F iff U ⊆ 
-Enc(F) is
an MUS of F s.t. |N | = |U |.

(2) C ⊆ F is an MCFS of F iff C′ ⊆ 
-Enc(F) is
an MCS of F s.t. |C| = |C′|.

(3) M ⊆ F is an MFS of F iff S ⊆ 
-Enc(F) is
an MSS of F s.t. |M| = |S|.

4. Minimal hitting sets and enumeration problems

One of the most practically important problems in
the context of Maximal Satisfiability is enumeration
of MUSes of a CNF formula (e.g. see [54,56,67]).
One way to enumerate all MUSes of a formula is the

method based on the well-known relationship of min-
imal hitting set duality between MCSes and MUSes:
each MCS (MUS) of a CNF formula is a minimal hit-
ting set of the complete set of MUSes (MCSes) of the
formula (see Proposition 1).

The corresponding theoretical results were consid-
ered in [13,71]. Enumeration of MUSes based on enu-
merating MCSes was done in [11,56,64]. The dual-
ity relationship between MCSes and MUSes was also
used for solving the SMUS problem in [36,55]. The
approach did not consist in enumerating all MCSes and
MUSes – instead, in order to get a lower bound on
the size of the smallest MUS, only some MCSes were
computed.

This section proves that the relationship of a mini-
mal hitting set duality also exists for the case of Max-
imal Falsifiability, i.e. between MCFSes and MNFSes.
The corresponding assertions are presented in the form
of theorems. Two auxiliary propositions are used in the
proofs. Hereinafter, letters M, N and C are used to de-
note an MFS, an MNFS and an MCFS of a CNF for-
mula, respectively. The complete sets of MFSes, MN-
FSes and MCFSes of a CNF formula F are denoted by
M(F), N(F) and C(F).

Proposition 7. Formula F is not all-falsifiable iff it
contains at least one MNFS.

Proof. Such an MNFS can be constructed by a simple
algorithm that finds a pair of clauses in F that contain
a complemented literal. The opposite is trivial. �

Proposition 8. A set of clauses U , U ⊆ F , is all-
falsifiable iff there is an MCFS C such that U ∩ C = ∅.

Proof. It follows from the fact that for any all-
falsifiable subset U , U ⊆ F , there is an MFS M such
that U ⊆ M ⊆ F . By definition, for any MFS M
there exists a complementary MCFS C = F \ M. It is
not hard to see that U ∩ C = ∅. �

Theorem 1. Subformula C, C ⊂ F , is an MCFS iff C
is a minimal hitting set of N(F).

Proof. Proposition 7 implies that subformula C is a
hitting set of N(F) iff the complementary subformula
M = F \C is all-falsifiable (otherwise, M contains at
least one MNFS that is not hit by C).

Let C ⊂ F be a minimal hitting set of N(F). This
means that M is all-falsifiable, and ∀c∈C formula C \
{c} is not a hitting set of N(F). Assume that M is not
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an MFS of F , i.e. ∃c∈C such that M ∪ {c} is still all-
falsifiable. This implies that C \ {c} is a hitting set of
N(F) – contradiction. Hence, M is an MFS and C is
MCFS of F .

Let C ⊂ F be an MCFS of formula F . Then the
complementary subformula M is an MFS, and C is a
hitting set of N(F). Assume that C is not a minimal
hitting set of N(F). Then ∃c∈C such that C \ {c} is still
a hitting set of N(F). This means that its complemen-
tary subformula M ∪ {c} is all-falsifiable. However,
this contradicts the fact that M is an MFS of F . There-
fore, C is a minimal hitting set of N(F). �

Theorem 2. Subformula N , N ⊆ F , is an MNFS iff
N is a minimal hitting set of C(F).

Proof. Proposition 8 implies that subformula N is not
all-falsifiable iff N has a non-empty intersection with
all the MCFSes of F , i.e. N is a hitting set of C(F).

Let N be an MNFS of formula F . Irreducibility of
N ensures that any subformula N ′, N ′ ⊂ N , is an all-
falsifiable formula. Hence, by Proposition 8, N ′ does
not hit all the MCFSes of F . Thus, N is a minimal
hitting set of C(F).

Let N be a minimal hitting set of C(F). This means
that ∀c∈N formula N \ {c} does not hit all the MCF-
Ses of F , i.e. there is an MCFS C such that N \ {c} ∩
C = ∅. Hence, N \ {c} is a subset of MFS M = F \C,
and, therefore, is all-falsifiable. By definition, subfor-
mula N is an MNFS of F . �

Observe that the proofs of the propositions presented
above make use only of the general definitions of an
MFS, MCFS and MNFS described in Section 3. There-
fore, the propositions hold for both plain and partial
maximal falsifiability.

It should be noted that in contrast to Maximal Satis-
fiability, for the case of Maximal Falsifiability it can be
more helpful to enumerate MNFSes instead of MCF-
Ses. A set of MNFSes can give us a lower bound on
the size of each MCFS and, hence, an upper bound on
the optimal value for MaxFalse. Therefore, this can be
used to bootstrap algorithms that refine an upper bound
(see Section 6).

