
LATEX TikZposter

A Scalable Two Stage Approach to Computing Optimal Decision Sets
Alexey Ignatiev1, Edward Lam1,2, Peter J. Stuckey1, Joao Marques-Silva3

1 Monash University, Australia 2 CSIRO Data61, Australia 3 ANITI, IRIT, CNRS, France

A Scalable Two Stage Approach to Computing Optimal Decision Sets
Alexey Ignatiev1, Edward Lam1,2, Peter J. Stuckey1, Joao Marques-Silva3

1 Monash University, Australia 2 CSIRO Data61, Australia 3 ANITI, IRIT, CNRS, France

Problem de�nition
Assume standard classi�cation scenario with training data E = {e1, . . . , eM}. A data
instance ei ∈ E is a pair (vi, ci) where vi ∈ F is a vector of feature values and ci ∈ C
is a class. An instance ei associates a vector of feature values vi with a class ci ∈ C.
A decision set is an unordered set of rules. Each rule π is from the set R =∏K

r=1{ fr,¬fr, u}, where u represents a don’t care value. For each instance e ∈ E,
a rule of the form π ⇒ c , π ∈ R, c ∈ C is interpreted as “if the feature values of
example e agree with π then the rule predicts that example e has class c”.

Day Venue Weather TV Show Date?

e1 Weekday Dinner Warm Bad No
e2 Weekend Club Warm Bad Yes
e3 Weekend Club Warm Bad Yes
e4 Weekend Club Cold Good No

Typical approach to the problem
input : training data E
output: smallest decision set ϕ
N ← LB # N equals a lower bound on |ϕ |, which is often set to 1

while True:
F ← Encode(E,N) # encode problem “is there a decision set ϕ of size N for data E?”

(st, µ) ← Oracle(F) # call a reasoning oracle to answer the question

if st is True:
break

N ← N + 1
ϕ ← ExtractRules(µ) # extract decision set ϕ from satisfying assignment µ

return ϕ

Our approach

divide the process into two stages:

1. enumerate individual rules
• compute all possible rules
•MaxSAT-based
• incremental!
• breaking symmetric rules

2. compute smallest rule cover
• reduced to set cover
• solved with ILP/MaxSAT

+
each class is computed independently

Stage 1 — learning rules
each rule is a solution to MaxSAT formula

ψ ,,, H ∧ S

H — hard clauses
1. coverage constraints:

• rule must cover ≥ 1 right instances

2. discrimination constraints:
• rule must not cover any wrong instances

S — soft clauses
•minimize the number of used literals

O(K +M) variables and O(K ×M) clauses

Stage 2 — computing rule cover
Day Venue Weather TV Show Date?

e1 Weekday Dinner Warm Bad No
e2 Weekend Club Warm Bad Yes
e3 Weekend Club Warm Bad Yes
e4 Weekend Club Cold Good No

π1 =
[
IF Day =Weekday THEN Date = No

]
π2 =

[
IF Venue = Dinner THEN Date = No

]
π3 =

[
IF Weather = Cold THEN Date = No

]
π4 =

[
IF TV Show = Good THEN Date = No

]
bj ∈ {0, 1} and sj = |πj| for each πj A = (aij), aij = 1 i� πj covers ei

π1 π2 π3 π4

aij
1 1 0 0
0 0 1 1

sj 1 1 1 1

minimize
∑

j

sj · bj

subject to
∑

j

aij · bj ≥ 1,∀i

Breaking symmetric rules
Day Venue Weather TV Show Date?

e1 Weekday Dinner Warm Bad No
e2 Weekend Club Warm Bad Yes
e3 Weekend Club Warm Bad Yes
e4 Weekend Club Cold Good No

IF TV Show = Good THEN Date = No vs. IF Weather = Cold THEN Date = No

rules covering same instances are symmetric
no point in computing both!

for each rule, add one clause enforcing
all following rules to cover ≥ 1 other instance

•machine con�guration:
– Intel Xeon Silver-4110 2.10GHz with 64GByte RAM, running Debian Linux, 1800s timeout + 8GB memout

•UCI Machine Learning Repository + Penn Machine Learning Benchmarks
– 1065 benchmarks in total (71 datasets × 5-cross validation × 3 quantized families)
– 3–384 features (one-hot encoded), 14–67557 training instances

• competition tested:
–mds2 – minimization of number of rules
–mds?2 – lexicographic minimization of number of rules + literals
– opt – minimization of number of literals

• ruler◦∗
– ◦ ∈ {l, r} – optimization criterion
– stage 1 – incremental calls to RC2 MaxSAT solver
– stage 2 – ∗ ∈ {rc2, ilp} – either RC2 MaxSAT or Gurobi ILP
– ruler◦∗+b – symmetry breaking enabled

0 100 200 300 400 500 600 700 800
instances

0

200

400

600

800

1000

1200

1400

1600

1800

C
PU

tim
e

(s
)

rulerr
ilp+b

rulerl
ilp+b

rulerr
rc2+b

rulerl
ilp

rulerr
ilp

rulerl
rc2+b

rulerr
rc2

mds2

rulerl
rc2

mds?2
opt

rulerlilp+b vs. opt:
up to 4 orders of magnitude improvement!

breaking symmetric rules:
avg. # of rules goes down from 19604.4 to 563.7

10−1 100 101 102 103 104

rulerl
ilp+b

10−1

100

101

102

103

104

op
t

1800 sec. timeout

18
00

se
c.

tim
eo

ut

100 101 102 103

rulerl
ilp+b

100

101

102

103

m
ds

2

rulerlilp+b vs. mds2:
halves avg. size (62.2 vs. 116.2)

mds?2 vs. mds2:
lexicographic optimization pays o�

(but slower!)

100 101 102 103

rulerl
ilp+b

100

101

102

103

m
ds
? 2

IF TV Show = Good THEN Date = No
IF Day =Weekday THEN Date = No
IF TV Show = Bad ∧ Day =Weekend THEN Date = Yes

encoding is too large!
(does not scale) the idea is to scale better

(K — number of features,M — number of training instances)

same code base and SAT solver – Glucose 3!
Experimental setup:

Performance comparison: Model size comparison:

