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Problem de�nition
Assume standard classi�cation scenario with training data E = {e1, . . . , eM}. A data
instance ei ∈ E is a pair (vi, ci) where vi ∈ F is a vector of feature values and ci ∈ C
is a class. An instance ei associates a vector of feature values vi with a class ci ∈ C.
A decision set is an unordered set of rules. Each rule π is from the set R =∏K

r=1{ fr,¬fr, u}, where u represents a don’t care value. For each instance e ∈ E,
a rule of the form π ⇒ c , π ∈ R, c ∈ C is interpreted as “if the feature values of
example e agree with π then the rule predicts that example e has class c”.

# Day Venue Weather TV Show Date?

e1 Weekday Dinner Warm Bad No
e2 Weekend Club Warm Bad Yes
e3 Weekend Club Warm Bad Yes
e4 Weekend Club Cold Good No

Typical approach to the problem
input : training data E
output: smallest decision set ϕ
N ← LB # N equals a lower bound on |ϕ |, which is often set to 1

while True:
F ← Encode(E,N ) # encode problem “is there a decision set ϕ of size N for data E?”

(st, µ) ← Oracle(F ) # call a reasoning oracle to answer the question

if st is True:
break

N ← N + 1
ϕ ← ExtractRules(µ) # extract decision set ϕ from satisfying assignment µ

return ϕ

Our approach

divide the process into two stages:

1. enumerate individual rules
• compute all possible rules
•MaxSAT-based
• incremental!
• breaking symmetric rules

2. compute smallest rule cover
• reduced to set cover
• solved with ILP/MaxSAT

+
each class is computed independently

Stage 1 — learning rules
each rule is a solution to MaxSAT formula

ψ ,,, H ∧ S

H — hard clauses
1. coverage constraints:

• rule must cover ≥ 1 right instances

2. discrimination constraints:
• rule must not cover any wrong instances

S — soft clauses
•minimize the number of used literals

O(K +M) variables and O(K ×M) clauses

Stage 2 — computing rule cover
# Day Venue Weather TV Show Date?

e1 Weekday Dinner Warm Bad No
e2 Weekend Club Warm Bad Yes
e3 Weekend Club Warm Bad Yes
e4 Weekend Club Cold Good No

π1 =
[
IF Day =Weekday THEN Date = No

]
π2 =

[
IF Venue = Dinner THEN Date = No

]
π3 =

[
IF Weather = Cold THEN Date = No

]
π4 =

[
IF TV Show = Good THEN Date = No

]
bj ∈ {0, 1} and sj = |πj| for each πj A = (aij), aij = 1 i� πj covers ei

π1 π2 π3 π4

aij
1 1 0 0
0 0 1 1

sj 1 1 1 1

minimize
∑

j

sj · bj

subject to
∑

j

aij · bj ≥ 1,∀i

Breaking symmetric rules
# Day Venue Weather TV Show Date?

e1 Weekday Dinner Warm Bad No
e2 Weekend Club Warm Bad Yes
e3 Weekend Club Warm Bad Yes
e4 Weekend Club Cold Good No

IF TV Show = Good THEN Date = No vs. IF Weather = Cold THEN Date = No

rules covering same instances are symmetric
no point in computing both!

for each rule, add one clause enforcing
all following rules to cover ≥ 1 other instance

•machine con�guration:
– Intel Xeon Silver-4110 2.10GHz with 64GByte RAM, running Debian Linux, 1800s timeout + 8GB memout

•UCI Machine Learning Repository + Penn Machine Learning Benchmarks
– 1065 benchmarks in total (71 datasets × 5-cross validation × 3 quantized families)
– 3–384 features (one-hot encoded), 14–67557 training instances

• competition tested:
–mds2 – minimization of number of rules
–mds?2 – lexicographic minimization of number of rules + literals
– opt – minimization of number of literals

• ruler◦∗
– ◦ ∈ {l, r} – optimization criterion
– stage 1 – incremental calls to RC2 MaxSAT solver
– stage 2 – ∗ ∈ {rc2, ilp} – either RC2 MaxSAT or Gurobi ILP
– ruler◦∗+b – symmetry breaking enabled
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rulerlilp+b vs. opt:
up to 4 orders of magnitude improvement!

breaking symmetric rules:
avg. # of rules goes down from 19604.4 to 563.7
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rulerlilp+b vs. mds2:
halves avg. size (62.2 vs. 116.2)

mds?2 vs. mds2:
lexicographic optimization pays o�

(but slower!)
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IF TV Show = Good THEN Date = No
IF Day =Weekday THEN Date = No
IF TV Show = Bad ∧ Day =Weekend THEN Date = Yes

encoding is too large!
(does not scale) the idea is to scale better

(K — number of features,M — number of training instances)

same code base and SAT solver – Glucose 3!
Experimental setup:

Performance comparison: Model size comparison:


