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Abstract

In the quest for Explainable Artificial Intelligence (XAI) one
of the questions that frequently arises given a decision made
by an AI system is, “why was the decision made in this way?”
Formal approaches to explainability build a formal model of
the AI system and use this to reason about the properties of
the system. Given a set of feature values for an instance to
be explained, and a resulting decision, a formal abductive ex-
planation is a set of features, such that if they take the given
values, will always lead to the same decision. This explana-
tion is useful, it shows that only some features were used in
making the final decision. But it is narrow, it only shows that
if the selected features take their given values the decision
is unchanged. It is possible that some features may change
values and still lead to the same decision. In this paper we
formally define inflated explanations, which is a set of fea-
tures and for each feature a set of values (always including
the value of the instance being explained), such that the de-
cision will remain unchanged, for any of the values allowed
for any of the features in the (inflated) abductive explanation.
Inflated formal explanations are more informative than com-
mon abductive explanations since e.g. they allow us to see if
the exact value of a feature is important, or it could be any
nearby value. Overall they allow us to better understand the
role of each feature in the decision. We show that we can com-
pute inflated explanations for not that much greater cost than
abductive explanations, and that we can extend duality results
for abductive explanations also to inflated explanations.

Introduction
The purpose of eXplainable AI (XAI) is to help human de-
cision makers in understanding the decisions made by AI
systems. It is generally accepted that XAI is fundamental
to deliver trustworthy AI (Ignatiev 2020; Marques-Silva and
Ignatiev 2022). In addition, explainability is also at the core
of recent proposals for the verification of Artificial Intelli-
gence (AI) systems (Seshia, Sadigh, and Sastry 2022). Nev-
ertheless, most of the work on XAI offers no formal guaran-
tees of rigor (and so will be referred to as non-formal XAI
in this paper). Examples of non-formal XAI include model-
agnostic methods (Ribeiro, Singh, and Guestrin 2016; Lund-
berg and Lee 2017; Ribeiro, Singh, and Guestrin 2018),
heuristic learning of saliency maps (and their variants) (Bach
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et al. 2015; Samek and Müller 2019; Samek et al. 2019,
2021), but also proposals of intrinsic interpretability (Rudin
2019; Molnar 2020; Rudin et al. 2022). In recent years, com-
prehensive evidence has been gathered that attests to the
lack of rigor of these (non-formal) XAI approaches (Ignatiev
2020; Izza, Ignatiev, and Marques-Silva 2022; Yu, Ignatiev,
and Stuckey 2023b).

The alternative to non-formal explainability is formal
XAI. Formal XAI proposes definitions of explanations, and
algorithms for their computation, that ensure the rigor of
computed explanations (Shih, Choi, and Darwiche 2018; Ig-
natiev, Narodytska, and Marques-Silva 2019; Marques-Silva
and Ignatiev 2022). Despite its promise, formal XAI also ex-
hibits a number of important limitations, which include lack
of scalability for some ML models, and the computation of
explanations which human decision makers may fail to re-
late with. This paper targets mechanisms for improving the
clarity of computed explanations.

An abductive explanation (Shih, Choi, and Darwiche
2018; Ignatiev, Narodytska, and Marques-Silva 2019) is a
subset-minimal set of features which correspond to a rule
of the form: if a conjunction of literals is true, then the pre-
diction is the expected one. The literals associated with that
rule are of the form xi = vi, i.e. a feature is tested for a
concrete value in its domain. For categorical features with
large domains, and more importantly for real-value features,
specifying a literal that tests a single value will provide lit-
tle insight. For example, in the case of an ordinal feature,
stating that the height of a patient is 1.825m is less insight-
ful that stating that the height of a patient is between 1.75m
and 1.84m. Similarly, in the case of a categorical feature,
an explanation that indicates that the vehicle color is one of
{Red,Blue,Green,Silver} (e.g. with colors {Black,White}
excluded), is more insightful that stating that the color must
be Blue. For an explanations involving several features, the
use of more expressive literals will allow a human deci-
sion maker to relate the explanation with several different
instances.

This paper proposes inflated formal explanations. In an
inflated formal explanation the literals of the form xi = vi
are replaced by literals of the form xi ∈ Ei, where Ei is
a subset of the feature’s domain. Furthermore, each Ei is
maximally large, i.e. no proper superset of Ei guarantees
sufficiency for the prediction. Inflated explanations can be



related with previous works (Choi et al. 2020; Izza, Ignatiev,
and Marques-Silva 2022; Ji and Darwiche 2023), but also
with earlier work on minimum satisfying assignments (Dil-
lig et al. 2012). For example, recent work (Izza, Ignatiev,
and Marques-Silva 2022) proposed algorithms for comput-
ing explanations in the case of decision trees that report path
explanations, where the literals are taken from a concrete
tree path; however, no algorithm for inflating explanations
is described. In contrast, our contribution is to propose algo-
rithms for transforming abductive explanations into inflated
(abductive) explanations, and such that these algorithms are
shown to be efficient in practice. Furthermore, we prove that
contrastive explanations can also be inflated, and that there
exist different minimal hitting set duality (Ignatiev et al.
2020) relationships between inflated explanations. The du-
ality results regarding contrastive explanations attest to the
robustness of minimal hitting set duality in explainability.
The experimental results illustrate that in practice features
can in general be inflated, with some inflated to almost their
original domain.

