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Abstract. Maximum Independent Set (MIS) is a well-known NP-hard graph
problem, tightly related with other well known NP-hard graph problems, namely
Minimum Vertex Cover (MVC) and Maximum Clique (MaxClq). This paper in-
troduces a novel reduction of MIS into Minimum Satisfiability (MinSAT), thus,
providing an alternative approach for solving MIS. The reduction naturally maps
the vertices of a graph into clauses, without requiring the inclusion of hard clauses.
Moreover, it is shown that the proposed reduction uses fewer variables and clauses
than the existing alternative of mapping MIS into Maximum Satisfiability (Max-
SAT). The paper develops a number of optimizations to the basic reduction, which
significantly reduce the total number of variables used. The experimental evalu-
ation considered the reductions described in the paper as well as existing state-
of-the-art approaches. The results show that the proposed approaches based on
MinSAT are competitive with existing approaches.

1 Introduction

Maximum Independent Set (MIS) is a well-known NP-hard graph problem, tightly re-
lated with other well known NP-hard graph problems, namely Minimum Vertex Cover
(MVC) and Maximum Clique (MaxClq) [13]. These NP-hard graph problems find
a wide range of practical applications, having been extensively studied in a number
of settings over the last few decades (e.g. see [1, 4, 6–10, 12, 18, 23–25, 30, 35, 36,
42–46, 48, 49, 51, 56] and references therein). A large number of solutions have been
developed for these NP-hard graph problems including complete algorithms, e.g.
branch-and-bound search, but also incomplete algorithms, e.g. local search, genetic al-
gorithms. These works also include recent algorithms for the MaxClq problem [35], as
well as reductions of MaxClq to Maximum Satisfiability (MaxSAT) [36].

In contrast, and although work in Minimum Satisfiability (MinSAT) [27, 40] can be
traced to the mid 90s, to our best knowledge, no natural applications have been de-
scribed in the literature for MinSAT. For example, earlier work on MinSAT mainly tar-
geted the development of inapproximability results for other combinatorial optimization
problems. Admittedly, it is well-known how to reduce the different variants of MaxSAT
to MinSAT (e.g. [19, 37]). For example, by flipping the polarity of literals when soft
clauses are all unit, one obtains a MinSAT instance instead of a MaxSAT instance [37].
However, since algorithms for MaxSAT and MinSAT share many insights, these map-
pings are not expected to provide significant breakthroughs. Nevertheless, there has
been significant recent research activity on algorithms for the MinSAT problem, and
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its variants [19, 34, 37, 38], and so it is of interest to find combinatorial optimization
problems that can be modeled as variants of MinSAT. A preliminary example towards
achieving this goal is the encoding of WMaxCSP into weighted partial MinSAT, re-
cently proposed in [3].

This paper represents another step towards identifying combinatorial problems that
can be modeled as variants of MinSAT, in our case of (weighted) MinSAT. More con-
cretely, this paper establishes a relationship between MIS (and other related NP-hard
graph problems) and MinSAT, by showing how to reduce MIS to MinSAT. The reduc-
tion of MIS (and so of related graph problems) to MinSAT is significant due to the fact
that it provides many concrete practical applications of MinSAT, something that to our
best knowledge was not known. Besides the basic reduction (and associated proof), the
paper also develops a number of optimizations which are shown to be crucially effective
when solving MIS problem instances in practice.

The paper is organized as follows. Section 2 introduces the notation and definitions
used throughout the paper. Section 3 develops the basic reduction of MIS to MinSAT.
Section 4 develops optimizations to the basic reduction which in practice yield signif-
icant reductions in the number of used variables. Preliminary experimental results are
analyzed in Section 5. Finally, Section 6 concludes the paper.

2 Preliminaries

This section briefly introduces the definitions used throughout the paper. Additional
standard definitions can be found elsewhere (e.g. [5]). Boolean formulas are repre-
sented in calligraphic font: F ,M,S, T ,U ,W ,F ′, etc. A Boolean formula in conjunc-
tive normal form (CNF) is defined as a finite set of finite sets of literals. Where ap-
propriate, a CNF formula will also be understood as a conjunction of disjunctions of
literals, where each disjunction represents a clause and a literal is a Boolean variable
or its complement. Boolean variables are represented by {x, x1, x2, . . .}, and literals by
{l, l1, l2, . . .}. The set of all variables of formula F is denoted by var(F). The clauses
of a formula are represented by {c, c1, c2, . . .}. Two literals are said to be complemen-
tary, if one of the literals corresponds to a variable x, while the other corresponds to the
negation of the variable, that is ¬x. An assignment is a mappingA : var(F) �→ {0, 1}.
A clause is satisfied by an assignment if one of its literals is assigned value 1. A model
of F is an assignment that satisfies all clauses in F .

The standard definitions of MinSAT and MaxSAT are assumed (e.g. [32,38]). In the
context of MinSAT and MaxSAT, a formula F is viewed as a 2-tuple (H,R), where H
denotes the hard clauses, which must be satisfied, and R denotes the soft (or relaxable)
clauses. A weight can be associated with each clause, such that hard clauses have a
special weight �. Hence, the weight function is a mapping w : H ∪ R → {�} ∪ N,
such that ∀c∈H w(c) = � and

∑
c∈Rw(c) < �. If no weight function is specified, it is

assumed that ∀c∈Rw(c) = 1.
The MinSAT and MaxSAT problems are defined as follows. The Minimum/Maxi-

mum Satisfiability (MinSAT/MaxSAT) problem consists in computing a subset of soft
clauses S ⊆ R, that minimizes/maximizes the sum of the weights of the clauses in S,
such that S ∪ H is satisfiable while falsifying R \ S. Closely related to MinSAT, is
the Maximum Falsifiability (MaxFalse) problem, which corresponds to computing the
complement of a solution of the MinSAT problem (see [22]).
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The paper also considers a number of optimization problems in graphs. Consider an
undirected graph G = (V,E), where r = |V | and s = |E|. An Independent Set (IS) is a
set I ⊆ V such that ∀u,v∈I , (u, v) �∈ E. A Vertex Cover (VC) is a set C ⊆ V such that
∀(u,v)∈E , u ∈ C∨v ∈ C. Finally, a Clique (or complete subgraph) is a set L ⊆ V such
that ∀u,v∈L, u �= v ⇒ (u, v) ∈ E. Given an independent set I ⊆ V , a well-known
result is that V \ I is a vertex cover of G and I is a clique of the complemented graph
GC (e.g. [13]). The Maximum Independent Set (MIS) problem consists in computing
an IS of largest size. The problem can be generalized to the case when a weight is
associated with each vertex. More importantly, given the above relationships between
ISes, VCes and cliques, a solution of the MIS problem also represents a solution for
Minimum Vertex Cover (MVC) of a graph G, as well as a Maximum Clique (MaxClq)
of the complemented graph GC .

2.1 Related Work

As mentioned before, a solution for the MIS problem can be used to compute a solu-
tion for the MVC problem or the MaxClq problem (and vice-versa). Approaches to the
considered problems can be divided in two main categories, either exact algorithms or
heuristic methods. Heuristic algorithms try to obtain a solution quickly but do not guar-
antee the optimality of the solution returned. Local search has been extensively used
as a way to obtain a heuristic solution to the problems (e.g. see [1, 4, 7–10, 44, 45] and
references therein).

An approximation to the MIS problem can also be obtained by a greedy algorithm
[14] that at each step selects a vertex to belong to the MIS and removes all other vertices
that share an edge with the selected vertex. In [14,39,57], the greedy heuristic approach
was explored as a way to obtain lower bounds in a branch-and-bound procedure for
binate covering problems.

In contrast to the heuristic methods, exact algorithms guarantee the optimality of
the solution returned. Many exact algorithms can be found in the literature, most of
which are based on the branch-and-bound technique (e.g. [11, 15, 28, 35, 36, 42, 47,
50, 52–54]). An additional approach to solve MaxClq is characterized by encoding the
MaxClq problem into MaxSAT, and use an off-the-shelf MaxSAT solver on the encoded
instance. Nevertheless, such approach is not competitive with current state-of-the-art
exact MaxClq solvers [36] (also confirmed by our experimental results, see Section 5).

Recent years have seen a growing interest in the development of algorithms and
techniques for the MinSAT problem. Existing works can be categorized in two main
areas of research: either by reducing the MinSAT problem into a MaxSAT problem
(e.g. [20,29,34,58]); or by proposing a dedicated MinSAT solver (e.g. [2,3,20,37,38]).

3 Reducing MIS to MinSAT

Reductions of MaxClq to MaxSAT are well-known (e.g. [35]). Since a solution to a MIS
problem can be obtained by solving the MaxClq problem of the complemented graph,
then MaxSAT algorithms can be used for computing solutions to MIS. Additionally,
MaxSAT can be reduced into MinSAT using auxiliary variables [55], thus making it
possible to solve MIS through MinSAT.

This section proposes a natural reduction of the MIS problem directly into MinSAT
that does not require the addition of hard clauses. The proposed reduction, referred to
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Fig. 1. Example graph

as basic, was recently mentioned in the context of Maximum Falsifiability [22]. Maxi-
mum Falsifiability (MaxFalse) was introduced in [22] as the problem of computing the
complement of a MinSAT solution.

Consider an undirected graph G = (V,E), and a CNF formula F . The idea of the
basic reduction into MinSAT/MaxFalse is to associate with each vertex vi ∈ V , a clause
ci ∈ F . If ci is falsified in the MinSAT/MaxFalse solution of F , then the corresponding
vertex vi is included in the solution of the MIS of G.

Each pair of clauses ci, cj ∈ F , whose associated vertices have an edge between
them in the graph ((vi, vj) ∈ E), cannot be allowed to be falsified simultaneously (due
to the independence of vertices). As such, for each edge (vi, vj) ∈ E, a new variable x
is created, and the literal x is added to ci, while ¬x is added to cj . Any assignment to
the variable x will force at least one of the clauses ci or cj to be satisfied.

Example 1. Consider the graph G = (V,E), with V = {v1, v2, v3, v4, v5} and E =
{(v1, v2), (v2, v3), (v2, v4), (v2, v5), (v3, v5)}, as shown in Figure 1.

The basic reduction creates a new CNF formula F . Each vertex vi is represented by
a clause ci, and each edge of the graph (vi, vj) introduces a new variable xi,j . Formula
F is formed by the clauses in Equation 1.

c1 = x1,2

c2 = ¬x1,2 ∨ x2,3 ∨ x2,4 ∨ x2,5

c3 = ¬x2,3 ∨ x3,5

c4 = ¬x2,4

c5 = ¬x2,5 ∨ ¬x3,5

(1)

The following proposition proves the correctness of the basic reduction.

Proposition 1. Given a graph G = (V,E). Let F be a CNF formula obtained from G
by the above basic reduction.

(1) Any MinSAT/MaxFalse solution of F represents an MIS of G.
(2) Any MIS solution of G represents a MinSAT/MaxFalse solution of F .

Proof. Here we consider just MaxFalse (for MinSAT the complement can be used).
(1) Consider a MaxFalse solution of F , and let F ′ ⊆ F be the set of clauses that

are falsified by the MaxFalse solution. Then there is an assignment A that falsifies all
clauses in F ′. Let V ′ ⊆ V be a set of vertices that are associated to the clauses in F ′.

First we prove that the vertices in V ′ are independent. Assume by contradiction
that the vertices in V ′ are not independent. Then there is (at least) one edge between
two of its vertices, which means there is a variable x such that x belongs to one of the
associated clauses in F ′ and ¬x to another. Those two clauses cannot be simultaneously
falsified, which is a contradiction since A falsifies all clauses in F ′.
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Now we prove that V ′ is an MIS of G. Assume by contradiction that V ′ is not max-
imum. Then there is a set V ′′ ⊆ V such that V ′′ is an MIS and |V ′′| > |V ′|. Let
F ′′ ⊆ F be the set of clauses associated to V ′′. Since the vertices in V ′′ are inde-
pendent (no edges between them), the clauses in F ′′ share no variables, and can be
simultaneously falsified (consider an assignment that falsifies all literals in F ′′). But
|F ′′| = |V ′′| > |V ′| = |F ′|, which is a contradiction since F ′ is a MaxFalse/MinSAT
solution.

(2) Consider V ′ ⊆ V an MIS of G and let F ′ ⊆ F be the set of clauses associated
to the vertices in V ′. The clauses in F ′ are simultaneously falsifiable, because the ver-
tices in V ′ are independent, which means the clauses in F ′ share no variables, so the
assignment that falsifies all literals in the F ′ is able to falsify all clauses in F ′.

Finally, we prove that F ′ is a MaxFalse solution. Consider by contradiction that F ′
is not a MaxFalse solution. Since the clauses in F ′ are simultaneously falsifiable, then
there is a set F ′′ ⊆ F such that F ′′ is a MaxFalse solution and |F ′′| > |F ′|. Let
V ′′ ⊆ V be the set of vertices associated to the clause in F ′′. Since the clauses in F ′′
are simultaneously falsifiable then the vertices in V ′′ are independent (otherwise there
would be two different clauses in F ′′ containing complementary literals, and the clauses
in F ′′ could not be simultaneously falsifiable). But |V ′′| = |F ′′| > |F ′| = |V ′|, which
is a contradiction since V ′ is a MIS of G. �

Observe that, given a graph with r vertices and s edges, the basic reduction of MIS
into MinSAT/MaxFalse always introduces s variables and r clauses1. As such, the basic
reduction represents a polynomial-time reduction from MIS to MinSAT/MaxFalse2.

Although the proposed reduction is not efficient in terms of the number of used
variables, it is still more compact than the known reductions from MaxClq to MaxSAT
(e.g see [35, 36]). To the best of our knowledge, there are two MaxSAT encodings of
MaxClq described in the literature, both have to deal with not only soft clauses but
also with hard clauses (partial MaxSAT instances are constructed). Given a graph G =
(V,E), |V | = r, |E| = s, the first encoding produces r variables and r soft clauses, as
well as r·(r−1)

2 − s hard clauses (one hard clause for each edge of the complemented
graph GC ). The improved version of this encoding reduces the number of soft clauses to
k, where k ≤ r is the number of disjoint independent sets of G computed heuristically.
The reader is referred to [35, 36] for details.

Additionally observe that, the basic reduction does not always produce a formula
with the minimal number of variables. That is, there are graphs for which a CNF formula
with r clauses and less than s variables can be obtained, whose MinSAT/MaxFalse
solution represents an MIS solution of the original graph. Section 4 introduces several
techniques that reduce the number of variables.

1 Note that the number of edges s is usually much higher than the number of vertices r and can
be potentially close to r·(r−1)

2
.

2 Observe that since MIS is an NP-hard problem, then the basic reduction provides an (alter-
native) natural proof of NP-hardness of both MinSAT and MaxFalse. The original proof of
NP-hardness of MinSAT was demonstrated by reducing MaxSAT into MinSAT (see [27]).
However, note that 2-MIS — the maximum independent set problem for a graph with a vertex
degree bounded by 2 — can be trivially solved in polynomial time [17]. Therefore, the basic
reduction does not cover the case of NP-hardness of 2-MinSAT/2-MaxFalse, even though they
are also known to be NP-hard (see [27]).
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4 Improvements to the Basic Reduction

Consider a graph G = (V,E), |V | = r, |E| = s. As it was shown in Section 3, the
number of variables introduced by the basic reduction of the MIS problem for G to
MinSAT/MaxFalse is equal to the number of edges of the graph G, which is bounded
by r·(r−1)

2 . This means that in the case of dense graphs with a large number of vertices
the basic reduction generates CNF formulas with a large number of variables, which
does not allow one to efficiently use this reduction in practice. This section describes 3
techniques for producing CNF formulas with a number of variables smaller by orders
of magnitude compared to the basic reduction. In some cases decreasing the number
of variables also leads to formula simplification by decreasing the number of clauses.
Additionally, we also make the conjecture that given a graph G, finding a formula F
with the minimum number of variables cannot be done in polynomial time.