Observe that there is no correspondence between
computing MFSes and MxISes for the case H �= ∅ be-
cause of the different interpretations of the hard con-
straints. Although the maximal independent set prob-
lem does not consider a concept of a hard constraint (in
this sense computing an MFS is a more general prob-
lem than computing an MxIS), one can consider the

weighted version of the problem. While for the case of
partial maximal falsifiability each clause c ∈ H must
be satisfied, vertices with a high weight in the weighted
maximal independent set problem are preferable to be
independent. Hence, there is no translation from one
problem into another similar to the one described1 in
Section 3.

In contrast to plain maximal falsifiability, for which
MNFSes are known to contain exactly two clauses
(see Proposition 5), formulas with hard clauses may
have MNFSes that contain just one clause. This fact is
shown below.

Proposition 9. Let F be a pair of sets of clauses
(H,R), where clauses of H are hard while clauses of
R are soft (relaxable). Then if there exists a subset of
clauses W ⊆ R such that H |=� W , then W is in-
cluded into all MCFSes of F .

Proof. Proof by contradiction. Let W be a subset of R
such that H |= W . Assume that there exists MCFS C
such that W � C. This means that an MFS M = R\C
intersects W , i.e. M ∩ W �= ∅. Entailment H |= W
means that each clause c ∈ W is satisfied by all models
of H. By definition, all clauses of M can be falsified
simultaneously by some model of H. Therefore, M ∩
W = ∅ – contradiction. �

Corollary 1. Let F be a pair of sets of clauses (H,R),
where clauses of H are hard while clauses of R are
soft (relaxable). Then if there exists a subset of clauses
W ⊆ R such that H |= W , then for any clause ci ∈ W
set {ci} is an MNFS of F .

Proof. Implied by Proposition 9 and Theorem 2. �

Note that Corollary 1 gives a sufficient condition
of partial formulas having MNFSes of size 1. Fur-
thermore, it can be observed that formulas with hard
clauses can also have MNFSes of size greater 2. In-
deed, this can be illustrated with the following exam-
ple.

Example 3. Consider a set of clauses

c1 c2 c3

F ′ � (x1) ∧ (x2) ∧ (¬x1 ∨ ¬x2).

1Recall that the connection between plain maximal falsifiability
and maximal independent set in Section 3 established the correspon-
dence between independent vertices and clauses that can be simulta-
neously falsified.
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Clearly, this plain CNF formula is unsatisfiable (more-
over, it is an MUS). By 
-encoding F ′ with the use
of auxiliary variables {t1, t2, t3}, one can transform F ′
and get a new partial CNF formula F = H∪R, where
H = {ti ≡ ci | ci ∈ F} and R = {¬t1,¬t2,¬t3}. Ob-
serve that formula F has exactly one MNFS U , which
corresponds to the MUS of F ′ (see Proposition 6) and
U = R, i.e. |U | = 3.

This immediately shows that the number of all MN-
FSes of partial formulas cannot be polynomial in gen-
eral. Although this implies that enumeration of MNF-
Ses for such formulas may not be feasible in practice,
instead of enumerating MNFSes of F = H ∪ R, we
can efficiently enumerate MNFSes of R (see Propo-
sition 5) and use them to compute a lower bound for
bootstrapping the algorithms for MaxFalse.

5. Algorithms for maximal falsifiability

As indicated in Section 3, there are linear time algo-
rithms for plain maximal falsifiability, while the gen-
eral case of the problem (i.e. when a partial CNF for-
mula F = H ∪ R is considered) is NP-hard. Since
there are several encodings of MinSAT into MaxSAT
(e.g. [35,50,76]), these encodings can be also used
for solving the maximal falsifiability problem. For ex-
ample, when 
-encoding a CNF formula F , one ap-
proach for finding an MFS of formula F is to find
an MSS (or its complement – MCS) of its 
-encoded
formula 
-Enc(F), e.g. with recently proposed algo-
rithms for computing MCSes [10,58,60,64]. Neverthe-
less, this paper proposes instead native algorithms for
both maximal and maximum falsifiability.

5.1. Basic linear search

Let H and R denote the hard and soft clauses of F ,
respectively. To find an MFS of F , one needs to deter-
mine a subset of R that is a maximally all-falsifiable
set, subject to the models of H. Therefore, during the
search it is necessary to call a SAT oracle.

Algorithm 1 shows the pseudo-code of the Basic
Linear Search (BLS) algorithm for the general case of
maximal falsifiability, inspired on algorithms for MC-
Ses [58,64]. Given H and R, denoting the hard and soft
clauses of F , the algorithm finds an MFS M, M ⊆ R,
of formula F . Algorithm 1 is based on the connection
between MinSAT and MaxFalse and at first finds a so-
lution of the minimal satisfiability problem for F , i.e.