Preliminaries
Classification problems. We consider a classification
problem, characterized by a set of featuresF = {1, . . . ,m},
and by a set of classes K = {c1, . . . , cK}. Each feature
j ∈ F is characterized by a domain Dj . As a result, feature
space is defined as F = D1×D2×. . .×Dm. A specific point
in feature space represented by v = (v1, . . . , vm) denotes an
instance (or an example). Also, we use x = (x1, . . . , xm) to
denote an arbitrary point in feature space. In general, when
referring to the value of a feature j ∈ F , we will use a vari-
able xj , with xj taking values from Dj . We consider two
types of features j ∈ F : categorical features where Dj is a
finite unordered set, and ordinal features where Dj is a pos-
sibly infinite ordered set. For ordinal (real-valued) features j
we use range notation [λ(j), µ(j)] to indicate the set of val-
ues {d | d ∈ Dj , λ(j) ≤ d ≤ µ(j)}, and [λ(j), µ(j)) to in-
dicate the (half-open) set of values {d | d ∈ Dj , λ(j) ≤ d <
µ(j)}. A classifier implements a total classification function
κ : F → K. For technical reasons, we also require κ not to
be a constant function, i.e. there exists at least two points in
feature space with differing predictions.

Given the above, we represent a classifier M by a tu-
pleM = (F ,F,K, κ). Moreover, and given a concrete in-
stance (v, c), an explanation problem is represented by a tu-
ple (M, (v, c)).

Throughout the paper, we consider the following families
of classifiers: monotonic classifiers, decision lists and tree
ensembles. These families of classifiers are well-known, and
have been investigated in the context of logic-based explain-
ability (Marques-Silva et al. 2021; Ignatiev and Marques-
Silva 2021; Ignatiev 2020).

Running examples. The monotonic classifier of Exam-
ple 1 will be used throughout the paper.
Example 1 (Running example – ordinal features). We con-
sider a monotonic classifier defined on ordinal features,
adapted from (Marques-Silva et al. 2021, Example 1). The
classifier serves for predicting student grades. It is assumed

that the classifier has learned the following formula (af-
ter being trained with grades of students from different co-
horts):

S = max [0.3×Q+ 0.6×X + 0.1×H,R]

M = ite(S ≥ 9, A, ite(S ≥ 7, B, ite(S ≥ 5, C,

ite(S ≥ 4, D, ite(S ≥ 2, E, F )))))

The features represent the different components of assess-
ment, namely S, Q, X , H and R denote, respectively, the
final score, the marks on the quiz, the exam, the homework,
and the mark of an optional research project. Each mark
ranges from 0 to 10. (For the optional mark R, the final mark
is 0 if the student opts out.) The final score is the largest of
the two marks, as shown above. The student’s final grade
M is defined using an ite (if-then-else) operator, and ranges
from A to F . Features Q, X , H and R are respectively num-
bered 1, 2, 3 and 4, and so F = {1, 2, 3, 4}. Each feature
takes values from [0, 10], i.e. λ(i) = 0 and µ(i) = 10. The
set of classes is K = {A,B,C,D,E, F}, with F ≺ E ≺
D ≺ C ≺ B ≺ A. Clearly, the complete classifier (that
given the different marks computes a final grade) is mono-
tonic. Moreover, and in contrast with (Marques-Silva et al.
2021), we will consider the following point in feature space
representing a student s1, (Q,X,H,R) = (5, 10, 5, 8), with
a predicted grade of B, i.e. κ(5, 10, 5, 8) = B, given that
S = 8. Moreover, and unless stated otherwise, the order
in which features are analyzed throughout the paper will be
⟨1, 2, 3, 4⟩.

The decision list of Example 2 will also be used through-
out the paper.

Example 2 (Running example – categorical features).
We also consider a decision list with categorical fea-
tures. The classification problem is to assess risk acci-
dent, given two features, age segment (represented by vari-
able A), and car color (represented by variable C). Let
F = {1, 2}, K = {0, 1} D1 = {Adult, Junior,Senior}
(where Junior is synonym of Young Adult) D2 =
{Red,Blue,Green,Silver,Black,White}. Let the decision
list be,

IF A = Adult THEN κ(x) = 0
ELSE IF C = Red THEN κ(x) = 1
ELSE IF C = Blue THEN κ(x) = 1
ELSE IF C = Green THEN κ(x) = 1
ELSE IF C = Black THEN κ(x) = 1
ELSE κ(x) = 0

Moreover, we consider the instance (v, c) =
((Junior,Red), 1), i.e. a young adult with a red colored car
represents a risk of accident.

Logic-based explainability. Two types of formal expla-
nations have been studied: abductive (Shih, Choi, and Dar-
wiche 2018; Ignatiev, Narodytska, and Marques-Silva 2019)
and contrastive (Miller 2019; Ignatiev et al. 2020). Abduc-
tive explanations broadly answer a Why question, i.e. Why
the prediction?, whereas contrastive explanations broadly
answer a Why Not question, i.e. Why not some other pre-
diction?.



Given an explanation problem, an abductive explanation
(AXp) is a subset-minimal set of features X ⊆ F which, if
assigned the values dictated by the instance (v, c), are suffi-
cient for the prediction. This is stated as follows, for a cho-
sen set X :

∀(x ∈ F).
[∧

i∈X
(xi = vi)

]
→(κ(x) = c) (1)

Monotonicity of entailment implies that there exist algo-
rithms for computing a subset-minimal set X ⊆ F that are
polynomial in the time to decide (1) (Marques-Silva and Ig-
natiev 2022).