4.1 Greedy Approach

In contrast to introducing a new variable for each edge of graph G, the greedy approach
is able to use one variable for several edges. The greedy approach hinges on the idea
that all edges incident to a vertex of G can be represented by one Boolean variable. As
a result, the number of variables used to encode a graph into a formula is bounded by
the number r of vertices of G.

The pseudocode of the greedy algorithm is shown in Algorithm 1. For any graph
G = (V,E) it constructs a set of clauses F , each clause of which corresponds to a
vertex of G and several edges of G can be encoded by the same pair of literals. Initially
each clause of formula F is an empty set of literals (see lines 2–5). Since the graphs
we consider are not directed, we assume that both (vi, vj) and (vj , vi) denote the same
edge between vertices vi and vj of the graph. The idea of the algorithm is that each
edge incident to a vertex vi can be encoded by the same pair of literals xi and ¬xi.
Therefore, at each iteration of the main loop, Algorithm 1 picks a vertex vi of G with
the maximum degree (line 7) and introduces a positive literal xi to clause ci (line 8).
After that for each vertex vj that has a connection to vi, clause cj gets a literal ¬xi (see
line 10). All the considered edges (all the ones incident to vi) are removed from graph
G. The loop continues until there are no edges in the graph that are not yet encoded.

Example 2. Consider the graph represented in Figure 1. Figure 2 illustrates how the
greedy reduction works. First, it picks v2 as a vertex with the maximum degree and
adds a literal x2 into c2, while literal ¬x2 is added into clauses c1, c3, c4, and c5. Then
the corresponding edges are removed from the graph. The only edge in the graph that is
not yet considered is the edge (v3, v5). The next vertex with the maximum degree is v3.
The algorithm adds literal x3 into clause c3, while ¬x3 is added into c5. The resulting
set of clauses is shown in (2) below.

c1 = ¬x2

c2 = x2

c3 = ¬x2 ∨ x3

c4 = ¬x2

c5 = ¬x2 ∨ ¬x3

(2)
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Algorithm 1. Greedy reduction algorithm

1 Function Greedy(G = (V,E))
2 F ← ∅
3 foreach vi ∈ V do
4 ci ← ∅
5 F ← F ∪ ci

6 while E �= ∅ do
7 vi ← vertex in V with maximum degree
8 ci ← ci ∪ {xi}
9 foreach vj ∈ V s. t. (vi, vj) ∈ E do

10 cj ← cj ∪ {¬xi}
11 E ← E \ {(vi, vj)}

12 return F

v1

v4

v2

v5

v3

(a) Pick v2 and encode its connections

v1

v4

v2

v5

v3

(b) Pick v3 and encode its connections

Fig. 2. Example on how the greedy approach works

Proposition 2. Given a graph G with r vertices, the complexity of the greedy reduction
algorithm for graph G is O(r2).

Proof. Observe that the algorithm has to traverse all the edges of graph G, and each is
traversed once. The trivial worst case scenario is when graph G is a clique — in this
case graph G has r2 edges. �

Proposition 3. Given a graph G = (V,E), let F = Greedy(G). V ′ ⊆ V is an MIS of
G iff the set F ′ ⊆ F of clauses associated to the vertices in V ′ is a MaxFalse solution
(the complement of a MinSAT solution) of F .

For the sake of succinctness and due to lack of space, we do not provide a proof of
Proposition 3. However, the correctness of the greedy approach can be shown using an
argumentation analogous to the proof of Proposition 1.

Also note that the proposed greedy algorithm is known to be not optimal in terms
of the number of used variables. A simple example of a graph, for which the greedy
approach is not optimal is shown in Figure 3. For this graph it is enough to introduce 4
variables, while the greedy algorithm introduces 5 variables. The resulting set of clauses
produced by the greedy algorithm and the optimal encoding are shown in Figure 4.

Nevertheless, the greedy algorithm can be seen as a significant improvement over
the basic approach. Given a graph G = (V,E), where |V | = r, the basic reduction can
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v1

v2 v3

v4 v5

v6 v7

v8 v9

Fig. 3. Counterexample showing non-optimality of the greedy algorithm

c1 = x1

c2 = ¬x1 ∨ x2

c3 = ¬x1 ∨ x3

c4 = ¬x1 ∨ x4

c5 = ¬x1 ∨ x5

c6 = ¬x2

c7 = ¬x3

c8 = ¬x4

c9 = ¬x5

(a) Greedy encoding

c1 = ¬x2 ∨ ¬x3 ∨ ¬x4 ∨ ¬x5

c2 = x2

c3 = x3

c4 = x4

c5 = x5

c6 = ¬x2

c7 = ¬x3

c8 = ¬x4

c9 = ¬x5

(b) Optimal encoding

Fig. 4. Sets of clauses produced for the graph shown in Figure 3

potentially introduce O(r2) variables while the number of variables used by the greedy
algorithm is bounded by r.

