Towards Efficient Optimization in Package Management Systems

Alexey Ignatiev¹, Mikoláš Janota¹, and Joao Marques-Silva^{1,2}

¹ INESC-ID/IST, Lisbon, Portugal ² CASL/CSI, University College Dublin, Ireland

36th International Conference on Software Engineering

Hyderabad, India June 5, 2014

Motivation

Figure : Number of packages in modern package management systems

Motivation

Figure : Number of packages in modern package management systems

Package installability problem

Checking whether a single package P can be installed, given a repository R, is NP-complete.

Motivation

Currently used package management systems (e.g. APT, yum, MacPorts)

• are incomplete1

• don't support "user preferences"

¹Chris Tucker, David Shuffelton, Ranjit Jhala, Sorin Lerner. OPIUM: Optimal Package Install/Uninstall Manager. ICSE 2007. pp. 178–188

Find any solution — SAT $(\neg a \lor b) \land (\neg a \lor c) \land (\neg b \lor f \lor d) \land (\neg c \lor d \lor e) \land (\neg f \lor \neg d) \land (a)$

Find any solution — SAT $(\neg a \lor b) \land (\neg a \lor c) \land (\neg b \lor f \lor d) \land (\neg c \lor d \lor e) \land (\neg f \lor \neg d) \land (a)$

Find best solution — MaxSAT

 $(\neg a \lor b) \land (\neg a \lor c) \land (\neg b \lor f \lor d) \land (\neg c \lor d \lor e) \land (\neg f \lor \neg d) \land (a)$

Find any solution — SAT $(\neg a \lor b) \land (\neg a \lor c) \land (\neg b \lor f \lor d) \land (\neg c \lor d \lor e) \land (\neg f \lor \neg d) \land (a)$

Find best solution — MaxSAT

$$\begin{array}{c} (\neg a \lor b) \land (\neg a \lor c) \land (\neg b \lor f \lor d) \land (\neg c \lor d \lor e) \land (\neg f \lor \neg d) \land (a) \\ (\neg a) \land (\neg b) \land (\neg c) \land (\neg d) \land (\neg e) \land (\neg f) \end{array}$$

A user can have *multiple* optimization criteria $f_1, f_2, ..., f_n$ — not just one².

²www.mancoosi.org/misc-2012/ — 2-5 criteria in each category of MISC-2012 competition.

A user can have multiple optimization criteria f_1, f_2, \dots, f_n — not just one². $\downarrow \downarrow$ Boolean lexicographic optimization

²www.mancoosi.org/misc-2012/ — 2-5 criteria in each category of MISC-2012 competition.

A user can have *multiple* optimization criteria $f_1, f_2, ..., f_n$ — not just one². $\downarrow \downarrow$ **Boolean lexicographic optimization**

 $(\neg a_{1} \lor b_{8} \lor b_{5} \lor c_{1}) \land (\neg b_{8} \lor \neg b_{5}) \land (\neg c_{1} \lor d_{2}) \land (\neg c_{1} \lor e_{3}) \land (a_{1})$ $(\neg a_{1}) \land (\neg b_{8}) \land (\neg b_{5}) \land (\neg c_{1}) \land (\neg d_{2}) \land (\neg e_{3})$ (1) $(\neg a_{1'}) \land (\neg b_{8'}, 8) \land (\neg b_{5'}, 5) \land (\neg c_{1'}) \land (\neg d_{2'}, 2) \land (\neg e_{3'}, 3)$ (2)

²www.mancoosi.org/misc-2012/ — 2-5 criteria in each category of MISC-2012 competition.

A user can have *multiple* optimization criteria $f_1, f_2, ..., f_n$ — not just one². $\downarrow \downarrow$ **Boolean lexicographic optimization**

 $(\neg a_1 \lor b_8 \lor b_5 \lor c_1) \land (\neg b_8 \lor \neg b_5) \land (\neg c_1 \lor d_2) \land (\neg c_1 \lor e_3) \land (a_1)$

$$\neg a_1 + \neg b_8 + \neg b_5 + \neg c_1 + \neg d_2 + \neg e_3 = 4$$
 (1)

$$(\neg a_1, 1) \land (\neg b_8, 8) \land (\neg b_5, 5) \land (\neg c_1, 1) \land (\neg d_2, 2) \land (\neg e_3, 3)$$
(2)

²www.mancoosi.org/misc-2012/ — 2-5 criteria in each category of MISC-2012 competition.