An AXp X can be interpreted as a logic rule, of the form:

IF
[∧

i∈X
(xi = vi)

]
THEN [κ(x) = c] (2)

Moreover, and given an explanation problem, a con-
trastive explanation (CXp) is a subset-minimal set of fea-
tures Y ⊆ F which, if the features in F \ Y are assigned
the values dictated by the instance (v, c), then there is an
assignment to the features in Y that changes the prediction.
This is stated as follows, for a chosen set Y ⊆ F :

∃(x ∈ F).
[∧

i∈F\Y
(xi = vi)

]
∧ (κ(x) ̸= c) (3)

Similarly to the case of AXp’s, monotonicity of entailment
ensures that there exist algorithms for computing a subset-
minimal set Y ⊆ F that are polynomial in the time to de-
cide (3) (Marques-Silva and Ignatiev 2022).

Following standard notation (Marques-Silva and Ignatiev
2022), we use the predicate WAXp (resp. WCXp) to hold
true for any set X ⊆ F for which (1) (resp. (3)) holds, and
the predicate AXp (resp. CXp) to hold true for any subset-
minimal (or irreducible) set X ⊆ F for which (1) (resp. (3))
holds.

AXp’s and CXp’s respect a minimal-hitting set (MHS)
duality relationship (Ignatiev et al. 2020). Concretely, each
AXp is an MHS of the CXp’s and each CXp is an MHS of
the AXp’s. MHS duality is a stepping stone for the enumer-
ation of explanations.
Example 3. For the monotonic classifier of Example 1,
and instance ((5, 10, 5, 8), B), we can use existing algo-
rithms (Marques-Silva et al. 2021; Cooper and Marques-
Silva 2021, 2023), for computing one AXp. We use the pro-
posed order for analyzing features: ⟨1, 2, 3, 4⟩. we conclude
that Q must be included in the AXp, since increasing the
value of Q to 10 would change the prediction. In contrast,
given the value of R, and because we have fixed Q, then both
X and H are dropped from the AXp. Moreover, we conclude
that R must be included in the AXp; otherwise, we would be
able to change the prediction to A by increasing R. As a re-
sult, the computed AXp is X = {1, 4}. (For a different order
of the features, a different AXp would be obtained.) With this
AXp, we associate the following rule:

IF [Q = 5 ∧R = 8] THEN [κ(x) = B]

Example 4. For the decision list running example (see Ex-
ample 2), and given the instance (v, c) = ((Junior,Red), 1),
an AXp is {1, 2}, meaning that,

IF [A = Junior ∧ C = Red] THEN [κ(x) = 1]

where x = (A,C).

Logic-based explainability is covered in a number of re-
cent works. Explainability queries are studied in (Aude-
mard, Koriche, and Marquis 2020; Audemard et al. 2021;
Huang et al. 2021; Audemard et al. 2022; Huang, Izza, and
Marques-Silva 2023; Huang et al. 2023). Probabilistic ex-
planations are investigated in (Wäldchen et al. 2021; Are-
nas et al. 2022; Izza et al. 2022; Izza and Marques-Silva
2023; Izza et al. 2023). There exist proposals to account
for constraints on the inputs (Gorji and Rubin 2022; Shrotri
et al. 2022; Yu et al. 2023b). A distinction between con-
trastive and counterfactual explanations is studied in (Liu
and Lorini 2023). An extension of feature selection-based
abductive explanations into feature attribution-based abduc-
tive explanations is proposed in (Yu, Ignatiev, and Stuckey
2023b; Biradar et al. 2023; Yu et al. 2023a). Additional re-
cent works include (Malfa et al. 2021; Boumazouza et al.
2021; Liu and Lorini 2022; Darwiche and Hirth 2023; Am-
goud 2023; Bassan and Katz 2023; Huang and Marques-
Silva 2023b,a; Carbonnel, Cooper, and Marques-Silva 2023;
Hurault and Marques-Silva 2023; Yu, Ignatiev, and Stuckey
2023a). In addition, there exist recent surveys summarizing
the progress observed in formal XAI (Marques-Silva and Ig-
natiev 2022; Marques-Silva 2022).

Motivating examples & related work. For the two run-
ning examples, let us anticipate what we expect to obtain
with inflated explanations.
Example 5 (Explanations with more expressive literals – or-
dinal features.). For the monotonic classifier of Example 1,
and instance ((5, 10, 5, 7), B), one AXp is X = {1, 4}. Our
goal is to identify more general literals than the equality re-
lational operator. Similarly to recent work (Izza, Ignatiev,
and Marques-Silva 2022), we use the set-membership (∈)
operator. The purpose of the paper is to propose approaches
for obtaining more expressive rules using the ∈ operator. As
a result, instead of the rule from Example 3, a more expres-
sive rule would be,

IF [Q ∈ [0, 6.6] ∧R ∈ [7, 8.8]] THEN [κ(x) = B]

(Depending on how the domains are expanded, larger inter-
vals could be obtained. Later in the paper, we explain how
the above values were obtained.) Clearly, the modified rule
is more informative, about the marks that yield a grade of B,
than the rule shown in Example 3.
Example 6 (Explanations with more expressive literals –
categorical features.). For the decision list of Example 2,
and instance ((Junior,Red), 1), the only AXp is X = {1, 2}.
The purpose of this paper is to identify more general literals.
For this example, instead of the rule from Example 4, a more
expressive rule would be,

IF
[
A ∈ {Junior,Senior}∧

C ∈ {Red,Blue,Green}
]

THEN [κ(x) = 1]

As in the previous example, the modified rule is more infor-
mative than the rule shown in Example 4.

The use of generalized explanation literals is formalized
in earlier work (Amgoud 2021; Amgoud and Ben-Naim



2022; Amgoud 2023). Initial approaches for computing ex-
planations with more expressive literals include (Choi et al.
2020; Izza, Ignatiev, and Marques-Silva 2022; Ji and Dar-
wiche 2023).

Inflated Abductive Explanations
In order to account for more expressive literals in the def-
inition of abductive explanations, we consider an extended
definition of AXp.

Definition of Inflated AXp’s
Given an AXp X ⊆ F , an Inflated abductive explanation
(iAXp) is a tuple (X ,X), with X ⊆ F is an AXp of the
explanation problem E , and X is a set of pairs (j,Ej), one
for each j ∈ X , such that the following logic statement holds
true,

∀(x ∈ F).
[∧

j∈X
(xj ∈ Ej)

]
→(κ(x) = c) (4)

where vj ∈ Ej ,∀j ∈ X , and where Ej is a maximal set
such that (4) holds. (Concretely, for any j ∈ X , and for any
Ij ⊆ Dj \ Ej , it is the case that (4) does not hold when Ej

is replaced with Ej ∪ Ij .) Clearly, (4) is a stronger statement
than (3), provided that Ej ⊃ {vj} for each j ∈ X .

After computing one AXp X , it is the case that either
Ej = {vj} (for a categorical feature) or Ej = [vj , vj ] (for
an ordinal feature). Our purpose is to find ways of augment-
ing Ej maximally1. This leads to formulate the following
problem.

Problem 1 (Inflate Explanation). Given a classifier M =
(F ,F,K, κ) and an input instance (v, c) to explain. The out-
put computes a set of pairs (j,Ej) that is an explanation of
(v, c), where j is a feature and Ej ⊊ Dj is admissible sub-
domain of j.

Example 7. For the monotonic classifier of Example 1, and
the proposed inflated AXp of Example 5, for feature 1, we
can conclude that we get E1 = [3.4, 6.6].

Observe that the decision to start from an AXp aims at
practical efficiency. Algorithm 1 could be adapted to start
from the set of features F instead of X . Any feature for
which the expansion includes its domain is removed from
the AXp. The set of inflated features for which the expansion
did not yield their domain represents one AXp. We underline
that similarly to the computation of explanations in general,
the order of features can be very important in enabling the
expansion of Ej .

Computation of Inflated Explanations
Algorithm 1 summarizes the basic algorithm for inflating a
given AXp. As shown, the algorithm picks some order for
the features in the AXp X . The features not included in the
AXp X will not be analyzed, i.e. we are only interested in

1It should be noted that, for the algorithms described later in
the paper, the replacement of literals of the form (xj = vj) by
literals of the form xj ∈ Ej is straightforward in terms of logic
encodings, e.g. by using well-known solutions for clausification of
logic formulas (Biere et al. 2021).

Algorithm 1: Computing inflated explanations
Input: E = (M, (v, c)), AXp X ⊆ F , Precision δ

1: function InflateAXp(E ,X )
2: X← ∅ ▷ X: Sets composing inflated explanation
3: ι← PickSomeOrder(X )
4: for all j ∈ ι do
5: if Categorical(j) then
6: Ej ← {vj}
7: Ej ← InflateCategorical(j,Ej , E ,X )
8: else
9: inf(j) = sup(j) = vj

10: Ej ← [inf(j), sup(j)] ▷ Initial Ej

11: Ej ← InflateOrdinal(j,Ej , E ,X , δ)
12: X← X ∪ {(j,Ej})
13: return (X ,X)

Algorithm 2: Inflate categorical feature
Input: Feature j, Ej , E , and AXp X ⊆ F

1: function InflateCategorical(j,Ej , E ,X )
2: Rj ← Dj \ Ej ▷ Rj : what remains of Dj

3: η ← PickSomeOrder(Rj)
4: for all uji ∈ η do
5: Ej ← Ej ∪ {uji} ▷ Expand Ej , conditionally
6: if (4) does not hold then
7: Ej ← Ej \ {uji} ▷ Revert expansion of Ej

8: return Ej

inflating features that are not already inflated. The precision
δ is user-specified and it is only relevant for ordinal features,
where it is used to expand the value of the feature such that
for any value in the resulting interval, sufficiency of predic-
tion is guaranteed.

The procedure to inflate the values associated with a fea-
ture i ∈ X depends on the type of the feature. In the next
sections, we detail how categorical and ordinal features can
be inflated.

Categorical features. Algorithm 2 summarizes the algo-
rithm for a given categorical feature j ∈ X . Given an ini-
tial Ej , we traverse all the values in the domain of the fea-
ture, with the exception of the values in Ej . For each value,
we check whether inflating Ej with that value maintains the
sufficiency of prediction, i.e. Equation (4) still holds. If suf-
ficiency of prediction still holds, then the value is kept, and
the algorithm moves to another value. Otherwise, the value
is removed from Ej , and another value will be considered.

Example 8. For the decision list of Example 2, and the in-
stance (v, c) = ((Junior,Red), 1), from Example 4, we know
that (the only) AXp is {1, 2}. Let us pick the order of features
ι = (1, 2). For feature 1, the order of values is (for example)
(Adult,Senior), and initially E1 = {Junior}. Clearly, we
cannot consider the value Adult for feature 1, as this would
change the prediction. In contrast, the value Senior can be
added to E1. With respect to feature 2, the order of values is
(for example) (Blue,Green,Silver,Black,White), and ini-



Algorithm 3: Inflate ordinal feature
Input: Feat. j, Ej , E , AXp X ⊆ F , δ

1: function InflateOrdinal(j,Ej , E ,X , δ)
2: if UnconstrainedSup(j, E ,X ) then
3: sup(j)← µ(j)
4: if µ(j) = +∞ then
5: Ej ≡ [inf(j),+∞)