4.2 Optimizations

This section provides a description of two additional heuristic techniques for minimiz-
ing the number of variables. Both techniques can be applied to the formulas produced
by the considered basic and greedy reduction algorithms.

Variable Compatibility. Although CNF formulas produced by the greedy reduction
are much more compact (in terms of the number of used variables) than the ones pro-
duced by the basic reduction, in some cases it might be still possible to reduce the
number of variables even more. The following technique is referred to as variable com-
patibility. The idea of the variable compatibility method originates from the approaches
used in the automata theory for the finite-state machine minimization, which makes use
of the so-called compatibility graphs and merger tables [21, 26].
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While the original method of simplifying finite-state machines (e.g. see [26]) oper-
ates with the so-called compatible states, here we use a notion of compatible variables.
Variables decided to be compatible can replace each other and, thus, reduce the to-
tal number of variables. Assume that for a given graph G = (V,E), where |V | = r,
|E| = s, an MIS to MaxFalse reduction (either basic or greedy) produces a CNF for-
mula F over a set X , |X | = k, variables. Note that for the case of the basic reduction
k ≤ s, for the greedy reduction, k ≤ r.

The variable compatibility method consists in constructing and filling a k × k table,
rows and columns of which are labeled by variables of X . Filling a cell of the table with
coordinates (xi, xj) means that variables xi and xj are not compatible. Initially, all the
cells of the table are empty (all variables are possibly compatible). The following rules
can be used in order to conclude that two variables are not compatible.

1. A clause of F cannot be a tautology, i.e. it cannot contain literals xi and ¬xi si-
multaneously. For example, given a clause ¬x1 ∨ x2, variables x1 and x2 cannot
replace each other. Otherwise, the clause is a tautology.

2. The structure of the clauses must enforce no new connection between vertices of
the original graph G. For example, given two clauses ¬x1 ∨ x2 and ¬x3, variables
x2 and x3 cannot replace each other. Otherwise, there is an edge between the cor-
responding vertices in the original graph.

Example 3. Consider the graph represented in Figure 1. Although the clauses produced
by the basic reduction for this graph are already shown in (1), for the sake of simplicity
we represent it again with each variable having exactly one index (instead of two).

c1 = x1

c2 = ¬x1 ∨ x2 ∨ x3 ∨ x4

c3 = ¬x2 ∨ x5

c4 = ¬x3

c5 = ¬x4 ∨ ¬x5

(3)

In order to determine the classes of compatible variables, the following compatibility
table can be constructed:

x1 x2 x3 x4 x5

x1 –
x2 *2*1,3 –
x3 *2*1,4 –
x4 *2*1,5 –
x5 *1,5 *3 *3,4 –

If two variables are not compatible because of violating rule 1, then the correspond-
ing cell of the table is marked by *. If they are not compatible because of rule 2, the cell
is marked by symbol *. The subscripts denote the clauses involved.

Note that rule 1 can be applied to each clause that contains both positive and negative
literals. The second rule can be applied to a pair of clauses if there is no edge between
the corresponding nodes in the original graph G. For checking that, one can construct
a graph GC , which is complement to G and use edges of GC to check the validity of
rule 2. In our example the edges of GC are represented by the pairs of clauses: (c1, c3),
(c1, c4), (c1, c5), (c3, c4), and (c4, c5).
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After applying both rules and filling the table one can see that there are 3 com-
patibility classes: (x2, x3, x4), (x3, x4), (x4, x5). Here, one can heuristically choose a
compatibility class to use. Using the first compatibility class (x2, x3, x4) enables us to
use 3 variables instead of the original 5: x1, x2, and x5 (variables x3 and x4 are replaced
by x2). Thus, as a result, the clauses after their modification are shown in (4).

c1 = x1

c2 = ¬x1 ∨ x2

c3 = ¬x2 ∨ x5

c4 = ¬x2

c5 = ¬x2 ∨ ¬x5

(4)

An immediate observation is that time complexity of the variable compatibility
heuristic is formed by the time required to check both rules 1 and 2. In order to check
rule 1, in the worst case one has to traverse pairs of literals in each clause of F . For
checking rule 2, in the worst case one has to traverse pairs of literals in all pairs of
clauses. Thus, the complexity of variable compatibility is O(k2 · r2), where k and r are
numbers of variables and clauses in the original formula F , respectively.

Also observe that the example above illustrates the non-optimality of the variable
compatibility technique. It was shown in Section 4.1 that it is enough to use only 2
variables for encoding graph G from Figure 1, while variable compatibility leaves 3
variables in formula F after doing the simplification.

Literal Compatibility. An immediate observation is that a possible improvement of
variable compatibility, which was shown above to be not optimal, can be literal com-
patibility. The idea is that instead of computing compatibility classes for variables, one
can try to determine classes of compatible literals. The two rules to apply are almost
the same and can be seen as a generalization of the ones presented in Section 4.2:
1. (no tautology), e.g. given a clause ¬x1 ∨ x2, literals ¬x1 and ¬x2 are not compat-

ible. Note that if literals x1 and xj are not compatible, then literals ¬x1 and ¬x2

are not compatible as well.
2. (no new connection), e.g. given a pair of clauses: ¬x1∨x2 and¬x3, literals ¬¬x1 =

x1 and ¬x3, ¬x2 and ¬x3 are not compatible.

