
Constraints (2016) 21:277–302
DOI 10.1007/s10601-015-9195-9

Quantified maximum satisfiability

Alexey Ignatiev1,2 · Mikoláš Janota1 ·
Joao Marques-Silva1,3

Published online: 24 May 2015
© Springer Science+Business Media New York 2015

Abstract In recent years, there have been significant improvements in algorithms both
for Quantified Boolean Formulas (QBF) and for Maximum Satisfiability (MaxSAT). This
paper studies an optimization extension of QBF and considers the problem in a quanti-
fied MaxSAT setting. More precisely, the general QMaxSAT problem is defined for QBFs
with a set of soft clausal constraints and consists in finding the largest subset of the soft
constraints such that the remaining QBF is true. Two approaches are investigated. One is
based on relaxing the soft clauses and performing an iterative search on the cost func-
tion. The other approach, which is the main contribution of the paper, is inspired by recent
work on MaxSAT, and exploits the iterative identification of unsatisfiable cores. The paper
investigates the application of these approaches to the two concrete problems of comput-
ing smallest minimal unsatisfiable subformulas (SMUS) and smallest minimal equivalent
subformulas (SMES), decision versions of which are well-known problems in the second
level of the polynomial hierarchy. Experimental results, obtained on representative problem
instances, indicate that the core-guided approach for the SMUS and SMES problems out-
performs the use of iterative search over the values of the cost function. More significantly,

� Alexey Ignatiev
aign@sat.inesc-id.pt

Mikoláš Janota
mikolas@sat.inesc-id.pt

Joao Marques-Silva
jpms@ucd.ie

1 INESC-ID, IST, University of Lisbon, Lisbon, Portugal

2 ISDCT SB RAS, Irkutsk, Russia

3 University College Dublin, Dublin, Ireland

mailto:aign@sat.inesc-id.pt
mailto:mikolas@sat.inesc-id.pt
mailto:jpms@ucd.ie


278 Constraints (2016) 21:277–302

the core-guided approach to SMUS also outperforms the state-of-the-art SMUS extractor
Digger.

Keywords Quantified Boolean formula · Optimization · SAT · MaxSAT · Smallest
MUS/MES

1 Introduction

When reasoning about quantified Boolean formulas (QBF), different optimization problems
can be envisioned. MAX-QSAT [21] is a well-known example. Considering a QBF as a
game between the existential and universal players, if the existential player can guarantee
that k clauses are satisfied independently of the universal player, then k clauses are said to
be simultaneously satisfiable. The MAX-QSAT problem is to find the maximum number of
simultaneously satisfiable clauses. Original interest in MAX-QSAT was motivated by work
on non-approximability results for problems in the polynomial hierarchy. A different opti-
mization problem is to select a subset of clauses of a QBF such that the resulting QBF is
true. A related (restricted) optimization problem assumes the first quantifier to be existen-
tial, and asks for an assignment to those existential variables such that the QBF is true and a
cost function is optimized. Work on quantified CSP involves computing strategies that opti-
mize some cost function or associating costs with strategies [15, 19]. Besides the theoretical
interest, there are a number of practical settings where quantified optimization problems
find application. This is for example the case when the goal is to optimize a cost function
subject to a quantified set of constraints (e.g. the iterative use of QBF for optimizing tar-
get features in Boolean function decomposition in [18]). Many other concrete examples are
given by the optimization versions of decision problems in the polynomial hierarchy [64].

This paper addresses the problem of optimizing a cost function subject to a quantified
set of constraints. The cost function will be represented as a set of soft clauses, and so
this problem is referred to as Quantified MaxSAT (QMaxSAT). Inspired by algorithms for
the non-quantified MaxSAT problem [4, 5, 16, 24, 31, 55], this paper develops two novel
approaches for QMaxSAT. The first one consists of relaxing all clauses and performing a
linear (or binary) search over the values of the cost function. The linear search can either
refine upper or lower bounds on the number of falsified soft clauses [16, 24]. In contrast,
binary search refines both lower and upper bounds [24, 31]. The second approach represents
the main contribution of this paper, and is inspired by recent work on core-guided MaxSAT,
i.e. solving MaxSAT by iteratively computing unsatisfiable subformulas [24]. Thus, this
new approach requires QBF solvers to be able to produce unsatisfiable cores. As a result, the
second contribution of this paper is to show how recent 2QBF solvers based on abstraction
refinement [37, 38] can be modified to produce unsatisfiable cores.

The new algorithms for QMaxSAT are evaluated on the problems of computing the
smallest minimally unsatisfiable subformula (SMUS) [29, 45, 49, 53] and the smallest min-
imally equivalent subformula (SMES) [11, 12, 43, 44]. The SMUS decision problem is
well-known to be in the second level of the polynomial hierarchy (e.g. [29]) and studied in
the context of artificial intelligence and formal verification [1, 2, 35]. Computing SMUSes is
also relevant for assessing the quality of computed MUSes in practice. The SMES problem,
while being a generalization of SMUS, is tightly related to detection of CNF subformula
redundancy. Therefore, SMES is of great importance in the context of CNF formula mini-
mization [11, 12, 43, 44]. Besides the SMUS/SMES problems studied in the paper, a number



Constraints (2016) 21:277–302 279

of other important practical applications (e.g. see [60]) can be formulated and solved in the
context of the proposed QMaxSAT framework.

The third contribution of the paper is a novel QMaxSAT formulation for the SMUS and
SMES problems, and QMaxSAT-based algorithms. Experimental results, obtained on rep-
resentative problem instances, show that the core-guided QMaxSAT algorithm outperforms
Digger, a state-of-the-art algorithm for the SMUS problem [45]. More importantly, these
results validate the use of core-guided approaches for QMaxSAT. First experimental results
for the SMES problem also demonstrate the power of core-guided search in the QMaxSAT
setting.

This paper extends the conference version [33] as follows. The general QMaxSAT prob-
lem is introduced, and related with the special case studied in this paper. The paper also gives
a description of the new iterative QMaxSAT algorithms, extends the method of extracting
unsatisfiable cores with CEGAR-based QBF for formulas with an arbitrary number of quan-
tification levels, as well as formulates the smallest MES problem as the quantified MaxSAT
problem and solves it using the proposed algorithms.

The paper is organized as follows. The next section overviews basic definitions on SAT,
MaxSAT, and QBF. Section 3 introduces the QMaxSAT problem and Section 4 proposes
several algorithms for QMaxSAT with an arbitrary number of quantification levels. This is
complemented by a description in Section 4.2 of how unsatisfiable cores can be generated
by CEGAR-based QBF solvers and like so used in QMaxSAT algorithms. Section 5 shows
the practicality of the framework: it models two known problems — SMUS and SMES —
as QMaxSAT and describes improvements to the QMaxSAT for the concrete problems of
computing an SMUS and SMES. Section 6 presents the experimental results on computing
SMUSes/SMESes. Section 7 concludes the paper.

2 Preliminaries

This section provides the notation and basic definitions related to SAT, MaxSAT, and QBF.

2.1 Boolean satisfiability

Let us consider a set of Boolean variables X = {x1, . . . , xn}, n ∈ N. A literal for variable
xi , i ∈ {1, . . . , n}, is a formula denoted by li , which can be either a positive literal xi , or its
negation ¬xi . A set of literals connected by a disjunction is called a clause. A conjunction
of clauses ϕ = c1 ∧ c2 ∧ . . . ∧ cm, m ∈ N, is called a formula in conjunctive normal form
(CNF formula). Whenever convenient, a CNF formula is treated as a set of sets of literals
ϕ = {c1, c2, . . . , cm}.

An assignment is a total mapping AX : X → {0, 1} defined on set X of variables. When
it is clear from the context what set the mapping is defined on, the corresponding subscript
X is omitted (in this case we write A). The notion of assignment A can be extended to
literals by setting A(¬xi) = 1 − A(xi) for xi ∈ X. Hereinafter, expression ϕ|A denotes
a formula obtained from a Boolean formula ϕ by replacing each variable xi of X with its
value A(xi). The same restriction notation c|A is used with regard to a clause c of a CNF
formula.

If A(li) = 1 then literal li is said to be satisfied by assignment A; if A(li) = 0 then li
is falsified by A. Assignment A satisfies a clause c if it satisfies at least one of its literals;
otherwise (i.e. if c|A = 0), the clause is said to be falsified by A. If for a given CNF formula



280 Constraints (2016) 21:277–302

ϕ there is an assignment A such that ϕ|A = 1, then formula ϕ is called satisfiable and A is
a satisfying assignment (or a model). In the remainder of the paper the set of all models of a
CNF formula ϕ is denoted by M(ϕ).

2.2 Maximum satisfiability

The Maximum Satisfiability (MaxSAT) is an optimization generalization of SAT formulated
as follows: for a given CNF formula ϕ = {c1, c2, . . . , cm}, m ∈ N, find a subformula ϕ∗,
ϕ∗ ⊆ ϕ, of the maximum possible size such that ϕ∗ is satisfiable. The MaxSAT problem
can also be formulated as finding such an assignment A that satisfies the maximum number
of clauses of ϕ.

The partial MaxSAT problem generalizes MaxSAT and deals with CNF formulas of the
form ϕ = ϕS ∪ ϕH , where all the clauses of ϕS are declared to be relaxable or soft while
the rest (clauses of ϕH ) are declared to be hard. The problem is to find an assignment
A that satisfies all the hard clauses and maximizes the number of the soft clauses that
are satisfied. Weighted (weighted partial) MaxSAT is defined for weighted clauses (soft
clauses) and consists in satisfying a subset of clauses (soft clauses) with the maximum total
weight.

2.3 Quantified Boolean formula

Quantified Boolean formulas (QBFs) are an extension of propositional logic with existential
and universal quantifiers (∀, ∃) [39].

In this paper QBFs are assumed to be in prenex closed form Q1x1. . .Qnxn. ϕ, where
Qi ∈ {∀, ∃}, xi are distinct Boolean variables, and ϕ is a Boolean formula over the variables
xi and the constants 0 (false), 1 (true). The sequence of quantifiers in a QBF is called the pre-
fix and the Boolean formula the matrix. The semantics of QBF is defined recursively. A QBF
∃x1Q2x2. . .Qnxn. ϕ is true iff Q2x2. . .Qnxn. ϕ|x1=1 or Q2x2. . .Qnxn. ϕ|x1=0 is true. A
QBF ∀x1Q2x2. . .Qnxn. ϕ is true iff both Q2x2. . .Qnxn. ϕ|x1=1 and Q2x2. . .Qnxn. ϕ|x1=0
are true. To decide whether a given QBF is true or not, is PSPACE-complete [39].

Within a prefix, two adjacent quantifiers of different type, namely ∀xi∃xi+1 and
∃xi∀xi+1, are called a quantifier alternation. A QBF with k alternations has k+1 quantifica-
tion levels. Whenever possible, for variables x1, . . . , xn, xi ∈ Xj , under the same quantifier
Qj we write QjXj instead of Qjx1 . . .Qjxn. Hence, a formula with k quantification levels
takes the form Q1X1 . . . QkXk. ϕ. A prefix Q1X1 . . . QkXk of a QBF with k quantification

levels is denoted by
−→
Q .

In Section 5, devoted to the SMUS and SMES problems, we focus on QBFs with two
levels of quantification, i.e. formulas of the form ∀X∃Y. ϕ or ∃X∀Y. ϕ, commonly denoted
by 2QBF. Deciding whether a formula in 2QBF is true is complete for the second level of
the polynomial hierarchy [39].

Section 3 uses the notion of solution of QBFs of the form ψ = ∃X0
−→
Q. ϕ. An assignment

AX0 is a solution of ψ iff
−→
Q. ϕ|AX0

is true.1 Analogously to the set of all models of a CNF
formula, the set of all solutions of a QBF ψ , where the first quantifier is ∃, is denoted by M(ψ).

1Note that a solution of a quantified formula defined in this way represents a “portion” of the formula’s
model, which is defined, for example, in [41].



Constraints (2016) 21:277–302 281

3 Quantified MaxSAT

Although QBF has a significantly more expressive power than formulas without quantifiers
and, thus, can find a number of relevant applications, many practically important prob-
lems are formulated as optimization problems. So sometimes it is not enough to encode
a problem into a QBF — sometimes it is needed to optimize with respect to a QBF.
However, to the best of our knowledge, work in this area is lacking. In this section, we
introduce an optimization formulation of the QBF problem, which is a natural generaliza-
tion of MaxSAT. Instead of CNF formulas, we consider quantified formulas with a matrix
specified in a general form. Definition 1 gives a precise definition of the problem studied
in this paper.

Definition 1 Given a QBF

−→
Q. ϕH ∧ ϕS (1)

whose matrix is a conjunction of a non-clausal formula ϕH and a CNF formula ϕS , the quan-
tified Maximum Satisfiability (quantified MaxSAT, QMaxSAT) problem consists in finding

a set of clauses ϕ∗
S , ϕ∗

S ⊆ ϕS , of maximum possible size such that QBF
−→
Q. ϕH ∧ ϕ∗

S is true.
Here formulas ϕH and ϕS are called the hard and soft parts of QBF (1).

Note that QBF (1) is not required to be false; if it is true, then ϕ∗
S = ϕS . Also observe

that if there is no hard part ϕH in (1) and
−→
Q = ∃X, the QMaxSAT problem becomes

the classical non-quantified MaxSAT. Additionally, although the problem defined above is
referred to as quantified MaxSAT, it is a quantified version of the Partial MaxSAT problem
since QBF (1) contains both hard and soft parts.2 Omitting the hard part ϕH would result in
a more restricted problem definition, which would be a quantified version of the classical
non-partial MaxSAT.

Observe that requiring the hard part to be in an non-CNF form is essential for efficiency
reasons.3 Although any Boolean formula can be transformed to CNF using auxiliary Tseitin
variables [59, 68], Tseitin transformation is known to be detrimental to QBF solvers’ perfor-
mance (e.g. see [6, 27, 42]). A number of approaches [27, 28, 72] were developed to address
this issue. Currently, some of the state-of-the-art QBF solvers (e.g. [26, 42]) require non-
CNF input formulas. Moreover, many QBF (and even SAT) instances come from Boolean
circuits and other domains where original problem instances are not in CNF [66]. Thus,
knowing the structure of the original problem is usually crucial for solving algorithms.
Therefore, QBF algorithms described in the paper are supposed to Tseitin-encode the hard
part of the considered QBFs only when the calls to a SAT oracle are performed.

Example 1 Consider a 2QBF

∃x1, x2 ∀y1, y2. ϕH ∧ ϕS

where the hard part ϕH = (¬x1 ∧ ¬x2) → (y1 ∨ y2) and the soft part ϕS =
{(¬x1), (¬x2), (¬x1 ∨ ¬x2), (x1 ∨ ¬x2)}. Obviously, the considered QBF is false. Among

2One can also consider clauses of ϕS to be weighted, which would result in the weighted quantified MaxSAT
problem formulation.
3And both applications considered in Section 5 indeed have a non-CNF hard part.



282 Constraints (2016) 21:277–302

all the subsets of ϕS , the largest one is the solution of the QMaxSAT problem for the QBF,
and it is ϕ∗

S = {(¬x2), (¬x1 ∨ ¬x2), (x1 ∨ ¬x2)}.

In order to solve the general formulation of the QMaxSAT problem defined above, it is
convenient to use the following restricted formalism, which reformulates the problem by
making use of selection variables and enables us to use the notion of a QBF solution.

Proposition 1 The QMaxSAT problem for QBF (1) can be reduced to the QMaxSAT
problem for QBF of the following form

∃S
−→
Q. φH ∧ φS (2)

where φH is a Boolean non-CNF formula while φS is a set of unit clauses over selection
variables S. Given a QMaxSAT solution φ∗

S for (2), one can reconstruct the QMaxSAT
solution ϕ∗

S for (1). Both φ∗
S and ϕ∗

S are defined by the corresponding assignment A∗
S to

selection variables S.

Proof Let us explicitly construct QBF (2) for the original QBF (1). Consider formula−→
Q. ϕH ∧ ϕS , where ϕH is the hard part in a potentially non-CNF form and ϕS is a set
of clauses. Each clause c ∈ ϕS can be extended to c ∨ ¬s, where variable s is called a
selection variable for clause c. Selection variables act as flags determining whether the cor-
responding clauses of ϕS are selected or not, i.e. by assigning variable s to true we force
the original clause c to be satisfied; otherwise, it is deselected since literal ¬s is true. Let us
denote the set of all selection variables by S. After extending original clauses of ϕS this way,
we make all of them hard. Let us introduce a new hard part of the QBF being constructed
φH = ϕH ∧ {c ∨ ¬s | c ∈ ϕS}. A new soft part of the QBF matrix is φS = {s | s ∈ S}.
CNF φS contain only unit soft clauses defined on the selection variables S. Thus, QBF

∃S
−→
Q. φH ∧ φS is constructed.
Now the quantified MaxSAT problem is to find a subset of soft clauses φ∗

S , φ∗
S ⊆ φS , of

the largest possible size such that QBF
−→
Q. φH ∧ φ∗

S is true. This essentially means that one
needs to find an assignment A∗

S that defines this largest subset φ∗
S . By construction of QBF

∃S
−→
Q. φH ∧ φS , assignment A∗

S also defines the QMaxSAT solution for the original QBF (1).

Example 2 Consider the QBF from Example 1. The modification of the formula
results in introducing 4 selection variables, one per soft clause. The new QBF is
∃s1, s2, s3, s4, x1, x2 ∀y1, y2. φH ∧φS , where φH = ϕH ∧((¬x1∨¬s1)∧(¬x2∨¬s2)(¬x1∨
¬x2 ∨ ¬s3) ∧ (x1 ∨ ¬x2 ∨ ¬s4)) and φS = {(s1), (s2), (s3), (s4)}. The QMaxSAT solution
is assignment A∗

S = {¬s1, s2, s3, s4}.

It should be noted that the following optimization of QBF (2) can be done if some of the
clauses of the original soft CNF formula ϕS are unit, i.e. they have just one literal. Indeed,
there is no need to introduce a selection variable for a unit soft clause. Unit soft clauses are
not made hard and are preserved in φS without changes.

As one can notice, reformulating QMaxSAT in the described way can increase the num-

ber of quantification levels of the considered QBF. This is the case if prefix
−→
Q of (1) starts

with a universal quantifier ∀, which should be preceded by a new existential quantifier ∃S.
However, this is not a problem for QBFs whose prefix already starts with ∃. In any case,
despite this issue, the considered formalism enables us to use a unified approach to the



Constraints (2016) 21:277–302 283

QMaxSAT problem for QBFs whose prefix starts with both ∀ and ∃. Therefore, from now
on we are going to consider and solve the QMaxSAT problem for only QBFs of the form (2).

Due to the close relationship of the QMaxSAT problem to its classical version, an inter-
esting line of work is to apply to this problem the ideas and algorithms developed for
non-quantified MaxSAT. The next section gives a detailed explanation of how MaxSAT
algorithms can be adapted to the QMaxSAT problem.

3.1 Related work

Optimization problems subject to quantified constraints have been studied elsewhere [15,
19, 21], but address more general formulations than QMaxSAT. The Max-QSAT prob-
lem [21] can be viewed as computing a strategy that maximizes the number of simulta-
neously satisfiable clauses. Other optimization problems have been studied in the recent
past [15, 19]. The focus of [19] is approximation algorithms for computing a winning strat-
egy that minimizes some cost function, whereas [15] studies preferences over strategies. A
framework similar to QMaxSAT was studied in [60] in the context of the QBF prefix opti-
mization problem, where only an iterative search algorithm was considered. To our best
knowledge, and besides our work, [15] and [60] are the only other references that propose
exact algorithms for solving optimization problems over quantified constraints.

4 Solving QMaxSAT

Analogously to what was done for a number of other optimization problems, solving quan-
tified MaxSAT requires developing specific iterative procedures. This section proposes
several algorithms for solving QMaxSAT. Being based on the algorithms developed for the
classical MaxSAT problem, all the algorithms described in this section hinge upon the idea
of iterative use of QBF oracles. The main focus of the section is the algorithm based on
unsatisfiable core extraction. Thus, and in addition to the QMaxSAT algorithms, the sec-
tion defines a notion of an unsatisfiable core for QBF formulas and also gives a detailed
explanation of how they can be extracted in modern QBF solvers.