Algorithm 1. Basic linear search (BLS)

1 Function BLS(F = H ∪ R)

2 (st,A) ← SAT(H) # initial SAT call

3 if st = false then
4 return (false,∅)

5 C ← R
6 HardenFalsified(H, C,A)

7 foreach c ∈ C do
8 (st,A) ← SAT(H ∪ {¬c})
9 if st = true then

10 H ← H ∪ {¬c}
11 C ← C \ {c}
12 HardenFalsified(H, C,A)

13 return (true,R \ C)

an MCFS C, C ⊂ R, and then uses it to compute the
complementary MFS M = R \ C. First, Algorithm 1
checks whether the hard part of the formula is satisfi-
able or not (see line 3). If it is not, the BLS algorithm
returns an empty MFS. Otherwise, it initializes the cor-
rection set C to be equal to R (line 5). At each iteration
of the main loop (lines 7–12) Algorithm 1 tries to re-
duce C by removing a single clause c ∈ C. This is done
by checking whether clause c can be falsified together
with clauses that were falsified at previous iterations
(line 8). A possible improvement of the BLS algorithm
is that instead of removing just one clause c from C per
iteration, one can filter all clauses from C that were fal-
sified by each SAT call. This is done by calling a func-
tion HardenFalsified(H, C,A) (lines 6 and 12),
where A is a model of H ∪ {¬c} returned by the ora-
cle. Every clause falsified by A is removed from C, and
its negation is then made hard (added to H). Note that
calling the function HardenFalsified(H, C,A)

can significantly reduce the number of SAT calls.

5.2. Clause D-like algorithm

Additionally, inspired by the results presented in
[58], one can construct an algorithm for computing
MFSes based on the ideas lying behind the clause D
algorithm (CLD). The original CLD algorithm [58]
proposed for computing an MCS of a CNF formula
F = H ∪ R aims at reducing the number of calls to
the SAT oracle, which is done by considering a dis-
junction of the original soft clauses of the formula, i.e.
D = {∨ci∈R ci} instead of R, and testing if H ∪ D is
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satisfiable. If it is, then its model returned by the SAT
oracle is used to refine the clause D by removing all
the original clauses ci ∈ R that are satisfied by the
model. At the end, the CLD algorithm returns an MCS
of formula F in the form of the refined clause D.

The same idea (however, with a serious drawback)
can be applied to the problem of computing an MFS
of a CNF formula. Algorithm 2 shows the pseudo-code
of the CLD-like algorithm adapted to maximal falsi-
fiability. Given a formula in the form of H and R,
Algorithm 2 computes its MFS in the following way.
First, it encodes the negation of each soft (relaxable)
clause ci with a fresh auxiliary variable ti and adds
the corresponding clauses into H. Note that now in-
stead of the set of soft clauses R, we consider a new
set of soft clauses C, which are unit clauses over the
auxiliary variables {ti}. The clause comprising all lit-
erals of C, i.e. {∨ti∈C ti}, acts as the clause D in the
original algorithm CLD (see line 11). After this, Al-
gorithm 2 checks if the hard part H of the formula is
satisfiable. If it is not, the algorithm returns an empty
MFS. Otherwise, the main loop starts, which refines
C until formula H ∪ {∨ti∈C ti} gets unsatisfiable. It
should be noted that at each iteration of the loop, C is
refined by hardening each clause {ti} satisfied by model
A (meaning that the original clause ci s.t. ti ≡ ¬ci

is falsified by A) and removing it from C. The algo-
rithm stops when it is not possible to satisfy clause D,
i.e. {∨ti∈C ti}, along with the hard part H. Note that
although the CLD algorithm is intended to reduce the
number of calls to the SAT oracle and, thus, increase
the performance of MFS extraction, Algorithm 2 has

Algorithm 2. Clause D-like algorithm (CLD)

1 Function CLD(F = H ∪ R)

2 C ← ∅
3 foreach ci ∈ R do
4 C ← C ∪ {ti}
5 H ← H ∪ {ti ≡ ¬ci}
6 (st,A) ← SAT(H)

7 if st = false then
8 return (false,∅)

9 repeat
10 HardenFalsified(H, C,A)

11 (st,A) ← SAT(H ∪ {∨ti∈C ti})
12 until st = false

13 return (true,R \ {ci ∈ R | ¬ci ≡ ti , ti ∈ C})

a significant drawback, which is the use of additional
auxiliary variables. The algorithm has to encode all
clauses of R introducing |R| new variables and, thus,
making calls to the SAT oracle harder. For formulas
with a large number of relaxable clauses this can be a
significant drawback, which will be indeed confirmed
by the experimental results (see Section 7).

6. Algorithms for maximum falsifiability

A solution to the MaxFalse problem can be ob-
tained by computing a solution to the MinSAT prob-
lem (Proposition 3). On the other hand, and as men-
tioned in Section 5, several encodings have been pro-
posed to translate MinSAT into MaxSAT. Thus, the
MaxFalse problem can be solved by encoding the
problem into MaxSAT and solving the corresponding
MaxSAT problem. This paper proposes instead native
algorithms for the MaxFalse problem including three
iterative algorithms and an algorithm based on the min-
imal hitting set duality.

6.1. Iterative algorithms

The three algorithms proposed in this section are
based on iterative calls to a SAT solver, to determine
if a subset of the soft clauses with a maximum cur-
rent cost exists. The idea is similar to the classical it-
erative SAT-based MaxSAT solvers. Initially each soft
clause is relaxed by associating a relaxation variable
to the clause (a fresh Boolean variable). This pro-
cess of relaxing a soft clause guarantees that when-
ever a soft clause is satisfied by an assignment, then
its associated relaxation variable is assigned true. At
each iteration, the SAT solver deals with the work-
ing formula and a constraint enforcing a current max-
imum cost on the set of relaxation variables assigned
true. The current cost of each iteration depends on the
bounds being refined, either a lower bound, an upper
bound, or both. The three algorithms proposed corre-
spond to the three types of search possible (to refine the
bounds): Binary search (MFBS) (which refines both an
upper and a lower bound); Linear search starting from
a lower bound (named Linear search UNSAT-SAT,
MFLSUS); and Linear search starting from an upper
bound (named Linear search SAT-UNSAT, MFLSSU).