Example 4. Consider the graph shown in Figure 1. In order to improve the basic reduc-
tion, one can construct the following compatibility table.

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4 x5 ¬x5

x1 – –
¬x1 – –
x2 *2*1,3 – –

¬x2 *2*1,3 – –
x3 *2*1,4 *2*3,4 – –

¬x3 *2*1,4 *2*3,4 – –
x4 *2*1,5 *2 *2*4,5 – –

¬x4 *2*1,5 *2 *2*4,5 – –
x5 *1,5 *1,3 *3 *3,4 *4,5 *5 – –

¬x5 *1,3 *1,5 *3 *4,5 *3,4 *5 – –
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The compatibility classes for literals x and ¬x should be symmetric (e.g. see com-
patibility classes (x1,¬x2,¬x3,¬x4) and (¬x1, x2, x3, x4)). Thus, we consider only
classes for positive literals. So, according to the result table there are the following
classes: (x1,¬x2,¬x3,¬x4), (x2, x3, x4,¬x5), (x3, x4), and (x4, x5). Using the first
compatibility class, one can get 2 variables instead of the original 5. As a result, the
clauses after their modification (using the first compatibility class) are:

c1 = x1

c2 = ¬x1

c3 = x1 ∨ x5

c4 = x1

c5 = x1 ∨ ¬x5

(5)

Observe that time complexity of the literal compatibility heuristic is asymptotically
the same (O(k2 · r2)) as the time complexity of variable compatibility. The only dif-
ference is that instead of k variables, for the case of literal compatibility 2k literals are
considered.

Note that although literal compatibility is supposed to be more compact than vari-
able compatibility, it is still not optimal in terms of the number of used variables. As an
example, one can consider a graph shown in Figure 3 and use the literal compatibility
technique to reduce the set of clauses produced by the greedy reduction (see Figure 4a).
In this case, literal compatibility is not able to remove any variable and leaves the for-
mula as it is, containing 5 variables. Recall that the optimal encoding for the graph
presented in Figure 3 is shown in Figure 4b and contains 4 variables.

4.3 Further CNF Formula Simplification

All the techniques described in the previous sections can reduce the number of vari-
ables used when reducing MIS to MinSAT/MaxFalse by orders of magnitude (see
Section 4.1). However, one can simplify the resulting formula even more. Here we give
a brief explanation of how we can make the formula simpler after we have finished
removing variables.

Recall that each clause of the formula being produced represents a vertex of the
original graph. In many practical cases the number of removed variables is so large that
some of the clauses that originally represent different vertices of the graph and, thus,
have different literals, start duplicating each other. With a view to simplify the formula,
one can keep just one version of each clause while removing all the duplications and
making the formula weighted. Although it is not always the case, there are situations
when formulas being produced get simplified by orders of magnitude. As an example,
Table 1 shows the number of variables and clauses in the formulas produced for the
c-fat family of DIMACS MaxClq3 instances by the basic reduction, and the greedy
reduction with and without variable compatibility optimization. Additionally it also
reports the running time of the MinSatz solver for all the considered instances. Note that
MinSatz could not solve 4 instances produced by the basic reduction while it was able
to immediately report the answer for all the instances encoded by the greedy approach
using variable compatibility.

3 ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique/

ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique/
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Table 1. Example of formula sizes for the basic reduction with and without variable compatibility

basic greedy greedy+vc
# of vars # of clauses r.t. # of vars # of clauses r.t. # of vars # of clauses r.t.

In
st

an
ce

c-fat200-1 18366 200 0.4 188 200 0.05 35 37 0
c-fat200-2 16665 200 0.75 176 200 0.07 16 18 0
c-fat200-5 11427 200 0.96 142 200 0.07 5 7 0
c-fat500-1 120291 500 — 486 500 0.63 78 80 0
c-fat500-10 78123 500 — 374 500 0.53 6 8 0
c-fat500-2 115611 500 — 474 500 0.51 38 40 0
c-fat500-5 101559 500 — 436 500 0.37 14 16 0

4.4 Complexity of Reducing the Number of Variables

Previous sections 4.1 and 4.2 investigated the ways to simplify CNF formulas produced
by the MIS reduction to MinSAT/MaxFalse in terms of the number of used variables.
Note that the number of clauses of the result CNF formulas were considered to be fixed.
We also showed that in this sense all the considered improvements to the reduction are
not optimal in general, i.e. the number of used variables in general is greater or equal to
the minimum number of variables introduced by a potentially optimal encoding.

Let us formulate a problem of finding an optimal encoding as follows: given a graph
G on r vertices construct a CNF formula F with exactly r clauses and a smallest possi-
ble number of variables. Let us refer to this problem as MinRed. An important question
is whether there is polynomial-time algorithm for solving MinRed. Although we do not
know the answer to this question, our conjecture is that there is no polynomial time
algorithm for solving MinRed. A support of this conjecture is that the MinRed problem
seemingly is at least as hard as the Minimum Vertex Cover problem (MVC). The basic
idea of the conjecture is both MinRed and MVC being minimization problems, MVC
approximates MinRed. This means that given a graph G = (V,E), |V | = r, |E| = s,
the size µ′ of its MinRed solution is always lower or equal to the size µ′′ of any vertex
cover of G (including its MVC).