A user can have *multiple* optimization criteria $f_1, f_2, ..., f_n$ — not just one². $\downarrow \downarrow$ **Boolean lexicographic optimization**

 $(\neg a_1 \lor b_8 \lor b_5 \lor c_1) \land (\neg b_8 \lor \neg b_5) \land (\neg c_1 \lor d_2) \land (\neg c_1 \lor e_3) \land (a_1)$

$$\neg a_1 + \neg b_8 + \neg b_5 + \neg c_1 + \neg d_2 + \neg e_3 = 4$$
 (1)

$$(\neg a_1, 1) \land (\neg b_8, 8) \land (\neg b_5, 5) \land (\neg c_1, 1) \land (\neg d_2, 2) \land (\neg e_3, 3)$$
(2)

²www.mancoosi.org/misc-2012/ — 2-5 criteria in each category of MISC-2012 competition.

Timeout for some categories of MISC-2012 benchmarks is **300** seconds.

Timeout for some categories of MISC-2012 benchmarks is **300** seconds. Approximation is **much faster** than computing the exact MaxSAT solution!

Timeout for some categories of MISC-2012 benchmarks is **300** seconds. Approximation is **much faster** than computing the exact MaxSAT solution!

 $\begin{array}{c} (\neg a \lor b \lor c) \land (\neg b \lor d \lor e \lor f) \land (a) \\ (\neg a) \land (\neg b) \land (\neg c) \land (\neg d) \land (\neg e) \land (\neg f) \end{array}$

Timeout for some categories of MISC-2012 benchmarks is **300** seconds. Approximation is **much faster** than computing the exact MaxSAT solution!

 $(\neg a \lor b \lor c) \land (\neg b \lor d \lor e \lor f) \land (a)$ $(\neg a) \land (\neg b) \land (\neg c) \land (\neg d) \land (\neg e) \land (\neg f)$

Timeout for some categories of MISC-2012 benchmarks is **300** seconds. Approximation is **much faster** than computing the exact MaxSAT solution!

 $\begin{array}{l} (\neg a \lor b \lor c) \land (\neg b \lor d \lor e \lor f) \land (a) \\ (\neg a) \land (\neg b) \land (\neg c) \land (\neg d) \land (\neg e) \land (\neg f) \end{array}$

Timeout for some categories of MISC-2012 benchmarks is **300** seconds. Approximation is **much faster** than computing the exact MaxSAT solution!

 $(\neg a \lor b \lor c) \land (\neg b \lor d \lor e \lor f) \land (a)$ $(\neg a) \land (\neg b) \land (\neg c) \land (\neg d) \land (\neg e) \land (\neg f)$

Timeout for some categories of MISC-2012 benchmarks is **300** seconds. Approximation is **much faster** than computing the exact MaxSAT solution!

 $(\neg a \lor b \lor c) \land (\neg b \lor d \lor e \lor f) \land (a)$ $(\neg a) \land (\neg b) \land (\neg c) \land (\neg d) \land (\neg e) \land (\neg f)$

Timeout for some categories of MISC-2012 benchmarks is **300** seconds. Approximation is **much faster** than computing the exact MaxSAT solution!

$(\neg a \lor b \lor c) \land (\neg b \lor d \lor e \lor f) \land (a)$ $(\neg a) \land (\neg b) \land (\neg c) \land (\neg d) \land (\neg e) \land (\neg f)$

Each MSS can be seen as a **"local optimum"** of the optimization function, while the MaxSAT solution is the **"global optimum"**.

input : n optimization criteria $f_1, f_2, ..., f_n$

$\begin{array}{l} \text{input} &: n \text{ optimization criteria } f_1, f_2, \dots, f_n, \\ & \text{ 2 timeouts} - \Delta_E \text{ (exact phase) and } \Delta_A \text{ (approximation)} \end{array}$

 $\begin{array}{l} \text{input} &: n \text{ optimization criteria } f_1, f_2, \dots, f_n, \\ & \text{ 2 timeouts} - \Delta_E \text{ (exact phase) and } \Delta_A \text{ (approximation)} \end{array}$

1 foreach $i \in \{1, \dots, n\}$:

exact phase — BLO with MaxSAT

```
\begin{array}{l} \text{input} &: n \text{ optimization criteria } f_1, f_2, \dots, f_n, \\ & \text{ 2 timeouts} - \Delta_E \text{ (exact phase) and } \Delta_A \text{ (approximation)} \end{array}
```

foreach
$$i \in \{1, \dots, n\}$$
:

2 optimize criterion f_i

exact phase — BLO with MaxSAT

```
\begin{array}{l} \text{input} &: n \text{ optimization criteria } f_1, f_2, \dots, f_n, \\ & \text{ 2 timeouts} - \Delta_E \text{ (exact phase) and } \Delta_A \text{ (approximation)} \end{array}
```

break

4

exact phase — BLO with MaxSAT

there is no more time

 $_{3}$ if Δ_{E} is exceeded:

4 break

5 while $i \leq n$:

there is no more time

approx. phase — BLO with MSSes

```
\begin{array}{l} \text{input} &: n \text{ optimization criteria } f_1, f_2, \dots, f_n, \\ & \text{ 2 timeouts} - \Delta_E \text{ (exact phase) and } \Delta_A \text{ (approximation)} \end{array}
```

5 while $i \leq n$: 6 approximate criterion f_i exact phase — BLO with MaxSAT

there is no more time

approx. phase — BLO with MSSes

```
input : n optimization criteria f_1, f_2, \dots, f_n,
2 timeouts — \Delta_{\rm F} (exact phase) and \Delta_{\rm A} (approximation)
```

1foreach
$$i \in \{1, ..., n\}$$
:exact phase - Bi2optimize criterion f_i 3if Δ_E is exceeded:there4break

while $i \leq n$: 5 **approximate** criterion f_i if Δ_A is exceeded: 7 break 8

 $i \leftarrow i + 1$ 9

10 with MaxSAT

is no more time

approx. phase — BLO with MSSes

there is no more time

Experimental evaluation

• MANCOOSI International Solver Competition 2012 (MISC):

- MANCOOSI International Solver Competition 2012 (MISC):
 - Package universe from 27710 to 59094 packages (35276 in average)

- MANCOOSI International Solver Competition 2012 (MISC):
 - Package universe from 27710 to 59094 packages (35276 in average)
- PackUpHyb tool

- MANCOOSI International Solver Competition 2012 (MISC):
 - Package universe from 27710 to 59094 packages (35276 in average)
- PackUpHyb tool
 - based on PackUp (participated in MISC-2012, open source)

- MANCOOSI International Solver Competition 2012 (MISC):
 - Package universe from 27710 to 59094 packages (35276 in average)
- PackUpHyb tool
 - based on PackUp (participated in MISC-2012, open source)
 - uses MiniSAT 2.2

- MANCOOSI International Solver Competition 2012 (MISC):
 - Package universe from 27710 to 59094 packages (35276 in average)
- PackUpHyb tool
 - based on PackUp (participated in MISC-2012, open source)
 - uses MiniSAT 2.2
 - 3 modes of operation:

- MANCOOSI International Solver Competition 2012 (MISC):
 - Package universe from 27710 to 59094 packages (35276 in average)
- PackUpHyb tool
 - based on PackUp (participated in MISC-2012, open source)
 - uses MiniSAT 2.2
 - 3 modes of operation:
 - exact mode MaxSAT (800 seconds)

- MANCOOSI International Solver Competition 2012 (MISC):
 - Package universe from 27710 to 59094 packages (35276 in average)
- PackUpHyb tool
 - based on PackUp (participated in MISC-2012, open source)
 - uses MiniSAT 2.2
 - 3 modes of operation:
 - exact mode MaxSAT (800 seconds)
 - Physical Action (1998) 10 (1998) 2019 (

- MANCOOSI International Solver Competition 2012 (MISC):
 - Package universe from 27710 to 59094 packages (35276 in average)
- PackUpHyb tool
 - based on PackUp (participated in MISC-2012, open source)
 - uses MiniSAT 2.2
 - 3 modes of operation:
 - exact mode MaxSAT (800 seconds)

 - P2 emulation mode EclipseP2 solver (Sat4j library, 10 and 800 seconds)

- MANCOOSI International Solver Competition 2012 (MISC):
 - Package universe from 27710 to 59094 packages (35276 in average)
- PackUpHyb tool
 - based on PackUp (participated in MISC-2012, open source)
 - uses MiniSAT 2.2
 - 3 modes of operation:
 - exact mode MaxSAT (800 seconds)
 - Investigation (2) Investiga
 - P2 emulation mode EclipseP2 solver (Sat4j library, 10 and 800 seconds)
- Machine configuration:

- MANCOOSI International Solver Competition 2012 (MISC):
 - Package universe from 27710 to 59094 packages (35276 in average)
- PackUpHyb tool
 - based on PackUp (participated in MISC-2012, open source)
 - uses MiniSAT 2.2
 - 3 modes of operation:
 - exact mode MaxSAT (800 seconds)
 - Investigation (2) Investiga
 - P2 emulation mode EclipseP2 solver (Sat4j library, 10 and 800 seconds)
- Machine configuration:
 - Intel Xeon 5160@3GHz with 4GB RAM

