
Towards Modern and Modular SAT for LCG1

Jip J. Dekker #2

Department of Data Science and Artificial Intelligence, Monash University, Australia3

ARC Training Centre in Optimisation Technologies, Integrated Methodologies, and Applications4

(OPTIMA), Australia5

Alexey Ignatiev6

Department of Data Science and Artificial Intelligence, Monash University, Australia7

Peter J. Stuckey #8

Department of Data Science and Artificial Intelligence, Monash University, Australia9

ARC Training Centre in Optimisation Technologies, Integrated Methodologies, and Applications10

(OPTIMA), Australia11

Allen Z. Zhong #12

Department of Data Science and Artificial Intelligence, Monash University, Australia13

ARC Training Centre in Optimisation Technologies, Integrated Methodologies, and Applications14

(OPTIMA), Australia15

Abstract16

Lazy Clause Generation (LCG) is an architecture for building Constraint Programming (CP) solvers17

using an underlying Boolean Satisfiability (SAT) engine. The CP propagation engine lazily creates18

clauses that define the integer variables and impose problem restrictions. The SAT engine uses the19

clausal model to reason and search, including, crucially, the generation of nogoods. However, while20

SAT solving has made significant advances recently, the underlying SAT technology in most LCG21

solvers has largely remained the same. Using a new interface to SAT engines, IPASIR-UP, we can22

construct an LCG solver which can swap out the underlying SAT engine with any that supports the23

interface. This new approach means we need to revisit many of the design and engineering decisions24

for LCG solvers, to take maximum advantage of a better underlying SAT engine while adhering to25

the restrictions of the interface. In this paper, we explore the possibilities and challenges of using26

IPASIR-UP for LCG, showing that it can be used to create a highly competitive solver.27

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization28

Keywords and phrases Lazy Clause Generation, Boolean Satisfiability, IPASIR-UP29

Digital Object Identifier 10.4230/LIPIcs.CP.2025.3730

Category Short Paper31

Supplementary Material Software (Source Code): https://github.com/huub-solver/huub [11]32

Funding This research was partially funded by the Australian Government through the Australian33

Research Council Industrial Transformation Training Centre in Optimisation Technologies, Integrated34

Methodologies, and Applications (OPTIMA), Project ID IC200100009.35

1 Introduction36

Lazy Clause Generation [31] is an architecture for building Constraint Programming solvers37

by making use of an underlying SAT engine [27]. LCG solvers such as Chuffed [10] and38

CP-SAT [32] define the state-of-the-art for constraint programming and have consistently39

scored the most points in the Free search category in the MiniZinc challenge ever since 201040

when one was first entered.41

However, the SAT infrastructure used in LCG solvers is mainly based on SAT technology42

from at least a decade ago. Meanwhile, SAT solvers have made significant advances, including43

© Jip J. Dekker, Alexey Ignatiev, Peter J. Stuckey, and Allen Z. Zhong;
licensed under Creative Commons License CC-BY 4.0

31st International Conference on Principles and Practice of Constraint Programming (CP 2025).
Editor: Maria Garcia de la Banda; Article No. 37; pp. 37:1–37:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jip.dekker@monash.edu
https://orcid.org/0000-0002-0053-6724
https://orcid.org/0000-0002-4535-2902
mailto:peter.stuckey@monash.edu
https://orcid.org/0000-0003-2186-0459
mailto:allen.zhong@monash.edu
https://orcid.org/0000-0001-8807-8600
https://doi.org/10.4230/LIPIcs.CP.2025.37
https://github.com/huub-solver/huub
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Towards Modern and Modular SAT for LCG

inprocessing [24], chronological backtracking [29], as well as improvement to search strategies44

by including local search components [9].45

With these developments, it is worthwhile to investigate how a more modern conflict-driven46

clause learning (CDCL) SAT solver impacts the design choices of Lazy Clause Generation47

solvers. In this paper, we make use of the IPASIR-UP interface [15,16] for extending SAT48

solvers and developing a new LCG solver. While the interface limits the design decisions,49

it also directly benefits from all the improvements of modern SAT solvers. As a result, it50

becomes necessary to revisit and reassess key decisions in LCG to determine how they are51

affected by these improvements.52

2 Background and Related Work53

In this short paper, we assume that the readers have a reasonable understanding of how54

both CP and SAT solvers work. For more details, see e.g. CP [33] and SAT [19].55

LCG solvers aim to combine the high-level reasoning of CP solvers, allowing, for example,56

integer variables and global constraints, with the powerful conflict analysis of SAT solvers.57

