A Scalable Two Stage Approach to Computing Optimal Decision Sets

Alexey Ignatiev1, Edward Lam1,2, Peter J. Stuckey1, Joao Marques-Silva3

February 4–7, 2021 | AAAI

1Monash University, Melbourne, Australia
2CSIRO Data61, Melbourne, Australia
3ANITI, IRIT, CNRS, Toulouse, France
Problem and state of the art
Problem example

(classification scenario)

<table>
<thead>
<tr>
<th>Date</th>
<th>Weekday</th>
<th>Dinner</th>
<th>Weather</th>
<th>TV Show</th>
<th>IF</th>
<th>THEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>e</td>
<td>e</td>
<td>Warm</td>
<td>Bad</td>
<td>IF TV Show</td>
<td>THEN Date = No</td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>e</td>
<td>Warm</td>
<td>Bad</td>
<td>IF Day = Weekday</td>
<td>THEN Date = No</td>
</tr>
<tr>
<td>3</td>
<td>e</td>
<td>e</td>
<td>Warm</td>
<td>Bad</td>
<td>IF TV Show = Bad ∧ Day = Weekend</td>
<td>THEN Date = Yes</td>
</tr>
</tbody>
</table>

unordered set of if-then rules must respect training data & generalize well...

highly interpretable!
Problem example

(classification scenario)

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Venue</th>
<th>Weather</th>
<th>TV Show</th>
<th>Date?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>Weekday</td>
<td>Dinner</td>
<td>Warm</td>
<td>Bad</td>
<td>No</td>
</tr>
<tr>
<td>e_2</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_3</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_4</td>
<td>Weekend</td>
<td>Club</td>
<td>Cold</td>
<td>Good</td>
<td>No</td>
</tr>
</tbody>
</table>

The smaller — the better!

Highly interpretable!
Problem example

(classification scenario)

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Venue</th>
<th>Weather</th>
<th>TV Show</th>
<th>Date?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>Weekday</td>
<td>Dinner</td>
<td>Warm</td>
<td>Bad</td>
<td>No</td>
</tr>
<tr>
<td>e_2</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_3</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_4</td>
<td>Weekend</td>
<td>Club</td>
<td>Cold</td>
<td>Good</td>
<td>No</td>
</tr>
</tbody>
</table>

- IF TV Show = Good THEN Date = No
- IF Day = Weekday THEN Date = No
- IF TV Show = Bad \land Day = Weekend THEN Date = Yes
Problem example

Classification scenario

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Venue</th>
<th>Weather</th>
<th>TV Show</th>
<th>Date?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>Weekday</td>
<td>Dinner</td>
<td>Warm</td>
<td>Bad</td>
<td>No</td>
</tr>
<tr>
<td>e_2</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_3</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_4</td>
<td>Weekend</td>
<td>Club</td>
<td>Cold</td>
<td>Good</td>
<td>No</td>
</tr>
</tbody>
</table>

If-then rules

- IF TV Show = Good THEN Date = No
- IF Day = Weekday THEN Date = No
- IF TV Show = Bad ∧ Day = Weekend THEN Date = Yes

unordered set of if-then rules
Problem example

(classification scenario)

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Venue</th>
<th>Weather</th>
<th>TV Show</th>
<th>Date?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>Weekday</td>
<td>Dinner</td>
<td>Warm</td>
<td>Bad</td>
<td>No</td>
</tr>
<tr>
<td>e_2</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_3</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_4</td>
<td>Weekend</td>
<td>Club</td>
<td>Cold</td>
<td>Good</td>
<td>No</td>
</tr>
</tbody>
</table>

IF TV Show = Good THEN Date = No
IF Day = Weekday THEN Date = No
IF TV Show = Bad ∧ Day = Weekend THEN Date = Yes

unordered set of if-then rules
must respect training data & generalize well...
Problem example

(classification scenario)

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Venue</th>
<th>Weather</th>
<th>TV Show</th>
<th>Date?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>Weekday</td>
<td>Dinner</td>
<td>Warm</td>
<td>Bad</td>
<td>No</td>
</tr>
<tr>
<td>e_2</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_3</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_4</td>
<td>Weekend</td>
<td>Club</td>
<td>Cold</td>
<td>Good</td>
<td>No</td>
</tr>
</tbody>
</table>

unordered set of if-then rules

- **IF** TV Show $=$ Good **THEN** Date $=$ No
- **IF** Day $=$ Weekday **THEN** Date $=$ No
- **IF** TV Show $=$ Bad \land Day $=$ Weekend **THEN** Date $=$ Yes

must respect training data & generalize well...
the smaller — the better!
Problem example

(classification scenario)

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Venue</th>
<th>Weather</th>
<th>TV Show</th>
<th>Date?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>Weekday</td>
<td>Dinner</td>
<td>Warm</td>
<td>Bad</td>
<td>No</td>
</tr>
<tr>
<td>e_2</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_3</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_4</td>
<td>Weekend</td>
<td>Club</td>
<td>Cold</td>
<td>Good</td>
<td>No</td>
</tr>
</tbody>
</table>

- **If** TV Show = Good **Then** Date = No
- **If** Day = Weekday **Then** Date = No
- **If** TV Show = Bad \land Day = Weekend **Then** Date = Yes

unordered set of if-then rules

must respect training data & generalize well...

the smaller — **the better!**

highly interpretable!
Motivation for decision sets

rule-based models
Motivation for decision sets

rule-based models

“transparent” and easy to interpret
Motivation for decision sets

rule-based models

“transparent” and easy to interpret

come in handy in XAI
input: training data \(E \)

output: smallest\(^a\) decision set \(\phi \)

1. \(N \leftarrow \text{LB} \)

2. **while** True:
 3. \(F \leftarrow \text{Encode}(E, N) \)
 4. \((st, \mu) \leftarrow \text{Oracle}(F) \)
 5. **if** \(st \) **is** True:
 6. **break**
 7. \(N \leftarrow N + 1 \)

8. \(\phi \leftarrow \text{ExtractRules}(\mu) \)

9. **return** \(\phi \)

\(^a\)wrt. the number of rules or literals

\(N \) equals a lower bound on \(|\phi| \), which is often set to 1

encode problem “is there a decision set \(\phi \) of size \(N \) for data \(E \)?”

call a reasoning oracle to answer the question

extract decision set \(\phi \) from satisfying assignment \(\mu \)
State of the art — a typical approach

input: training data E

output: smallesta decision set ϕ

1. $N \leftarrow \text{LB}$
 # N equals a lower bound on $|\phi|$, which is often set to 1

2. **while** True:

 3. $F \leftarrow \text{Encode}(E, N)$
 # encode problem “is there a decision set ϕ of size N for data E?”

 4. $(st, \mu) \leftarrow \text{Oracle}(F)$
 # call a reasoning oracle to answer the question

 5. **if** st is True:

 6. **break**

 7. $N \leftarrow N + 1$

8. $\phi \leftarrow \text{ExtractRules}(\mu)$
 # extract decision set ϕ from satisfying assignment μ

9. **return** ϕ

a wrt. the number of rules or literals

encoding is too large!
(does not scale)
Our approach
Our take on the problem

divide the process into two stages:

1. enumerate individual rules
 - MaxSAT-based
 - incremental
 - breaking symmetric rules

2. compute smallest rule cover
 - reduced to set cover
 - solved with ILP/MaxSAT

+ each class is computed independently

 the idea is to scale better
Our take on the problem

divide the process into two stages:

1. enumerate individual rules
Our take on the problem

divide the process into two stages:

1. enumerate individual rules
 - MaxSAT-based
 - incremental!

Each class is computed independently, the idea is to scale better.
Our take on the problem

divide the process into two stages:

1. enumerate individual rules
 - MaxSAT-based
 - incremental!
 - breaking symmetric rules
Our take on the problem

divide the process into two stages:

1. enumerate individual rules
 - MaxSAT-based
 - incremental!
 - breaking symmetric rules

2. compute smallest rule cover
 - each class is computed independently
 - the idea is to scale better
Our take on the problem

divide the process into two stages:

1. enumerate individual rules
 • MaxSAT-based
 • incremental!
 • breaking symmetric rules

2. compute smallest rule cover
 • reduced to set cover
 • solved with ILP/MaxSAT
Our take on the problem

divide the process into two stages:

1. enumerate individual rules
 - MaxSAT-based
 - incremental!
 - breaking symmetric rules

2. compute smallest rule cover
 - reduced to set cover
 - solved with ILP/MaxSAT

+ each class is computed independently
Our take on the problem

divide the process into two stages:

1. enumerate individual rules
 - MaxSAT-based
 - incremental!
 - breaking symmetric rules

2. compute smallest rule cover
 - reduced to set cover
 - solved with ILP/MaxSAT

+ each class is computed independently

the idea is to scale better
Stage 1 — learning rules

each rule is a solution to MaxSAT formula

$$\psi \triangleq H \land S$$
Stage 1 — learning rules

each rule is a solution to MaxSAT formula

\[\psi \triangleq H \land S \]

