A SCALABLE TWO STAGE APPROACH TO COMPUTING OPTIMAL DECISION SETS Alexey Ignatiev¹, Edward Lam^{1,2}, Peter J. Stuckey¹, Joao Marques-Silva³ ¹ Monash University, Australia ² CSIRO Data61, Australia ³ ANITI, IRIT, CNRS, France

Problem definition

Assume standard classification scenario with *training data* $\mathcal{E} = \{e_1, \ldots, e_M\}$. A data instance $e_i \in \mathcal{E}$ is a pair (\mathbf{v}_i, c_i) where $\mathbf{v}_i \in \mathbb{F}$ is a vector of feature values and $c_i \in C$ is a class. An instance e_i associates a vector of feature values \mathbf{v}_i with a class $c_i \in C$.

A decision set is an *unordered set* of *rules*. Each rule π is from the set \mathcal{R} = $\prod_{r=1}^{K} \{f_r, \neg f_r, u\}$, where u represents a *don't care* value. For each instance $e \in \mathcal{E}$, a rule of the form $\pi \Rightarrow c, \pi \in \mathcal{R}, c \in C$ is interpreted as "if the feature values of example *e* agree with π then the rule predicts that example *e* has class *c*".

#	Day	Venue	Weather	TV Show	Date?
e_1	Weekday	Dinner	Warm	Bad	No
e_2	Weekend	Club	Warm	Bad	Yes
e_3	Weekend	Club	Warm	Bad	Yes
e_4	Weekend	Club	Cold	Good	No

Stage 1 – learning rules

each rule is a solution to MaxSAT formula $\psi \triangleq H \wedge S$

H - hard clauses1. coverage constraints: • rule must cover \geq 1 right instances

S -soft clauses minimize the number of used literals

2. discrimination constraints:

• rule must not cover any wrong instances

O(K + M) variables and $O(K \times M)$ clauses

(K - number of features, M - number of training instances)

machine configuration:

– Intel Xeon Silver-4110 2.10GHz with 64GByte RAM, running Debian Linux, 1800s timeout + 8GB memout

- UCI Machine Learning Repository + Penn Machine Learning Benchmarks
- -1065 benchmarks in total (71 datasets \times 5-cross validation \times 3 quantized families)
- -3-384 features (one-hot encoded), 14-67557 training instances

approach to the problem	Our approach			
set ϕ	divide the process into two stages: 1. enumerate individual rules • compute all possible rules 2. compute smallest rule cover			
# N equals a lower bound on $ \phi $, which is often set to 1				
# encode problem "is there a decision set ϕ of size N for data E?" # call a reasoning oracle to answer the question	 MaxSAT-based incremental! breaking symmetric rules reduced to set cover solved with ILP/MaxSAT 			
# extract decision set ϕ from satisfying assignment μ	+ each class is computed <i>independently</i> the idea is to scale better			
encoding is too large! (does not scale)				
— computing rule cover	Breaking symmetric rules			
TV Show Date? $\pi_1 = \begin{bmatrix} IF Day = Weekday THEN Date = No \end{bmatrix}$ BadNoBadYesBadYesBadYesGoodNo	#DayVenueWeatherTV ShowDate? e_1 WeekdayDinnerWarmBadNo e_2 WeekendClubWarmBadYes e_3 WeekendClubWarmBadYes e_4 WeekendClubColdGoodNo			
for each π_j $A = (a_{ij}), a_{ij} = 1$ iff π_j covers e_i	IF TV Show = Good THEN Date = No vs. IF Weather = Cold THEN Date = No			
$\underset{j}{\text{minimize}} \sum_{j} s_{j} \cdot b_{j}$	rules covering same instances are symmetric no point in computing both!			
subject to $\sum_{j} a_{ij} \cdot b_j \ge 1, \forall i$	for each rule, add one clause enforcing all following rules to cover ≥ 1 other instance			
Experimental setup:				
Lapermental setup.	• ruler_*same code base and SAT solver – Glucose 3! $- \circ \in \{l, r\}$ – optimization criterion $- stage 1$ – incremental calls to RC2 MaxSAT solver $- stage 2 - * \in \{rc2, ilp\}$ – either RC2 MaxSAT or Gurobi ILP			
 competition tested: - mds₂ - minimization of number of rules - mds₂[*] - <i>lexicographic</i> minimization of number of rules 				
– opt – minimization of number of literals	– stage 2 – * e { <i>rc2</i> , <i>up</i> } – enner <i>rc2 maxSAT</i> of <i>Gurobi ILF</i> – ruler [°] _* +b – symmetry breaking <i>enabled</i>			

ruler¹_{ilp}+b