4.1 QMaxSAT algorithms

4.1.1 Iterative QMaxSAT algorithms

This section describes one of the simplest approaches to the QMaxSAT problem also used
in [60]. Recall that we are going to solve the quantified MaxSAT problem for QBFs of the
form (2), which consists in finding the best solution A∗

S of the hard part of QBF (2) (if any)
with respect to the number of satisfied clauses in φS , i.e. |φ∗

S | where φ∗
S is the largest subset

of φS whose clauses are satisfied by A∗
S . Analogously to classical non-quantified MaxSAT,

we will optimize on the cost of solution φ∗
S , i.e. the number of falsified clauses in φS , which

is |φS | − |φ∗
S |. Note that it is not hard to find both upper and lower bounds for the solution

cost, at least the trivial ones.4 Let us denote upper and lower bounds on the cost as μ and λ,
respectively.

4The trivial lower and upper bounds are 0 and |φS |, respectively.



284 Constraints (2016) 21:277–302

The idea of the approach is to iteratively choose a value k from {λ, λ + 1, . . . , μ − 1, μ}
and to decide if there is a solution of the hard part of (2) that falsifies at most k clauses of φS .
Observe that the basic idea is essentially to consider and constrain the value

∑
s∈S ¬s ≤ k

and check if there is a solution of the hard part of (2) that respects this constraint.5 This
kind of constraints on

∑
s∈S ¬s can be easily encoded into a Boolean formula, e.g. into

a formula in conjunctive normal form [62]. Assuming such constraints to be in CNF, the
considered QMaxSAT problem can be solved by successive deciding whether the following
QBF is true or false:

∃S
−→
Q. φH ∧ (

∑

s∈S
¬s ≤ k) (3)

There are different possible strategies on how to choose value k. For example, one can
start with k = λ and increment k until formula (3) becomes true, or decrease it starting from
the upper bound (k = μ) while (3) is true. This is analogous to the linear search for non-
quantified MaxSAT [16], which refines lower and upper bounds on the value of the cost
function.6

As a brief example, the pseudo-code of the linear search UNSAT-SAT (LSUS, which
was originally developed for MaxSAT) adapted to quantified MaxSAT is shown in Algo-
rithm 1. The algorithm is referred to as QLSUS (quantified LSUS). Given formula (2), it
finds a solution A∗

S of its hard part that is the best with respect to the number of satisfied
clauses in φS , i.e. with the smallest cost. The pre-condition of the algorithm requiring the
hard part of the QBF to be true ensures that the algorithm terminates. The algorithm initial-
izes k with value 0. At each iteration of the loop, QBF (3), where constraint

∑
s∈S ¬s ≤ k is

encoded into a CNF formula, is decided by a QBF oracle. If the formula is false, algorithm
QLSUS increases k, updates the QBF accordingly and continues doing the loop. Otherwise,
the algorithm stops and reports the solution found. Observe that it is not hard to modify the
algorithm for implementing linear search SAT-UNSAT or binary search (the corresponding
acronyms would be QLSSU and QBINS, respectively). Although all these iterative algo-
rithms are not the main contribution of the paper, we implemented and compared them to
our main algorithm for the concrete case of the SMUS problem (see Section 6).

4.1.2 Core-guided QMaxSAT algorithms

The main goal of this paper is to construct an algorithm which is based on the use of unsat-
isfiable cores (or simply cores) similar to the Fu&Malik’s algorithm for MaxSAT [24].

5Note that the soft part φS of QBF (2) forces the fact that
∑

s∈S ¬s = 0.
6Instead of the linear search algorithms, one can use binary search [24, 31]. Binary search algorithms are not
covered by this paper.



Constraints (2016) 21:277–302 285

Although there are a number of algorithms that are significantly more efficient in practice7

(e.g. MSU3 and BCD2 [55], Progression [34], OLL [54], and MaxRes [56]), we mainly
focus on the Fu&Malik’s algorithm since it was the first proposed algorithm based on the
idea of unsatisfiable core extraction and it is relatively easy to implement. However, note
that all the MaxSAT algorithms can be adapted to QMaxSAT using the ideas proposed in
this section. Similarly to the linear search that refines lower bounds on the value of the
cost function, Fu&Malik’s algorithm (we refer to its original version as MSU1 [50]; some
authors refer to this algorithm as WPM1 [3]) tests a series of unsatisfiable instances until a
satisfiable instance is found. However, instead of dealing with the constraint

∑
s∈S ¬s ≤ k

and increasing k with each call to a SAT solver, it identifies a small unsatisfiable portion
of the soft part φS , which is called an unsatisfiable core. Sequential core computation in
MSU1 increases the current cost value with each iteration, i.e. with every new core com-
puted. Thus, each unsatisfiable core increments a possible minimum cost of an assignment
that satisfies the constraints. Let us define a core of formula (2). This will enable us to
extend the MSU1 algorithm to the case of QMaxSAT.

Definition 2 Given QBF (2), a Boolean formula φH ∧ φ′
S , where φ′

S ⊆ φS , is called an

unsatisfiable core of formula (2), if and only if QBF ∃S
−→
Q. φH ∧ φ′

S is false.

Even though Definition 2 is made for the reformulated QBF (2), observe that one can
analogously define unsatisfiable cores for the original QBFs of the form (1). Also notice
that according to Definition 2, the hard part φH of QBF (2) is included into any unsatisfiable
core of the QBF. However, similarly to the core-guided algorithms for the non-quantified
MaxSAT, the algorithm described below needs only the soft part φ′

S of the core while the
hard part is not used and, thus, not needed. Therefore, hereinafter we assume that all the fol-
lowing algorithms are able to implicitly extract and deal with the soft part φ′

S of a QBF core.

7http://www.maxsat.udl.cat/14/

http://www.maxsat.udl.cat/14/


286 Constraints (2016) 21:277–302

Algorithm 2 shows the pseudo-code of the MSU1 algorithm adapted to QMaxSAT (we
refer to this algorithm as QMSU1, quantified MSU1). Given a formula ψ in the form (2),
the QMSU1 algorithm computes such a solution A∗

S of the hard part of ψ (if any) that
maximizes the number of satisfied clauses of φS . The set of all relaxation variables used
by the algorithm is denoted by Rall and initialized by ∅ (line 1). At each iteration of the
loop the algorithm constructs a working copy ψW of formula ψ (3) and asks a QBF oracle
to decide whether it is true or false (4). Notice that this working copy of the formula is
modified at each iteration of the algorithm since new relaxation variables are introduced for
each new unsatisfiable core. As an answer the oracle returns a 3-tuple (st, φ′

S,AE) (line 4).
If st = false, then a new unsatisfiable core returned by the oracle is processed. If the soft
part φ′

S of the core is empty, it means that the hard part φH of the QBF is itself inconsistent,

i.e. ∃S
−→
Q. φH is false, and the algorithm returns false. Otherwise (if the core is not empty),

the algorithm considers a set of relaxation variables R (initially set to ∅) and relaxes each
soft clause c ∈ φ′

S of the core by a new relaxation variable of r ∈ R. The new (extended)
soft clause c ∨ r replaces the original clause c in φS . At the end of the iteration, QMSU1
adds a CNF encoding of a new cardinality constraint

∑
r∈R r ≤ 1 to the hard part φH of ψ .

Note that since every clause of φS contains only selection or (previously added) relaxation
variables, all the relaxation variables r ∈ Rall can be quantified by the same ∃-quantifier
as variables s ∈ S (see line 3). The algorithm iterates until formula ψW is true, in which
case it reports the solution AS ∈ M(ψW ) of the QMaxSAT problem (line 6); or the hard
part φH of the QBF is turned out to be false in itself. In the latter case QMSU1 returns
false (line 8). By construction, AS (if it exists) maximizes the number of satisfied clauses

of ϕS and
−→
Q. φH |AS

is true, i.e. it is the solution A∗
S of the QMaxSAT problem. Note that

the algorithm is analogous to the MSU1 algorithm for non-quantified MaxSAT. The only
difference is that QMSU1 uses not a SAT solver as an oracle but a QBF solver, and the hard
part of the formula can be in a non-CNF form. Thus, the correctness of the algorithm relies
on the corresponding result for the MSU1 algorithm [24].

Note that the only requirement imposed by the QMSU1 algorithm on the QBF oracle
is the ability to produce a solution of a formula or its unsatisfiable core in case if it is
true or false, respectively. While providing a solution of a formula seems straightforward
to implement, the oracle must also be able to explain why the input formula is false, i.e. to
extract an unsatisfiable core from the formula. A simple solution is to include all the soft
clauses in the core. However, the efficiency of the algorithm relies on producing small cores.

4.2 Core extraction in QMaxSAT

While the QMSU1 algorithm can use any QBF solver as long as it produces unsatisfiable
cores, for particular QMaxSAT applications (the smallest MUS problem and the small-
est MES problem, see Section 5) this work uses a CEGAR-based 2QBF solver [38] as an
underlying QBF oracle. Therefore, this section mainly describes a method for extracting
unsatisfiable cores using a CEGAR-based QBF solver [37, 38]. Additionally, it also briefly
mentions how this can be also done in QDPLL-based solvers.

4.2.1 Extracting cores in CEGAR-based QBF

Among the many practical uses of the counterexample guided abstraction refinement
(CEGAR) [20], it can also be applied for solving QBF [37, 38]. The key idea of CEGAR
is to consider an approximate representation of a problem (called the abstraction) instead



Constraints (2016) 21:277–302 287

of its explicit representation that could be too large to construct or unknown. This section
provides a basic overview of the algorithm for 2QBF (with the prefix ∃X∀Y ) and describes
its modification, which is able to extract an unsatisfiable core of a formula if the formula is
false. Additionally, it also extends the algorithm for the formulas with an arbitrary number
of quantification levels. The reader is referred to [37, 38] for further details and properties
of the algorithm.

For the sake of succinctness, when talking about 2QBF, assignments to variables of X

and Y are denoted by μ and ν, respectively. We also assume, that the matrix of the 2QBF is
presented as φH ∧φS , where φS represents a set of soft clauses, and φH is a hard part given in
a possibly non-CNF form. The algorithm hinges on the idea that the problem ∃X∀Y. φH ∧φS

can be equivalently represented as

∃X.
∧

ν∈{0,1}|Y |
(φH ∧ φS)|ν (4)

where the universal quantifier is expanded using a conjunction. Note that by construction
(see Section 4.1.2), the set of soft clauses contains only variables existentially quantified
on the outermost quantification level, i.e. variables of X. Therefore, instead of (4) one can
equivalently consider

∃X. φS ∧
∧

ν∈{0,1}|Y |
φH |ν (5)

Since the full expansion (5) of the problem can be exponentially large with respect to the
original problem, it is infeasible to construct such representation in practice. Instead of
constructing the full expansion (5), CEGAR constructs a partial expansion of the given
problem, i.e.