\(H \) — hard clauses
Stage 1 — learning rules

each rule is a **solution to MaxSAT formula**

\[\psi \triangleq H \land S \]

H — hard clauses

1. coverage constraints:
 - rule *must cover* \(\geq 1 \) right instances
Stage 1 — learning rules

each rule is a solution to MaxSAT formula

$$\psi \triangleq H \land S$$

H — hard clauses

1. **coverage constraints:**
 * rule must cover ≥ 1 right instances

2. **discrimination constraints:**
 * rule must not cover any wrong instances
Stage 1 — learning rules

each rule is a solution to MaxSAT formula

\[\psi \triangleq H \land S \]

\[H \quad \text{— hard clauses} \]

1. coverage constraints:
 • rule must cover \(\geq 1 \) right instances

2. discrimination constraints:
 • rule must not cover any wrong instances

\[S \quad \text{— soft clauses} \]

• minimize the number of used literals
Stage 1 — learning rules

each rule is a solution to MaxSAT formula

\[\psi \triangleq H \wedge S \]

- **H** — hard clauses
 1. coverage constraints:
 - rule must cover \(\geq 1 \) right instances
 2. discrimination constraints:
 - rule must not cover any wrong instances

- **S** — soft clauses
 - minimize the number of used literals

\(\Theta(K + M) \) variables and \(\Theta(K \times M) \) clauses

\(K \) — number of features, \(M \) — number of training instances
Stage 2 — computing rule cover

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Venue</th>
<th>Weather</th>
<th>TV Show</th>
<th>Date?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e₁</td>
<td>Weekday</td>
<td>Dinner</td>
<td>Warm</td>
<td>Bad</td>
<td>No</td>
</tr>
<tr>
<td>e₂</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e₃</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e₄</td>
<td>Weekend</td>
<td>Club</td>
<td>Cold</td>
<td>Good</td>
<td>No</td>
</tr>
</tbody>
</table>
Stage 2 — computing rule cover

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Venue</th>
<th>Weather</th>
<th>TV Show</th>
<th>Date?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>Weekday</td>
<td>Dinner</td>
<td>Warm</td>
<td>Bad</td>
<td>No</td>
</tr>
<tr>
<td>e_2</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_3</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_4</td>
<td>Weekend</td>
<td>Club</td>
<td>Cold</td>
<td>Good</td>
<td>No</td>
</tr>
</tbody>
</table>

\[\pi_1 = \left[\text{IF Day = Weekday THEN Date = No} \right] \]
Stage 2 — computing rule cover

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Venue</th>
<th>Weather</th>
<th>TV Show</th>
<th>Date?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e₁</td>
<td>Weekday</td>
<td>Dinner</td>
<td>Warm</td>
<td>Bad</td>
<td>No</td>
</tr>
<tr>
<td>e₂</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e₃</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e₄</td>
<td>Weekend</td>
<td>Club</td>
<td>Cold</td>
<td>Good</td>
<td>No</td>
</tr>
</tbody>
</table>

\[π₁ = \begin{cases} \text{IF Day = Weekday} & \text{THEN Date = No} \\ \end{cases} \]

\[π₂ = \begin{cases} \text{IF Venue = Dinner} & \text{THEN Date = No} \\ \end{cases} \]
Stage 2 — computing rule cover

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Venue</th>
<th>Weather</th>
<th>TV Show</th>
<th>Date?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e₁</td>
<td>Weekday</td>
<td>Dinner</td>
<td>Warm</td>
<td>Bad</td>
<td>No</td>
</tr>
<tr>
<td>e₂</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e₃</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e₄</td>
<td>Weekend</td>
<td>Club</td>
<td>Cold</td>
<td>Good</td>
<td>No</td>
</tr>
</tbody>
</table>

\[
\pi_1 = \left[\text{IF Day} = \text{Weekday} \ \text{THEN Date} = \text{No} \right]
\]

\[
\pi_2 = \left[\text{IF Venue} = \text{Dinner} \ \text{THEN Date} = \text{No} \right]
\]

\[
\pi_3 = \left[\text{IF Weather} = \text{Cold} \ \text{THEN Date} = \text{No} \right]
\]

\[
b_j \in \{0, 1\} \quad \text{and} \quad s_j = |\pi_j| \quad \text{for each} \quad \pi_j
\]

\[
A = (a_{ij}) \quad a_{ij} = 1 \iff \pi_j \text{ covers } e_i
\]

\[
\minimize \sum \sum \sum s_j \cdot b_j
\]

\[
\sum \sum \sum a_{ij} \cdot b_j \geq 1, \quad \forall i
\]
Stage 2 — computing rule cover

