A Scalable Two Stage Approach to Computing Optimal Decision Sets

Alexey Ignatiev¹, Edward Lam¹,², Peter J. Stuckey³, Joao Marques-Silva³
¹ Monash University, Australia ² CSIRO Data61, Australia ³ ANITI, IRIT, CNRS, France

Problem definition
Assume standard classification scenario with training data $E = \{e_1, \ldots, e_N\}$. A data instance $e_i \in E$ is a pair (v_i, c_i) where $v_i \in \Xi$ is a vector of feature values and $c_i \in \mathcal{C}$ is a class. An instance e_i associates a vector of feature values v_i with a class $c_i \in \mathcal{C}$. A decision set is an unordered set of rules. Each rule π is from the set $\mathcal{R} = \prod_{i=1}^{N}(f_i, -f_i, u_i)$, where u_i represents a don't care value. For each instance $e_i \in E$, a rule of the form $\pi \Rightarrow c_i \in \mathcal{C}$ is interpreted as "if the feature values of example e_i agree with π then the rule predicts that example e_i has class c_i.

Typical approach to the problem

- **input**: training data E
- **output**: smallest decision set ϕ

\[N \leftarrow LB \]
\[\text{while True:} \]
\[F \leftarrow \text{Encode}(E, N) \]
\[(st, \mu) \leftarrow \text{Oracle}(F) \]
\[\text{if it is True:} \]
\[\text{break} \]
\[N \leftarrow N + 1 \]
\[\phi \leftarrow \text{ExtractRules}(\mu) \]
\[\text{return } \phi \]

Stage 1 — learning rules

- **each rule is a solution to MaxSAT formula**
 \[\psi \models H \land S \]

 - **H** = hard clauses
 - **S** = soft clauses
 - 1. coverage constraints:
 - minimize the number of used literals
 - rule must cover ≥ 1 right instances
 - 2. discrimination constraints:
 - rule must not cover any wrong instances

 \[O(K + M) \text{ variables and } O(K \times M) \text{ clauses} \]

 - K = number of features, M = number of training instances

- **machine configuration**:
 - Intel Xeon Silver 4110 2.10GHz with 64GB RAM, running Debian Linux, 1800s timeout + 8GB memout
- **UCI Machine Learning Repository + Penn Machine Learning Benchmarks**
 - 1065 benchmarks in total (71 datasets x 5-cross validation x 3 quantized families)
 - 3–384 features (one-hot encoded), 14–67557 training instances

Stage 2 — computing rule cover

- **$b_j \in \{0, 1\}$ and $s_j = |\mu|$ for each π_j**
- **$A = (a_{ij})$, $a_{ij} = 1$ iff π_i covers e_j**

\[a_{ij} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \]

\[s_j \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \]

\[\text{minimize } \sum s_j \cdot b_j \]

\[\text{subject to } \sum a_{ij} \cdot b_j \geq 1, \forall i \]

Experimental setup

- **competition tested:**
 - mds_1 – minimization of number of rules
 - mds_2 – lexicographic minimization of number of rules + literals
 - opt – minimization of number of literals

- **ruler**
 - $\alpha \in \{1, 2\}$ = optimization criterion
 - stage 1 = incremental calls to RC2-MaxSAT solver
 - stage 2 = $\alpha \in \{rc2, ilp\}$ = either RC2-MaxSAT or GaroBI LP
 - ruler_1, ruler_2 = symmetry breaking enabled

Performance comparison

- $\text{rules}_{1/2}^1$, $\text{rules}_{1/2}^2$ vs opt:
 - up to 4 orders of magnitude improvement!

- breaking symmetric rules:
 - avg. # of rules goes down from 18609.4 to 563.7

Model size comparison

- $\text{rules}_{1/2}^1$, mds_2 halve avg. size (62 vs 116.2)
- mds_2 vs mds_1:
 - lexicographic optimization pays off (but slower?)

Our approach

- divide the process into two stages:
 1. enumerate individual rules
 2. compute smallest rule cover

- compute all possible rules
- MaxSAT-based
- reduced to set cover
- incremental!
- breaking symmetric rules
- solved with ILP/MaxSAT
- each class is computed independently
- the idea is to scale better