∃X. φS ∧
∧

ν∈W

φH |ν (6)

where W ⊆ {0, 1}|Y |. We refer to formula (6) as W -abstraction. Observe that for any W ,
the corresponding W -abstraction is weaker than the full expansion (5). This means that the
set of the W -abstraction’s solutions is a superset over the set of solutions of the original
problem, i.e. some of the W -abstraction’s solutions may not satisfy (5). The idea of the
CEGAR-based algorithm described below is to gradually strengthen the abstraction until a
solution of the original problem is found, or the abstraction is proved to be false (see Fig. 1).

Fig. 1 Gradual strengthening of
abstractions until a solution is
found

W 0

W 1

W n

µ 1

µ 2

µ n +1



288 Constraints (2016) 21:277–302

Algorithm 3 shows the pseudo-code of the algorithm. The algorithm maintains a set of
assignments W in the variable ω. We start with the abstraction equal to true, any assignment
μ to the variables of X satisfies the abstraction. Assume, that the algorithm encodes the
hard part φH into a CNF formula by calling a function CNF(φH ).

In each iteration of the loop, the algorithm first computes a solution to the abstraction,
which is maintained in α and constructed at line 3. We refer to this solution as a candidate
solution, because it is not guaranteed that it is indeed a solution to the original problem. If
a SAT oracle says (see line 4) that there is no candidate solution, i.e. the abstraction has no
solutions, the original problem does not have any solutions either (recall that the abstraction
is always weaker than the problem). In this case the algorithm returns an unsatisfiable core
of the input formula (line 7). Observe that the soft part φ′

S of the QBF core can be easily
extracted from the core φC returned by the SAT oracle since it coincides with the soft part
of φC , i.e. φ′

S = φS ∩ φC . In other words, the unsatisfiable core φC shows the falsity of
the W -abstraction even if we consider the abstraction’s soft part to be φ′

S instead of φS , i.e.
∃X. φ′

S ∧ ∧
ν∈W φH |ν is false.

If the SAT oracle says that there is a candidate solution, then the algorithm checks
whether it is indeed a solution of the problem or not. This is done by computing a coun-
terexample. For a candidate μ, a counterexample ν is an assignment to the variables of Y

such that ¬(φH ∧ φS)|μ. A counterexample ν serves as a witness that μ is not a solution,
i.e. it is not the case that ∀Y. α|μ because φH ∧ φS is false when variables of Y are assigned
to ν. If no counterexample is found, the current candidate is indeed a solution and can be
returned. If a counterexample is found, it is added to the set ω, which effectively strengthens
the abstraction .

4.2.2 Extending RAReQS with core extraction

Following the ideas of [37], the method for core extraction described above can be extended
to the case of formulas with an arbitrary number of quantification levels. Hence, we assume

that we are given a false formula ∃X
−→
Q. φH ∧φS , where φS is in CNF and is defined only on

the variables X. The objective is to compute a set φ′
S ⊆ φS such that ∃X

−→
Q. φH ∧ φ′

S is also
false. The algorithm RAReQS [37] is a recursive extension of the algorithm AReQS [38]
(the core extraction for AReQS was described in Section 4.2.1). We will show that in order



Constraints (2016) 21:277–302 289

to enhance RAReQS with core extraction, it is sufficient to modify only the top level call
of recursion. Hence, we assume that the algorithm RAReQS is already implemented as
described in [37]. RAReQS is represented by the function RAReQS(	), about which we
assume that for a given QBF 	 = ∀Y.
 it returns a pair (st,AY ) so that st is true iff 	 is
true. The assignment AY is meaningful only if st is false, in which case AY is a complete
assignment to Y such that 	|AY

is false.8

As in the case of two-level quantification, RAReQS partially expands quantifiers. Let
us look at the case when we are solving a formula of the form ∃X∀U∃Z.
. For simplic-
ity, let’s assume that U was expanded by two assignments μ1 and μ2, which yields the
formula ∃X. ((∃Z.
|μ1) ∧ (∃Z.
|μ2)). In contrast to the 2QBF case, the expansion is
no longer in prenex form. This can be fixed by introducing fresh variables for each copy
of Z, hence obtaining: ∃XZ1Z2. 
1|μ1 ∧ 
2|μ2 , where 
i is obtained from 
 by renam-
ing variables Z to the corresponding variables Zi . If the expansion is false, then the original
formula is also false and we can stop. If the expansion is true, we obtain an assignment to
the variables XZ1Z2 that makes the expansion true. In such case we need to test that this
assignment also makes true the input formula.

Algorithm 4 concretizes this general idea. The algorithm is represented by the recursive

function RAReQS(∃X
−→
Q. φH , φS), which expects the input formula to be specified as a

pair consisting of the hard part of the formula and the soft part. Semantically, the input

corresponds to the QBF ∃X
−→
Q. φH ∧ φS , but it will be useful for us to keep the soft clauses

separately. The function returns a triple (st, φ′
S,AX) so that st is true if and only if the input

formula is true. If st is true, then AX is a complete assignment to the X variables such that−→
Q. (φH ∧ φS)|AX

is true. If st is false, then φ′
S is a core, i.e. ∃X

−→
Q. φH ∧ φ′

S is also false.

8In fact, we could use any other QBF solver satisfying this interface.



290 Constraints (2016) 21:277–302

If
−→
Q contains no quantifiers, this is the base case of the recursion as we can simply

invoke a SAT solver and use its capacity to produce either a core or satisfying assignment
(lines 4–5). Similarly to Algorithm 3, the algorithm is assumed to be able to encode the hard
part φH into CNF by calling CNF(φH ).

In the non-base case, the algorithm maintains in the variable ω the assignments used for
the expansion—initialized to be empty. The abstraction is constructed by expanding the first

quantifier of
−→
Q , which is necessarily the universal quantifier, and therefore, is expanded as

a conjunction (in the worst-case, this expansion may lead to an exponentially large formula,
corresponding to the exact semantics of the universal quantifier).

Semantically, the abstraction corresponds to
∧

ν∈ω(
−→
Q. φH ∧ φS)|ν . However, since φS

is defined only on the variables X, it is not affected by the expansion and therefore it can

be taken out, yielding the formula φS ∧ ∧
ν∈ω(

−→
Q. φH )|ν . This formula is prenexed (by

introducing new variables) and is solved by a recursive call (line 9).
The recursive call tells us either that the abstraction is false and then we stop, or, if the

abstraction is true, we test whether the assignment satisfying the abstraction also satisfies
the input formula. If the abstraction is false, we use the core of the abstraction as the core of
our formula (line 11). If the abstraction is true, the recursive call gives us an assignment to
the variables X but also to the auxiliary variables that were introduced by prenexing; these
are filtered out as they are not of interest, giving us the candidate μ (line 12).

To test that the candidate makes our original formula true, we invoke the function

RAReQS on
−→
Q. φH |μ. Note that at this stage φS can be safely omitted because it is defined

only on the X variables, and, it must have been necessarily satisfied by the candidate, i.e.
φS |μ = 1. If the call to RAReQS tells us that reducing by μ yields a true formula, we are
done (the original formula is true). If, the reduced formula is false, we use the assignment
returned by RAReQS for refinement (line 16).

Core extraction for DPLL-based QBF solvers Extracting cores in the DPLL-based
QBF solvers [73] is quite similar to the extraction of cores in SAT solvers [25, 74]. Essen-
tially, there are two approaches to extracting cores: from a refutation proof or by the use
of assumptions. If a QBF solver traces its workings, it can produce a Q-resolution refu-
tation [40, 57, 70]9 of the formula and the leaves of such proof serve as the core. In the
assumption method, we require a QBF solver to accept a set of literals that must be true
(assumptions). Further, if the formula is false, it returns a subset of these assumptions that
are responsible for the formula being false [48]. Then, every soft clause c is adorned with
a fresh literal ¬sc ∨ c, and the solver is called with the assumptions {sc|c ∈ φS}. Like so
the assumption sc insists the clause c be satisfied. If the formula is false (unsatisfiable), the
solver gives us a subset of the assumptions that correspond to the core.

5 Applications of QMaxSAT

This section describes two applications of the proposed quantified MaxSAT framework.
Both applications consist in minimizing a set of clauses with respect to unsatisfiability or
equality criteria. More precisely, we are going to present the SMUS and SMES problems. In
contrast to finding a smallest possible subset of clauses that are unsatisfiable or equivalent to

9 Some solvers require long-distance Q-resolution [9, 23, 73] and further extensions might be needed if
preprocessing is applied [10, 32, 36, 69].



Constraints (2016) 21:277–302 291

the original CNF formula, the MUS and MES problems are well studied and the algorithms
for solving them are deployed in practice [11, 13, 30, 49, 63, 65, 67].

Although in many practical applications minimization of an unsatisfiable/ equivalent set
of clauses can be quite expensive, the resulting subset can be relatively close to the exact
optimum (i.e. a smallest MUS/MES) and, thus, satisfactory. However, in some cases there is
no guarantee for the state-of-the-art MUS/MES extracting algorithms to obtain an MUS (or
MES) of a reasonable size (i.e. close to the exact optimum). The following example gives
an intuition why this is indeed true. Let us consider a CNF formula ϕ = {c1 = x1, c2 =
¬x1 ∨x2, c3 = ¬x1 ∨x3, c4 = ¬x1 ∨x4, c5 = ¬x1 ∨x5, c6 = ¬x2 ∨¬x3 ∨¬x4 ∨¬x5, c7 =
x6∨x7, c8 = ¬x6∨¬x7, c9 = x6∨¬x7, c10 = ¬x6∨x7}. Observe that formula ϕ has exactly
two MUSes: ϕ1 = {c1, c2, c3, c4, c5, c6} and ϕ2 = {c7, c8, c9, c10}. Normally, a modern
MUS extractor would find and report ϕ1 while the smallest MUS is ϕ2. This can be caused
by various factors: clause ordering, heuristics used in MUS/MES extractors (e.g. trimming),
and/or even the implementation of the SAT oracle (more precisely by the use of unit propa-
gation). In practice the size of the MUSes/MESes can vary a lot. Therefore, if a user prefers
smaller MUSes/MESes, it might be crucial to use specific algorithms for extracting the
smallest MUS/MES instead of relying on the result produced by an MUS/MES extractor.