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Venue</th>
<th>Weather</th>
<th>TV Show</th>
<th>Date?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>Weekday</td>
<td>Dinner</td>
<td>Warm</td>
<td>Bad</td>
<td>No</td>
</tr>
<tr>
<td>e_2</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_3</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_4</td>
<td>Weekend</td>
<td>Club</td>
<td>Cold</td>
<td>Good</td>
<td>No</td>
</tr>
</tbody>
</table>

$\pi_1 = \left[\text{IF Day} = \text{Weekday} \quad \text{THEN Date} = \text{No} \right]$
$\pi_2 = \left[\text{IF Venue} = \text{Dinner} \quad \text{THEN Date} = \text{No} \right]$
$\pi_3 = \left[\text{IF Weather} = \text{Cold} \quad \text{THEN Date} = \text{No} \right]$
$\pi_4 = \left[\text{IF TV Show} = \text{Good} \quad \text{THEN Date} = \text{No} \right]$
Stage 2 — computing rule cover

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Venue</th>
<th>Weather</th>
<th>TV Show</th>
<th>Date?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>Weekday</td>
<td>Dinner</td>
<td>Warm</td>
<td>Bad</td>
<td>No</td>
</tr>
<tr>
<td>e_2</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_3</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_4</td>
<td>Weekend</td>
<td>Club</td>
<td>Cold</td>
<td>Good</td>
<td>No</td>
</tr>
</tbody>
</table>

\[
\pi_1 = \begin{cases}
\text{IF Day = Weekday} & \text{THEN Date = No} \\
\end{cases}
\]

\[
\pi_2 = \begin{cases}
\text{IF Venue = Dinner} & \text{THEN Date = No} \\
\end{cases}
\]

\[
\pi_3 = \begin{cases}
\text{IF Weather = Cold} & \text{THEN Date = No} \\
\end{cases}
\]

\[
\pi_4 = \begin{cases}
\text{IF TV Show = Good} & \text{THEN Date = No} \\
\end{cases}
\]

\[b_j \in \{0, 1\} \text{ and } s_j = |\pi_j| \text{ for each } \pi_j\]

\[
\begin{align*}
\sum_{j} b_j & \geq 1, \\
\sum_{j} a_{ij} & \cdot b_j & \geq 1, & \forall i
\end{align*}
\]
Stage 2 — computing rule cover

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Venue</th>
<th>Weather</th>
<th>TV Show</th>
<th>Date?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e₁</td>
<td>Weekday</td>
<td>Dinner</td>
<td>Warm</td>
<td>Bad</td>
<td>No</td>
</tr>
<tr>
<td>e₂</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e₃</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e₄</td>
<td>Weekend</td>
<td>Club</td>
<td>Cold</td>
<td>Good</td>
<td>No</td>
</tr>
</tbody>
</table>

\[\begin{align*}
\pi_1 &= [\text{IF Day = Weekday THEN Date = No}] \\
\pi_2 &= [\text{IF Venue = Dinner THEN Date = No}] \\
\pi_3 &= [\text{IF Weather = Cold THEN Date = No}] \\
\pi_4 &= [\text{IF TV Show = Good THEN Date = No}]
\end{align*} \]

\[b_j \in \{0, 1\} \text{ and } s_j = |\pi_j| \text{ for each } \pi_j \]

\[A = (a_{ij}), a_{ij} = 1 \text{ iff } \pi_j \text{ covers } e_i \]
Stage 2 — computing rule cover

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Venue</th>
<th>Weather</th>
<th>TV Show</th>
<th>Date?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e₁</td>
<td>Weekday</td>
<td>Dinner</td>
<td>Warm</td>
<td>Bad</td>
<td>No</td>
</tr>
<tr>
<td>e₂</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e₃</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e₄</td>
<td>Weekend</td>
<td>Club</td>
<td>Cold</td>
<td>Good</td>
<td>No</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\pi_1 &= \left[\text{IF } \text{Day} = \text{Weekday} \quad \text{THEN} \quad \text{Date} = \text{No} \right] \\
\pi_2 &= \left[\text{IF } \text{Venue} = \text{Dinner} \quad \text{THEN} \quad \text{Date} = \text{No} \right] \\
\pi_3 &= \left[\text{IF } \text{Weather} = \text{Cold} \quad \text{THEN} \quad \text{Date} = \text{No} \right] \\
\pi_4 &= \left[\text{IF } \text{TV Show} = \text{Good} \quad \text{THEN} \quad \text{Date} = \text{No} \right]
\end{align*}
\]

\[b_j \in \{0, 1\} \quad \text{and} \quad s_j = |\pi_j| \quad \text{for each} \quad \pi_j\]

\[A = (a_{ij}), \quad a_{ij} = 1 \text{ iff } \pi_j \text{ covers } e_i\]

