
On Efficiently Explaining Graph-Based Classifiers

Xuanxiang Huang1 , Yacine Izza1 , Alexey Ignatiev2 , Joao Marques-Silva3

1University of Toulouse, France
2Monash University, Melbourne, Australia

3IRIT, CNRS, Toulouse, France
{xuanxiang.huang,yacine.izza}@univ-toulouse.fr, alexey.ignatiev@monash.edu,

joao.marques-silva@irit.fr

Abstract

Recent work has shown that not only decision trees (DTs)
may not be interpretable but also proposed a polynomial-time
algorithm for computing one PI-explanation of a DT. This
paper shows that for a wide range of classifiers, globally re-
ferred to as decision graphs, and which include decision trees
and binary decision diagrams, but also their multi-valued
variants, there exist polynomial-time algorithms for comput-
ing one PI-explanation. In addition, the paper also proposes
a polynomial-time algorithm for computing one contrastive
explanation. These novel algorithms build on explanation
graphs (XpG’s). XpG’s denote a graph representation that en-
ables both theoretical and practically efficient computation of
explanations for decision graphs. Furthermore, the paper pro-
poses a practically efficient solution for the enumeration of
explanations, and studies the complexity of deciding whether
a given feature is included in some explanation. For the con-
crete case of decision trees, the paper shows that the set of
all contrastive explanations can be enumerated in polynomial
time. Finally, the experimental results validate the practi-
cal applicability of the algorithms proposed in the paper on
a wide range of publicly available benchmarks.

1 Introduction
The emerging societal impact of Machine Learning (ML)
and its foreseen deployment in safety critical applications,
puts additional demands on approaches for verifying and ex-
plaining ML models (Weld and Bansal 2019). The vast ma-
jority of approaches for explainability in ML (often referred
to as eXplainable AI (XAI) (Gunning and Aha 2019)) are
heuristic, offering no formal guarantees of soundness, with
well-known examples including tools like LIME, SHAP or
Anchors (Ribeiro, Singh, and Guestrin 2016b; Lundberg
and Lee 2017; Ribeiro, Singh, and Guestrin 2018). (Re-
cent surveys (Guidotti et al. 2019) cover a wider range of
heuristic methods.) Moreover, recent work has shed light
on the important practical limitations of heuristic XAI ap-
proaches (Narodytska et al. 2019b; Ignatiev, Narodytska,
and Marques-Silva 2019c; Camburu et al. 2019; Slack et
al. 2020; Lakkaraju and Bastani 2020; Dimanov et al. 2020;
Ignatiev 2020).

In contrast, formal approaches to XAI have been pro-
posed in recent years (Shih, Choi, and Darwiche 2018;
Ignatiev, Narodytska, and Marques-Silva 2019a; Shih, Choi,

and Darwiche 2019; Ignatiev, Narodytska, and Marques-
Silva 2019b; Darwiche and Hirth 2020; Audemard, Koriche,
and Marquis 2020; Audemard et al. 2021) (albeit it can
be related to past work on logic-based explanations (e.g.
(Shanahan 1989; Falappa, Kern-Isberner, and Simari 2002;
Pérez and Uzcátegui 2003))). The most widely studied form
of explanation consists in the identification of prime impli-
cants (PI) of the decision function associated with an ML
classifier, being referred to as PI-explanations. Although
PI-explanations offer important formal guarantees, e.g. they
represent minimal sufficient reasons for a prediction, they
do have their own drawbacks. First, in most settings, find-
ing one PI-explanation is NP-hard, and in some settings
scalability is an issue (Shih, Choi, and Darwiche 2018;
Ignatiev, Narodytska, and Marques-Silva 2019a). Sec-
ond, users have little control on the size of computed PI-
explanations (and it is well-known the difficulty that hu-
mans have in grasping complex concepts). Third, there
can be many PI-explanations, and it is often unclear which
ones are preferred. Fourth, in practice users may often pre-
fer high-level explanations, in contrast with feature-based,
low-level explanations. Despite these drawbacks, it is plain
that PI-explanations offer a sound basis upon which one
can expect to develop theoretically sound and practically
effective approaches for computing explanations. For ex-
ample, more recent work has demonstrated the tractabil-
ity of PI-explanations for some ML models (Izza, Ignatiev,
and Marques-Silva 2020; Audemard, Koriche, and Marquis
2020; Marques-Silva et al. 2020; Marques-Silva et al. 2021;
Izza et al. 2021), in some cases allowing for polynomial de-
lay enumeration (Marques-Silva et al. 2020). Also, recent
work (Ignatiev 2020; Izza and Marques-Silva 2021; Ignatiev
and Marques-Silva 2021; Izza et al. 2021) showed that, even
for ML models for which computing a PI-explanation is NP-
hard, scalability may not be an obstacle.

Moreover, it was recently shown that finding explanations
can be crucial even for ML models that are generally deemed
interpretable1. One such example are decision trees (Izza,
Ignatiev, and Marques-Silva 2020). Decision trees (DTs)
are not only among the most widely used ML models,

1Interpretability is regarded a subjective concept, with no ac-
cepted rigorous definition (Lipton 2018). In this paper, we equate
interpretability with explanation succinctness.



but are also generally regarded as interpretable (Breiman
2001; Freitas 2013; Ribeiro, Singh, and Guestrin 2016a;
Montavon, Samek, and Müller 2018; Samek et al. 2019;
Molnar 2019; Miller 2019; Guidotti et al. 2019; Rudin
2019; Xu et al. 2019; Silva et al. 2020). However, recent
work (Izza, Ignatiev, and Marques-Silva 2020) has shown
that paths in DTs may contain literals that are irrelevant for
identifying minimal sufficient reasons for a prediction, and
that the number of redundant literals can grow asymptoti-
cally as large as the number of features. Furthermore, it was
also shown (Izza, Ignatiev, and Marques-Silva 2020) that PI-
explanations for DTs can be computed in polynomial time.
Moreover, independent work showed that finding a smallest
explanation is hard for NP (Barceló et al. 2020), thus hinting
at the need to finding PI-explanations in the case of DTs.

This paper complements this earlier work with several
novel results. First, the paper considers both PI (or ab-
ductive) explanations (AXps) and contrastive explanations
(CXps) (Miller 2019; Ignatiev et al. 2020), which will be
jointly referred to as explanations (XPs). Second, the pa-
per shows that XPs can be computed in polynomial time
for a much larger class of classifiers, which will be con-
jointly referred to as decision graphs (Oliver 1992; Ko-
havi 1994)2. For that, the paper introduces a new graph
representation, namely the explanation graph, and shows
that for any classifier (and instance) that can be reduced
to an explanation graph, XPs can be computed in polyno-
mial time. (For example, multi-valued variants of deci-
sion trees, graphs or diagrams can be reduced to explana-
tion graphs.) The paper also shows that the MARCO algo-
rithm for enumerating MUSes/MCSes (Liffiton et al. 2016)
can be adapted to the enumeration of XPs, yielding a so-
lution that is very efficient in practice. For the case of
DTs, the paper proves that the set of all CXps can be com-
puted in polynomial time. In turn, this result offers an al-
ternative approach for the enumeration of PI-explanations
(AXps), e.g. based on hitting set dualization (Reiter 1987;
Liffiton and Sakallah 2008). Finally, we investigate the ex-
planation membership problem, i.e. to decide whether a fea-
ture (given its assigned value) can be included in some ex-
planation (either AXp or CXp). The paper shows that for
arbitrary explanation graphs, the explanation membership
problem is in NP, while for a propositional formula in dis-
junctive normal form (DNF) is shown to be hard for ΣP

2.
However, for tree explanation graphs (which can represent
explanations of decision trees), deciding explanation mem-
bership is shown to be in P.

The paper is organized as follows. Section 2 introduces
the definitions and notation used in the rest of the paper.
Section 3 studies explanation graphs (XpG’s), and shows
how XpG’s can be used for computing explanations. Af-
terwards, Section 4 describes algorithms computing one XP
(either AXp or CXp) of XpG’s, and a MARCO-like algo-

2The term decision graph is also used in the context of Bayesian
Networks (Jensen 2001; Darwiche 2009), and more recently in ex-
plainability (Shih, Choi, and Darwiche 2018; Shih, Choi, and Dar-
wiche 2019). However, and to the best of our knowledge, the term
“decision graph” was first proposed in the early 90s (Oliver 1992)
to enable more compact representation of DTs.

rithm for the enumeration of XPs. Section 4 also proves that
for DTs, the set of all CXps can be computed in polynomial
time. Some of the previous results are used in Section 5
for investigating the complexity of deciding membership of
features in explanations. Section 6 relates the paper’s contri-
butions with earlier work. Section 7 discusses experimental
results of explaining DTs and reduced ordered binary deci-
sion diagrams, including AXps, CXps and their enumera-
tion. Finally, the paper concludes in Section 8.