All the iterative algorithms start by obtaining a
working formula Fw by relaxing the soft clauses in
R together with all the hard clauses (lines 2–6 of the
pseudo-codes of the Algorithms 3, 4, 5). In this case,
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Algorithm 3. MaxFalse Binary Search (MFBS)

1 Function MFBS(F = H ∪ R)

2 (Fw,R,W, lastA) ← (H,∅,∅,∅)

3 foreach (c, w) ∈ R do
4 R ← R ∪ {r}
5 W ← W ∪ {w}
6 Fw ← Fw ∪ {c → r}
7 (λ, μ) ←

(ComputeLB(R),ComputeUB(Fw))

8 while λ �= μ do
9 κ ← �λ+μ

2 �
10 (st,A) ←

SAT(Fw ∪ CNF(
∑

(w,r)∈W×R w · r � κ))

11 if st = true then
12 (lastA, μ) ←

(A,GetSolution(R,A))

13 else
14 λ ← SubSetSum(W, κ)

15 return Falsified(R, lastA)

Algorithm 4. MaxFalse Linear Search SAT-
UNSAT (MFLSSU)

1 Function MFLSSU(F = H ∪ R)

2 (Fw,R,W,A) ← (H,∅,∅,∅)

3 foreach (c, w) ∈ R do
4 R ← R ∪ {r}
5 W ← W ∪ {w}
6 Fw ← Fw ∪ {c → r}
7 (μ,A) ← ComputeUB(Fw)

8 st ← true
9 while st = true do

10 (st,A) ←
SAT(Fw ∪CNF(

∑
(w,r)∈W×R w · r < μ))

11 if st = true then
12 μ ← GetSolution(R,A)

13 return Falsified(R,A)

the relaxation of the soft clauses is not the usual relax-
ation as in MaxSAT. Instead, the algorithms follow the
relaxation of soft clauses as in the Model-Guided al-
gorithm [35] for MinSAT. A fresh relaxation variable
r is associated with the original soft clause c, and a set

Algorithm 5. MaxFalse Linear Search UNSAT-
SAT (MFLSUS)

1 Function MFLSUS(F = H ∪ R)

2 (Fw,R,W,A) ← (H,∅,∅,∅)

3 foreach (c, w) ∈ R do
4 R ← R ∪ {r}
5 W ← W ∪ {w}
6 Fw ← Fw ∪ {c → r}
7 λ ← ComputeLB(R)

8 st ← false
9 while st = false do

10 (st,A) ←
SAT(Fw ∪ CNF(

∑
(w,r)∈W×R w · r � λ))

11 if st = false then
12 λ ← SubSetSum(W, λ)

13 return Falsified(R,A)

of binary clauses {c → r} is added to the working for-
mula, each containing the negation of one literal of the
soft clause, and the associated relaxation variable.

After relaxing, the bounds are computed (line 7 of
the pseudo-codes of the Algorithms 3, 4 and 5). In the
following we explain how the bounds are computed
followed by a detailed description of each of the itera-
tive algorithms.

6.1.1. Upper and lower bounds
The iterative algorithms proceed by refining an up-

per bound or a lower bound or both, depending on
the algorithm. This section describes how the initial
bounds are obtained from the relaxed working formula
Fw or from the set of soft clauses R.

In order to compute an upper bound, the algorithm
calls a SAT solver on the working formula Fw with po-
larities set to false for the relaxation variables, i.e. the
relaxation variables are preferred to be falsified. A sim-
ilar method of using preferred polarities of a formula’s
variables in SAT solving was used e.g. in [27,32] for
computing a maximal/minimal model of the formula.
If the assignment returned by the SAT solver (assum-
ing the hard clauses are satisfied) satisfies a relaxation
variable, then the corresponding original clause is sat-
isfied by the assignment. As such, the sum of weights
of the clauses associated to the relaxation variables set
to true corresponds to the upper bound.

The lower bound is computed by a greedy heuris-
tic using only the soft clauses in R. Initially the lower
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bound is assumed to be 0, and the following process is
repeated. In each iteration, for each variable, two sums
are obtained: the sum of weights of the soft clauses
where the variable appears as a positive literal, and the
sum of weights of the soft clauses where the variable
appears as a negative literal. Among the two sums, the
minimum value is associated to the variable as the min-
imum weight that we are forced to pay due to an as-
signment to the variable. Any assignment to the vari-
able will satisfy (zero or more) soft clauses, whose cost
is at least the associated minimum value.

Afterwards, the variable with the maximum associ-
ated cost is selected. Since any assignment is forced
to include the costs associated to the variables, then
we greedily select the one with the biggest associated
cost. The cost is added to the lower bound, and all
the clauses corresponding to the minimum sum associ-
ated to the selected variable are deleted. The selected
variable is then disregarded in the remaining iterations.
The process is repeated until there are no more vari-
ables. In the end, a lower bound has been computed.