<table>
<thead>
<tr>
<th></th>
<th>(\pi_1)</th>
<th>(\pi_2)</th>
<th>(\pi_3)</th>
<th>(\pi_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_{ij})</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(b_j)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

| \(s_j\) | 1 | 1 | 1 | 1 |
Stage 2 — computing rule cover

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Venue</th>
<th>Weather</th>
<th>TV Show</th>
<th>Date?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>Weekday</td>
<td>Dinner</td>
<td>Warm</td>
<td>Bad</td>
<td>No</td>
</tr>
<tr>
<td>e_2</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_3</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_4</td>
<td>Weekend</td>
<td>Club</td>
<td>Cold</td>
<td>Good</td>
<td>No</td>
</tr>
</tbody>
</table>

$\pi_1 = \left[\text{IF Day = Weekday } \Rightarrow \text{ Date = No } \right]$
$\pi_2 = \left[\text{IF Venue = Dinner } \Rightarrow \text{ Date = No } \right]$
$\pi_3 = \left[\text{IF Weather = Cold } \Rightarrow \text{ Date = No } \right]$
$\pi_4 = \left[\text{IF TV Show = Good } \Rightarrow \text{ Date = No } \right]$

$\mathbf{b}_j \in \{0, 1\}$ and $s_j = |\pi_j|$ for each π_j

$A = (a_{ij})$, $a_{ij} = 1$ iff π_j covers e_i

\[
\begin{array}{cccc}
\pi_1 & \pi_2 & \pi_3 & \pi_4 \\
\hline
a_{ij} & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
\hline
s_j & 1 & 1 & 1 & 1 \\
\end{array}
\]

minimize $\sum_j s_j \cdot b_j$

subject to $\sum_j a_{ij} \cdot b_j \geq 1, \forall i$
Breaking symmetric rules

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Venue</th>
<th>Weather</th>
<th>TV Show</th>
<th>Date?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>Weekday</td>
<td>Dinner</td>
<td>Warm</td>
<td>Bad</td>
<td>No</td>
</tr>
<tr>
<td>e_2</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_3</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_4</td>
<td>Weekend</td>
<td>Club</td>
<td>Cold</td>
<td>Good</td>
<td>No</td>
</tr>
</tbody>
</table>

IF TV Show = Good THEN Date = No vs. IF Weather = Cold THEN Date = No

rules covering same instances are symmetric no point in computing both!

for each rule, add one clause enforcing all following rules to cover ≥ 1 other instance
Breaking symmetric rules

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Venue</th>
<th>Weather</th>
<th>TV Show</th>
<th>Date?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>Weekday</td>
<td>Dinner</td>
<td>Warm</td>
<td>Bad</td>
<td>No</td>
</tr>
<tr>
<td>e_2</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_3</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_4</td>
<td>Weekend</td>
<td>Club</td>
<td>Cold</td>
<td>Good</td>
<td>No</td>
</tr>
</tbody>
</table>
Breaking symmetric rules

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Venue</th>
<th>Weather</th>
<th>TV Show</th>
<th>Date?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>Weekday</td>
<td>Dinner</td>
<td>Warm</td>
<td>Bad</td>
<td>No</td>
</tr>
<tr>
<td>e_2</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_3</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_4</td>
<td>Weekend</td>
<td>Club</td>
<td>Cold</td>
<td>Good</td>
<td>No</td>
</tr>
</tbody>
</table>

Rule:

- **IF** TV Show $=$ Good \quad **THEN** Date $=$ No

Note: Rules covering same instances are symmetric; no point in computing both! For each rule, add one clause enforcing all following rules to cover ≥ 1 other instance.
Breaking symmetric rules

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Venue</th>
<th>Weather</th>
<th>TV Show</th>
<th>Date?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>Weekday</td>
<td>Dinner</td>
<td>Warm</td>
<td>Bad</td>
<td>No</td>
</tr>
<tr>
<td>e_2</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_3</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_4</td>
<td>Weekend</td>
<td>Club</td>
<td>Cold</td>
<td>Good</td>
<td>No</td>
</tr>
</tbody>
</table>

IF TV Show $=$ Good THEN Date $=$ No

vs.