2 Preliminaries
Classification problems. A classification problem is de-
fined on a set of features (or attributes) F = {1, . . . ,m}
and a set of classes K = {c1, c2, . . . , cK}. Each feature
i ∈ F takes values from a domain Di. Domains can be
boolean, integer or real-valued. Feature space is defined as
F = D1 × D2 × . . .× Dm. The notation x = (x1, . . . , xm)
denotes an arbitrary point in feature space, where each xi
is a variable taking values from Di. Moreover, the nota-
tion v = (v1, . . . , vm) represents a specific point in feature
space, where each vi is a constant representing one concrete
value from Di. An instance (or example) denotes a pair
(v, c), where v ∈ F and c ∈ K. (We also use the term
instance to refer to v, leaving c implicit.) An ML classifier
C is characterized by a classification function κ that maps
feature space F into the set of classes K, i.e. κ : F → K. (κ
is assumed to be non-constant.)

Remark on binarization. We underline the importance of
not restricting feature domains to be boolean-valued. Al-
though binarization can be used to represent features that
are categorical, integer or real-valued, it is also the case that,
from the perspective of computing explanations, soundness
demands that one must know whether binarization was ap-
plied and, if so, which resulting binary features must be re-
lated with which original features. The key observation is
that if binarization is used, then soundness of results imposes
that features must be reasoned about in groups of related bi-
nary features, and this implies algorithms that work under
this assumption. In this paper, we opt to impose no such
restriction when reasoning about explanations.

Abductive and contrastive explanations. We now de-
fine formal explanations. Prime implicant (PI) explana-
tions (Shih, Choi, and Darwiche 2018) denote a minimal set
of literals (relating a feature value xi and a constant vi ∈ Di

that are sufficient for the prediction3. Formally, given v =
(v1, . . . , vm) ∈ F with κ(v) = c, a PI-explanation (AXp) is
any minimal subset X ⊆ F such that,

∀(x ∈ F).
[∧

i∈X
(xi = vi)

]
→(κ(x) = c) (1)

AXps can be viewed as answering a ‘Why?’ question, i.e.
why is some prediction made given some point in feature

3PI-explanations are related with abduction, and so are also re-
ferred to as abductive explanations (AXp) (Ignatiev, Narodytska,
and Marques-Silva 2019a). More recently, PI-explanations have
been studied from a knowledge compilation perspective (Aude-
mard, Koriche, and Marquis 2020).



space. A different view of explanations is a contrastive
explanation (Miller 2019), which answers a ‘Why Not?’
question, i.e. which features can be changed to change the
prediction. A formal definition of contrastive explanation
is proposed in recent work (Ignatiev et al. 2020). Given
v = (v1, . . . , vm) ∈ F with κ(v) = c, a CXp is any minimal
subset Y ⊆ F such that,

∃(x ∈ F).
∧

j∈F\Y
(xj = vj) ∧ (κ(x) 6= c) (2)

Building on the results of R. Reiter in model-based diag-
nosis (Reiter 1987), (Ignatiev et al. 2020) proves a minimal
hitting set (MHS) duality relation between AXps and CXps,
i.e. AXps are MHSes of CXps and vice-versa.

Section 5 studies the explanation membership problem,
which we define as follows:
Definition 1 (AXp/CXp Membership Problem). Given v ∈
F and i ∈ F , with κ(v) = c ∈ K, the AXp (resp. CXp) mem-
bership problem is to decide whether there exists an AXp
(resp. CXp) Z ⊆ F with i ∈ Z .

One can understand the importance of deciding explana-
tion membership in settings where the number of explana-
tions is very large, and we seek to understand whether some
feature (given its assigned value) can be relevant for some
prediction. Duality between explanations (Ignatiev et al.
2020) yields the following result.
Proposition 1. Given v ∈ F, there exists an AXp X ⊆ F
with i ∈ X iff there exists a CXp Y ⊆ F with i ∈ Y .

Decision trees, diagrams and graphs. A decision tree T
is a directed acyclic graph having at most one path between
every pair of nodes. T has a root node, characterized by
having no incoming edges. All other nodes have one incom-
ing edge. We consider univariate decision trees (as opposed
to multivariate decision trees (Brodley and Utgoff 1995)),
each non-terminal node is associated with a single feature
xi. Each edge is labeled with a literal, relating a feature (as-
sociated with the edge’s starting node) with some values (or
range of values) from the feature’s domain. We will consider
literals to be of the form xi 1 Ei, where 1 ∈ {∈}. xi is a
variable that denotes the value taken by feature i, whereas
Ei ⊆ Di is a subset of the domain of feature i. The type of
literals used to label the edges of a DT allows the represen-
tation of the DTs generated by a wide range of decision tree
learners (e.g. (Utgoff, Berkman, and Clouse 1997)). (The
syntax of the literals could be enriched. For example, we
could use 1 ∈ {∈, 6∈}, or for categorical features we could
use 1 ∈ {=, 6=}, in which case we would need to allow for
multi-tree variants of DTs (Appuswamy et al. 2011). How-
ever, these alternatives would not change the results in the
paper. As formalized later, the literals associated with the
outgoing edges are assumed to be mutually inconsistent. Fi-
nally, each terminal node is associated with a value from K.

Throughout the paper, we will use the following example
of a DT as the first running example.
Example 1. For the DT in Figure 1,F = {1, 2, 3, 4}, denot-
ing respectively Age (∈ {W,T,O}), Income (∈ {L,M,H}),
Student (∈ {N,Y}) and Credit Rating (∈ {P,F,E}). The

x3

x1

T x2

x1

L N

N

x4

L x1

T x2

T L

∈ {N}

∈ {O} ∈ {W, T}

∈ {H}

∈ {T} ∈ {W}

∈ {L, M}

∈ {Y}

∈ {E} ∈ {P, F}

∈ {W, O} ∈ {T}

∈ {H} ∈ {L, M}

1

2

4
5

8

12 13

9

3

6
7

10
11

14 15

Figure 1: Example DT, v = (O,L,Y, P) and κ(v) = T

prediction is the type of hardware bought, with N denoting
No Hardware, T denoting a Tablet and L denoting a Laptop.
For Age, W, T and O denote, respectively, Age < 30 (tWen-
ties or younger), 30 ≤ Age < 40 (Thirties) and 40 ≤ Age
(forties or Older). For Income, L, M, H denote, respec-
tively, (L)ow, (M)edium, and (H)igh. For Student, N denotes
not a student and Y denotes a student. Finally, for Credit
Rating, P, F and E denote, respectively, (P)oor, (F)air and
(E)xcellent. For the instance v = (O,L,Y,P), with predic-
tion T (i.e. Tablet), the consistent path is shown highlighted.

The paper also considers reduced ordered binary de-
cision diagrams (OBDDs) (Bryant 1986; Wegener 2000;
Darwiche and Marquis 2002), as well as their multi-valued
variant, i.e. reduced ordered multi-valued decision diagrams
(OMDDs) (Srinivasan et al. 1990; Kam and Brayton 1990;
Bergman et al. 2016). (We will also briefly mention connec-
tions with deterministic branching programs (DBPs) (We-
gener 2000).) For OBDDs, features must be boolean, and so
each edge is labeled with either 0 or 1 (we could instead use
∈ {0} and ∈ {1}, respectively). In contrast with DTs, fea-
tures in OBDDs must also be ordered. For OMDDs, features
takes discrete values, and are also ordered. In this case, we
label edges the same way we label edges in DTs, i.e. using
set membership (and non-membership). (For simplicity, if
all edges have a single option, we just label the edge with
the value.) Moreover, we will use the following example of
an OMDD as the paper’s second running example.

Example 2. For the OMDD in Figure 2, F = {1, 2, 3}, with
D1 = D2 = {0, 1},D3 = {0, 1, 2}. The prediction is one of
three classes K = {R,G,B}. For the instance v = (0, 1, 2),
with prediction R, the consistent path is shown highlighted.

Over the years, different works proposed the use of
some sort of decision diagrams as an alternative to deci-
sion trees, e.g. (Bahl et al. 1989; Oliver 1992; Oliveira and
Sangiovanni-Vincentelli 1996; Mues et al. 2004; Cabodi et
al. 2021). This paper considers decision graphs (Oliver
1992), which can be viewed as a generalization of DTs, OB-
DDs, OMDDs, etc.



x3

x2 x2

x1 x1

GR B

1

2 3

4 5

6 7 8

1 2
0

0 1 0 1

0
1

0
1

Figure 2: Example OMDD, v = (0, 1, 2) and κ(v) = R

Definition 2 (Decision Graph (DG)). A DG G is a 4-tuple
G = (G, ς, φ, λ) where,

1. G = (V,E) is a Directed Acyclic Graph (DAG) with a
single source (or root) node.

2. V is partitioned into terminal (T ) and non-terminal (N )
nodes. For every p ∈ N , deg+(p) > 0. For every q ∈ T ,
deg+(q) = 0. (deg+ denotes the outdegree of a node).

3. ς : T → K maps each terminal node into a class.
4. φ : N → F maps each non-terminal node into a feature.
5. λ : E → L, where L denotes the set of all literals of

the form xi ∈ Ei for Ei ⊆ Di, where i is the feature
associated with the edge’s starting node.

Furthermore, the following assumptions are made with re-
spect to DGs4 (where for node r ∈ N , with φ(r) = i, Ci

denotes the set of values of feature i which are consistent
with any path connecting the root to r):
i. The literals associated with the outgoing edges of each

node r ∈ N represent a partition of Ci.
ii. Every path Rk of DG, that connects the root node to a

terminal node, is not inconsistent.

It is straightforward to conclude that any classifier defined
on DTs, OBDDs or OMDDs, and respecting assumptions
(i) and (ii) of the above definition, can be represented as a
DG. (The same claim can also be made for DBPs.) Also,
whereas OBDDs and OMDDs are read-once (i.e. each fea-
ture is tested at most once along a path), DTs (and general
DGs) need not be read-once. Hence, DGs impose no restric-
tion on the number of times a feature is tested along a path,
as long as the literals are consistent. Moreover, the definition
of DG (and the associated assumptions) ensures that,

Proposition 2. For any v ∈ F there exists exactly one ter-
minal node which is connected to the root node of the DG

4The importance of these assumptions must be highlighted.
Whereas for OBDDs/OMDDs these assumptions are guaranteed by
construction, this is not the case with DTs nor in general with DGs.
In the literature, one can find examples of decision trees with incon-
sistent paths (e.g. (Valdes et al. 2016, Fig. 4)) but also decision trees
exhibiting dead-ends, i.e. DTs for which the classification function
is not total (e.g. (Duda, Hart, and Stork 2001, Fig. 8.1)).

by path(s) such that each edge in such path(s) is consistent
with the feature values given by v.

Proposition 3. For any terminal node q of a DG, there exists
at least one point v ∈ F such there is a consistent path from
the root to q.

3 Explanation Graphs
A difficulty with reasoning about explanations for DTs, DGs
or OBDDs, but also for their multi-valued variants (and also
in the case of other examples of ML models), is the multi-
tude of cases that one needs to consider. For the concrete
case of OBDDs, features are restricted to be boolean. How-
ever, for DTs and DGs, features can be boolean, categori-
cal, integer or real. Moreover, for OMDDs, features can be
boolean, categorical or integer. Also, it is often the case that
|K| > 2. Explanation graphs are a graph representation that
abstracts away all the details that are effectively unneces-
sary for computing AXps or CXps. In turn, this facilitates
the construction of unified explanation procedures.

Definition 3 (Explanation Graph (XpG)). An XpG is a 5-
tuple D = (GD, S, υ, αV , αE), where:

1. GD = (VD, ED) is a labeled DAG, such that:
• VD = TD ∪ND is the set of nodes, partitioned into the

terminal nodes TD (with deg+(q) = 0, q ∈ TD) and the
non-terminal nodes ND (with deg+(p) > 0, p ∈ ND);

• ED ⊆ VD × VD is the set of (directed) edges.
• GD is such that there is a single node with indegree

equal to 0, i.e. the root (or source) node.
2. S = {s1, . . . , sm} is a set of variables;
3. υ : ND → S is a total function mapping each non-

terminal node to one variable in S.
4. αV : VD → {0, 1} labels nodes with one of two values.

(αV is required to be defined only for terminal nodes.)
5. αE : ED → {0, 1} labels edges with one of two values.
In addition, an XpGD must respect the following properties:
i. For each non-terminal node, there is at most one outgoing

edge labeled 1; all other outgoing edges are labeled 0.
ii. There is exactly one terminal node t ∈ T labeled 1 that

can be reached from the root node with (at least) one path
of edges labeled 1.

We refer to a tree XpG when the DAG associated with the
XpG is a tree. Given a DG G and an instance (v, c), the
(unique) mapping to an XpG is obtained as follows:

1. The same DAG is used.
2. Terminal nodes labeled c in G are labeled 1 inD. Terminal

nodes labeled c′ 6= c in G are labeled 0 in D.
3. A non-terminal node associated with feature i in G is as-

sociated with si in D.
4. Any edge labeled with a literal that is consistent with v in
G is labeled 1 in D. Any edge labeled with a literal that is
not consistent with v in G is labeled 0 in D.

Since we can represent DTs, OBDDs or OMDDs with DGs,
then the construction above ensures that we can also create
XpG’s for any of these classifiers.

The following examples illustrate the construction of
XpG’s for the paper’s two running examples.



s3

s1

1 s2

s1

0 0

0

s4

0 s1

1 s2

1 0

0

1 0

0

0 0

1

1

0 1

1 0

0 1

1

2

4
5

8

12 13

9

3

6
7

10
11

14 15

Figure 3: XpG for the DT in Figure 1, given v = (O,L,Y, P)

s3

s2 s2

s1 s1

01 0

1

2 3

4 5

6 7 8

0 1
0

0 1 0 1

1 0 1 0

Figure 4: XpG for the OMDD of Figure 2, given v = (0, 1, 2)

Example 3. For the DT of Example 1 (shown in Figure 1,
given the instance (v = (O,L,Y,P),T), and letting S =
(s1, s2, s3, s4), with each si associated with feature i, the
resulting XpG is shown in Figure 3.

Example 4. For the OMDD of Example 2 (shown in Fig-
ure 2), given the instance ((0, 1, 2),R), and letting S =
(s1, s2, s3), with each si associated with feature i, the re-
sulting XpG is shown in Figure 4.

Evaluation of XpG’s. Given an XpG D, let S = {0, 1}m,
i.e. the set of possible assignments to the variables in S. The
evaluation function of the XpG, σD : S → {0, 1}, is based
on the auxiliary activation function ε : S × VD → {0, 1}.
Moreover, for a point s ∈ S, σD and ε are defined as follows:

1. If r is the root node of GD, then ε(s, r) = 1.
2. Let p ∈ parent(r) (i.e. a node can have multiple parents)

and let si = υ(p). ε(s, r) = 1 iff ε(s, p) = 1 and either
αE(p, r) = 1 or si = 0, i.e.

ε(s, r) ≡
∨

p∈parent(r)
∧¬αE(p,r)

(ε(s, p) ∧ ¬si)
∨

p∈parent(r)
∧αE(p,r)

ε(s, p) (3)

3. σD(s) = 1 iff for every terminal node t ∈ TD, with
αV (t) = 0, it is also the case that ε(s, t) = 0, i.e.

σD(s) ≡
∧

t∈TD∧¬αV (t)
¬ε(s, t) (4)

Observe that terminal nodes labeled 1 are irrelevant for
defining the evaluation function. Their existence is implicit
(i.e. at least one terminal node with label 1 must exist and
be reachable from the root when all the si variables take
value 1), but the evaluation of σD is oblivious to their ex-
istence. Furthermore, and as noted above, we must have
σD(1, . . . , 1) = 1. If the graph has some terminal node la-
beled 0, then σD(0, . . . , 0) = 0.
Example 5. For the DT of Figure 1, and given the XpG
of Figure 3, the evaluation function is defined as follows:

σD(s)↔
(∧

r∈{6,9,12,13,15}
¬ε(s, r)

)
with,

[ε(s, 1)↔ 1] ∧ [ε(s, 2)↔ ε(s, 1) ∧ ¬s3] ∧
[ε(s, 3)↔ ε(s, 1)] ∧ [ε(s, 5)↔ ε(s, 2) ∧ ¬s1] ∧
[ε(s, 6)↔ ε(s, 3) ∧ ¬s4] ∧ [ε(s, 7)↔ ε(s, 3)] ∧
[ε(s, 8)↔ ε(s, 5) ∧ ¬s2] ∧ [ε(s, 9)↔ ε(s, 5)] ∧
[ε(s, 11)↔ ε(s, 7) ∧ ¬s1] ∧ [ε(s, 12)↔ ε(s, 8) ∧ ¬s1] ∧
[ε(s, 13)↔ ε(s, 8) ∧ ¬s1] ∧ [ε(s, 15)↔ ε(s, 11)]

(where, for simplicity and for reducing the number of paren-
thesis, the operator ∧ has precedence over the operator↔.)
Observe that σD(1, 1, 1, 1) = 1 and σD(0, 0, 0, 0) = 0.
Example 6. For the OMDD of Figure 2, and given the XpG
of Figure 4, the evaluation function is defined as follows:

σD(s)↔
(∧

r∈{7,8}
¬ε(s, r)

)
with,

[ε(s, 1)↔ 1] ∧ [ε(s, 2)↔ ε(s, 1) ∧ ¬s3] ∧
[ε(s, 3)↔ ε(s, 1)] ∧ [ε(s, 4)↔ ε(s, 2)] ∧
[ε(s, 5)↔ ε(s, 3)] ∧ [ε(s, 7)↔ ε(s, 4) ∧ ¬s1] ∧
[ε(s, 8)↔ ε(s, 5) ∧ ¬s1]

Again, we have σD(1, 1, 1, 1) = 1 and σD(0, 0, 0, 0) = 0.