The integration is possible by creating CP propagators that make their inference available58

to the SAT solver in clausal form. A key challenge is mapping the representation of finite59

domain/integer variables from the CP model to Booleans. The usual approach is to represent60

variables domains using both equality [[x = d]] and bounds [[x ≥ d]] Booleans. Each time the61

LCG solver propagates, which is equivalent to setting one of these Booleans to true or false,62

it must be able to explain the propagation, by computing a clause which is a consequence of63

the CP model which will cause the propagation in the current solver state.64

The first LCG solver [30] was built on top of MiniSAT 2.0β. Representation of integer65

variables was eager, creating both the bounds [[x ≥ d]] and equality [[x = d]] literals for each66

integer x before commencing search. The SAT solver controlled the search completely, and67

the CP engine was woken up once unit propagation ceased. This initial solver used clausal68

explanation, that is, when a propagator makes a new inference, it generated a clause that69

defined the propagation, and adds it to the SAT engine permanently. The new clauses then70

started more unit propagation in the SAT engine. This continued until failure was detected,71

and the SAT engine backjumped as usual, or a solution was found.72

The next LCG architecture [17] reversed the control. Here the constraint programming73

engine was in control, performing search decisions. The unit propagation of clauses is treated74

as a (highest priority) propagator in the CP engine. The CP trail is extended with reason75

clauses for each propagation or failure, and conflict resolution works on the CP trail (in the76

usual CDCL manner). This architecture introduced lazy encoding, where equality literals77

were only created on demand, while bounds literals were created up front for integers x78

with small initial domains, or lazily during search for integers with large initial domains. In79

this architecture, the explanation strategy was forward explanation, where each propagator80

built an explanation clause for each new propagation, at the time of propagation, but these81

explanation clauses only lived on the trail, and are removed when backjumping.82

Chuffed [10] was built around a customized version of MiniSAT 2.2. It is extended83

to use a spaghetti stack, so it can insert into the stack for choicepoints earlier than the84

current choicepoint. It is much more similar to a SAT engine, with a propagation loop85

which runs when unit propagation quiesces. Again here explanation clauses only live in the86

trail, but propagators could implement forward explanation, or backwards explanation where87

the explanation clause is computed during conflict analysis, and not at propagation time.88

Chuffed did not implement propagators for many constraints, and instead encodes a number89

J.J. Dekker et al. 37:3

of constraints, such as element and table, into clauses.90

After Chuffed was made open source in 2016, there has been a surge in LCG solvers.91

This might have been championed by the high-profile CP-SAT solver [32], developed as part92

of Google’s OR-Tools. This solver includes novel CP and SAT engines that implement some93

more modern SAT features, such as Glucose’s Literal Block Distance [3]. Other notable94

enhancements include the integration of a simplex based linear programming propagation [2],95

and a parallel portfolio approach of different variations of the solver, which makes the solver96

robust to different problem classes. At the same time, alternative solvers, such as Geas [22]97

and Pumpkin [12], have been developed by academics and have introduced exciting new98

features, such as core-guided search [21] and proof logging [20] for LCG.99

A common trend among these new solvers is their tight integration and customization100

of the SAT solver employed. In the remainder of this paper, we will evaluate the opposite101

approach, where we maintain a clear boundary between the SAT and CP components, and102

the SAT solving is used without any customization.103

3 LCG Architecture with a Modular SAT Engine104

The recent IPASIR-UP interface [15,16] augments a conflict-driven clause learning (CDCL)105

SAT solver [27] with the capability to invoke and interact with an external propagation106

engine to improve the CDCL solver’s performance. The interface was originally implemented107

in the CaDiCaL solver [8] and successfully showcased in the setting of Satisfiability Modulo108