IF Weather $=$ Cold THEN Date $=$ No
Breaking symmetric rules

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Venue</th>
<th>Weather</th>
<th>TV Show</th>
<th>Date?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>Weekday</td>
<td>Dinner</td>
<td>Warm</td>
<td>Bad</td>
<td>No</td>
</tr>
<tr>
<td>e_2</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_3</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_4</td>
<td>Weekend</td>
<td>Club</td>
<td>Cold</td>
<td>Good</td>
<td>No</td>
</tr>
</tbody>
</table>

IF TV Show $=$ Good **THEN** Date $=$ No

vs.

IF Weather $=$ Cold **THEN** Date $=$ No

rules covering same instances are **symmetric**
Breaking symmetric rules

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Venue</th>
<th>Weather</th>
<th>TV Show</th>
<th>Date?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>Weekday</td>
<td>Dinner</td>
<td>Warm</td>
<td>Bad</td>
<td>No</td>
</tr>
<tr>
<td>e_2</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_3</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_4</td>
<td>Weekend</td>
<td>Club</td>
<td>Cold</td>
<td>Good</td>
<td>No</td>
</tr>
</tbody>
</table>

- **IF** TV Show = Good **THEN** Date = No
- **IF** Weather = Cold **THEN** Date = No

rules covering same instances are symmetric

no point in computing both!
Breaking symmetric rules

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Venue</th>
<th>Weather</th>
<th>TV Show</th>
<th>Date?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>Weekday</td>
<td>Dinner</td>
<td>Warm</td>
<td>Bad</td>
<td>No</td>
</tr>
<tr>
<td>e_2</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_3</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_4</td>
<td>Weekend</td>
<td>Club</td>
<td>Cold</td>
<td>Good</td>
<td>No</td>
</tr>
</tbody>
</table>

IF TV Show $= \text{Good}$ THEN Date $= \text{No}$ vs. IF Weather $= \text{Cold}$ THEN Date $= \text{No}$

rules covering same instances are symmetric
no point in computing both!

for each rule, add one clause enforcing
Breaking symmetric rules

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Venue</th>
<th>Weather</th>
<th>TV Show</th>
<th>Date?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>Weekday</td>
<td>Dinner</td>
<td>Warm</td>
<td>Bad</td>
<td>No</td>
</tr>
<tr>
<td>e_2</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_3</td>
<td>Weekend</td>
<td>Club</td>
<td>Warm</td>
<td>Bad</td>
<td>Yes</td>
</tr>
<tr>
<td>e_4</td>
<td>Weekend</td>
<td>Club</td>
<td>Cold</td>
<td>Good</td>
<td>No</td>
</tr>
</tbody>
</table>

IF TV Show = Good **THEN** Date = No

vs.

IF Weather = Cold **THEN** Date = No

rules covering same instances are **symmetric**

no point in computing both!

for each rule, add one clause enforcing all following rules to cover ≥ 1 other instance
Experimental results
Experimental setup

- **machine configuration:**
 - Intel Xeon Silver-4110 2.10GHz with 64GB RAM
Experimental setup

- **machine configuration:**
 - Intel Xeon Silver-4110 2.10GHz with 64GByte RAM
 - running Debian Linux
Experimental setup

• machine configuration:
 • Intel Xeon Silver-4110 2.10GHz with 64GByte RAM
 • running Debian Linux
 • 1800s timeout + 8GB memout
Experimental setup

- **machine configuration:**
 - Intel Xeon Silver-4110 2.10GHz with 64GByte RAM
 - running Debian Linux
 - 1800s timeout + 8GB memout

- **UCI Machine Learning Repository + Penn Machine Learning Benchmarks**
Experimental setup

- **machine configuration:**
 - Intel Xeon Silver-4110 2.10GHz with 64GByte RAM
 - running Debian Linux
 - 1800s timeout + 8GB memout

- **UCI Machine Learning Repository + Penn Machine Learning Benchmarks**
 - 1065 benchmarks in total (71 datasets × 5-cross validation × 3 quantized families)
Experimental setup

- **machine configuration:**
 - Intel Xeon Silver-4110 2.10GHz with 64GByte RAM
 - running Debian Linux
 - 1800s timeout + 8GB memout

- **UCI Machine Learning Repository + Penn Machine Learning Benchmarks**
 - 1065 benchmarks in total (71 datasets × 5-cross validation × 3 quantized families)
 - 3–384 features (one-hot encoded)
Experimental setup

• **machine configuration:**
 • Intel Xeon Silver-4110 2.10GHz with 64GByte RAM
 • running Debian Linux
 • 1800s timeout + 8GB memout