Properties of XpG’s. The definition of σD is such that the
evaluation function is monotone (where we define 0 � 1,
s1 � s2 if for all i, s1,i � s2,i, and for monotonicity we
require s1 � s2→σD(s1) � σD(s2).

Proposition 4. Given an XpG D, σD is monotone.

Proof. [Sketch] Observe that ε is monotone (and negative)
on s ∈ S, and σD is monotone (and negative) on ε. Hence,
σD is monotone (and positive) on s. 2

Given the definition of σD, any PI will consist of a con-
junction of positive literals (Crama and Hammer 2011). Fur-
thermore, we can view an XpG as a classifier, mapping fea-
tures {1, . . . ,m} (each feature i associated with a variable
si ∈ S) into {0, 1}, with instance ((1, . . . , 1), 1). As a re-
sult, we can compute the AXps and CXps of an XpG D
(given the instance ((1, . . . , 1), 1)).



Example 7. Observe that by setting s2 = s3 = 0, we still
guarantee that σD(1, 0, 0, 1) = 1. However, setting either
s1 = 0 or s4 = 0, will cause σD to change value. Hence,
one AXp for the XpG is {1, 4}. With respect to the origi-
nal instance ((O,L,Y,P),T), selecting {1, 4} indicates that
(x1 = O) ∧ (x4 = P) (i.e. Age in the forties or Older and a
Credit Rating of Poor) suffices for the prediction of T.
Example 8. With respect to Example 6, we can observe
that s2 is not used for defining σD. Hence, it can be set
to 0. Also, as long as s1 = 1, the prediction will re-
main unchanged. Thus, we can also set s3 to 0. As a
result, one AXp is {1}. With respect to the original in-
stance ((x1, x2, x3), c) = ((0, 1, 2),R), selecting {1} indi-
cates that x1 = 0 suffices for the prediction of R.

As suggested by the previous discussion and examples,
we have the following result.
Proposition 5. There is a one-to-one mapping between
AXps and CXps of σD and the AXps and CXps of the original
classification problem (and instance) from which the XpGD
is obtained.
Proof. [Sketch] The construction of the XpG from a DG
ensures that for any node in the XpG, if ε(s, r) = 1, then
there exists some assignment to the features corresponding
to unset variables, such that there is one consistent path
in the DG from the root to r. Thus, if for some pick of
unset variables, we have that ε(s, q) = 1, for some q ∈ TD
with αV (q) = 0, then that guarantees that in the DG there
is an assignment to the features associated with the unset
variables, such that a prediction other than c is obtained. 2

4 Computing Explanations
It is well-known that prime implicants of monotone func-
tions can be computed in polynomial time (e.g. (Goldsmith,
Hagen, and Mundhenk 2005; Goldsmith, Hagen, and Mund-
henk 2008)). Moreover, whereas there are algorithms for
finding one PI of a monotone function in polynomial time,
there is evidence that enumeration of PIs cannot be achieved
with polynomial delay (Gurvich and Khachiyan 1999).

Nevertheless, and given the fact that σD is defined on a
DAG, this paper proposes dedicated algorithms for comput-
ing one AXp and one CXp which build on iterative graph
traversals. Furthermore, the MARCO algorithm (Liffiton
et al. 2016) is adapted to exploit the algorithms for com-
puting one AXp and one CXp, in the process ensuring that
AXps/CXps can be enumerated with exactly one SAT ora-
cle call per each computed explanation. (A recent work on
explaining monotonic classifiers (Marques-Silva et al. 2021)
proposes a poly-time algorithm to compute one AXp (resp.
CXp) and a practically efficient algorithm for the iterative
enumeration of XPs.)

4.1 Finding One XP
Different polynomial-time algorithms can be envisioned for
finding one prime implicant of an XpG (and also of a mono-
tone function). For the concrete case of σD, we consider
the well-known deletion-based algorithm (Chinneck and
Dravnieks 1991), which iteratively removes literals from

Algorithm 1 Check existence of path to 0-labeled terminal
input: XpG: D = (GD, S, υ, αV , αE); Ref set: R ⊆ S

1: procedure pathToZero(D, R)
2: Q← init(root(GD))
3: while not empty(Q) do
4: (Q, p)← dequeue(Q)
5: if isTerminal(GD, p) then
6: if αV (p) = 0 then
7: return true
8: else
9: si ← υ(p)

10: for all q ∈ children(GD, p) do
11: if si ∈ R or αE(p, q) = 1 then
12: Q← enqueue(Q, q)
13: return false

the implicant, and checks the value of σD using the DAG
representation. (It is also plain that we could consider in-
stead the algorithms QuickXplain (Junker 2004) or Progres-
sion (Marques-Silva, Janota, and Belov 2013), or any other
algorithm for finding a minimal set subject to a monotone
predicate (Marques-Silva, Janota, and Mencı́a 2017).)

As highlighted in the running examples, if σD(u) = 1,
for some u ∈ S, then in the original classifier this means
the prediction remains unchanged. The only way we have
to change the prediction is to allow some features to take
some other value from their domain. As a result, we equate
si = 1 with declaring the original feature as set (or as fixed),
whereas we equate si = 0 with declaring the original feature
as unset (or as free). By changing some of the S variables
from 1 to 0, we are allowing some of the features to take one
value from their domains. If we manage to change the value
of the evaluation function to 0, this means that in the original
classifier there exists a pick of values to the unset features
which allows the prediction to change to some class other
than c. As a result, the algorithms proposed in this section
are solely based on finding a subset maximal set of features
declared free (respectively, fixed), which is sufficient for the
prediction not to change (respectively, to change).

To enable the integration of the algorithms, the basic al-
gorithms for finding one XP are organized such that one XP
is computed given a starting seed.

Checking path to node with label 0. All algorithms are
based on graph traversals, which check whether a prediction
of 0 can be reached given a set of value picks for the vari-
ables in S. This graph traversal algorithm is simple to envi-
sion, and is shown in Algorithm 1. As can be observed, the
algorithm returns 1 if a terminal labeled 0 can be reached.
Otherwise, it returns 0. Variables in set R serve to ignore
the values of outgoing edges of a node if the variable is in
R. The algorithm has a linear run time on the XpG’s size
(i.e. |VD|+ |ED|).

Extraction of one AXp and one CXp given seed. Given
a seed set A ⊆ S of set variables, and so a set C = S \A of
unset variables (which are guaranteed to be kept unset), Al-
gorithm 2 drops variables fromA (i.e. makes variables unset,



Algorithm 2 Extraction of one AXp given seed A
input: XpG: D = (GD, S, υ, αV , αE); Seed set: A ⊆ S

1: procedure findAXp(D, A)
2: for all si ∈ A do // Inv.: not pathToZero(D, S\A)
3: if not pathToZero(D, S \ (A \ {si})) then
4: A← A \ {si}
5: return A

Algorithm 3 Extraction of one CXp given seed C
input: XpG: D = (GD, S, υ, αV , αE); Seed set: C ⊆ S

1: procedure findCXp(D, C)
2: for all si ∈ C do // Inv.: pathToZero(D, C)
3: if pathToZero(D, C \ {si}) then
4: C ← C \ {si}
5: return C

and so allows the original features to take one of the values
in their domains). Since σD is monotone, the deletion-based
algorithm is guaranteed to find a subset-minimal set of fixed
variables such that the XpG evaluates to 1.

Similarly, given a seed set C ⊆ S of unset variables, and
so a set A = S \C of set variables (which are guaranteed to
be kept set), Algorithm 3 drops variables from C (i.e. makes
variables set, and so forces the original features to take the
value specified by the instance).

4.2 Enumeration of Explanations
As indicated earlier in this section, we use a MARCO-
like (Liffiton et al. 2016) algorithm for enumerating XPs
of an XpG (see Algorithm 4). (An in-depth analysis of
MARCO is included in earlier work (Liffiton et al. 2016).)
Algorithm 4 exploits hitting set duality between AXps and
CXps (Ignatiev et al. 2020), and represents the sets to hit
(resp. block) as a set of positive (resp. negative) clauses H,
defined on a set of variables S. The algorithm iteratively
calls a SAT oracle on H while the formula is satisfiable.
Given a model, which splits S into variables assigned value
1 (i.e. set) and variables assigned value 0 (i.e. unset), we
check if the model enables the prediction to change (i.e. we
check the existence of a path to a terminal node labeled 0,
with C as the reference set). If no such path exists, then we
extract one AXp, using A as the seed. Otherwise, we ex-
tract one CXp, using C as the seed. The resulting XP is then
used to block future assignments to the variables in S from
repeating XPs.