Theories (SMT) solving [4].109

Although IPASIR-UP can be used to construct an LCG solver, it requires a change of110

perspective from the solver designer. Most LCG solvers use a SAT solver as a component111

to perform specific actions, such as clausal propagation and conflict resolution, within their112

search process. However, when using the IPASIR-UP interface, it is the SAT solver that113

runs the solving process, and it will make different calls to the external propagation engine114

at certain points in the process, much like the original LCG solver [30]. In our case, the115

external propagation engine will behave similarly to the CP component of most LCG solvers.116

It tracks the state of non-Boolean decision variables, such as integer variables, and oversees117

the running of propagators, which will communicate using literals and clauses.118

Figure 1 shows the expected interactions between the SAT solver and our LCG engine.119

Hereinafter, when explaining the interplay between the SAT solver and the LCG backend, the120

names of the IPASIR-UP methods corresponding to the functionality being described are given121

in verbatim. The most important functionality of the IPASIR-UP interface is requesting122

external propagation. When this is required, the SAT solver will first notify the LCG backend123

of all literals that have been assigned since the last propagation (notify_assignments),124

and then ask it to propagate. To perform propagation, we maintain a priority queue of125

propagators that, given the new assignments, perform further inference [33]. We then126

activate the propagators in order until one performs any inference or the queue becomes127

empty. Propagators are required to inform the SAT engine about the outcome of their latest128

inference by providing literals that the SAT engine should assert (propagate) and clauses129

that can be added to the solver (add_external_clause). If no propagator performs any130

inference, then the LCG backend will report to be at fix point.131

If the SAT solver performs conflict analysis that involves a literal inferred by the LCG132

backend, then the backend is expected to explain it by providing the corresponding antecedent133

clause (add_reason_clause). In the case of backward explanation, the backend reacts by134

computing such a clause and passing it to the solver. Otherwise, in the case of forward135

CP 2025

37:4 Towards Modern and Modular SAT for LCG

Start Solving
Fixpoint

notify_assignments
+ propagate

Conflict

Clausal
Propagation

Fixpoint

New Inference

Run
Propagators

Extenal inference
add_reason_clause

Backjump

n
o
t
i
f
y
_
b
a
c
k
t
r
a
c
k

Root Level
Conflict

Resolution

Yes
check_solution

No
decide

All literals
assigned?

Reason Clause

Explain
Inference

Correct

Clausal Explanation

Check Solution

Lit?
Restart? Decide?

n
o
t
i
f
y
_
n
e
w
_
d
e
c
i
s
i
o
n
_
l
e
v
e
l

Fallback:
SAT Search

Satisfied

Unsatisfiable

Figure 1 Depiction of the interaction between a SAT solver (yellow) and the LCG engine (blue)
using IPASIR-UP interface. During green transitions, the SAT solver will make a call to the LCG.
The red transitions represent the types of responses to these calls.

explanation, it constructs and stores all antecedent clauses during propagation and then136

emits them to the SAT solver upon such a request.137

Explanations passed by the LCG backend to the SAT engine through IPASIR-UP are138

allowed to contain only literals known to the solver during search. This represents an obstacle139

if propagators’ literals are to be introduced lazily during backward explanation. This can,140

for example, prevent the strengthening of the explanation clauses through lifting, the process141

of generalizing an explanation. For example, given the constraint 2x + 2y + z < 5, we might142

infer that x ≤ 1 when y ≥ 1 ∧ z ≥ 1; however, we can infer the same when z ≥ 0. So instead,143

the lifted explanation could be (y ≥ 1 ∧ z ≥ 0) → x ≤ 1. The above requirement prevents us144

from introducing (and defining) new literals at this point. So if z ≥ 0 was an already existing145

literal, then this lifting optimization would be possible. However, if it is a lazy literal to be146

introduced for the explanation, then it is not.147

For an LCG backend, check_solution behaves largely the same as propagate, since its148

task is to check that no constraints are violated to validate the solution. A complication is149

that any higher level decision variables that introduce literals lazily, such as integer variables,150

might not yet be fixed to a single value. The most straightforward solution to this problem is151

to assume that the variables take a value in their domain (e.g. the lower bound), and check152

the constraints using these values. If no conflicts are found under these assumed values, then153

a solution is found (with the assumed values). Otherwise, the conflict detected will result in154

a new clause that can be used by the SAT solver for further propagation, which will ensure155

that the combination of assumed values that caused the conflict cannot be taken.156