Example 4. Consider the weighted formula F � (c1,

w1) ∧ (c2, w2) ∧ (c3, w3), where:

(c1, w1) � (x1 ∨ x2 ∨ x3, 1),

(c2, w2) � (x1 ∨ ¬x2, 5),

(c3, w3) � (¬x1 ∨ ¬x2 ∨ x3, 3).

For the first iteration on the computation of the lower
bound, each of the variables is associated with the fol-
lowing values:

x1 � min(6, 3) = 3,

x2 � min(1, 8) = 1,

x3 � min(4, 0) = 0.

The maximum value of 3 is selected with the neg-
ative polarity of variable x1. Then the lower bound is
now updated to 3 and clause (c3, w3) is deleted from
the formula. Now the associated values to the remain-
ing variables are updated to:

x2 � min(1, 5) = 1,

x3 � min(1, 0) = 0.

The maximum corresponds to 1, increasing the
lower bound to 4, and variable x2 is selected with the

positive polarity. Clause (c1, w1) is deleted from the
formula. The associated value to variable x3 is updated
to x3 � min(0, 0) = 0.

Finally, variable x3 is selected, although not increas-
ing the lower bound. Thus, the final lower bound com-
puted is 4.

6.1.2. Iterative binary and linear search algorithms
This section presents the pseudo-codes of the three

proposed iterative MaxFalse algorithms. First, the
pseudo-code of the binary search algorithm is shown,
followed by the pseudo-code of the linear search algo-
rithms.

Algorithm 3 shows the pseudo-code of the Max-
False Binary Search (MFBS) algorithm for maximum
falsifiability. As mentioned in the introduction of Sec-
tion 6.1, iterative algorithms start by relaxing all the
soft clauses in a working formula Fw together with the
hard clauses (lines 2–6). Based on the working formula
Fw and the set of original soft clauses R, both the up-
per and lower bounds are computed in line 7, as de-
scribed in Section 6.1.1.

Lines 8–14 present the main loop of the MFBS al-
gorithm. At each iteration, the algorithm computes a
value κ in the middle of the bounds, and makes a call
to the SAT solver with the working formula Fw to-
gether with a constraint (encoded into CNF) enforc-
ing the maximum allowed cost to be at most κ . If the
SAT solver returns true, then the satisfying assignment
is recorded and the upper bound μ is updated accord-
ingly. If the SAT solver returns false, then the lower
bound is updated to the next allowed weight consider-
ing the set of weights. Such weight is obtained by the
SubSetSum() function similar to [4].

The algorithm iterates until both bounds are the
same (line 8), and returns a set of soft clauses falsified
by the last assignment with function Falsified() in
line 15.

Algorithm 4 shows the pseudo-code of the MaxFalse
Linear Search SAT-UNSAT (MFLSSU) algorithm for
maximum falsifiability, while Algorithm 5 shows the
pseudo-code of the MaxFalse Linear Search UNSAT-
SAT (MFLSUS) algorithm for maximum falsifiability.
Since the pseudo-codes are similar, they are presented
together.

In contrast to binary search where both upper and
lower bounds are refined simultaneously, the idea of
the linear search algorithms consists in refining only
one of the bounds, either the upper bound in case of
the Linear Search SAT-UNSAT, or the lower bound
in case of the Linear Search UNSAT-SAT. Depending
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on where the optimum solution is located with regards
to the bounds, refining only one of the bounds can
be advantageous. For example, linear search MaxSAT
algorithms refining lower bounds have demonstrated
good performances in industrial categories in previous
MaxSAT Evaluations.

As before, lines 2–7 obtain the relaxed working for-
mula and compute the initial bounds. An upper bound
is computed in the case of MFLSSU, and a lower
bound is computed in the case of MFLSUS.

The main loop is presented in lines 8–13. At each
iteration, line 10 makes a call to the SAT solver on the
working formula Fw together with a constraint enforc-
ing the maximum allowed cost encoded into CNF. De-
pending on the outcome of the SAT solver, then the
bounds are refined in lines 11–12.

In the case of MFLSSU, since we are refining the up-
per bound, the maximum allowed cost is smaller than
the current upper bound. The SAT solver is testing if
there exists a solution smaller than the current one. If
true, the SAT solver will return the new solution found
and the upper bound is updated to the new value (sim-
ilar to the refinement of the upper bound in the binary
search algorithm (line 12 of MFBS)). MFLSSU stops
when no better solution can be found.

In the case of MFLSUS, since we are refining the
lower bound, the maximum allowed cost is at most the
current lower bound. The SAT solver is testing if there
exist a solution with a cost lower or equal to the cur-
rent lower bound. If no solution exists, then the lower
bound is increased to the next possible value (similar to
the refinement of the lower bound in the binary search
algorithm (line 14 of MFBS)). MFLSUS stops when a
solution has been found, that is the current lower bound
corresponds to the optimum value.