4.3 Enumerating CXps for DTs
The purpose of this section is to show that, if the XpG is a
tree (e.g. in the case of a DT), then the number of CXps is
polynomial on the size of the XpG. Furthermore, it is shown
that the set of all CXps can be computed in polynomial time.
This result has a number of consequences, some of which are
discussed in Section 5. For the concrete case of enumeration
of XPs of tree XpG’s, since we can enumerate all CXps in
polynomial time, then we can exploit the well-known results
of Fredman&Khachiyan (Fredman and Khachiyan 1996) to

Algorithm 4 Enumeration of AXps and CXps
input: XpG: D = (GD, S, υ, αV , αE)

1: procedure Enumerate(D)
2: H ← ∅ //H defined on set S
3: repeat
4: (outc, r)← SAT(H)
5: if outc = true then
6: A← {si ∈ S | ri = 1}
7: C ← {si ∈ S | ri = 0}
8: if not pathToZero(D, C) then
9: X ← findAXp(D, A)

10: reportAXp(X)
11: H ← H∪ {(∨si∈X¬si)}
12: else
13: X ← findCXp(D, C)
14: reportCXp(X)
15: H ← H∪ {(∨si∈Xsi)}
16: until outc = false

prove that enumeration of AXps can be obtained in quasi-
polynomial time. The key observation is that, since we can
enumerate all the CXps in polynomial time, then we can
construct the associated hypergraph, thus respecting the con-
ditions of Fredman&Khachiyan’s algorithms (Fredman and
Khachiyan 1996; Khachiyan et al. 2006).

Proposition 6. For a tree XpG, the number of CXps is poly-
nomial on the size of the XpG, and can be enumerated in
polynomial time.

Proof. To change the prediction, we must make a path to
a prediction c′ ∈ K \ {c} consistent. In a tree, the number
of paths (connecting the root to a terminal) associated with
a prediction in c′ ∈ K \ {c} is linear on the size of the tree.
Observe that each path yielding a prediction other that c
contributes at most one CXp, because the consistency of
the path (in order to predict a class other than c) requires
that all the inconsistent literals be allowed to take some
consistent value. We can thus conclude that the number of
CXps is linear on the size of a tree XpG. The algorithm for
listing the CXps exploits the previous remarks, but takes
into consideration that some paths may contribute candidate
CXps that are supersets of others (and so not actual CXps);
these must be filtered out. 2

5 Deciding Explanation Membership
To the best of our knowledge, the problem of deciding the
membership of some literal in a prime implicant has not
been studied in detail before. However, in the case of ex-
plainability, it is paramount to be able to answer the query
of whether a feature (and assigned value) are included in
some explanation. This section briefly analyzes the com-
plexity of deciding membership in PIs. Clearly, the results
for AXps/CXps track the results for PIs. For the general case
of DNFs, we prove that PI membership is hard for ΣP

2. For
general XpG’s, we show that the problem is in NP. Finally,
for tree XpG’s, we show that PI/AXp/CXp membership is
in P. Hence, for DTs, we can decide in polynomial time



whether some feature is included in some AXp or CXp.

Proposition 7. Deciding PI membership for a DNF is hard
for ΣP

2.

Proof. [Sketch] We reduce deciding membership in a
minimal unsatisfiable subset (MUS), which is known to be
hard for ΣP

2 (Liberatore 2005), to PI testing for DNFs. Let
ϕ = {γ1, . . . , γm} be an unsatisfiable CNF formula. We
want to decide whether γi is included in some MUS. The
reduction works as follows. First, create a DNF ¬ϕ, which
is valid. Then, define a boolean function ψ : S → {0, 1},
by conjoining a selector variable sj with each term ¬γj .
Clearly, ψ(1, . . . , 1) = 1, and ψ(0, . . . , 0) = 0. Further-
more, it is plain that any assignment to the si variables that
selects any MUS of ϕ, will be a prime implicant of ψ, and
vice-versa. Hence, γj is in some MUS of ϕ iff sj is in some
prime implicant of ψ. 2

Proposition 8. Deciding PI/AXp/CXp membership for an
XpG D is in NP.

Proof. To show that PI membership is in NP, we consider a
concrete variable si ∈ S. Moreover, we guess an assignment
to the variables in S \ {si}, say u ∈ S, such that ui = 1. To
decide the membership of si = 1 in the PI represented by u,
we proceed as follows:

1. Check that given the assignment u, σD(u) = 1. This
is done in polynomial time by running Algorithm 1 (and
failing to reach a terminal node with label 0).

2. The next step is to pick each uj = 1 (one of which is ui),
change its value to 0, and check that σD(u) = 0. This
is again done by running Algorithm 1 (at most m times).
This way we establish subset minimality.

Overall, we can check in polynomial time that u represents
a prime implicant containing ui. Hence, the membership
decision problem is in NP. 2

Proposition 9. Deciding PI/AXp/CXp membership for a
tree XpG is in P.

Proof. From Proposition 6, we know that enumeration
of all CXps can be achieved in polynomial time. Hence,
we can simply run the algorithm outlined in the proof
of Proposition 6, list all the features that occur in CXps,
and decide whether a given feature is included in that list.
For AXps the membership problem is also in P, simply by
taking Proposition 1 into account. For PIs, the results match
those of AXps. 2

6 Related Work
Our work can be related with recent work on bayesian clas-
sifiers and decision graphs (Shih, Choi, and Darwiche 2018;
Shih, Choi, and Darwiche 2019; Darwiche and Hirth 2020),
but also languages from the knowledge compilation (KC)
map (Audemard, Koriche, and Marquis 2020; Audemard
et al. 2021). In addition, we build on the recent results
on the interpretability and the need for explainability of
DTs (Izza, Ignatiev, and Marques-Silva 2020). The al-
gorithms described in some of the previous work (Shih,
Choi, and Darwiche 2018; Shih, Choi, and Darwiche 2019;

Darwiche and Hirth 2020) cover PI-explanations (and also
minimum cardinality explanations, which we do not con-
sider), but do not consider contrastive explanations. The fo-
cus of this earlier work is on ordered decision diagrams, and
the proposed algorithms operate on binary features. Fur-
thermore, the proposed algorithms are based on the com-
pilation to some canonical representation (referred to as an
ODD). If the goal is to find a few explanations, the algo-
rithms described in this paper are essentially guaranteed to
scale in practice, whereas compilation to a canonical rep-
resentation is less likely to scale (e.g. see (Marques-Silva
et al. 2020)). Similarly, other recent work (Audemard, Ko-
riche, and Marquis 2020) investigates languages from the
knowledge compilation map, which consider binary fea-
tures. In addition, the tractable classifiers considered in (Au-
demard, Koriche, and Marquis 2020) for AXps do not in-
tersect those studied in this paper. In a companion work,
(Audemard et al. 2021) prove that for several XAI queries
proposed in (Audemard, Koriche, and Marquis 2020), in-
cluding AXp extraction, there exist polynomial algorithms
for the case of DTs. In (Barceló et al. 2020), the focus
is on the complexity of smallest PI-explanations, and the
results prove its tractability for FBDDs, which generalize
OBDDs and DTs. Lastly, (Van den Broeck et al. 2021;
Arenas et al. 2021) show that computing SHAP explana-
tions (Lundberg and Lee 2017) is tractable for the KC
languages d-DNNFs, including FBDDs, OBDDs, DTs and
SDDs (Darwiche and Marquis 2002).

7 Experimental Results
This section presents the experiments carried out to assess
the practical effectiveness of the proposed algorithms. The
assessment is performed on the computation of abductive
(AXp) and contrastive (CXp) explanations for two case stud-
ies of DGs: OBDDs and DTs. The experiments consider
a selection of datasets that are publicly available and origi-
nate from UCI Machine Learning Repository (Dua and Graff
2017), Penn Machine Learning Benchmarks (Olson et al.
2017) and openML (Vanschoren et al. 2013). These bench-
marks are organized into two categories: the first category
contains binary classification datasets with fully binary fea-
tures, and counts 11 datasets; the second category comprises
binary and multidimensional classification datasets with cat-
egorical and/or ordinal (i.e. integer or real-valued) features,
and counts 34 datasets. Hence, the total number of consid-
ered datasets is 45. The subset of the binary datasets is con-
sidered for generating OBDDs, while the remaining selected
datasets are used for learning DTs.

To learn OBDDs, we first train Decision List (DL) models
on the given binary datasets and then compile the obtained
DLs into OBDDs using the approach proposed in (Narodyt-
ska et al. 2019a). DLs are learned using Orange3 (Demšar
et al. 2013), the order of rules is determined by Orange3 and
the last rule is the default rule. The compilation to OBDDs
is performed using BuDDy (Lind-Nielsen 1999).