It is well known that the search strategy determined by the branching heuristic used can157

have an enormous impact on solving performance. Using the IPASIR-UP’s decide callback,158

J.J. Dekker et al. 37:5

the LCG backend can influence the search strategy. Most prominently, this method allows159

the backend to choose a literal to branch on. It can also be used to request the solver to160

restart, returning to a state where no decisions had been made. If no decision is made by the161

LCG backend, then the search strategy is left up to the SAT solver. Generally, it will make162

its decisions based on the variable state independent decaying sum (VSIDS) heuristic [28],163

and will use its own policy for restarts unless disabled.164

Finally, the SAT solver is expected to inform the LCG backend of any changes to165

the decision level. It will inform the backend both when a new search decision level166

has been made (notify_new_decision_level) and when it backtracks to an earlier level167

(notify_backtrack). These notifications allow the LCG backend to maintain its own state168

that is reverted when backtracking. This can, for example, be used to maintain a state of169

which literals have been assigned and the current lower and upper bounds of integer variables.170

4 Experimental Evaluation171

We now introduce Huub [11], an open-source LCG solver implemented using the IPASIR-UP172

interface. We will use it to evaluate the performance of using modern SAT features and173

explore several design and engineering decisions for LCG solvers. The core engine of Huub is174

implemented in Rust 1.81.0 using CaDiCal 2.1.3 [8] as the back-end SAT solver, although in175

theory any SAT solver supporting the IPASIR-UP interface could be used. In the following176

experiments, the solver exercises through its FlatZinc interface. This allows us to use the177

MiniZinc Challenge [35] 2024 benchmarks, which consist of 20 problems with 5 instances178

each. Huub has propagators for all FlatZinc primitive constraints, but only supports the179

all_different and disjunctive global constraints. All other constraints are decomposed180

into these constraints or clauses using MiniZinc’s decompositions. All experiments were run181

on a single core of an Intel Xeon Gold 6338 processor with 16 GB and a 20-minute time limit.182

4.1 Comparison with State-of-the-art Solvers183

Table 1 Comparison using instances from MiniZinc Challenge 2024

Search Solver PAR2 OPTIMAL UNSAT SAT UNK

SAT-based
CP-SAT 163832.54 54 (165.35) 3 (9.09) 41 2
Chuffed 184494.97 50 (231.49) 2 (7.55) 31 17
Huub 157613.18 55 (173.98) 4 (125.89) 35 6

Fixed
CP-SAT 241410.42 31 (119.30) 3 (9.08) 53 13
Chuffed 252075.25 28 (125.60) 3 (12.20) 56 13
Huub 250824.30 29 (192.61) 3 (78.75) 56 12

We first compare the baseline of our solver against Chuffed and CP-SAT. We compare184

the solvers in two different scenarios: (1) fixed search, where solvers must follow the search185

strategy in a model, and (2) SAT-based search, where solvers use the SAT search heuristic.186

Table 1 presents the PAR2 scores obtained by the competitors calculated as the sum187

of the runtime plus twice the timeout for unsolved instances, i.e., the smaller PAR2 the188

better. For each configuration, we report the number of instances that are proven optimal189

(OPTIMAL), are proven unsatisfiable (UNSAT), where a solution without optimality proof190

CP 2025

37:6 Towards Modern and Modular SAT for LCG

0 200 400 600 800 1000 1200
Time (s)

0

20

40

60

N
um

be
r

of
So

lv
ed

In
st

an
ce

s

CPSAT (SAT)
Chuffed (SAT)
Huub (SAT)

CPSAT (Fixed)
Chuffed (Fixed)
Huub (Fixed)

Figure 2 Cactus plot using instances from MiniZinc Challenge 2024

is found (SAT), where no solutions are found in the time/memory limits (UNK). For the191

instance that are solved to completion, we also include the average solving time.192

As shown in Table 1, Huub performs best when it uses the SAT search heuristic. When193

the fixed search strategy is used, Huub is outperformed by CP-SAT, but is better than194

Chuffed in terms of the PAR2 score. The cactus plot in Figure 2 also shows that Huub with195

the SAT-based search strategy outperforms the other solvers in terms of completed instances.196