• **UCI Machine Learning Repository + Penn Machine Learning Benchmarks**
 • 1065 benchmarks in total (71 datasets × 5-cross validation × 3 quantized families)
 • 3–384 features (one-hot encoded)
 • 14–67557 training instances
Experimental setup

- **competition tested:**
 - mds_2 – minimization of number of rules

\[^1\text{https://github.com/alexeyignatiev/minds}\]
Experimental setup

• competition tested:
 • mds_2 – minimization of number of rules
 • mds_2^* – lexicographic minimization of number of rules + literals

\[1\text{https://github.com/alexeyignatiev/minds} \]
Experimental setup

• **competition tested:**
 - mds_2 – minimization of number of rules
 - mds_2^* – lexicographic minimization of number of rules + literals
 - opt – minimization of number of literals

1https://github.com/alexeyignatiev/minds
Experimental setup

- **competition tested:**
 - \(\text{mds}_2\) – minimization of number of rules
 - \(\text{mds}_2^\star\) – lexicographic minimization of number of rules + literals
 - \(\text{opt}\) – minimization of number of literals

- **prototype\(^1\)**
 - \(\text{ruler}^\circ\)
 - same code base and SAT solver – Glucose 3

\(^1\)https://github.com/alexeyignatiev/minds
Experimental setup

- **competition tested:**
 - mds_2 – minimization of number of rules
 - mds_2^* – *lexicographic* minimization of number of rules + literals
 - opt – minimization of number of literals

- **prototype\(^1\)**
 - ruler^o
 - same code base and SAT solver – Glucose 3
 - $\circ \in \{l, r\}$ – optimization criterion
 - stage 1 – **incremental calls** to RC2 MaxSAT solver
 - stage 2 – $\ast \in \{rc2, ilp\}$ – either RC2 MaxSAT or Gurobi ILP

\(^1\)https://github.com/alexeyignatiev/minds
Experimental setup

• **competition tested:**
 • mds_2 – minimization of number of rules
 • mds_2^\star – *lexicographic* minimization of number of rules + literals
 • opt – minimization of number of literals

• **prototype**¹
 • ruler_\circ
 • **same code base** and SAT solver – Glucose 3
 • $\circ \in \{l, r\}$ – optimization criterion
 • **stage 1** – *incremental calls* to RC2 MaxSAT solver
 • **stage 2** – $\ast \in \{rc2, ilp\}$ – either RC2 MaxSAT or Gurobi ILP
 • $\text{ruler}_\circ^\ast + b$ – symmetry breaking *enabled*

¹https://github.com/alexeyignatiev/minds
Figures 4a and 4b show the results of performance comparison.

Figure 4a: Raw Performance
- The graph plots CPU time (s) against the number of instances for various algorithms:
 - ruler\(_{\text{lp}}^1 + b\)
 - ruler\(_{\text{lp}}^1\)
 - ruler\(_{\text{fc2}}^1 + b\)
 - ruler\(_{\text{fc2}}^1\)
 - mds\(_2\)
 - mds\(_2^*\)
 - opt

Figure 4b: ruler\(_{\text{lp}}^1 + b\) vs. opt Detailed
- The scatter plot illustrates the comparison between ruler\(_{\text{lp}}^1 + b\) and opt for up to 4 orders of magnitude performance improvement.
- It indicates that breaking symmetric rules significantly reduces the average number of rules from 19604.4 to 563.7.

The graph on the right shows a clear distinction between the performance of ruler\(_{\text{lp}}^1 + b\) and opt, with a notable improvement in CPU time for a given number of instances.
Results – performance comparison

(a) raw performance

(b) ruler\textsubscript{lp} + b vs. opt detailed

\textbf{ruler\textsubscript{lp} + b vs. opt} — \textbf{up to 4 orders of magnitude} performance improvement
Results – performance comparison

(a) raw performance

(b) ruler\(_{\text{ip}}\) + b vs. opt detailed

ruler\(_{\text{ip}}\) + b vs. opt — up to 4 orders of magnitude performance improvement

breaking symmetric rules — avg. # of rules goes down from 19604.4 to 563.7
Results – model size comparison

(a) literals or rules: $\text{ruler}_{\text{ilp}} + b$ vs. mds_2

(b) literals or lexicographic: $\text{ruler}_{\text{ilp}} + b$ vs. mds_2^*
Results – model size comparison

(a) literals or rules: \(\text{ruler}_{\text{ilp}+b} \) vs. \(\text{mds}_2 \)