5.1 The smallest MUS problem

This section considers a concrete application of the QMaxSAT problem — the problem
of finding a smallest MUS of a CNF formula. Let X = {x1, . . . , xn} be a set of Boolean
variables and ϕ = {c1, . . . , cm} be a CNF formula. Formula ϕmus ⊆ ϕ is called a minimal
unsatisfiable subformula (MUS) of ϕ, if ϕmus is unsatisfiable and ∀ci ∈ ϕmus formula ϕmus \
{ci} is satisfiable. The MUS problem is a subject of active research (e.g. [51]).

Definition 3 Formula ϕ∗
mus, ϕ∗

mus ⊆ ϕ, is called a smallest MUS of ϕ if

1. ϕ∗
mus is unsatisfiable;

2. any subformula ϕ′ ⊆ ϕ s.t. |ϕ′| < |ϕ∗
mus| is satisfiable.

The smallest MUS problem (SMUS) consists in finding a smallest MUS of a CNF for-
mula. An algorithm that computes an SMUS by searching the space of all unsatisfiable
subformulas was presented in [49]. A greedy genetic algorithm that finds approximate
solutions of the SMUS problem was proposed in [71]. A branch and bound algorithm for
computing SMUSes was described in [45, 53]. The decision version of the SMUS problem,
i.e. the problem of determining whether a given formula has a smallest MUS of size k, is
known to be �P

2 -complete (e.g. see [29]).
Let us formulate an optimization extension of SMUS in terms of QMaxSAT defined in

Section 3. First, we introduce a set of selection variables {s1, . . . , sm} denoted by S. Then
we extend each clause ci ∈ ϕ with a selection literal ¬si . Let us denote the resulting CNF
formula by ϕ+ = {c1 ∨ ¬s1, . . . , cm ∨ ¬sm} (subscript “+” means that it is an extended ϕ).
Now instead of the original CNF formula ϕ, we construct two formulas: a non-CNF hard
part φH = ¬ϕ+, and a set of soft clauses φS = {¬s1, . . . , ¬sm}. Note the soft part φS is
different from the one considered in Section 3 since the soft clauses contain negative literals
¬si . The purpose of this will become clear below.

Let us consider a QBF ψunsat = ∃S ∀X. φH . This QBF is true, i.e. M(ψ) �= ∅, iff the
original CNF formula ϕ has an unsatisfiable subformula. Also notice that if all selection
variables are assigned false (none of the clauses are selected), the hard part φH is false



292 Constraints (2016) 21:277–302

since an empty CNF cannot have an unsatisfiable subformula. Now we can construct a QBF
formula, which the QMaxSAT formulation of the SMUS problem will be done for. This
formula a simplified version of (2) and is the following:

ψ = ∃S ∀X. φH ∧ φS (7)

This formula is false and the problem of finding a smallest MUS of ϕ consists in finding
an assignment A∗

S that defines a subset of soft clauses φ∗
S , φ∗

S ⊆ φS , of the largest possible
size such that QBF ∀X. φH ∧ φ∗

S is true. The semantics of φ∗
S for the original CNF ϕ is that

all the subsets of ϕ that have a smaller size than φ∗
S do not have an unsatisfiable subformula

and, hence, φ∗
S defines the smallest unsatisfiable subformula of the original CNF formula ϕ.

As shown in Section 4.1.1, to solve this problem, one can use an iterative approach
calling a 2QBF oracle, which decides whether the following quantified formula is true or
false: ∃S ∀X. φH ∧(

∑
s∈S s ≤ k). The solution cost k changes with each iteration. However,

one can also apply algorithm QMSU1 to this problem as well, which will iteratively ask the
QBF oracle to decide QBF (7).

The QMSU1 algorithm iteratively extracts unsatisfiable cores of formula (7) and relaxes
their soft parts, which are some subsets of φS , until it finds an assignment A∗

S that maxi-
mizes the number of satisfied clauses of φS . Assignment A∗

S defines the largest subset φ∗
S

of satisfied clauses of φS . Subset φ∗
S in turn corresponds to an SMUS ϕ∗

mus, ϕ∗
mus ⊆ ϕ, such

that a clause ci ∈ ϕ∗
mus iff A∗

S(si) = 1.

5.2 The smallest MES problem

Another example of a concrete practical application of the QMaxSAT problem is the prob-
lem of computing a smallest minimal equivalent subformula (smallest MES, or SMES) of a
CNF formula.

Definition 4 Given a CNF formula ϕ, formula ϕmes, ϕmes ⊆ ϕ, is called a minimal
equivalent subformula of ϕ if ϕmes ≡ ϕ and ∀c∈ϕmes , ϕmes \ {c} �≡ ϕ.

The problem of computing MESes of a CNF formula [11] is tightly connected to the
notions of a redundant clause and irredundant formula. A clause c ∈ ϕ is said to be redun-
dant if ϕ \ {c} |= c. In other words, adding/removing c to/from ϕ does not change the set
of models of ϕ. Formula ϕ is referred to as irredundant if none of its clauses is redundant.
Given a CNF formula, its irredundant subformulas are referred to as irredundant cores [43],
or irredundant equivalent subsets [44]. It is not hard to see that an MES of a CNF formula is
irredundant. It was shown in [44] that deciding whether a given CNF formula is irredundant
(i.e. it is an MES) is DP -complete.

Observe that the problem of computing an MES of CNF formula is defined for both satis-
fiable and unsatisfiable formulas while computing an MUS makes sense only if the formula
is unsatisfiable. Moreover, given an unsatisfiable formula ϕ, an MES of ϕ is clearly one of
its MUSes. Therefore, computing an MUS of a formula can be considered as a particular
case of computing an MES. Analogously to SMUS, a smallest MES can be defined in the
following way.

Definition 5 Formula ϕ∗
mes, ϕ∗

mes ⊆ ϕ, is called a smallest MES of ϕ if

1. ϕ∗
mes ≡ ϕ;

2. for any subformula ϕ′ ⊆ ϕ s.t. |ϕ′| < |ϕ∗
mus| the following holds ϕ′ �≡ ϕ.



Constraints (2016) 21:277–302 293

Due to the close relationship between the SMUS and SMES problems, the latter can be
represented in terms of QMaxSAT defined in Section 3 in a way similar to the one from
Section 5.1. Namely, we introduce a set of selection variables S = {s1, . . . , sm}. Given a
CNF formula ϕ, we again construct a formula ϕ+ = {c1 ∨ ¬s1, . . . , cm ∨ ¬sm}, ci ∈ ϕ.
Obviously, assignments to variables of S define subsets of formula ϕ: a clause ci ∈ ϕ is
selected (or activated) if the corresponding selection variable si ∈ S is assigned true.

Next, we construct a QBF ψequiv = ∃S ∀X. ϕ+ ≡ ϕ, which is true if formula ϕ has
an equivalent subformula. Observe that equivalence ϕ ≡ ϕ+, by definition, means (ϕ |=
ϕ+) ∧ (ϕ+ |= ϕ). Clearly, the first entailment holds by construction (as mentioned above,
given an assignment to the selection variables, ϕ+ represents a subset of ϕ). And the second
entailment can be represented by φH = ¬ϕ+ ∨ ϕ. Thus, QBF ψequiv can be equivalently
represented as ∃S ∀X. φH .10

Considering a set of soft clauses from Section 5.1, i.e. φS = {¬s1, . . . , ¬sm}, enables to
formulate the SMES problem in terms of QMaxSAT: find an assignment A∗

S that defines a
subset of soft clauses φ∗

S , φ∗
S ⊆ φS , of the largest possible size such that QBF ∀X. φH ∧ φ∗

S

is true.
Again, there are several approaches to this problem. One is to iteratively (by incre-

menting or decrementing k, see Section 4.1.1) decide the following quantified formula
∃S ∀X. φH ∧ (

∑
s∈S s ≤ k).

However, in this work we mainly focus on applying the core-guided algorithms proposed
in Section 4.1.2, which call a QBF oracle to decide whether QBF ∃S ∀X. φH ∧φS is true of
false. Initially this formula is false, and the core-guided algorithms proposed in Section 4.1.2
iteratively extract its unsatisfiable cores and relax their soft parts until the formula becomes true.

5.3 Problem specific lower bounds

Most of the state-of-the-art MaxSAT solvers use heuristics to improve the performance. For
example, in practice, it is quite important for a MaxSAT solver to compute good lower and
upper bounds on the optimal value so that the solver could skip unnecessary iterations. Sim-
ilar ideas can be used for improving the performance of the quantified MaxSAT algorithms
proposed in Section 4.1. However, it should be noted that in contrast to classical MaxSAT,
where the formula is always in CNF, for the case of QMaxSAT matrices of QBFs can be
specified in a potentially non-CNF form. Therefore, heuristics for computing lower and
upper bounds can vary significantly depending of the formula type. Here we briefly describe
how one can compute a lower bound for the QMaxSAT formulation of the two problems
described above: SMUS and SMES.

Let us describe the idea for the case of the SMUS problem.11 It was originally proposed
and applied to the Digger algorithm. To increase its performance, Liffiton et al. [45] use
a preprocessing technique — computing a set of disjoint MCSes. An MCS (or minimal
correction set) of an unsatisfiable CNF formula ϕ is a subset of clauses δ ⊂ ϕ such that
ϕ \ δ is satisfiable while ϕ \ δ ∪ c is unsatisfiable for any clause c ∈ δ. The heuristic used
in Digger hinges on the following important connection between MCSes and MUSes of a
CNF formula formulas (see [7, 17, 30, 46, 47, 61]): any MUS of formula ϕ is a minimal

10One can easily see that in the case when ϕ is unsatisfiable, formula ψequiv degenerates to ψunsat from
Section 5.1. This confirms that the MES problem is a generalization of the MUS problem.
11However, since the SMES problem is a generalization of SMUS, similar reasoning can be applied for
computing a lower bound for SMES. The only difference is the formula to consider (see Section 5.2 for
details).



294 Constraints (2016) 21:277–302

hitting set of the complete set of MCSes of ϕ. Therefore, the enumeration of disjoint MCSes
gives a lower bound of the size of an SMUS, thus, reducing the search space of the Digger
algorithm.