6.2. Algorithm based on minimal hitting set duality

Following the ideas described in Section 4, this sec-
tion proposes an algorithm for the maximum falsifia-
bility problem based on the minimal hitting set duality
between sets of MCFSes and MNFSes of a CNF for-
mula. A similar approach to MaxSAT (called MaxHS)
was proposed in [24] and further improved in [25,26].
However, in contrast to MaxHS, which builts on top of
the well-known MIP solver CPLEX, the algorithm pro-
posed here is a pure SAT-based approach to the prob-
lem meaning that hitting sets are enumerated using a
pure SAT-based technology without appealing to any
of the integer programming algorithms. Also note that
instead of computing minimal hitting sets of the set of

all MNFSes, the approach being proposed enumerates
minimal hitting sets of the set of unfalsifiable cores of
the formula.

Algorithm 6 shows the pseudo-code of the proposed
algorithm. The basic idea of the method is to divide
the process into two parts. The first one makes use
of an external oracle that enumerates smallest mini-
mal hitting sets of the set of all unfalsifiable cores of
the formula found so far. The second part is intended
for checking if the set of clauses complement to what
was found by the external oracle is all-falsifiable. If it
is not then a new unsatisfiable core is extracted and
the process continues. Otherwise, a solution is found
and reported. In order to compute the smallest mini-
mal hitting sets of the unfalsifiable cores found so far,
a MaxSAT solver is used as the external oracle on a
constructed partial MaxSAT formula Q. Given a for-
mula F = H ∪ R, the algorithm first creates a picking
variable pi for each clause ci of R (see line 2) and adds
the corresponding soft clause (pi, wi) to Q (line 3).
The hard part of Q is initially empty. The main loop of
the algorithm starts at line 4. At each iteration of the
loop, the algorithm chooses a different subset of R and
checks its all-falsifiability together with the hard part

Algorithm 6. MaxFalse algorithm based on Hit-
ting Sets (MFHS)

1 Function MFHS(F = H ∪ R)

2 P ← {pi | (ci, wi) ∈ R}
3 Q ← {(pi, wi) | (ci, wi) ∈ R, pi ∈ P }
4 while true do
5 (st,AM) ← MAXSAT(Q)

6 if st = true then
7 (α,FQ) ← (∅,H)

8 foreach pi ∈ P s.t. AM(pi) = true
do

9 α ← α ∪ {pi}
10 FQ ← FQ ∪ {pi → ¬ci | ci ∈

R}
11 (st, μC,AS) ← SAT(FQ, α)

12 if st = true then
13 return Falsified(R,AS)

14 else
15 Q ← Q ∪ {(∨pi∈μC

¬pi,
)}
16 else
17 return ∅
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H by doing a SAT call at line 11. Note that the SAT or-
acle receives formula FQ and a set of assumptions α,
both determined by a MaxSAT solution AM of Q re-
ported by the external oracle (see line 5). Each vari-
able assigned true by AM activates the corresponding
clause of R. This is done by adding a set of clauses
{pi → ¬ci} to FQ and an assumption literal pi to α.
If the SAT call returns true meaning that the selected
subset of R is all-falsifiable together with H, then the
algorithm reports the solution and stops.2 Otherwise,
an unsatisfiable core μC of FQ (which is also a new
core of F) is extracted and the corresponding block-
ing clause is added to Q. Note that in this case, the
next MaxSAT model of Q has to hit the new core. This
means that there will be at least one negative literal
¬pi ∈ AM neutralizing the new core. The algorithm
iterates until it either finds a solution for the MaxFalse
problem, or proves that it does not exist.

7. Experimental results

This section describes the experimental results ob-
tained for Maximal Falsifiability as well as for Max-
imum Falsifiability. Section 7.1 shows a comparison
on the quality of the solutions obtained for Maximal
Falsifiability. Then Section 7.2 presents a study on the
performance of the algorithms proposed for Maximum
Falsifiability.

The algorithms described in this paper were im-
plemented in C++ using incremental SAT solvers.
The experiments were performed on an HPC cluster,
with quad-core Intel Xeon E5450 3 GHz nodes with
32 GB of memory. The following two sets of bench-
marks were considered in the evaluation. The first set,
called MIS benchmarks, comprises all the MaxFalse
instances that were considered in [37]. These instances
are crafted and come from the MIS and MaxClique
problems, which can be reduced to MaxFalse (the cor-
responding reductions were studied in [37]). The total
number of instances in the MIS benchmark set is 233.

In order to evaluate the performance of the algo-
rithms in real industrial problems (not random nor
crafted problems), a second benchmark set was also
considered. It comprises all the Partial MaxSAT Indus-
trial and Weighted Partial Industrial benchmarks from
the MaxSAT Evaluation 2014.3 This benchmark set is

2Note that maximality of the solution is guaranteed by maximality
of solutions for Q.

3See http://www.maxsat.udl.cat/14/benchmarks/.

called MaxSAT benchmarks. The benchmarks in this
set were transformed into MaxFalse instances by se-
lecting the ones that only contained unit soft clauses
and by negating the unit literals on those instances.
Due to this choice of benchmark instances, none of
the approaches (neither MaxSAT nor MaxFalse) has to
deal with “encoded” instances. A total of 877 Max-
False instances were obtained.