(b) literals or lexicographic: \(\text{ruler}_{\text{ilp}+b} \) vs. \(\text{mds}^*_2 \)

\(\text{ruler}_{\text{ilp}+b} \) vs. \(\text{mds}_2 \) — halves avg. size (62.2 vs. 116.2)
Results – model size comparison

(a) literals or rules: \(\text{ruler}_{\text{ilp}+b} \) vs. \(\text{mds}_2 \)

(b) literals or lexicographic: \(\text{ruler}_{\text{ilp}+b} \) vs. \(\text{mds}^*_2 \)

\(\text{ruler}_{\text{ilp}+b} \) vs. \(\text{mds}_2 \) — halves avg. size (62.2 vs. 116.2)

\(\text{mds}^*_2 \) vs. \(\text{mds}_2 \) — lexicographic optimization pays off (but slower!)
Summary and future work

• **novel approach** to computing decision sets
 • (*inspired by two-level logic minimization*)

• effective symmetry breaking
• smallest size decision sets wrt.
• number of rules
• total number of literals

• future work
• further improvements...
• sparse decision sets
• address rule overlap
• other rule-based models:
 • decision lists
 • decision trees
Summary and future work

• **novel approach** to computing decision sets
 • *(inspired by two-level logic minimization)*
 • consists of two stages:
 1. enumeration of *individual rules*
 2. solving *set cover* problem

• effective symmetry breaking
• smallest size decision sets wrt.
 • number of rules
 • total number of literals
• a few orders of magnitude performance improvement

• future work
 • further improvements...
 • sparse decision sets
 • address rule overlap
• other rule-based models:
 • decision lists
 • decision trees
Summary and future work

- **novel approach** to computing decision sets
 - *(inspired by two-level logic minimization)*
 - **consists of two stages:**
 1. enumeration of individual rules
 2. solving set cover problem
 - **effective symmetry breaking**
Summary and future work

- **novel approach** to computing decision sets
 - (inspired by two-level logic minimization)
 - consists of two stages:
 1. enumeration of individual rules
 2. solving set cover problem
- effective symmetry breaking
- smallest size decision sets wrt.
 - number of rules
 - total number of literals

- future work
 - further improvements...
 - sparse decision sets
 - address rule overlap
 - other rule-based models:
 - decision lists
 - decision trees
Summary and future work

- **novel approach** to computing decision sets
 - *(inspired by two-level logic minimization)*
 - **consists of two stages:**
 1. enumeration of **individual rules**
 2. solving **set cover** problem
 - **effective symmetry breaking**
 - **smallest size** decision sets wrt.
 - number of rules
 - total number of literals
 - **a few orders of magnitude** performance improvement

- **future work**
 - further improvements...
 - **sparse** decision sets
 - address rule overlap
 - other rule-based models:
 - decision lists
 - decision trees
Summary and future work

- **novel approach** to computing decision sets
 - *(inspired by two-level logic minimization)*
 - **consists of two stages:**
 1. enumeration of *individual rules*
 2. solving *set cover* problem
 - **effective symmetry breaking**
 - **smallest size** decision sets wrt.
 - number of rules
 - total number of literals
 - **a few orders of magnitude** performance improvement

- **future work**
 - further improvements...
Summary and future work

- **novel approach to computing decision sets**
 - *(inspired by two-level logic minimization)*
 - **consists of two stages:**
 1. enumeration of *individual rules*
 2. solving *set cover* problem
 - **effective symmetry breaking**
 - **smallest size** decision sets wrt.
 - number of rules
 - total number of literals
 - **a few orders of magnitude** performance improvement

- **future work**
 - further improvements...
 - *sparse* decision sets
Summary and future work

- **novel approach** to computing decision sets
 - *(inspired by two-level logic minimization)*
 - **consists of two stages:**
 1. enumeration of individual rules
 2. solving set cover problem
 - **effective symmetry breaking**
 - **smallest size** decision sets wrt.
 - number of rules
 - total number of literals
 - **a few orders of magnitude** performance improvement

- **future work**
 - further improvements...
 - **sparse** decision sets
 - address rule overlap
Summary and future work

- **novel approach** to computing decision sets
 - *(inspired by two-level logic minimization)*
 - **consists of two stages:**
 1. enumeration of individual rules
 2. solving set cover problem
 - **effective symmetry breaking**
 - **smallest size** decision sets wrt.
 - number of rules
 - total number of literals
 - **a few orders of magnitude** performance improvement

- **future work**
 - further improvements...
 - *sparse* decision sets
 - address rule overlap
 - other rule-based models:
 - decision lists
 - decision trees
Questions?