In our QMaxSAT approach, we can exploit the same technique only for iterative algo-
rithms (i.e. QLSUS, QLSSU, and QBINS) since the QMSU1 algorithm does not handle
constraints ≤ k directly. Thus, it is not enough for QMSU1 to have a lower bound. In order
to use it, QMSU1 needs some cores that witness the lower bound to be correct. However, the
enumeration of disjoint MCSes can be still helpful while solving SMUS by QMSU1. For
example, if a CNF formula ϕ has an MCS C = {c}, where c is a clause (so called unit MCS),
then each MUS of ϕ contains clause c (due to the minimal hitting set duality). Therefore,
one of the improvements of QMSU1 for computing an SMUS of formula ϕ can be enumer-
ation of all the unit MCSes of ϕ.12 This makes it easier to solve the SMUS/SMES problem
by pruning the search space extensively since the solution of the problem must include all
the clauses comprising the unit MCSes enumerated.

Although the enumeration of unit MCSes helps to improve the QMSU1 algorithm, in
practice it is often not enough to consider just unit MCSes. Therefore, another technique we
exploit in our approach is the use of disjoint MCSes, found during the preprocessing stage,
as unsatisfiable cores of formula (7). Let δ be an MCS of ϕ. By ϕδ

S we denote a subformula
of ϕS containing only clauses of ϕS that correspond to clauses of δ, i.e. (¬si) ∈ ϕδ

S if
ci ∈ δ. By definition of an MCS, formula ϕ \ δ is satisfiable. This means that ϕR ∧ ϕδ

S

is also satisfiable. Then the formula ∃S ∀X. ¬ϕR ∧ ϕδ
S is false. Given Definition 2, this

means that ¬ϕR ∧ ϕδ
S is a core of (7). Therefore, k MCSes computed by preprocessing give

us k unsatisfiable cores of (7). Moreover, since all the computed MCSes are disjoint, the
cores are disjoint. So the use of this preprocessing technique provides the algorithm with
a lower bound and a set of disjoint unsatisfiable cores that are the reason for the lower
bound. Following lines 10–13 of Algorithm 2, all of these cores can be then processed
before running the algorithm itself. In practice this significantly increases the performance of
the QMSU1 algorithm (see Section 6).

12Unit MCSes are about 60–80 % of the total number of disjoint MCSes computed for the benchmarks
considered in the experimental evaluation (see Section 6).



Constraints (2016) 21:277–302 295

There is a number of efficient algorithms for enumerating MCSes of a CNF formula
(e.g. see [52, 58] and references therein). Algorithm 5 shows a pseudo-code of a typical
MaxSAT-based algorithm for computing disjoint MCSes of an unsatisfiable CNF formula
used as a preprocessing heuristic in our QMaxSAT approach. Given an unsatisfiable CNF
formula ϕ as an input, the algorithm constructs a set of pairwise disjoint MCSes of ϕ.
Algorithm 5 computes MCSes of ϕ starting from the the smallest ones (in terms of the
number of clauses). In order to do so, it calls a MaxSAT solver for formula ϕ (see line
3). Note that while solving the MaxSAT problem for ϕ, the MaxSAT solver does a series
of relaxations of formula’s unsatisfiable cores and constructs the corresponding cardinal-
ity constraints. When the solver terminates, the resulting modified formula ϕ′ is obtained,
which is satisfiable. Each model A of ϕ′ (line 5) defines a MaxSAT solution for the orig-
inal formula ϕ. As a side effect, it also defines an MCS δ corresponding to that MaxSAT
solution, i.e. MCS δ comprises clauses of ϕ that are falsified by A (line 8). Each MCS
δ found by this process is then blocked (see lines 9–10) so that next model of ϕ′ must
satisfy all of its clauses. Algorithm 5 iterates while the set (ϕ) of all disjoint MCSes
of ϕ is satisfiable. Note that satisfiability of formula (ϕ) means that there is a maxi-
mally satisfiable set of clauses μ ⊂ ϕ s.t. (ϕ) ⊆ μ implying that there is an MCS
δ = ϕ \ μ such that δ ∩ (ϕ) = ∅ (and, thus, MCS δ can be still identified and added
to (ϕ)). Unsatisfiability of (ϕ) means that all disjoint MCSes of ϕ are already included
into (ϕ).

6 Experimental results

6.1 The SMUS problem

A prototype of a solver for the SMUS problem implementing the QMSU1 algorithm was
developed with the use of a CEGAR-based 2QBF oracle described in Section 4.2.1. The
underlying SAT solver of our 2QBF oracle implementation is MINISAT 2.2 [22]. We
refer to this prototype as MinUC (Minimum Unsatisfiable Core finder). Three versions
of this solver were developed. The default one is the core-guided version. The other two
include MinUC-LB and MinUC-UB and implement iterative linear lower and upper bound
approaches respectively. In order to do a comprehensive comparison between QMSU1 and
Digger, we ran MinUC in three different modes (the corresponding names of the tools are
presented in the parentheses):

– without enumerating disjoint MCSes (MinUC-w);
– with the use of the Digger’s disjoint MCS enumerator (MinUC-d);
– with the use of the default built-in13 disjoint MCS enumerator (MinUC).

The set of instances considered includes several sets of benchmarks described below.
The first set consists of automotive product configuration benchmarks [65]. Two other sets
of benchmarks come from circuit diagnosis. Additionally, we selected instances from the
complete set of the MUS competitions benchmarks14 as follows. Since the SMUS problem
is computationally harder than the problem of extracting an MUS of formula, we picked all

13The algorithm used as the default disjoint MCS enumerator of MinUC is MaxSAT-based and described
in Section 5.3.
14http://www.satcompetition.org/2011/

http://www.satcompetition.org/2011/


296 Constraints (2016) 21:277–302

the instances from the MUS competitions that can be solved by MUSER-2 (see [13]) in less
than 10 seconds. The total number of instances in the set is 682. All experimental results
were obtained on an Intel Xeon 5160 3GHz, with 4GB of memory, and running Fedora
Linux operating system. The experiments were made with a 800 second time limit and a
2GB memory limit. The detailed overview of the results is presented in the following plots.

Figure 2a shows a cactus plot illustrating the performance of the core-guided ver-
sion of MinUC compared to Digger. The version of MinUC without enumerating disjoint
MCSes (MinUC-w) can solve 325 instances only. Digger solves 364 instances while
MinUC with the same MCS enumerator (MinUC-d) is able to solve 396 instances. This
is 8.8 % more than by Digger’s result (4.7 % of all the 682 instances). In the case
of using its own MCS enumerator MinUC demonstrates the best performance with 444
instances solved, having 22 % advantage over Digger (11.7 % of the total 682 instances).
Figure 2b and c show similar plots for linear search LB and UB modes respectively. Even
with the use of its own MCS enumerator, linear search modes of MinUC perform worse than
Digger: MinUC-LB solves 322 while MinUC-UB solves 294 instances. Figure 2d gives a
more graphic comparison between Digger and all the versions of MinUC using Digger’s
MCS enumerator. In this case, the time required to enumerate disjoint MCSes is not taken
into account (because it is the same for all the solvers) while in all the other cases it is
included in the runtime.

Figure 3 shows scatter plots comparing the QMSU1 versions of MinUC to Digger (see
Fig. 3a and b) and to its linear search versions (Fig. 3c and d). Figure 4 gives an overview
on how many instances are solvable either by Digger or by core-guided MinUC only.

0 50 100 150 200 250 300 350 400 450

instances

10− 3

10− 2

10− 1

100

101

102

103

C
PU

tim
e
(s
)

MinUC

MinUC-d

Digger

MinUC-w

(a) QMSU1 mode

0 50 100 150 200 250 300 350

instances

10− 3

10− 2

10− 1

100

101

102

103

C
PU

tim
e
(s
)

Digger

MinUC-LB

MinUC-LB-d

(b) Linear LB mode

0 50 100 150 200 250 300 350

instances

10− 3

10− 2

10− 1

100

101

102

103

C
PU

tim
e
(s
)

Digger

MinUC-UB

MinUC-UB-d

(c) Linear UB mode

0 50 100 150 200 250 300 350 400

instances

10− 3

10− 2

10− 1

100

101

102

103

C
PU

tim
e
(s
)

MinUC-d

Digger

MinUC-LB-d

MinUC-UB-d

(d) All modes with Digger’s MCS enumerator

Fig. 2 Performance of MinUC compared to Digger



Constraints (2016) 21:277–302 297

10− 3 10− 2 10− 1 100 101 102 103

MinUC-d

10− 3

10− 2

10− 1

100

101

102

103

D
ig
ge
r

800 sec. timeout

80
0
se
c.

tim
eo
ut

(a) MinUC-d vs Digger

10− 3 10− 2 10− 1 100 101 102 103

MinUC

10− 3

10− 2

10− 1

100

101

102

103

D
ig
ge
r

800 sec. timeout

80
0
se
c.

tim
eo
ut

(b) MinUC vs Digger

10− 3 10− 2 10− 1 100 101 102 103

MinUC

10− 3

10− 2

10− 1

100

101

102

103

M
in
U
C
-L
B

800 sec. timeout

80
0
se
c.

tim
eo
ut

(c) MinUC vs MinUC-LB

10− 3 10− 2 10− 1 100 101 102 103

MinUC

10− 3

10− 2

10− 1

100

101

102

103

M
in
U
C
-U

B

800 sec. timeout

80
0
se
c.

tim
eo
ut

(d) MinUC vs MinUC-UB

Fig. 3 Performance of the used approaches

Fig. 4 Number of instances
solvable by different solvers:
Digger vs MinUC

Only Digger

1

Both

363

33
Only MinUC-d

MinUC-d vs Digger

Only Digger

0

Both

364

80
Only MinUC

MinUC vs Digger



298 Constraints (2016) 21:277–302

The results indicate that the core-guided version of MinUC has an advantage over other
approaches. Digger comes second. MinUC-LB and MinUC-UB have the worst perfor-
mance. Although the experiment results are quite positive for the current version of the
core-guided version of MinUC comparing to Digger, it is still has a potential for possible
improvements.

6.2 The SMES problem

Besides evaluating quantified MaxSAT algorithms applied to the SMUS problem, we also
implemented and ran them in order to solve the SMES problem described in Section 5.2.
However, it should be noted that to the best of our knowledge, there are no algorithms nor
tools targeted specifically on solving SMES. Therefore, we only compared performance of
the three algorithms described in Section 4.1: QLSUS, QLSSU, and QMSU1. In order to
solve the SMES problem, we implemented these algorithms in a prototype of a solver for
SMES. The prototype is referred to as SIEqS (Smallest Irredundant Equivalent Subformula
finder) and uses MINISAT 2.2 [22] as the underlying SAT solver. In the experimental evalu-
ation, acronyms SIEqS-LB, SIEqS-UB, and SIEqS-MSU1 correspond to algorithms QLSUS,
QLSSU, and QMSU1, respectively.