As explained in Section 5, a different alternative
to Maximal/Maximum Falsifiability consists in trans-
forming the MaxFalse instance by encoding it into
MaxSAT (e.g. via the 
-encoding), and then com-
puting an MCS/MaxSAT solution of the resulting
MaxSAT instance. In our experimental evaluation the

-encoding was used for deriving MaxSAT instances
for the MIS benchmarks. As for the MaxSAT bench-
marks, the original instances considered contain only
unit soft clauses, and thus there is no need to do the

-encoding. Instead, it is enough to negate the corre-
sponding literals in the soft clauses to get MaxSAT in-
stances from MaxFalse, and the other way around.

7.1. Maximal falsifiability

The BLS and CLD algorithms (Algorithms 1 and 2)
proposed in Section 5 were implemented in a tool
called mxlFalse. The underlying SAT solver of the
mxlFalse tool is Minisat 2.2 [28].

This section studies the quality of the solutions ob-
tained for both sets of benchmarks. The cost of the MF-
Ses/MCFSes obtained with BLS and CLD algorithms
is compared against the cost of the MCSes obtained
by MCSls [58] (an efficient MCS extractor) that was
ran for the corresponding MaxSAT instances. Note that
we used a number of possible configurations of MCSls
and chose the best one, which uses the original CLD
algorithm proposed in [58].

In the experiments both the mxlFalse and MCSls
were set to enumerate MFSes/MCFSes and MCSes
(respectively) for 3 min, whereupon the minimum cost
MCFS/MCS was obtained. The results obtained were
then divided by the optimum cost, and the values were
plotted in the scatter plots of Figs 3 and 4. Figure 3
compares the values obtained by the proposed BLS (on
the left) and CLD (on the right) algorithms for the MIS
benchmarks instances to the value obtained by MCSls.
It can be seen from the scatter plot that in the vast ma-
jority of cases all the considered algorithms are able
to find the exact optimum while enumerating approxi-
mate solutions. As for the others, the best solution re-
ported by all competitors is usually the same. There are

http://www.maxsat.udl.cat/14/benchmarks/
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Fig. 3. Scatter plots comparing BLS and CLD algorithms to MCSls for the MIS benchmark set. (Colors are visible in the online version of the
article; http://dx.doi.org/10.3233/AIC-150685.)

Fig. 4. Scatter plots comparing BLS and CLD algorithms to MCSls for the MaxSAT benchmark set. (Colors are visible in the online version of
the article; http://dx.doi.org/10.3233/AIC-150685.)

a few outlying instances where MCSls is better than
both BLS and CLD algorithms.

Figure 4 shows the comparison between the best
solutions found by the proposed algorithms and MC-
Sls for the considered MaxSAT benchmark set. In this
case, even though there are instances where the BLS

algorithm gets closer to the optimal solution than MC-
Sls, in the majority of benchmarks solutions produced
by MCSls are better than the ones of the BLS algo-
rithm. As for the comparison between CLD and MC-
Sls, apparently there is no clear winner. A number of
instances where CLD was not able to find any approx-

http://dx.doi.org/10.3233/AIC-150685
http://dx.doi.org/10.3233/AIC-150685


366 A. Ignatiev et al. / Maximal falsifiability

Fig. 5. Cactus plot for MIS benchmark instances. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/AIC-150685.)

imate solution is larger than the number of instances
for which MCSls got timed out. As it was mentioned
in Section 5.2, this can be explained by the fact that the
proposed CLD algorithm has to introduce a lot of ad-
ditional variables (one variable per soft clause), which
makes SAT calls harder. However, as one can see at
Fig. 4, for a wide majority of formulas with a reason-
able number of relaxable clauses CLD is able to enu-
merate solutions closer to the optimum than the ones
found by MCSls. Therefore, in most of the cases solu-
tions obtained by CLD are preferred.

7.2. Maximum falsifiability

The Maximum Falsifiability algorithms proposed in
Section 6 were implemented in a tool called maximum-
False. Namely, the following algorithms were imple-
mented: binary search (MFBS), linear search unsat-
sat (MFLSUS) and linear search sat-unsat (MFLSSU)
as well as the minimal hitting set based algorithm
(MFHS). This section presents results on the perfor-
mance of the proposed algorithms running for 1800
seconds with 4 GB of memory limit. The underly-
ing SAT solver of the maximumFalse tool is the Glu-
cose SAT solver [7]. Additionally, best non-portfolio
MaxSAT solvers (according to the results of the
MaxSAT Evaluation 2014) were considered, namely

Open-WBO-Inc [59] and Eva500a [63].4 Also MaxHS,
which is a well-known MaxSAT solver based on the
hitting set enumeration paradigm, was considered.