6: else
7: sup(j)← ExpandSup(j, E ,X , δ)
8: if UnconstrainedInf(j, E ,X ) then
9: inf(j)← λ(j)

10: if λ(j) = −∞ then
11: Ej ≡ (−∞, sup(j)]

12: else
13: inf(j)← ExpandInf(j, E ,X , δ)
14: return Ej

tially E2 = {Red}. Clearly, by inspection of the decision
list, we can conclude that, for a non-Adult, any of the colors
Red, Blue, Green and Black will yield prediction 1. Hence,
E2 can be inflated from {Red} to {Red,Blue,Green,Black},
as these values do not change the sufficiency for the predic-
tion. As a result, the inflated explanation denotes the rule,

IF
[
A ∈ {Junior,Senior}∧

C ∈ {Red,Blue,Green,Black}
]

THEN [κ(x) = 1]

Hence, from the decision list, and given the list, it becomes
clear that a driver does not pose a risk of accident if he/she is
an Adult, or otherwise drives a car colored Silver or White.

Ordinal features. Algorithm 3 summarizes the algorithm
for inflating a given ordinal feature j ∈ X . With the pur-
pose of assessing the largest and smallest possible values for
feature j, we initially check whether the feature can take its
upper bound µ(j) (or can be unbounded when µ(j) = +∞),
and later check whether the feature can take its lower bound.
(Evidently, no feature j in X can be allowed to take any
value between its lower and upper bounds. Given that the
feature j is included in the AXp, then it cannot be allowed
to take any value in its domain, since otherwise, it could be
dropped from the AXp.) If the feature is unconstrained for
either its largest or smallest value, then Ej is updated accord-
ingly (with the case of +∞/−∞ being handled differently).
Otherwise, we seek to inflate Ej , either by increasing val-
ues or by decreasing values. The search for increasing val-
ues is illustrated by Algorithm 4, and the search for decreas-
ing values is illustrated by Algorithm 5. For simplicity, the
algorithms implement a (simple) linear search, using only
the value of precision δ for approximating the solution. If δ
is small this is inefficient. A simple improvement consists
in using two positive values, β and δ, where (the larger) β
is used for a rough approximation of the solution, and (the
smaller) δ is then used to refine the coarser approximation
obtained with β. Moreover, assuming the upper (or lower)
bound is finite, then standard binary search can be used. If

Algorithm 4: Inflating the supremum with linear search
Input: Feature j, E , AXp X ⊆ F , δ

1: function ExpandSup(j, E ,X , δ)
2: while true do
3: sup(j)← sup(j) + δ
4: if (4) does not hold then
5: sup(j)← sup(j)− δ
6: return sup(j)

Algorithm 5: Inflating the infimum with linear search
Input: Feature j, E , AXp X ⊆ F , δ

1: function ExpandInf(j, E ,X , δ)
2: while true do
3: inf(j)← inf(j)− δ
4: if (4) does not hold then
5: inf(j)← inf(j) + δ
6: return inf(j)

the upper (or lower) bound is infinite, and not constrained,
then one can use exponential (binary) search2, with a subse-
quent binary search step to zoom in on the largest (or small-
est) value of the feature’s values that guarantee sufficiency
for the prediction.
Example 9. For the example monotonic classifier (see Ex-
ample 1), with instance ((5, 10, 5, 8), B), the computed AXp
is {1, 2, 4}. Let δ = 0.2. We illustrate the execution of Al-
gorithm 3, in the concrete case where we increase the max-
imum value that Q (i.e. feature 1) can take such that the
prediction does not change. Since the classifier is monoton-
ically increasing, we can fix H to 10. The value of X is set
to 10 and R is set to 8. Clearly, Q cannot take value 10;
otherwise the prediction would become A. By iteratively in-
creasing the largest possible value for Q, with increments
of δ (see Algorithm 4), we conclude that Q can increase up
to 6.6 while ensuring that the prediction does not change
to A. If Q were assigned value 6.8 (the next δ increment),
the prediction would change to A. In terms of the smallest
value that can be assigned to Q, we assign H to 0. In this
case, we conclude that Q can take the (lower bound) value
of 0, because R = 8. Hence, feature Q can take values in
the range [0, 6.6]. Finally, in the case of R, its value cannot
get to 9, since otherwise the prediction would become A.
Hence, the value of R before considering 9 is 8.8 (see Ex-
ample 5). In terms of the smallest possible value for R, it is
clear that its value cannot be less than 7, as this would serve
to change the prediction. Hence, feature R can take values
in the range [7, 8.8]. Given the above, the rule associated
with the inflated AXp is:

IF [Q ∈ [0, 6.6] ∧R ∈ [7, 8.8]] THEN [κ(x) = B]

Ordinal features and tree-based models. Tree-based
machine learning models such as decision trees, random for-

2Exponential binary search is a common algorithm for finding
a value when the domain is unbounded (Bentley and Yao 1976),
which is guaranteed to terminate if one knows that the target value
exists, and given some value of precision.



est, and boosted trees allow a simpler treatment of ordinal
features j since the trees will only compare to a finite set of
feature values Vj ⊂ Dj , we assume with comparison xj ≥
d, d ∈ Vj . Let [d1, . . . , dm] be the Vj is sorted order. We can
construct disjoint intervals, given by I1 = [min(Dj), d1),
I2 = [d1, d2), . . . , Im+1 = [dm,max(Dj)]. By construction
no two values in any interval can be treated differently by
the tree-base model, hence we can use these intervals as a
finite categorical representation of the feature j.