A rule is of the form “IF antecedent THEN prediction”,
where the antecedent is a conjunction of features, and the
prediction is the class variable y. The antecedent of default



Dataset (#F #TI) OBDD XPs AXp CXp Runtime

#N %A avg Mx m avg %L Mx m avg %L Tot Mx m avg
corral ( 6 64) 6 100 4 4 1 2 34 4 2 2 22 0.072 0.002 0.001 0.001
dbworld-bodies (4702 62) 7 92 4 2 1 1 1 3 1 2 1 0.072 0.002 0.001 0.001
dbworld-bodies-stemmed (3721 62) 6 84 3 3 1 1 1 4 1 2 1 0.056 0.001 0.000 0.001
dbworld-subjects ( 242 63) 14 84 5 2 1 1 2 5 2 4 1 0.090 0.003 0.001 0.001
dbworld-subjects-stemmed ( 229 63) 18 84 6 3 1 1 2 5 2 4 1 0.190 0.007 0.001 0.003
mofn 3 7 10 ( 10 251) 21 98 11 33 1 5 34 33 3 7 23 1.183 0.022 0.001 0.005
mux6 ( 6 64) 9 100 5 4 1 2 51 4 3 3 24 0.103 0.004 0.001 0.002
parity5+5 ( 10 222) 71 80 8 11 1 2 59 15 5 6 14 1.237 0.015 0.003 0.006
spect ( 22 93) 284 87 11 24 1 4 22 36 1 7 14 1.726 0.074 0.007 0.019
threeOf9 ( 9 205) 33 95 8 16 1 3 39 18 3 5 21 0.921 0.017 0.002 0.004
xd6 ( 9 325) 11 100 7 18 1 4 34 27 3 3 18 0.647 0.010 0.001 0.002

Table 1: Listing all XPs (AXp’s and CXp’s) for OBDDs. Columns #F and #TI report, respectively, the number of features, and the number
of tested instances, in the dataset. (Note that for a dataset containing more than 1000 instances, 30% of its instances, randomly selected, are
used to be explained. Moreover, duplicate rows in the datasets are filtered.) Column XPs reports the average number of total explanations
(AXp’s and CXp’s). Sub-Columns #N and %A show, respectively, total number of nodes and test accuracy of an OBDD. Sub-columns Mx,
m and avg of column AXp (resp., CXp ) show, respectively, the maximum , minimum and average number of explanations. The average
length of an explanation (AXp/CXp) is given as %L. Sub-columns Tot, Mx, m and avg of column RunTime reports, respectively, the total,
maximal, minimal and average time in second to list all the explanations for all tested instances.

Dataset (#F #TI) DT XPs AXp CXp Runtime

D #N %A avg Mx m avg %L Mx m avg %L Tot Mx m avg
adult ( 12 1766) 6 83 78 8 11 1 2 41 12 2 5 13 5.76 0.010 0.001 0.003
agaricus-lepiota ( 22 2437) 6 37 100 6 6 1 3 17 7 2 4 7 5.30 0.006 0.001 0.002
anneal ( 38 886) 6 29 99 9 8 1 3 14 10 2 6 5 4.02 0.015 0.002 0.005
bank ( 19 10 837) 6 113 88 18 38 1 9 33 21 4 9 12 87.11 0.032 0.002 0.008
cancer ( 9 449) 6 37 87 7 8 1 3 39 7 2 4 21 1.12 0.006 0.001 0.003
car ( 6 519) 6 43 96 4 4 1 2 39 6 1 2 24 0.71 0.004 0.001 0.001
chess ( 36 959) 6 33 97 7 10 1 3 12 10 1 5 5 2.99 0.012 0.001 0.003
churn ( 20 1500) 6 21 75 2 1 1 1 5 1 1 1 5 1.04 0.002 0.001 0.001
colic ( 22 357) 6 55 81 11 18 1 5 23 10 3 6 8 1.31 0.011 0.001 0.004
collins ( 23 485) 6 29 75 4 1 1 1 11 4 1 3 5 0.58 0.002 0.001 0.001
dermatology ( 34 366) 6 33 90 7 6 1 2 14 11 1 5 4 0.97 0.007 0.001 0.003
divorce ( 54 150) 5 15 90 6 8 1 3 7 4 1 3 3 0.73 0.010 0.002 0.005
dna (180 901) 6 61 90 10 28 1 4 3 12 2 5 2 32.15 0.097 0.010 0.036
hayes-roth ( 4 84) 6 23 78 3 3 1 1 54 3 1 2 27 0.06 0.001 0.000 0.001
hepatitis ( 19 155) 5 17 77 6 10 1 3 18 5 2 3 10 0.29 0.004 0.001 0.002
house-votes-84 ( 16 298) 6 49 91 9 30 1 5 25 10 2 4 13 0.93 0.016 0.001 0.003
iris ( 4 149) 5 23 90 5 3 1 2 58 4 2 3 39 0.16 0.003 0.001 0.001
irish ( 5 470) 4 13 97 3 2 1 1 33 2 1 2 23 0.27 0.001 0.000 0.001
kr-vs-kp ( 36 959) 6 49 96 7 23 1 4 12 8 2 4 5 3.03 0.014 0.001 0.003
lymphography ( 18 148) 6 61 76 11 15 1 5 28 12 3 6 10 0.54 0.009 0.001 0.004
molecular-biology-promoters ( 58 106) 6 17 86 4 6 1 2 6 5 1 2 3 0.43 0.008 0.003 0.004
monk1 ( 6 124) 4 17 100 3 2 1 1 38 3 1 2 18 0.11 0.002 0.000 0.001
monk2 ( 6 169) 6 67 82 6 7 1 2 65 9 2 5 23 0.31 0.005 0.001 0.002
monk3 ( 6 122) 6 35 80 4 6 1 2 45 4 2 3 23 0.15 0.004 0.001 0.001
mouse ( 5 57) 3 9 83 3 4 1 1 41 3 2 2 25 0.04 0.001 0.000 0.001
mushroom ( 22 2438) 6 39 100 6 5 1 2 18 7 2 4 7 5.43 0.007 0.001 0.002
new-thyroid ( 5 215) 3 11 95 4 2 1 1 54 3 2 3 21 0.12 0.001 0.000 0.001
pendigits ( 16 3298) 6 121 88 8 12 1 2 37 13 5 6 9 10.19 0.011 0.002 0.003
seismic-bumps ( 18 774) 6 37 89 7 12 1 4 17 7 2 4 11 3.02 0.009 0.001 0.004
shuttle ( 9 17 400) 6 63 99 4 4 1 1 34 6 2 3 13 33.67 0.005 0.001 0.002
soybean ( 35 622) 6 63 88 7 4 1 1 15 7 3 5 4 3.12 0.012 0.002 0.005
spambase ( 57 1262) 6 63 75 10 22 1 3 11 15 3 7 3 6.63 0.019 0.002 0.005
tic-tac-toe ( 9 958) 6 69 93 9 13 1 4 51 12 3 6 20 2.94 0.009 0.001 0.003
zoo ( 16 59) 6 23 91 5 2 1 1 24 6 2 4 9 0.12 0.003 0.001 0.002

Table 2: Listing all XPs (AXp’s and CXp’s) for DTs. Sub-Columns #D #N and %A report, respectively, tree’s max depth, total number of
nodes and test accuracy of a DT. The remaining columns hold the same meaning as described in the caption of Table 1.

rule is empty. Rules are translated into terms, and then con-
joined into a Boolean function.

Example 9. Given a DL = {x1∧x2 → 1, x̄1∧x2 → 0, ∅ →
0}, it represents Boolean function: FG = (x1 ∧ x2 ∧ y) ∨



(x1 ∧ x2 ∧ (x̄1 ∧ x2) ∧ ȳ) ∨ (x1 ∧ x2 ∧ x̄1 ∧ x2 ∧ ȳ). Af-
ter compilation, we compute FG|y=1 on OBDD to eliminate
class variable y, therefore any path ending in y (resp. ȳ) is
now a path to 1 (resp. 0).

For training DTs, we use the learning tool IAI (Inter-
pretable IA) (Bertsimas and Dunn 2017; IAI 2020), which
provides shallow DTs that are highly accurate. To achieve
high accuracy in the DTs, the maximum depth is tuned to 6
while the remaining parameters are kept in their default set
up. (Note that the test accuracy achieved for the trained clas-
sifiers, both OBDDs and DTs, is always greater than 75%).

All the proposed algorithms are implemented in Python,
in the XpG package5. The PySAT package (Ignatiev, Mor-
gado, and Marques-Silva 2018) is used to instrument in-
cremental SAT oracle calls in XP enumeration (see Algo-
rithm 4) and the dd 6 package, implemented in Python
and Cython, is used to integrate BuDDy, which is imple-
mented in C. The experiments are performed on a MacBook
Pro with a 6-Core Intel Core i7 2.6 GHz processor with
16 GByte RAM, running macOS Big Sur.