Indeed, any vertex cover of size µ′′ of the graph G can be used to construct a CNF
formula containing exactly r clauses and µ′′ variables. To do so, one can apply an
algorithm similar to the greedy reduction algorithm described in Section 4.1. Such an
algorithm introduces a new variable xi for each vertex vi in the MVC of G and adds
literal xi to the corresponding clause ci of F while adding its complementary literal
¬xi into all clauses cj corresponding to the vertices vj connected to vi. Therefore, size
µ′′ of the MVC can be seen as an upper bound on the minimum possible number of
variables in F , i.e. µ′ ≤ µ′′. Moreover, there are cases where the minimum number
of variables in F is strictly less than the minimum vertex cover of G. An example of
such a situation is shown in Figure 5. For this graph the MVC solution has size 2 (it
includes vertices v1 and v2). However, the minimum number of variables in formula
F corresponding to G (the MinRed solution for G) is 1. It should be noted again that
although MVC’s upper-bounding MinRed gives an intuition that it must be at least as
hard to find a solution for MinRed as to find its upper bound (a solution for MVC), we
acknowledge that we do not know whether this is indeed true and there is no polytime
algorithm for MinRed nor we have a proof of this fact.
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v3 v4 . . . vr−1 vr

v1

v2

(a) Graph G and its MVC

c1 = x1

c2 = x1

c3 = ¬x1

c4 = ¬x1

. . .
cr−1 = ¬x1

cr = ¬x1

(b) The optimal formula F for G
Fig. 5. Example of a graph G, for which the size of the MVC of G is greater than the minimum
number of variables in the corresponding CNF formula F

5 Experimental Results

This section presents the results obtained in the experimental evaluation with the pro-
posed approaches. The experiments were performed on an Intel Xeon 5160 3GHz, with
4GB of memory, and running Fedora Linux operating system.

Although the MIS problem (and the other known NP-hard graph problems) is well
studied, to the best of our knowledge there are not many native MIS instances available.
Therefore, the classes of benchmarks used in the evaluation are described below.

1. We considered several known sets of native crafted MaxClq benchmarks, namely
DIMACS MaxClq, FRB, and additional MaxClq instances studied in [35, 36, 38].
All the mentioned benchmark sets comprise the Crafted MaxClq set of benchmarks
used in our experimental evaluation. The total number of instances in the Crafted
MaxClq benchmark set is 117.

2. Another considered benchmark set includes native MIS instances. These instances
are obtained from the Binate Covering Problem benchmarks (BCP) since it is
known that solving MIS can be seen as an approximation for BCP (e.g. see [14,57]).

The total number of instances considered is 233.
The experimental evaluation is aimed at showing that the proposed reduction from

MIS to MinSAT/MaxFalse can be seen as an efficient way to solve the MIS problem.
In order to do so and since there are tight relationships between MIS and MaxClq,
MaxSAT and MinSAT/MaxFalse, we used several approaches to MIS/MaxClq and,
thus, the corresponding classes of dedicated solvers.

1. For both benchmark sets a native MaxClq solver called MaxCLQ was used. It is
known to be one of the best native tools for MaxClq4 (for a comprehensive com-
parison of different state-of-the-art tools for MaxClq see [31, 35, 36, 38]). In order
to enable MaxCLQ to deal with MIS instances, they were trivially transformed into
MaxClq by complementing the graphs.

2. MinSAT/MaxFalse instances were solved by MinSatz, which is a known branch-
and-bound MinSAT solver (see [38]). In order to produce MinSAT/MaxFalse in-
stances, we used the greedy reduction with variable compatibility and clause dupli-
cates removal.

4 Although it was reported in [31] that IncMaxCLQ was the best native solver for MaxClq, we
were not able to run it in our experimental evaluation.
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Table 2. Number of solved instances for different approaches

— CLQ MinSz MaxSz-d MaxSz-mf MiFuMaX-d MiFuMaX-mf Direct MaxSAT VBS MaxFalse VBS VBS
Crafted Clq 66 59 43 36 19 30 45 74 76

BCP 63 65 61 55 56 53 66 72 76
Total 129 124 104 91 75 83 111 146 152

3. Alternatively, we also transformed the MinSAT instances into MaxSAT with the
use of Tseitin variables (see [55]). The following MaxSAT solvers were applied
to the obtained MaxSAT instances: MaxSatz [33] and MiFuMaX [41]. MiFuMaX
was chosen since it is based on the widely used Fu&Malik’s core-guided algorithm
for MaxSAT (e.g. see [16]). The corresponding solvers in the evaluation are called
MaxSatz-mf and MiFuMaX-mf, respectively.

4. Finally, we considered MaxSAT instances that encode the MaxClq problem di-
rectly (without doing the MIS-to-MaxFalse transformations). The algorithm is an
improved MaxClq-to-MaxSAT encoding (see [36]) and uses enumeration of dis-
joint independent sets. For these instances MaxSatz and MiFuMaX solvers were
also used (MaxSatz-dir and MiFuMaX-dir in the evaluation, respectively).