The benchmark set we chose for this evaluation includes instances considered in [11]
that come from practical application domains of SAT including planning problem instances.
Since finding a smallest MES is computationally much harder than finding any MES, we
selected only those instances that are relatively easy for an MES extractor. More precisely,
the instances were filtered by running MUSER-2 in the MES mode for 10 seconds. The total
number of instances in the considered set is 164.

Figure 5 shows the cactus plot comparing the considered algorithms. More detailed
performance comparison of SIEqS to SIEqS-LB and SIEqS- UB is presented in Fig. 6a
and b, respectively. Given the presented results, it is important to note the relevance
of the unsatisfiable core extraction for the QMaxSAT algorithms applied to the SMES
problem.

0 20 40 60 80 100 120 140
instances

0

100

200

300

400

500

600

700

800

C
PU

tim
e
(s
)

SIEqS-MSU1

SIEqS-UB

SIEqS-LB

Fig. 5 Performance of SIEqS applied to SMES



Constraints (2016) 21:277–302 299

10− 3 10− 2 10− 1 100 101 102 103

SIEqS-MSU1

10− 3

10− 2

10− 1

100

101

102

103

SI
E
qS

-L
B

800 sec. timeout

80
0
se
c.

tim
eo
ut

(a) SIEqS-MSU1 vs SIEqS-LB

10− 3 10− 2 10− 1 100 101 102 103

SIEqS-MSU1

10− 3

10− 2

10− 1

100

101

102

103

SI
E
qS

-U
B

800 sec. timeout

80
0
se
c.

tim
eo
ut

(b) SIEqS-MSU1 vs SIEqS-UB

Fig. 6 Performance of QMSU1, QLSUS, and QLSSU applied to SMES

7 Conclusions

This paper studies optimization problems over quantified sets of constraints, and focuses on
the concrete case of quantified MaxSAT (QMaxSAT). The main contributions of the paper
are: (i) a novel core-guided algorithm for QMaxSAT; (ii) generation of unsatisfiable cores
with CEGAR-based QBF solvers; (iii) a QMaxSAT-based approach for solving the smallest
MUS (SMUS) and smallest MES (SMES) problems; and (iv) new pruning techniques for
solving the SMUS and SMES problems. The novel core-guided algorithm for QMaxSAT
is based on the original work of Fu & Malik [24]. Nevertheless, other algorithms for non-
quantified MaxSAT can also be adapted to the quantified case (e.g. [4, 31]).

Experimental results on representative problem instances demonstrate that the novel
approach for computing SMUSes, based on core-guided QMaxSAT algorithms, signifi-
cantly outperforms Digger, a state-of-the-art algorithm for computing an SMUS. These
results, as well as results for the SMES problem, motivate applying core-guided QMaxSAT
algorithms to other optimization problems with quantified constraints.

A number of future research directions can be envisioned. Investigating additional opti-
mization problems with quantified constraints will provide a larger set of problem instances.
Motivated by a larger universe of problems and problem instances, additional core-guided
algorithms can be developed for QMaxSAT. Finally, it will be important to investigate how
to extend the algorithms developed in this paper to settings more general than QMaxSAT.
For example, MAX-QSAT [21] among others [15, 19]. Any QBF solver can be integrated
into the QMSU1 algorithm as an oracle as long as it produces unsatisfiable cores. There are
known techniques for extracting unsatisfiable cores from unsatisfiable QBF instances for
DPLL-based QBF solvers. One of these techniques is proposed in [70] and then followed
by recent works on certificate generation for resolution-based QBF solvers (e.g. [8, 9, 48,
57]) and preprocessors [32, 36]. Thus, an interesting subject of future work is integration
of a DPLL-based QBF solver into the QMSU1 algorithm and comparison of its perfor-
mance (in terms of speed and a core size) with performance of the currently implemented



300 Constraints (2016) 21:277–302

CEGAR-based core-producing QBF oracle. Additionally, it is known that QBF preprocess-
ing improves the performance of QBF solvers extensively. Hence, another line of future
work will be related to the possibility of applying QBF preprocessing to the QMaxSAT
algorithms. Following the ideas of [14], it is interesting to determine what kinds of QBF
preprocessing techniques can be applied to the QMaxSAT algorithms.

For the concrete applications of QMaxSAT, the SMUS and SMES problems, several
optimizations can be considered. Modern (and efficient) MUS/MES solvers [11, 13] can be
used for computing an upper bound on the size of the SMUS/SMES. If the lower bound
(e.g. due to disjoint cores, or by iterative core extraction) equals the upper bound, then an
SMUS/SMES will by given by any minimal hitting set of all the disjoint MCSes. Moreover,
several preprocessing approaches can be used, several of which are more efficient than the
one used in Digger.

Acknowledgments This work is partially supported by SFI PI grant BEACON (09/IN.1/ I2618), FCT
grants ATTEST (CMU-PT/ELE/0009/2009) and POLARIS (PTDC/EIA-CCO/123051/2010), and national
funds through Fundação para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013.

References

1. Andraus, Z.S., Liffiton, M.H., & Sakallah, K.A. (2006). Refinement strategies for verification methods
based on datapath abstraction. In ASP-DAC (pp. 19–24). doi:10.1145/1118299.1118306.

2. Andraus, Z.S., Liffiton, M.H., & Sakallah, K.A. (2008). Reveal: a formal verification tool for verilog
designs. In LPAR (pp. 343–352). doi:10.1007/978-3-540-89439-1 25.

3. Ansótegui, C., Bonet, M.L., & Levy, J. (2009). Solving (weighted) partial MaxSAT through satisfiability
testing. In SAT (pp. 427–440).

4. Ansótegui, C., Bonet, M.L., & Levy, J. (2010). A new algorithm for weighted partial MaxSAT. In AAAI.
5. Ansótegui, C., Bonet, M.L., & Levy, J. (2013). SAT-based MaxSAT algorithms. Artificial Intelligence,

196, 77–105.
6. Ansȯtegui, C., Gomes, C.P., & Selman, B. (2005). The Achilles’ heel of QBF. In AAAI (pp. 275–281).
7. Bailey, J., & Stuckey, P.J. (2005). Discovery of minimal unsatisfiable subsets of constraints using hitting

set dualization. In PADL (pp. 174–186).
8. Balabanov, V., & Jiang, J.H.R. (2011). Resolution proofs and Skolem functions in QBF evaluation and

applications. In G. Gopalakrishnan, S. Qadeer (Eds.), CAV (pp. 149–164).
9. Balabanov, V., & Jiang, J.H.R. (2012). Unified QBF certification and its applications. Formal Methods

in System Design, 41(1), 45–65.
10. Balabanov, V., Widl, M., & Jiang, J.H.R. (2014). QBF resolution systems and their proof complexities.

In C. Sinz, U. Egly (Eds.), SAT (pp. 154–169). Springer.
11. Belov, A., Janota, M., Lynce, I., & Marques-Silva, J. (2012). On computing minimal equivalent

subformulas. In M. Milano (Ed.), CP (Vol. 7514, pp. 158–174). Springer.
12. Belov, A., Janota, M., Lynce, I., & Marques-Silva, J. (2014). Algorithms for computing minimal

equivalent subformulas. Artificial Intelligence, 216, 309–326. doi:10.1016/j.artint.2014.07.011.
13. Belov, A., Lynce, I., & Marques-Silva, J. (2012). Towards efficient MUS extraction. AI Communication,

25(2), 97–116.
14. Belov, A., Morgado, A., & Marques-Silva, J. (2013). SAT-based preprocessing for MaxSAT. In LPAR

(pp. 96–111). doi:10.1007/978-3-642-45221-5 7.
15. Benedetti, M., Lallouet, A., & Vautard, J. (2008). Quantified constraint optimization. In CP

(pp. 463–477).
16. Berre, D.L., & Parrain, A. (2010). The Sat4j library, release 2.2. JSAT, 7(2-3), 59–6.
17. Birnbaum, E., & Lozinskii, E.L. (2003). Consistent subsets of inconsistent systems: structure and

behaviour. Journal of Experimental & Theoretical Artificial Intelligence, 15(1), 25–46.
18. Chen, H., Janota, M., & Marques-Silva, J. (2012). QBF-based Boolean function bi-decomposition. In

DATE (pp. 816–819).
19. Chen, H., & Pál, M. (2004). Optimization, games, and quantified constraint satisfaction. In Mathematical

foundations of computer science (pp. 239–250).

http://dx.doi.org/10.1145/1118299.1118306
http://dx.doi.org/10.1007/978-3-540-89439-1_25
http://dx.doi.org/10.1016/j.artint.2014.07.011
http://dx.doi.org/10.1007/978-3-642-45221-5_7


Constraints (2016) 21:277–302 301

20. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., & Veith, H. (2003). Counterexample-guided abstraction
refinement for symbolic model checking. Journal of ACM, 50(5), 752–794.

21. Condon, A., Feigenbaum, J., Lund, C., & Shor, P.W. (1995). Probabilistically checkable debate systems
and nonapproximability of PSPACE-hard functions. Chicago Journal of Theoretical Computer Science,
1995.

22. Eén, N., & Sörensson, N. (2003). An extensible SAT-solver. In SAT (pp. 502–518).
23. Egly, U., Lonsing, F., & Widl, M. (2013). Long-distance resolution: Proof generation and strategy

extraction in search-based QBF solving. In K. L. McMillan, A. Middeldorp, A. Voronkov (Eds.), LPAR
(Vol. 8312, pp. 291–308). Springer.

24. Fu, Z., & Malik, S. (2006). On solving the partial MAX-SAT problem. In A. Biere, C. P. Gomes (Eds.),
SAT, lecture notes in computer science (Vol. 4121, pp. 252–265). Springer.

25. Goldberg, E.I., & Novikov, Y. (2003). Verification of proofs of unsatisfiability for CNF formulas. In
DATE (pp. 10,886–10,891). IEEE Computer Society.

26. Goultiaeva, A., & Bacchus, F. (2010). Exploiting QBF duality on a circuit representation. AAAI.
27. Goultiaeva, A., & Bacchus, F. (2013). Recovering and utilizing partial duality in QBF. In SAT (pp.