Importantly, given that Huub currently implements only a limited set of propagators for197

global constraints, its performance has the potential for significant further improvement.198

A breakdown of the PAR2 scores for each problem, included as Appendix A, supports199

this observation. Specifically, CP-SAT and Chuffed outperform Huub substantially in the200

accap, community-detection, network_50_cstr, tincy-cvrp, train-scheduling and yumi-dynamic201

problems. For these problems, efficient propagators for global constraints, such as diffn [6],202

cumulative [34], and global difference [18], play crucial roles in solving performance.203

On the other hand, Huub demonstrates superior performance in problem categories such as204

cable-tree-wiring, compression, fox-geese-corn, harmony, and word-equations, where Huub has205

similar propagators to CP-SAT and Chuffed. This highlights the advantages of leveraging a206

modern and efficient SAT engine to enhance the performance of LCG solvers. We expect207

the overall performance of Huub can be improved with the integration of more efficient208

propagators for global constraints.209

4.2 Inprocessing in Modern SAT Solvers210

Table 2 Comparison of different combinations of simplification techniques: clause subsumption
(S), variable elimination (E), failed literal probing (P), and globally blocked clause elimination (C).

Configuration PAR2 OPTIMAL UNSAT SAT UNK

Baseline 157613.18 55 (173.98) 4 (125.89) 35 6
With All 154264.10 56 (174.73) 4 (117.36) 36 4

Without S 154259.11 56 (177.94) 4 (120.24) 35 5
Without E 157415.81 55 (172.44) 4 (124.77) 37 4
Without P 154514.60 56 (182.23) 4 (127.37) 36 4
Without C 154904.39 56 (189.04) 4 (128.99) 36 4

J.J. Dekker et al. 37:7

Using a SAT solver as modern as CaDiCaL enables us to use features that are not211

available in the SAT solvers used by other LCG solvers. Through the IPASIR-UP interface,212

Huub can easily leverage the latest advancements in modern SAT solvers. In particular, we213

will evaluate inprocessing techniques, which perform runtime simplification on the clause214

database, are widely recognized as essential for efficient SAT solving [14,24]. Note that using215

the IPASIR-UP interface implicitly disables some pre/in-processing, which are not safe if the216

entire model is not known [16]. Additionally, our solver must sometimes reintroduce ternary217

clauses to ensure the consistency of integer literals.218

Table 2 presents the results of an ablation study evaluating the impact of different inpro-219

cessing techniques including clause subsumption [5], variable elimination [13], failed literal220

probing [26], and globally blocked clause elimination [25]. The “Baseline” configuration does221

not perform any inprocessing, while “With All” enables all studied inprocessing techniques.222

The results indicate that enabling inprocessing techniques provides a slight, but consistent,223

improvement in solver performance compared to the baseline. Among the techniques studied,224

variable elimination has the most significant impact. Without it, Huub solves one fewer225

instance completely and has an increased PAR2 score. Removing any of the other inprocessing226

techniques results in an increased solving time for completed instances. This suggests that227

the performance benefits gained from inprocessing outweigh its computational overhead on228

these benchmarks. In the following, we enable all inprocessing techniques by default.229

4.3 Revisit Explanation Mechanisms230

In this section, we revisit a key decision in the construction LCG solvers, the way in which231

propagation is explained to the SAT engine. Chuffed uses both forward and backward232

explanation, and Huub implements the same strategy by default. However, with modern233

SAT solvers becoming increasingly efficient at handling clauses, pushing more clauses into234

the SAT engine can potentially enhance clause simplification and improve variable selection235

during search. To leverage these advantages, we implement a hybrid approach that combines236

clausal and backward explanation.237

As a starting point, we experiment with using clausal explanations instead of forward238

explanation, and where the reasons were already created eagerly. We then introduce an239

additional threshold parameter L. Any propagation, using backward explanation, that is240

explained using a clause of size L or smaller will also use clausal explanation. This affects241

propagators handling global constraints with an undetermined number of variables, such242

as linear, maximum and element. Reason clauses are generated lazily when the number of243

involved variables exceeds the threshold; otherwise, they are generated eagerly.244