Table 1 summarizes the obtained results of explaining
OBDDs. (The table’s caption also describes the meaning of
each column.) As can be observed, the maximum running
time to enumerate XPs is less than 0.074 sec for all tested
XpG’s in any OBDD and does not exceed 0.02 sec on av-
erage. In terms of the number of XPs, the total number of
AXps and CXps per instance is relatively small. Thus the
overall cost of the SAT oracle calls made for XP enumera-
tion is negligible. In addition, these observations apply even
for large OBDDs, e.g. OBDD learned from the spect dataset
has 284 nodes and results in 11 XPs on average.

Similar observations can be made with respect to explana-
tion enumeration for DTs, the results of which are detailed
in Table 2. Exhaustive enumeration of XPs for a XpG built
from a DT takes only a few milliseconds. Indeed, the largest
average runtime (obtained for the dna dataset) is 0.036 sec.
Furthermore and as can be observed, the average length %L
of an XP is in general relatively small, compared to the total
number of features of the corresponding dataset. Also, the
total number of XPs per instance is on average less than 11
and never exceeds 18.

Although the DGs considered in the experiments can
be viewed as relatively small and shallow (albeit this only
reflects the required complexity given the public datasets
available), the run time of the enumerator depends essen-
tially on solving a relatively simple CNF formula (H) which
grows linearly with the number of XPs. (The run time of
the actual extractors in negligible.) This suggests that the
proposed algorithms will scale for significantly larger DGs,
characterized also by a larger total number of XPs.

8 Conclusions
The paper introduces explanation graphs, which allow sev-
eral classes of graph-based classifiers to be explained with
the same algorithms. These algorithms allow for a single

5https://github.com/yizza91/xpg
6https://github.com/tulip-control/dd

abductive or a single contrastive explanation to be computed
in polynomial time, and enumeration of explanations to be
achieved with a single call to a SAT oracle per computed ex-
planation. The paper also relates the evaluation of explana-
tion graphs with monotone functions. In addition, the paper
proves that for decision trees, computing all contrastive ex-
planations and deciding feature membership in some expla-
nation can be solved in polynomial time. The experimental
results demonstrate the practical effectiveness of the ideas
proposed in the paper.

Future work will investigate how the results in this paper
can be extended to other classes of classifiers, by building
on this but also on other recent related works (Huang et al.
2021; Audemard et al. 2021; Izza et al. 2021).

Acknowledgments
This work was supported by the AI Interdisciplinary Insti-
tute ANITI, funded by the French program “Investing for the
Future – PIA3” under Grant agreement no. ANR-19-PI3A-
0004, and by the H2020-ICT38 project COALA “Cognitive
Assisted agile manufacturing for a Labor force supported by
trustworthy Artificial intelligence”.

References
Appuswamy, R.; Franceschetti, M.; Karamchandani, N.; and
Zeger, K. 2011. Network coding for computing: Cut-set
bounds. IEEE Trans. Inf. Theory 57(2):1015–1030.
Arenas, M.; Barceló, P.; Bertossi, L. E.; and Monet,
M. 2021. The tractability of SHAP-score-based explana-
tions for classification over deterministic and decomposable
boolean circuits. In AAAI, 6670–6678.
Audemard, G.; Bellart, S.; Bounia, L.; Koriche, F.; Lagniez,
J.; and Marquis, P. 2021. On the computational intelligibility
of boolean classifiers. CoRR abs/2104.06172.
Audemard, G.; Koriche, F.; and Marquis, P. 2020. On
tractable XAI queries based on compiled representations. In
KR.
Bahl, L. R.; Brown, P. F.; de Souza, P. V.; and Mercer, R. L.
1989. A tree-based statistical language model for natural
language speech recognition. IEEE Trans. Acoust. Speech
Signal Process. 37(7):1001–1008.
Barceló, P.; Monet, M.; Pérez, J.; and Subercaseaux, B.
2020. Model interpretability through the lens of computa-
tional complexity. In NeurIPS.
Bergman, D.; Ciré, A. A.; van Hoeve, W.; and Hooker, J. N.
2016. Decision Diagrams for Optimization. Springer.
Bertsimas, D., and Dunn, J. 2017. Optimal classification
trees. Mach. Learn. 106(7):1039–1082.
Breiman, L. 2001. Statistical modeling: The two cultures.
Statistical science 16(3):199–231.
Brodley, C. E., and Utgoff, P. E. 1995. Multivariate decision
trees. Mach. Learn. 19(1):45–77.
Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. IEEE Trans. Computers 35(8):677–
691.

https://github.com/yizza91/xpg


Cabodi, G.; Camurati, P. E.; Ignatiev, A.; Marques-Silva, J.;
Palena, M.; and Pasini, P. 2021. Optimizing binary decision
diagrams for interpretable machine learning classification.
In DATE.
Camburu, O.; Giunchiglia, E.; Foerster, J.; Lukasiewicz, T.;
and Blunsom, P. 2019. Can I trust the explainer? verifying
post-hoc explanatory methods. CoRR abs/1910.02065.
Chinneck, J. W., and Dravnieks, E. W. 1991. Locating mini-
mal infeasible constraint sets in linear programs. INFORMS
J. Comput. 3(2):157–168.
Crama, Y., and Hammer, P. L. 2011. Boolean Functions -
Theory, Algorithms, and Applications. Cambridge Univer-
sity Press.
Darwiche, A., and Hirth, A. 2020. On the reasons behind
decisions. In ECAI, 712–720.
Darwiche, A., and Marquis, P. 2002. A knowledge compi-
lation map. J. Artif. Intell. Res. 17:229–264.
Darwiche, A. 2009. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press.

Demšar, J.; Curk, T.; Erjavec, A.; Črt Gorup; Hočevar, T.;
Milutinovič, M.; Možina, M.; Polajnar, M.; Toplak, M.;
Starič, A.; Štajdohar, M.; Umek, L.; Žagar, L.; Žbontar,
J.; Žitnik, M.; and Zupan, B. 2013. Orange: Data mining
toolbox in python. Journal of Machine Learning Research
14:2349–2353.
Dimanov, B.; Bhatt, U.; Jamnik, M.; and Weller, A. 2020.
You shouldn’t trust me: Learning models which conceal un-
fairness from multiple explanation methods. In ECAI, 2473–
2480.
Dua, D., and Graff, C. 2017. UCI machine learning reposi-
tory. http://archive.ics.uci.edu/ml. University of California,
Irvine.
Duda, R. O.; Hart, P. E.; and Stork, D. G. 2001. Pattern
classification, 2nd Edition. Wiley.
Falappa, M. A.; Kern-Isberner, G.; and Simari, G. R. 2002.
Explanations, belief revision and defeasible reasoning. Artif.
Intell. 141(1/2):1–28.
Fredman, M. L., and Khachiyan, L. 1996. On the complex-
ity of dualization of monotone disjunctive normal forms. J.
Algorithms 21(3):618–628.
Freitas, A. A. 2013. Comprehensible classification models:
a position paper. SIGKDD Explorations 15(1):1–10.
Goldsmith, J.; Hagen, M.; and Mundhenk, M. 2005. Com-
plexity of DNF and isomorphism of monotone formulas. In
MFCS, 410–421.
Goldsmith, J.; Hagen, M.; and Mundhenk, M. 2008. Com-
plexity of DNF minimization and isomorphism testing for
monotone formulas. Inf. Comput. 206(6):760–775.
Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Gi-
annotti, F.; and Pedreschi, D. 2019. A survey of meth-
ods for explaining black box models. ACM Comput. Surv.
51(5):93:1–93:42.
Gunning, D., and Aha, D. W. 2019. Darpa’s explainable
artificial intelligence (XAI) program. AI Mag. 40(2):44–58.