83–99). doi:10.1007/978-3-642-39071-5 8.
28. Goultiaeva, A., Seidl, M., & Biere, A. (2013). Bridging the gap between dual propagation and CNF-based

QBF solving. In DATE (pp. 811–814).
29. Gupta, A. (2006). Learning abstractions for model checking, Ph.D. thesis, Carnegie Mellon University.
30. Han, B., & Lee, S.J. (1999). Deriving minimal conflict sets by CS-trees with mark set in diagnosis from

first principles. IEEE Transactions on Systems, Man, and Cybernetics: Part B, 29(2), 281–286.
31. Heras, F., Morgado, A., & Marques-Silva, J. (2011). Core-guided binary search algorithms for maximum

satisfiability. In W. Burgard, D. Roth (Eds.), AAAI. AAAI Press.
32. Heule, M., Seidl, M., & Biere, A. (2014). A unified proof system for QBF preprocessing. In S. Demri,

D. Kapur, C. Weidenbach (Eds.), IJCAR (Vol. 8562, pp. 91–106).
33. Ignatiev, A., Janota, M., & Marques-Silva, J. (2013). Quantified maximum satisfiability: A core-guided

approach. In M. Järvisalo, A. Van Gelder (Eds.), SAT (Vol. 7962, pp. 250–266). Springer.
34. Ignatiev, A., Morgado, A., Manquinho, V.M., Lynce, I., & Marques-Silva, J. (2014). Progression in

maximum satisfiability. In ECAI (pp. 453–458). doi:10.3233/978-1-61499-419-0-453.
35. Jain, H., Kroening, D., Sharygina, N., & Clarke, E.M. (2005). Word level predicate

abstraction and refinement for verifying RTL verilog. In DAC (pp. 445–450). doi:10.1145/1065579.
1065697.

36. Janota, M., Grigore, R., & Marques-Silva, J. (2013). On QBF proofs and preprocessing. In K.L.
McMillan, A. Middeldorp, A. Voronkov (Eds.), LPAR (Vol. 8312, pp. 473–489). Springer.

37. Janota, M., Klieber, W., Marques-Silva, J., & Clarke, E.M. (2012). Solving QBF with counterexample
guided refinement. In A. Cimatti, R. Sebastiani (Eds.), SAT (Vol. 7317, pp. 114–128). Springer.

38. Janota, M., & Marques-Silva, J. (2011). Abstraction-based algorithm for 2QBF. In SAT (pp. 230–244).
39. Kleine Büning, H., & Bubeck, U. (2009). Theory of quantified Boolean formulas. In A. Biere, M.

Heule, H. van Maaren, T. Walsh (Eds.), Handbook of satisfiability, frontiers in artificial intelligence and
applications (Vol. 185, pp. 735–760). IOS Press.

40. Kleine Büning, H., Karpinski, M., & Flögel, A. (1995). Resolution for quantified Boolean formulas.
Information and Computation, 117(1), 12–18.

41. Kleine Büning, H., Subramani, K., & Zhao, X. (2007). Boolean functions as models for quantified
Boolean formulas. Journal of Automated Reasoning, 39(1), 49–75.

42. Klieber, W., Sapra, S., Gao, S., & Clarke, E.M. (2010). A non-prenex, non-clausal QBF solver with
game-state learning. In SAT (pp. 128–142). doi:10.1007/978-3-642-14186-7 12.

43. Kullmann, O. (2011). Constraint satisfaction problems in clausal form II: minimal unsatisfiability and
conflict structure. Fundamental and Information, 109(1), 83–119.

44. Liberatore, P. (2005). Redundancy in logic I: CNF propositional formulae. Artificial Intelligence, 163(2),
203–232.

45. Liffiton, M.H., Mneimneh, M.N., Lynce, I., Andraus, Z.S., Marques-Silva, J., & Sakallah, K.A. (2009).
A branch and bound algorithm for extracting smallest minimal unsatisfiable subformulas. Constraints,
14(4), 415–442.

46. Liffiton, M.H., & Sakallah, K.A. (2005). On finding all minimally unsatisfiable subformulas. In SAT
(pp. 173–186).

47. Liffiton, M.H., & Sakallah, K.A. (2008). Algorithms for Computing Minimal Unsatisfiable Subsets of
Constraints. Journal of Automated Reasoning, 40(1), 1–33.

48. Lonsing, F., & Egly, U. (2014). Incremental QBF solving. In CP (pp. 514–530).
49. Lynce, I., & Marques-Silva, J.P. (2004). On computing minimum unsatisfiable cores. In SAT.
50. Manquinho, V.M., Marques-Silva, J., & Planes, J. (2009). Algorithms for weighted Boolean optimiza-

tion. In SAT (pp. 495–508).

http://dx.doi.org/10.1007/978-3-642-39071-5_8
http://dx.doi.org/10.3233/978-1-61499-419-0-453
http://dx.doi.org/10.1145/1065579.1065697
http://dx.doi.org/10.1145/1065579.1065697
http://dx.doi.org/10.1007/978-3-642-14186-7_12


302 Constraints (2016) 21:277–302

51. Marques-Silva, J. (2010). Minimal unsatisfiability: models, algorithms and applications (invited paper).
In ISMVL (pp. 9–14). IEEE Computer Society.

52. Marques-Silva, J., Heras, F., Janota, M., Previti, A., & Belov, A. (2013). On computing minimal
correction subsets. In IJCAI.

53. Mneimneh, M.N., Lynce, I., Andraus, Z.S., Marques-Silva, J.P., & Sakallah, K.A. (2005). A branch-and-
bound algorithm for extracting smallest minimal unsatisfiable formulas. In SAT (pp. 467–474).

54. Morgado, A., Dodaro, C., & Marques-Silva, J. (2014). Core-guided MaxSAT with soft cardinality
constraints. In CP (pp. 564–573). doi:10.1007/978-3-319-10428-7 41.

55. Morgado, A., Heras, F., Liffiton, M.H., Planes, J., & Marques-Silva, J. (2013). Iterative and core-guided
MaxSAT solving: a survey and assessment. Constraints, 18(4), 478–534.

56. Narodytska, N., & Bacchus, F. (2014). Maximum satisfiability using core-guided MaxSAT resolution.
In AAAI (pp. 2717–2723).

57. Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., & Biere, A. (2012). Resolution-based certificate extrac-
tion for QBF - (tool presentation). In A. Cimatti, R. Sebastiani (Eds.), SAT (Vol. 7317, pp. 430–435).
Springer.

58. Nöhrer, A., Biere, A., & Egyed, A. (2012). Managing SAT inconsistencies with HUMUS. In VAMOS
(pp. 83–91).

59. Plaisted, D.A., & Greenbaum, S. (1986). A structure-preserving clause form translation. Journal of
Symbolic Computation, 2(3), 293–304. doi:10.1016/S0747-7171(86)80028-1.

60. Reimer, S., Sauer, M., Marin, P., & Becker, B. (2014). QBF with soft variables. ECEASST 70.
61. Reiter, R. (1987). A theory of diagnosis from first principles. Artificial Intelligence, 32(1), 57–95.
62. Roussel, O., & Manquinho, V. (2009). Pseudo-Boolean and cardinality constraints. In A. Biere, M.

Heule, H. van Maaren, T. Walsh (Eds.), Handbook of satisfiability, frontiers in artificial intelligence and
applications (Vol. 185, pp. 695–733). IOS Press.

63. Ryvchin, V., & Strichman, O. (2011). Faster extraction of high-level minimal unsatisfiable cores. In SAT
(pp. 174–187).

64. Schaefer, M., & Umans, C. (2002). Completeness in the polynomial-time hierarchy: a compendium.
SIGACT News, 33(3), 32–49.

65. Sinz, C., Kaiser, A., & Küchlin, W. (2003). Formal methods for the validation of automotive product
configuration data. AI EDAM, 17(1), 75–97.

66. Stuckey, P.J. (2013). There are no CNF problems. In SAT (pp. 19–21). doi:10.1007/978-3-642-
39071-5 3.

67. Stuckey, P.J., Sulzmann, M., & Wazny, J. (2003). Interactive type debugging in Haskell. In ACM
SIGPLAN workshop on Haskell (pp. 72–83). ACM.

68. Tseitin, G.S. (1968). On the complexity of derivations in the propositional calculus. Studies in
Mathematics and Mathematical Logic Part II, 115–125.

69. Van Gelder, A. (2012). Contributions to the theory of practical quantified Boolean formula solving. In
M. Milano (Ed.), CP (Vol. 7514, pp. 647–663). Springer.

70. Yu, Y., & Malik, S. (2005). Validating the result of a quantified Boolean formula (QBF) solver: theory
and practice. In ASP-DAC (pp. 1047–1051).

71. Zhang, J., Li, S., & Shen, S. (2006). Extracting minimum unsatisfiable cores with a greedy genetic
algorithm. In AUS-AI (pp. 847–856).

72. Zhang, L. (2006). Solving QBF by combining conjunctive and disjunctive normal forms. In AAAI
(pp. 143–150).

73. Zhang, L., & Malik, S. (2002). Conflict driven learning in a quantified Boolean satisfiability solver. In
ICCAD (pp. 442–449).

74. Zhang, L., & Malik, S. (2003). Validating SAT solvers using an independent resolution-based checker:
practical implementations and other applications. In DATE (pp. 10,880–10,885). IEEE Computer
Society.

http://dx.doi.org/10.1007/978-3-319-10428-7_41
http://dx.doi.org/10.1016/S0747-7171(86)80028-1
http://dx.doi.org/10.1007/978-3-642-39071-5_3
http://dx.doi.org/10.1007/978-3-642-39071-5_3

	Quantified maximum satisfiability
	Abstract
	Introduction
	Preliminaries
	Boolean satisfiability
	Maximum satisfiability
	Quantified Boolean formula

	Quantified MaxSAT
	Related work

	Solving QMaxSAT
	QMaxSAT algorithms
	Iterative QMaxSAT algorithms
	Core-guided QMaxSAT algorithms

	Core extraction in QMaxSAT
	Extracting cores in CEGAR-based QBF
	Extending RAReQS with core extraction
	Core extraction for DPLL-based QBF solvers



	Applications of QMaxSAT
	The smallest MUS problem
	The smallest MES problem
	Problem specific lower bounds

	Experimental results
	The SMUS problem
	The SMES problem

	Conclusions
	Acknowledgments
	References