Table 3 Comparison using different thresholds L for clausal explanation

Configuration PAR2 OPTIMAL UNSAT SAT UNK

Forward 154264.10 56 (174.73) 4 (117.36) 36 4
L = 0 151590.61 57 (194.07) 4 (113.47) 36 3
L = 3 149572.99 58 (222.72) 4 (109.54) 34 4
L = 5 149860.45 58 (227.55) 4 (108.07) 36 2
L = ∞ 157834.48 55 (174.20) 4 (116.44) 36 5

Table 3 presents the results of using different values of L. We note that when L = 0245

only forward explanation is replaced by clausal propagation, and conversely when L = ∞ all246

propagation is through clausal explanation. The results indicate that increasing the number247

CP 2025

37:8 Towards Modern and Modular SAT for LCG

of clauses pushed to the SAT solver generally improves the number of optimally solved248

instances compared to the baseline. Meanwhile, pushing more clauses into the SAT engine249

can introduce overhead, as we observe that there are more unknown instances with L = 3250

compared to L = 0. L = 5 achieves the highest number of optimal instances and also reduces251

the number of unknown instances. However, the L = ∞ does not improve performance252

overall. Its computational overhead leads to a lower number of (completely) solved instances.253

This suggests that a moderate threshold allows the SAT solver to benefit from additional254

clauses, without introducing excessive overhead.255

4.4 Disabling High-Level Propagation256

Table 4 Comparison of different mechanisms for adaptive propagations

Configuration PAR2 OPTIMAL UNSAT SAT UNK

Always Enabled 154264.10 56 (174.73) 4 (117.36) 36 4
Adaptive Engine 280496.22 20 (308.80) 4 (122.18) 72 4

T = 10−2 154064.75 56 (174.82) 4 (118.25) 37 3
T = 10−4 153367.16 56 (163.04) 4 (116.16) 35 5
T = 10−6 151331.5 57 (188.60) 4 (118.82) 35 4

Our final experiment explores adaptive propagation. Previous work using IPASIR-UP [23]257

introduces an adaptive propagation engine for pseudo-Boolean constraints. This engine258

conditionally disables itself based on the number of calls to the propagation engine, the259

number of literals it propagates, and the proportion of assignments that satisfies its constraints.260

We reproduce the experiments in Huub using the same set of instances, where the goal is to261

enumerate all solutions. When the LCG engine is always enabled, all instances are solved262

in 2095 seconds. While disabling the LCG engine using the same conditions reduces the263

solving time to 1759 seconds. This reaffirms the claims in [23] and suggests that disabling264

higher-level propagation can lead to improvements in solver performance.265

Since Huub supports a wider variety of constraint types, each of which may have different266

impacts on solving, we refined the adaptive mechanism to be more fine-grained. We introduce267

an adaptive scoring mechanism, similar to NVSIDS [7], that conditionally disables individual268

propagators based on their activity. The score for each propagator is initialized as 1. The269

score s is updated to s′ = f · s if the propagator is called but neither propagates literals nor270

detects a conflict; otherwise, the score is updated as s′ = f ·s+(1−f). The key difference with271

NVSIDS is that f takes the value (1 − 0.5c), where c is the number of conflicts encountered.272

The intuition behind this change is that, initially, the SAT-based search heuristic is random,273

and CP propagation may not yield useful information. As the search progresses, however,274

the propagator should become more active for proving optimality. If the score falls below275

a predefined threshold, the execution of that propagator is postponed until a solution is276

found, effectively transforming it into a checker that verifies whether assigned values remain277

consistent when all variables are fixed, which is done in check_solution.278

Table 4 presents the results of applying the adaptive engine and adaptive propagators279

with different thresholds T to instances from the MiniZinc Challenge 2024. As shown,280

directly applying the adaptive engine mechanism reduces the number of instances solved to281

optimality, whereas adaptive propagators with an appropriate threshold slightly improve282

performance. Although the overall performance remains similar to the baseline, the adaptive283

J.J. Dekker et al. 37:9

propagators approach demonstrates positive results for specific problems. In the cable-tree-284

wiring, community-detection, and train-scheduling problems, it either reduced solving times285

or improved solutions. Further details can be found in Appendix B. These results suggest286

that adaptive propagation, while promising, requires further investigation.287

5 Conclusion288

We present Huub, an LCG solver built based on the IPASIR-UP interface to SAT engines.289