Figure 6 shows a cactus plot illustrating the performance of the considered solvers
on the total set of all instances in both Crafted MaxClq and BCP benchmark sets. The
best performance overall is shown by MaxCLQ, which is able to solve 129 instances
out of 233. MinSatz comes second with 124 instances solved, which is 4% less than
MaxCLQ’s result. MaxSAT solvers dealing with both direct MaxClq-to-MaxSAT en-
codings and MaxSAT instances obtained from the MIS-to-MaxFalse encodings perform
significantly worse (see Figure 6).

Note that the virtual best solver (VBS) among the MaxSAT solvers dealing with the
direct MaxClq-to-MaxSAT encoding can solve 111 instances while the VBS incorporat-
ing all the approaches based on the MinSAT/MaxFalse encodings of MIS can solve 146
instances. The VBS among all the considered approaches is able to solve 152 instances,
which is only 6 instances more than the MinSAT/MaxFalse approach. Moreover, the
VBS of all the approaches based on the MinSAT/MaxFalse encodings is able solve 15
instances (6.4% out of all 233 instances) that none of the other considered approaches
can solve. Table 2 shows a detailed information about the number of instances solved
by different approaches to MIS/MaxClq.

The experimental results indicate that the direct MaxSAT approach to the MIS and
MaxClq problems has the worst performance among the considered approaches. A pos-
sible reason of the MinSAT approach being so much better than MaxSAT is that the
MinSAT encoding is more compact in terms of the number of introduced variables and
clauses, which is a result of the techniques proposed in the paper. Furthermore, the ad-
vantage of the MinSAT encoding is also explained by the fact that it does not contain any
hard clauses while the known MaxSAT encodings do use a large number of hard clauses.
Although the best performance is shown by MaxCLQ, which is a native MaxClq algo-
rithm, MinSatz is very close to MaxCLQ solving 4% fewer instances. It is also interest-
ing that the MinSAT/MaxFalse approach can solve 6.4% instances that cannot be solved
by other approaches (i.e. native MaxCLQ and direct MaxSAT). Moreover, although
there are not many papers on MinSAT solving (especially if compared to MaxSAT),
considering the virtual best solvers shows that the proposed MinSAT/MaxFalse ap-
proach to the MIS problem is a promising way to deal with the MIS/MaxClq problems.
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Fig. 6. Cactus plot showing the performance of the considered approaches

6 Conclusions

A number of new algorithms for the MinSAT problem have been proposed in recent
years [19,34,37,38]. Nevertheless, besides being used in problem reductions, MinSAT
has seldom been used for modeling and solving combinatorial optimization problems,
the exception being [3]. This paper represents another step towards identifying combi-
natorial optimization problems which can be solved with MinSAT. The paper proposes
a reduction from MIS (and so from related NP-hard graph problems) to MinSAT. The
paper also develops a number of heuristics to reduce the obtained MinSAT formulas. In
practice, the proposed techniques are very effective, and allow compacting the original
MinSAT formulas to a fraction of their original size. The experimental results show that
the obtained MinSAT formulas, solved with a standard MinSAT solver, allow obtain-
ing results that are comparable to native solvers for MaxClq instances, and outperform
those solvers on actual MIS instances. Moreover, the use of MinSAT comprehensively
outperforms approaches based on using a reduction to MaxSAT. In addition, the results
of the VBS solvers suggest that portfolios of solvers could significantly outperform
a standalone solver. Overall, the experimental results are promising, and motivate the
development of more efficient MinSAT solvers.

Future research work will focus on further improvements to the proposed MinSAT
models. Another area of research is to implement portfolios of solvers for NP-hard
graph problems, by exploiting some of the reductions proposed in recent years (includ-
ing the ones in this paper). Finally, another area of research is to develop more efficient
MinSAT solvers, e.g. similar to what has been done in the MaxSAT area in recent years.

Acknowledgments. This work is partially supported by SFI PI grant BEACON (09-
/IN.1/I2618), FCT grant POLARIS (PTDC/EIA-CCO/123051/2010), and INESC-ID’s
multiannual PIDDAC funding PEst-OE/EEI/LA0021/2013.



118 A. Ignatiev, A. Morgado, and J. Marques-Silva

References

1. Andrade, D.V., Resende, M.G.C., Werneck, R.F.F.: Fast local search for the maximum inde-
pendent set problem. J. Heuristics 18(4), 525–547 (2012)

2. Ansotegui, C., Li, C.M., Manya, F., Zhu, Z.: A SAT-based approach to MinSAT. In: Escrig,
M.T., Toledo, F.J., Golobardes, E. (eds.) CCIA 2002. LNCS (LNAI), vol. 2504, pp. 185–189.
Springer, Heidelberg (2002)
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58. Zhu, Z., Li, C.-M., Manyà, F., Argelich, J.: A new encoding from MinSAT into MaxSAT. In:
Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 455–463. Springer, Heidelberg (2012)


	On Reducing Maximum Independent Setto Minimum Satisfiability
	Introduction
	Preliminaries
	Related Work

	Reducing MIS to MinSAT
	Improvements to the Basic Reduction
	Greedy Approach
	Optimizations
	Variable Compatibility.
	Literal Compatibility.

	Further CNF Formula Simplification
	Complexity of Reducing the Number of Variables

	Experimental Results
	Conclusions