- MANCOOSI International Solver Competition 2012 (MISC):
 - Package universe from 27710 to 59094 packages (35276 in average)
- PackUpHyb tool
 - based on PackUp (participated in MISC-2012, open source)
 - uses MiniSAT 2.2
 - 3 modes of operation:
 - exact mode MaxSAT (800 seconds)
 - Investigation (2) Investiga
 - P2 emulation mode EclipseP2 solver (Sat4j library, 10 and 800 seconds)
- Machine configuration:
 - Intel Xeon 5160@3GHz with 4GB RAM
 - running Fedora Linux

- MANCOOSI International Solver Competition 2012 (MISC):
 - Package universe from 27710 to 59094 packages (35276 in average)
- PackUpHyb tool
 - based on PackUp (participated in MISC-2012, open source)
 - uses MiniSAT 2.2
 - 3 modes of operation:
 - exact mode MaxSAT (800 seconds)
 - Investigation (2) Investiga
 - P2 emulation mode EclipseP2 solver (Sat4j library, 10 and 800 seconds)
- Machine configuration:
 - Intel Xeon 5160@3GHz with 4GB RAM
 - running Fedora Linux
 - 2GB memout

Performance of the approach

Approximation quality (level 1)

Approximation quality (level 2)

• hybrid approach to Package Upgradability:

- hybrid approach to Package Upgradability:
 - exact phase MaxSAT approach

- hybrid approach to Package Upgradability:
 - exact phase MaxSAT approach
 - approximate phase MSS enumeration

- hybrid approach to Package Upgradability:
 - exact phase MaxSAT approach
 - approximate phase MSS enumeration
 - solution (exact or approximate) within 10 seconds

- hybrid approach to Package Upgradability:
 - exact phase MaxSAT approach
 - approximate phase MSS enumeration
 - solution (exact or approximate) within 10 seconds
 - good approximation quality (guarantee of local optimality)

- hybrid approach to Package Upgradability:
 - exact phase MaxSAT approach
 - approximate phase MSS enumeration
 - solution (exact or approximate) within 10 seconds
 - good approximation quality (guarantee of local optimality)
- improvement of MaxSAT

- hybrid approach to Package Upgradability:
 - exact phase MaxSAT approach
 - approximate phase MSS enumeration
 - solution (exact or approximate) within 10 seconds
 - good approximation quality (guarantee of local optimality)
- improvement of MaxSAT
- can be applied to most exact solvers not only MaxSAT

- hybrid approach to Package Upgradability:
 - exact phase MaxSAT approach
 - approximate phase MSS enumeration
 - solution (exact or approximate) within 10 seconds
 - good approximation quality (guarantee of local optimality)
- improvement of MaxSAT
- can be applied to most exact solvers not only MaxSAT
- other optimization criteria (e.g. leximin)

- hybrid approach to Package Upgradability:
 - exact phase MaxSAT approach
 - approximate phase MSS enumeration
 - solution (exact or approximate) within 10 seconds
 - good approximation quality (guarantee of local optimality)
- improvement of MaxSAT
- can be applied to most exact solvers not only MaxSAT
- other optimization criteria (e.g. leximin)
- comparison with: OPIUM, Aspcud, etc.

- hybrid approach to Package Upgradability:
 - exact phase MaxSAT approach
 - approximate phase MSS enumeration
 - solution (exact or approximate) within 10 seconds
 - good approximation quality (guarantee of local optimality)
- improvement of MaxSAT
- can be applied to most exact solvers not only MaxSAT
- other optimization criteria (e.g. leximin)
- comparison with: OPIUM, Aspcud, etc.
- comparison with: APT, ZYpp, DNF, etc.

- hybrid approach to Package Upgradability:
 - exact phase MaxSAT approach
 - approximate phase MSS enumeration
 - solution (exact or approximate) within 10 seconds
 - good approximation quality (guarantee of local optimality)
- improvement of MaxSAT
- can be applied to most exact solvers not only MaxSAT
- other optimization criteria (e.g. leximin)
- comparison with: OPIUM, Aspcud, etc.
- comparison with: APT, ZYpp, DNF, etc.
- integrate with a widely used tool (APT, ZYpp, DNF, etc.)

- hybrid approach to Package Upgradability:
 - exact phase MaxSAT approach
 - approximate phase MSS enumeration
 - solution (exact or approximate) within 10 seconds
 - good approximation quality (guarantee of local optimality)
- improvement of MaxSAT
- can be applied to most exact solvers not only MaxSAT
- other optimization criteria (e.g. leximin)
- comparison with: OPIUM, Aspcud, etc.
- comparison with: APT, ZYpp, DNF, etc.
- integrate with a widely used tool (APT, ZYpp, DNF, etc.)
- deploy in Linux distributions

Thank you for your attention!