A cactus plot showing the performance of the eval-
uated algorithms on the MIS benchmark instances is
presented in Fig. 5. The largest number of instances
(108) for this set of benchmarks is solved by MaxHS.
This is not surprising because MaxHS is known to per-
form extremely well for random and crafted MaxSAT
benchmarks. Eva500a is 3 instances behind MaxHS
(with 105 instances solved). Open-WBO-Inc comes
third being able to cope with 95 instances. Among the
proposed MaxFalse algorithms the best performance
is shown by linear search sat-unsat (MFLSSU), which
solved 92 instances, while the linear search unsat-sat
(MFLSUS) coming the last (65 instances solved). This
is caused by the nature of the benchmarks – optimal
values of the majority of them are close to the initial
upper bounds. Being able to solve 87 instances, the
MFHS algorithm is fifth. A possible explanation of this
can be the lack of additional heuristics and improve-
ments in this algorithm, e.g. widely used disjoint core
enumeration and core trimming, as well as a number

4Open-WBO-Inc is the best non-portfolio solver in the category
of MaxSAT Industrial and Partial MaxSAT Industrial while Eva500a
outperforming every other solver in the category of Weighted Partial
MaxSAT Industrial (see http://www.maxsat.udl.cat/14/results/).

http://dx.doi.org/10.3233/AIC-150685
http://www.maxsat.udl.cat/14/results/
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Fig. 6. Cactus plot for MaxSAT benchmark instances. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/AIC-
150685.)

of efficient heuristics proposed in [24–26] specifically
for hitting set enumeration based approaches and im-
plemented in MaxHS.

Figure 6 shows the performance of the tested al-
gorithms on the MaxSAT benchmark instances. As
expected, state-of-the-art core-guided MaxSAT algo-
rithms outperform the other competitors. Eva500a
shows the best performance with 772 solved instances
(out of 877). Open-WBO-Inc comes second but it is
far behind Eva500a with 639 solved instances. The
worst performance is shown by iterative MaxFalse
algorithms (271, 319 and 334 instances solved by
MFLSSU, MFBS and MFLSUS, respectively). The
MFLSUS algorithm is the best among them indicating
that for this benchmark set either optimal values are
close to initial lower bounds or the calls to the SAT or-
acle with the SAT outcome are harder than the UNSAT
calls. For this set of benchmarks, the MFHS algorithm
performs far better than all the iterative algorithms be-
ing able to solve 525 instances. Although MaxHS has
a better performance (631 instances solved), it is ex-
pected because of several reasons. First, it uses a dif-
ferent solving engine utilizing the best known MIP
solver called CPLEX. In contrast, our approach is a
pure SAT-based algorithm. Second (and the most im-
portant), MaxHS is being developed and heavily im-
proved for several years resulting its performance to

increase dramatically over the years. Therefore, being
a basic hitting set based algorithm for the MaxFalse
problem, MFHS still has potential to be improved in a
manner similar to what was already done for MaxHS.

As a result, the experimental evaluation performed
reveals the lack of efficient native algorithms for the
MaxFalse problem. This applies to both crafted and
industrial problem instances. However, while the per-
formance of the proposed MFHS algorithm can be
improved in order to be as good as MaxHS is for
the crafted MaxSAT instances, for the industrial prob-
lem instances the development of efficient native core-
guided algorithms is of a crucial importance. Note that
although core-guided MaxSAT algorithms result from
over a decade of research, it is still not known in the
literature how to take advantage of core-guided search
natively in MaxFalse algorithms, nor it is known to
be even possible. While this paper proposes a general
framework for both maximal and maximum falsifiabil-
ity, the mentioned issues are important topics of future
research in the MaxFalse setting.

8. Conclusions

Motivated by the recent interest in MinSAT, this pa-
per develops a comprehensive characterization of this

http://dx.doi.org/10.3233/AIC-150685
http://dx.doi.org/10.3233/AIC-150685
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Fig. 7. Clausal falsifiability problems characterization. (Colors are
visible in the online version of the article; http://dx.doi.org/10.3233/
AIC-150685.)

problem, which follows the one developed earlier for
MaxSAT (see Fig. 7). To achieve this goal, the paper
introduces the problems of maximum and maximal fal-
sifiability. The case of plain maximal falsifiability is
shown to correspond to the computation of a maximal
independent set in an undirected graph. Also, the pa-
per develops a reduction of maximal independent set
into maximal falsifiability (and so to minimal satisfia-
bility), which does not involve hard clauses. Moreover,
as pointed out, maximal falsifiability can be viewed as
a more general formulation (with respect to maximal
independent set), as it allows hard clauses to be con-
sidered. The proposed reduction brings a number of
important practical applications of the proposed max-
imum and maximal falsifiability framework includ-
ing the well-known graph-related problems, as well as
many others. Maximal falsifiability is also used to in-
troduce a number of new concepts: maximal falsifiable
subsets (MSFes), minimal correction for falsifiability
subsets (MCFSes) and minimal non-falsifiability sub-
sets (MNFSes). In addition, the paper develops native
algorithms for both maximal and maximum falsifiabil-
ity, namely algorithms for computing one MFS and for
solving the MaxFalse problem, and shows how these
problems can be solved by reduction to MaxSAT. Fi-
nally, minimal hitting set duality between MCFSes and
MNCSes is proven for the general (partial) case. The
preliminary experimental results indicate that the pro-
posed algorithms for maximal falsifiability can com-
pete with the state-of-the-art algorithms enumerating
MCSes in terms of both the running time and the solu-

tion quality. As for the maximum falsifiability, the pa-
per issues the challenge of developing efficient native
algorithms for MaxFalse including native core-guided
algorithms.

The work described in the paper opens a significant
number of research directions. Concrete examples in-
clude additional native algorithms for computing MF-
Ses and for MaxFalse, as well as improved versions of
the proposed algorithms, among others.
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