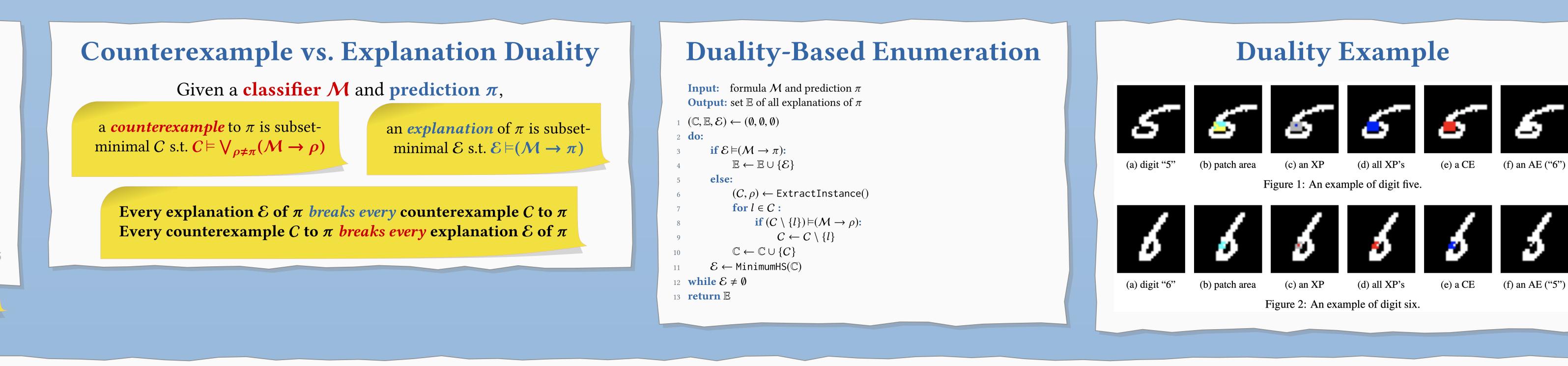


Adversarial Examples

©Evtimov et al. CoRR abs/1707.08945


Is there a *connection* between **adversarial examples** and **explanations**?

The author thanks his colleagues Joao Marques-Silva and Nina Narodytska, who have been taking active part in the research on rigorous logic-based XAI and coauthoring the papers, which this work extensively builds on. Without them this work would be impossible.

TOWARDS TRUSTABLE EXPLAINABLE AI Alexey Ignatiev

Heuristic Explanations Assessed

Dataset	(# unique)	Explanations									
		incorrect			redundant			correct			
		LIME	Anchor	SHAP	LIME	Anchor	SHAP	LIME	Anchor	SHAP	
adult	(5579)	61.3%	80.5%	70.7%	7.9%	1.6%	10.2%	30.8%	17.9%	19.1%	
lending	(4414)	24.0%	3.0%	17.0%	0.4%	0.0%	2.5%	75.6%	97.0%	80.5%	
rcdv	(3696)	94.1%	99.4%	85.9%	4.6%	0.4%	7.9%	1.3%	0.2%	6.2%	
compas	(778)	71.9%	84.4%	60.4%	20.6%	1.7%	27.8%	7.5%	13.9%	11.8%	
german	(1000)	85.3%	99.7%	63.0%	14.6%	0.2%	37.0%	0.1%	0.1%	0.0%	

Follow our work on XAI:

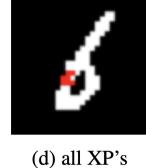
Evaluating Explanation Quality

Dataset	Unconst	rained inputs	Inputs with ≤ 50% difference			
Dataset	Anchor	ApproxMC3	Anchor	ApproxMC3		
adult	0.99	0.67	0.99	0.81		
lending	0.99	0.87	0.99	0.92		
rcdv	0.99	0.75	0.99	0.80		

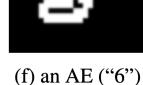
How Anchor measures precision of $\mathcal{E}: prec(\mathcal{E}) = \mathbb{E}_{\mathcal{D}(I' \supset \mathcal{E})}[\mathcal{M}(I') = \pi]$

Acknowledgements

How *we* measure it:


approximate model counting of $\mathcal{E} \land \mathcal{M} \land \neg \pi$

Duality Example


Figure 1: An example of digit five.

(c) an XP Figure 2: An example of digit six.