Complexity of Inflated Explanations
As can be concluded from the algorithms described in the
previous section, sufficiency for prediction is checked us-
ing Equation (4), which mimics the oracle call for finding
the AXp. Furthermore, the features in inflated AXp’s match
those in the AXp that serves as the seed for computing the
inflated AXp; this decision serves to curb the run time com-
plexity of the algorithms proposed in the paper. Neverthe-
less, inflated explanations require a number of calls to Equa-
tion (4) that grows with the number of values in the features
domains (for categorical features), or the computed supre-
mum (or the infimum) divided by δ, for categorical features
when linear search is used. (The analysis for (unbounded)
binary search is beyond the goals of the paper.)

Although other (more sophiscated) variants can be envi-
sioned (e.g. different variants of globally optimally inflated
AXp’s), the algorithm proposed in this paper ensures that
the run time complexity is only affected by the features
domains. It is conjectured that finding inflated AXp’s with
stronger guarantees of optimality would increase the prob-
lem’s complexity. This is the subject of future research.

Inflated Contrastive Explanations & Duality
This section investigates the differences that must be ac-
counted for in the case of contrastive explanations.

Plain Inflated CXp’s & MHS Duality
In contrast with AXp’s, in the case of CXp’s expansion takes
place in the features not in the explanation, i.e. in the fea-
tures whose value remains fixed.

As with AXp’s, we propose a modification to the defini-
tion of CXp, as follows:

∃(x ∈ F).
[∧

j∈F\Y
(xj ∈ Ej)

]
∧ (κ(x) ̸= c) (5)

Minimal hitting set duality between inflated AXp’s and
inflated CXp’s is immediate and follows from the duality
result relating AXp’s and CXp’s (Ignatiev et al. 2020). To
motivate the argument, let us define the following sets:

A(E) = {X ⊆ F |AXp(X )} (6)
C(E) = {X ⊆ F |CXp(Y)} (7)

Given the discussion above, the following result follows:

Proposition 1. A(E) and C(E) remain unchanged for in-
flated explanations.

Given Proposition 1 and from earlier work (Ignatiev et al.
2020), it follows that inflated AXp’s and minimal hitting sets
of the set of CXp’s and vice-versa.

Nevertheless, and in contrast with (4), (5) is a weaker def-
inition that the original definition of CXp. The next section
proposes a stronger definition of CXp.

Generalized CXp’s & Extended Duality

Due to the use of sets Ej ⊂ Dj instead of concrete feature-
values vj ∈ Dj , the straightforward definition of inflated
contrastive explanations above provides a weaker explana-
tion, than the uninflated definition (3). Nevertheless, it al-
lows us to establish a simple minimal hitting set duality be-
tween inflated AXp’s and inflated CXp’s by building directly
on (Ignatiev et al. 2020). In particular, each inflated CXp is a
minimal hitting set of all the inflated AXp’s and vice versa,
in the sense that given the set of all inflated AXp’s (resp.
inflated CXp’s), an uninflated CXp (resp. uninflated AXp)
can be constructed by this duality and then inflated after-
wards. Note that this set-wise duality requires us to first re-
construct uninflated “versions” of the dual explanations and
only then inflate them. We can define a stronger form of in-
flated contrastive explanation as follows, which will enable
us to construct inflated CXp’s (resp. inflated AXp’s) directly
from inflated AXp’s (resp. inflated CXp’s). Namely, given
an instance (v, c) an inflated CXp is a pair (Y,Y) s.t Y is
a set of pairs (j,Gj) for each feature j ∈ Y , such that the
following holds:

∃(x ∈ F). (8)[∧
j∈F\Y

(xj = vj) ∧
∧

j∈Y
(xj ∈ Gj)

]
∧ (κ(x) ̸= c)

We can assume vj ̸∈ Gj , j ∈ Y since otherwise we could
eliminate j from Y and have a tighter contrastive explana-
tion. Also, observe that in contrast to (3), Equation (8) con-
siders each of the features j ∈ Y to belong to some set
Gj ⊂ Dj rather than assuming them to be free.

The algorithms proposed in the previous section can be
adapted for inflating CXp’s by checking whether (8) holds
instead of (4). An immediate observation here is that these
algorithms would need to be updated such that given a fea-
ture j ∈ Y , we need to shrink the set of allowed values
starting from Dj rather than inflating it starting from {vj},
which was the case for inflated AXp’s.

In order to facilitate the duality relationship between
iAXp’s and iCXp’s, observe that given an instance (v, c),
an iAXp (X ,X), as defined in (4), can be equivalently refor-
mulated as follows:

∀(x ∈ F). (9)[∧
j∈X

(xj ∈ Ej) ∧
∧

j∈F\X
xj ∈ Dj

]
→(κ(x) = c)

In other words, simply let Ej = Dj for all j ̸∈ X . Simi-
larly, given an instance (v, c), an iCXp (Y,Y), s.t. Y is a set
of pairs (j,Gj), can be reformulated such as the following



holds:

∃(x ∈ F). (10)[∧
j∈F\Y

(xj ∈ {vj}) ∧
∧

j∈Y
(xj ∈ Gj)

]
∧ (κ(x) ̸= c)

In other words, Gj = {vj} for all j ̸∈ Y .

Proposition 2. Given an explanation problem E , let A′(E)
denote the set of all iAXp (X ,X) while C′(E) denote the
set of all iCXps (Y,Y). Then each iAXp (X ,X) ∈ A′(E)
minimally “hits” each iCXp (Y,Y) ∈ C′(E) s.t. if feature
j ∈ F is selected to “hit” iAXp (X ,X) then Gj ∩ Ej = ∅,
and vice versa.