Gurvich, V., and Khachiyan, L. 1999. On generating
the irredundant conjunctive and disjunctive normal forms
of monotone boolean functions. Discret. Appl. Math. 96-
97:363–373.
Huang, X.; Izza, Y.; Ignatiev, A.; Cooper, M. C.; Asher,
N.; and Marques-Silva, J. 2021. Efficient explanations for
knowledge compilation languages. CoRR abs/2107.01654.
IAI. 2020. Interpretable AI. https://www.interpretable.ai/.
Ignatiev, A., and Marques-Silva, J. 2021. SAT-based rigor-
ous explanations for decision lists. CoRR abs/2105.06782.
Ignatiev, A.; Narodytska, N.; Asher, N.; and Marques-Silva,
J. 2020. From contrastive to abductive explanations and
back again. In AIxIA, 335–355.
Ignatiev, A.; Morgado, A.; and Marques-Silva, J. 2018.
PySAT: A Python toolkit for prototyping with SAT oracles.
In SAT, 428–437.
Ignatiev, A.; Narodytska, N.; and Marques-Silva, J. 2019a.
Abduction-based explanations for machine learning models.
In AAAI, 1511–1519.
Ignatiev, A.; Narodytska, N.; and Marques-Silva, J. 2019b.
On relating explanations and adversarial examples. In
NeurIPS, 15857–15867.
Ignatiev, A.; Narodytska, N.; and Marques-Silva, J. 2019c.
On validating, repairing and refining heuristic ML explana-
tions. CoRR abs/1907.02509.
Ignatiev, A. 2020. Towards trustable explainable AI. In
IJCAI, 5154–5158.
Izza, Y., and Marques-Silva, J. 2021. On explaining random
forests with SAT. CoRR abs/2105.10278.
Izza, Y.; Ignatiev, A.; Narodytska, N.; Cooper, M. C.; and
Marques-Silva, J. 2021. Efficient explanations with relevant
sets. CoRR abs/2106.00546.
Izza, Y.; Ignatiev, A.; and Marques-Silva, J. 2020. On ex-
plaining decision trees. CoRR abs/2010.11034.
Jensen, F. V. 2001. Bayesian Networks and Decision
Graphs. Springer.
Junker, U. 2004. QUICKXPLAIN: preferred explanations
and relaxations for over-constrained problems. In AAAI,
167–172.
Kam, T. Y.-k., and Brayton, R. K. 1990. Multi-valued deci-
sion diagrams. Technical Report UCB/ERL M90/125, Uni-
versity of California Berkeley.
Khachiyan, L.; Boros, E.; Elbassioni, K. M.; and Gur-
vich, V. 2006. An efficient implementation of a quasi-
polynomial algorithm for generating hypergraph transver-
sals and its application in joint generation. Discret. Appl.
Math. 154(16):2350–2372.
Kohavi, R. 1994. Bottom-up induction of oblivious read-
once decision graphs: Strengths and limitations. In AAAI,
613–618.
Lakkaraju, H., and Bastani, O. 2020. ”how do I fool you?”:
Manipulating user trust via misleading black box explana-
tions. In AIES, 79–85.
Liberatore, P. 2005. Redundancy in logic I: CNF proposi-
tional formulae. Artif. Intell. 163(2):203–232.

http://archive.ics.uci.edu/ml
https://www.interpretable.ai/


Liffiton, M. H., and Sakallah, K. A. 2008. Algorithms for
computing minimal unsatisfiable subsets of constraints. J.
Autom. Reason. 40(1):1–33.
Liffiton, M. H.; Previti, A.; Malik, A.; and Marques-Silva, J.
2016. Fast, flexible MUS enumeration. Constraints An Int.
J. 21(2):223–250.
Lind-Nielsen, J. 1999. Buddy : A binary decision diagram
package. http://buddy.sourceforge.net.
Lipton, Z. C. 2018. The mythos of model interpretability.
Commun. ACM 61(10):36–43.
Lundberg, S. M., and Lee, S. 2017. A unified approach to
interpreting model predictions. In NeurIPS, 4765–4774.
Marques-Silva, J.; Gerspacher, T.; Cooper, M. C.; Ignatiev,
A.; and Narodytska, N. 2020. Explaining naive bayes and
other linear classifiers with polynomial time and delay. In
NeurIPS.
Marques-Silva, J.; Gerspacher, T.; Cooper, M. C.; Ignatiev,
A.; and Narodytska, N. 2021. Explanations for monotonic
classifiers. CoRR abs/2106.00154.
Marques-Silva, J.; Janota, M.; and Belov, A. 2013. Minimal
sets over monotone predicates in boolean formulae. In CAV,
592–607.
Marques-Silva, J.; Janota, M.; and Mencı́a, C. 2017. Min-
imal sets on propositional formulae. problems and reduc-
tions. Artif. Intell. 252:22–50.
Miller, T. 2019. Explanation in artificial intelligence: In-
sights from the social sciences. Artif. Intell. 267:1–38.
Molnar, C. 2019. Interpretable Machine Learning. https:
//christophm.github.io/interpretable-ml-book/.
Montavon, G.; Samek, W.; and Müller, K. 2018. Methods
for interpreting and understanding deep neural networks.
Digit. Signal Process. 73:1–15.
Mues, C.; Baesens, B.; Files, C. M.; and Vanthienen, J.
2004. Decision diagrams in machine learning: an empir-
ical study on real-life credit-risk data. Expert Syst. Appl.
27(2):257–264.
Narodytska, N.; Ryzhyk, L.; Ganichev, I.; and Sevinc, S.
2019a. BDD-based algorithms for packet classification. In
FMCAD, 64–68.
Narodytska, N.; Shrotri, A. A.; Meel, K. S.; Ignatiev, A.;
and Marques-Silva, J. 2019b. Assessing heuristic machine
learning explanations with model counting. In SAT, 267–
278.
Oliveira, A. L., and Sangiovanni-Vincentelli, A. L. 1996.
Using the minimum description length principle to infer re-
duced ordered decision graphs. Mach. Learn. 25(1):23–50.
Oliver, J. J. 1992. Decision graphs – an extension of decision
trees. Technical Report 92/173, Monash University.
Olson, R. S.; La Cava, W.; Orzechowski, P.; Urbanowicz,
R. J.; and Moore, J. H. 2017. PMLB: a large benchmark
suite for machine learning evaluation and comparison. Bio-
Data Mining 10(1):36.
Pérez, R. P., and Uzcátegui, C. 2003. Preferences and ex-
planations. Artif. Intell. 149(1):1–30.

Reiter, R. 1987. A theory of diagnosis from first principles.
Artif. Intell. 32(1):57–95.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016a.
Model-agnostic interpretability of machine learning. CoRR
abs/1606.05386.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016b. ”why
should I trust you?”: Explaining the predictions of any clas-
sifier. In KDD, 1135–1144.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2018. An-
chors: High-precision model-agnostic explanations. In
AAAI, 1527–1535.
Rudin, C. 2019. Stop explaining black box machine learn-
ing models for high stakes decisions and use interpretable
models instead. Nature Machine Intelligence 1(5):206–215.
Samek, W.; Montavon, G.; Vedaldi, A.; Hansen, L. K.; and
Müller, K., eds. 2019. Explainable AI: Interpreting, Ex-
plaining and Visualizing Deep Learning. Springer.
Shanahan, M. 1989. Prediction is deduction but explanation
is abduction. In IJCAI, 1055–1060.
Shih, A.; Choi, A.; and Darwiche, A. 2018. A symbolic ap-
proach to explaining bayesian network classifiers. In IJCAI,
5103–5111.
Shih, A.; Choi, A.; and Darwiche, A. 2019. Compiling
bayesian network classifiers into decision graphs. In AAAI,
7966–7974.
Silva, A.; Gombolay, M. C.; Killian, T. W.; Jimenez, I. D. J.;
and Son, S. 2020. Optimization methods for interpretable
differentiable decision trees applied to reinforcement learn-
ing. In AISTATS, 1855–1865.
Slack, D.; Hilgard, S.; Jia, E.; Singh, S.; and Lakkaraju, H.
2020. Fooling LIME and SHAP: adversarial attacks on post
hoc explanation methods. In AIES, 180–186.
Srinivasan, A.; Kam, T.; Malik, S.; and Brayton, R. K. 1990.
Algorithms for discrete function manipulation. In ICCAD,
92–95.
Utgoff, P. E.; Berkman, N. C.; and Clouse, J. A. 1997.
Decision tree induction based on efficient tree restructuring.
Mach. Learn. 29(1):5–44.
Valdes, G.; Luna, J. M.; Eaton, E.; Simone II, C. B.; Ungar,
L. H.; and Solberg, T. D. 2016. MediBoost: a patient strat-
ification tool for interpretable decision making in the era of
precision medicine. Nature Scientific Reports 6(1):37854.
Van den Broeck, G.; Lykov, A.; Schleich, M.; and Suciu, D.
2021. On the tractability of SHAP explanations. In AAAI,
6505–6513.
Vanschoren, J.; van Rijn, J. N.; Bischl, B.; and Torgo, L.
2013. OpenML: networked science in machine learning.
SIGKDD Explorations 15(2):49–60.
Wegener, I. 2000. Branching Programs and Binary Decision
Diagrams. SIAM.
Weld, D. S., and Bansal, G. 2019. The challenge of crafting
intelligible intelligence. Commun. ACM 62(6):70–79.
Xu, F.; Uszkoreit, H.; Du, Y.; Fan, W.; Zhao, D.; and Zhu,
J. 2019. Explainable AI: A brief survey on history, research
areas, approaches and challenges. In NLPCC, 563–574.

http://buddy.sourceforge.net
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

	Introduction
	Preliminaries
	Explanation Graphs
	Evaluation of XpG's.

	Computing Explanations
	Finding One XP
	Checking path to node with label 0.
	Extraction of one AXp and one CXp given seed.

	Enumeration of Explanations
	Enumerating CXps for DTs

	Deciding Explanation Membership
	Related Work
	Experimental Results
	Conclusions