Proof. Suppose given an iAXp (X ,X) and an iCXp (Y,Y),
feature j ∈ F is selected to hit the CXp such that Gj ∩Ej ̸=
∅. Then we have a contradiction. Indeed, we can extract an
instance v′ = (v′1, . . . , v

′
m) s.t. v′j ∈ Gj ∩ Ej satisfying

Equation (10), with class κ(v′) ̸= c, which by definition
(9) violates the iAXp condition since v′j ∈ Gj ∩ Ej .

Given the above proposition, we can construct iCXp’s
from iAXp’s as follows. Given a complete set A′(E) of
iAXp’s, we select one feature θ(X ) ∈ X in the features
for explanation (X ,X) and construct an iCXp defined by
subset of features Y = {θ(X ) | (X ,X) ∈ A′(E)} and
Gj =

⋂
(X ,X)∈A′(E),θ(X )=j(Dj \ EX

j ). Similarly, given a
complete set C′(E) of iCXp’s, we can construct an iAXp,
by selecting one feature ϕ(Y) ∈ Y from each CXp (Y,Y),
and defining X = {ϕ(Y) | Y ∈ C′(E)} and Ej =⋂

(Y,Y)∈C′(E),ϕ(Y)=j(Dj \ GY
j ). Note that the key difficulty

here is to organize efficient minimal selection of features
used to “hit” the given set of explanations (either A′(E) or
C′(E)). In various settings of minimal hitting set duality (Ig-
natiev et al. 2020), this is typically done by invoking a mod-
ern mixed-integer linear programming (MILP) or maximum
satisfiability (MaxSAT) solver. Similar ideas can be applied
in this case as well.

Experiments
This section presents a summary of empirical assessment of
computing inflated abductive and contrastive explanations
for the case study of random forests (RFs) trained on some
widely studied datasets.

Experimental setup. The experiments are conducted on a
MacBook Pro with a Dual-Core Intel Core i5 2.3GHz CPU
with 8GByte RAM running macOS Ventura. The reported
results do not impose any time or memory limit.

Benchmarks. The assessment is performed on bench-
marks of (Izza and Marques-Silva 2021), where we se-
lected 35 RF models trained on well-known tabular datasets
(all publicly available and originate from UCI repository
(Markelle Kelly 2020) and PMLB (Olson et al. 2017)). The
number of trees in each RF model is set to 100, while tree
depth varies between 3 and 10. The accuracy of the models
collection varies between 61% to 100% (avg. 88.33%). Be-
sides, our formal explainers are set to compute a single AXp

and then apply the expansion method, per data instance from
the selected set of instances and 200 samples are randomly
to be tested for each dataset.

Prototype implementation. A prototype implementation
of the outlined algorithms (Algorithms 1 to 5) were de-
veloped as a Python script. It builds on RFxpl3 (Izza and
Marques-Silva 2021) and makes heavy use of the latest
version of the PySAT toolkits (Ignatiev, Morgado, and
Marques-Silva 2018) to generate the CNF formulas of the
RF encodings and afterwards instrument incremental SAT
oracle calls to compute explanations.

Results. Summary results of computing iAXp’s for RFs
on the selected datasets is reported in Table 1. As can be
observed from the results, and with three exceptions, our
method succeeds in expanding all individual set Ei of fea-
tures involved in the AXp. Moreover, we observe that for
19 out of 35 datasets, the average increase in sub-domain Ei

varies between 100 and 720, and for 13 over 35 datasets this
number varies between 13 to 99. The domain coverage of
iAXp’s can increase until 1040 times the coverage of AXp’s
and on average 2 × 1039 for all tested datasets. In terms
of performance, the results clearly demonstrate that our ap-
proach scales to (realistically) large data and large tree en-
sembles considered in the assessment. It is plain to see that
for most datasets the proposed method takes a few seconds
on average to deliver an iAXp, thus the average (resp. mini-
mum and maximum) runtime for all datasets is 7.72 seconds
(resp. 0.12 and 144.48 seconds). Even though a few outliers
were observed in continuous data where the number of splits
(intervals) generated by the trees is fairly large, this does
not contrast the effectiveness of our technique since that the
largest running time that could be registered is less than 3
minutes.

In the final analysis, we further assessed iCXp’s (see the
results shown in Table 1). In summary, our results for iCXps
indicate no observable difference in performance with re-
spect to iAXps. Moreover, we observe that for 7 out of 35
datasets, the average increase in sub-domain Gi varies be-
tween 100 and 289, and for 21 over 35 datasets this number
varies between 7 to 98; runtimes are less a second for 33
datasets and the maximum runtime is 2.25 seconds.

To review, our extensive evaluation performed on a large
range of real world data and RFs of large sizes, allows us to
conclude that our solution is effective in practice to produce
more expressive explanations than standard AXp’s/CXp’s
and more importantly in a short time.

Conclusions
One limitation of logic-based abductive or contrastive ex-
planations is that these are based on fairly restricted literals,
of the form xi = vi. This paper formalizes the concept of
inflated explanation, which applies either in the case of ab-
ductive or contrastive explanations. Furthermore, the paper
proposes algorithms for the rigorous computation of inflated
explanations, and demonstrates the existence of minimal hit-
ting set duality between inflated abductive and inflated con-

3Available at https://github.com/izzayacine/RFxpl.



Dataset (m, K) AXp Inflated AXp CXp Inflated CXp

Len Time avg ratio Time Len Time avg ratio Time
adult (12 2) 5.6 0.19 7.0 2e+ 02 0.40 1.6 0.19 0.8 2e+ 00 0.18
ann-thyroid (21 3) 1.7 0.20 15.8 2e+ 05 0.41 1.3 0.20 51.6 3e+ 03 0.26
appendicitis ( 7 2) 3.7 0.05 54.2 4e+ 05 0.33 2.5 0.05 45.8 3e+ 04 0.09
banknote ( 4 2) 2.2 0.05 156.6 6e+ 04 0.22 1.0 0.05 96.1 1e+ 02 0.11
biodegradation (41 2) 16.7 0.33 273.1 6e+ 23 6.46 4.2 0.33 73.9 7e+ 10 0.23
ecoli ( 7 5) 3.6 0.20 128.4 2e+ 06 1.39 1.1 0.20 63.3 6e+ 02 0.34
german (21 2) 12.3 0.36 149.0 2e+ 06 4.20 4.4 0.36 14.8 4e+ 02 0.34
glass2 ( 9 2) 4.6 0.07 92.9 2e+ 09 0.41 1.9 0.07 50.7 1e+ 04 0.11
heart-c (13 2) 5.5 0.07 89.1 4e+ 05 0.23 1.9 0.07 22.0 8e+ 02 0.08
ionosphere (34 2) 21.5 0.06 193.5 1e+ 29 0.27 6.0 0.06 25.0 2e+ 09 0.10
iris ( 4 3) 2.2 0.11 20.7 9e+ 02 0.15 1.3 0.11 17.1 2e+ 02 0.17
lending ( 9 2) 2.2 0.10 1.7 7e+ 00 0.14 1.4 0.10 0.9 2e+ 00 0.07
magic (10 2) 6.3 0.25 831.7 8e+ 17 6.84 1.8 0.25 289.6 1e+ 08 0.63
mushroom (22 2) 9.2 0.07 14.5 2e+ 04 0.15 4.1 0.07 7.0 9e+ 01 0.07
new-thyroid ( 5 3) 2.9 0.12 60.2 1e+ 04 0.40 1.5 0.12 39.8 5e+ 02 0.23
pendigits (16 10) 9.8 1.07 281.0 1e+ 18 12.50 1.7 1.07 115.5 9e+ 03 0.93
phoneme ( 5 2) 3.0 0.18 582.5 2e+ 10 2.62 1.5 0.18 370.1 2e+ 06 0.62
promoters (57 2) 25.0 0.05 23.0 5e+ 07 0.12 8.8 0.05 3.3 2e+ 01 0.08
recidivism (15 2) 7.9 0.48 2.2 5e+ 00 0.53 1.6 0.48 0.8 2e+ 00 0.60
ring (20 2) 9.6 0.35 720.5 1e+ 35 1.35 2.1 0.35 128.6 3e+ 11 0.31
segmentation (19 7) 8.1 0.39 59.7 1e+ 10 1.99 3.2 0.39 56.2 3e+ 05 0.60
shuttle ( 9 7) 2.3 0.22 19.8 1e+ 03 0.42 2.1 0.22 18.1 4e+ 02 0.36
sonar (60 2) 35.9 0.11 242.8 3e+ 35 4.10 6.7 0.11 27.3 2e+ 06 0.14
soybean (35 18) 15.6 2.05 13.1 2e+ 05 3.39 3.2 2.05 4.5 4e+ 01 0.71
spambase (57 2) 18.9 0.15 211.6 4e+ 21 0.94 4.1 0.15 73.8 5e+ 08 0.22
spectf (44 2) 19.7 0.10 108.9 2e+ 26 2.11 6.1 0.10 22.9 3e+ 09 0.10
texture (40 11) 22.8 1.06 338.4 5e+ 38 13.19 3.1 1.06 100.7 8e+ 11 1.04
twonorm (20 2) 10.4 0.05 99.2 1e+ 13 0.15 3.3 0.05 35.3 3e+ 06 0.09
vowel (13 11) 7.7 1.28 401.5 4e+ 15 28.05 2.1 1.28 245.0 2e+ 07 2.25
waveform-21 (21 3) 9.6 0.50 373.6 4e+ 22 6.28 2.0 0.50 100.0 1e+ 06 0.57
waveform-40 (40 3) 14.5 0.90 365.0 5e+ 30 8.21 3.5 0.90 98.8 9e+ 09 0.66
wdbc (30 2) 11.9 0.08 119.8 3e+ 20 0.45 4.1 0.08 49.1 4e+ 08 0.11
wine-recog (13 3) 4.5 0.15 39.0 2e+ 07 0.35 2.1 0.15 27.8 7e+ 02 0.23
wpbc (33 2) 19.9 0.80 211.2 1e+ 27 144.48 8.2 0.80 36.7 2e+ 08 0.19

Table 1: Detailed performance evaluation of inflating AXp’s and CXp’s for RFs. The table shows results for 35 datasets, which
contain categorical and ordinal data. Columns ‘m’ and ‘K’ report, respectively, the number of features and classes in the dataset.
Column ‘Len’ reports the average explanation length (i.e. average number of features contained in the explanations). Column
‘Time’ shows the average runtime for extracting an explanation. Column ‘avg’ reports the average number of values/intervals
(for categorical /continuous domain) computed in the expansion of Ej (resp. Gj) for the iAXp (resp. iCXp ) and ‘ratio’ shows
the average ratio between domain coverage of iAXp and AXp (resp. iCXp and CXp).

trastive explanations. The experimental results validate the
practical interest of computing inflated explanations.

The paper’s results can be extended in a number of ways.
First, expanded probabilistic abductive explanations (Are-
nas et al. 2022) can be investigated for the specific case of
tree ensemble and neural network models. Second, SAT en-
coding of random forests in (Izza and Marques-Silva 2021)
can be adapted for computing optimal (w.r.t cardinality) in-
flated abductive and contrastive explanations.
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