This modular design allows us to easily swap in any SAT solver that supports the interface,290

enabling the solver to benefit from the latest advancements in SAT solving technology. Our291

implementation demonstrates competitive performance compared to state-of-the-art LCG292

solvers, and we expect further improvements with more global constraint propagators.293

As SAT solvers become more and more efficient in handling clauses, it is timely to revisit294

the design and engineering of LCG solvers. In this work, we investigate various explanation295

strategies and adaptive propagation techniques. In the future, we plan to explore other296

options, such as dynamically decomposing constraints and encoding them into the SAT solver297

on the fly [1].298

References299

1 Ignasi Abío, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell, and Peter J300

Stuckey. To encode or to propagate? the best choice for each constraint in SAT. In International301

Conference on Principles and Practice of Constraint Programming, pages 97–106. Springer,302

2013.303

2 T Achterberg. Constraint integer programming. Ph. D. Thesis, Technische Universitat Berlin,304

2007.305

3 Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT solvers.306

In Craig Boutilier, editor, IJCAI 2009, Proceedings of the 21st International Joint Conference307

on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009, pages 399–404, 2009.308

URL: http://ijcai.org/Proceedings/09/Papers/074.pdf.309

4 Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability310

modulo theories. In Handbook of Satisfiability, volume 336 of Frontiers in Artificial Intelligence311

and Applications, pages 1267–1329. IOS Press, 2021.312

5 Roberto J Bayardo and Biswanath Panda. Fast algorithms for finding extremal sets. In313

Proceedings of the 2011 SIAM International Conference on Data Mining, pages 25–34. SIAM,314

2011.315

6 Nicolas Beldiceanu, Qi Guo, and Sven Thiel. Non-overlapping constraints between convex316

polytopes. In International Conference on Principles and Practice of Constraint Programming,317

pages 392–407. Springer, 2001.318

7 Armin Biere. Adaptive restart strategies for conflict driven SAT solvers. In Hans Kleine319

Büning and Xishun Zhao, editors, Theory and Applications of Satisfiability Testing - SAT 2008,320

11th International Conference, SAT 2008, Guangzhou, China, May 12-15, 2008. Proceedings,321

volume 4996 of Lecture Notes in Computer Science, pages 28–33. Springer, 2008. doi:322

10.1007/978-3-540-79719-7_4.323

8 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,324

Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Proc. of SAT325

Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1, pages 51–53, 2020.326

9 Shaowei Cai and Xindi Zhang. Deep cooperation of CDCL and local search for sat. In Theory327

and Applications of Satisfiability Testing–SAT 2021: 24th International Conference, Barcelona,328

Spain, July 5-9, 2021, Proceedings 24, pages 64–81. Springer, 2021.329

CP 2025

http://ijcai.org/Proceedings/09/Papers/074.pdf
https://doi.org/10.1007/978-3-540-79719-7_4
https://doi.org/10.1007/978-3-540-79719-7_4
https://doi.org/10.1007/978-3-540-79719-7_4

37:10 Towards Modern and Modular SAT for LCG

10 Geoffrey Chu. Improving combinatorial optimization. PhD thesis, Department of Computing330

and Information Systems, University of Melbourne, 2011.331

11 Jip J. Dekker, Alexey Ignatiev, Peter Stuckey, and Allen Z. Zhong. Huub: Lazy Clause332

Generation Solver, June 2025. doi:10.5281/zenodo.15591853.333

12 Emir Demirović, Maarten Flippo, Imko Marijnissen, Jeff Smits, and Konstantin Sidorov.334

Pumpkin Solver. URL: https://github.com/ConSol-Lab/Pumpkin.335

13 Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and clause336

elimination. In International conference on theory and applications of satisfiability testing,337

pages 61–75. Springer, 2005.338

14 Katalin Fazekas, Armin Biere, and Christoph Scholl. Incremental inprocessing in SAT solving.339

In Theory and Applications of Satisfiability Testing–SAT 2019: 22nd International Conference,340

SAT 2019, Lisbon, Portugal, July 9–12, 2019, Proceedings 22, pages 136–154. Springer, 2019.341

15 Katalin Fazekas, Aina Niemetz, Mathias Preiner, Markus Kirchweger, Stefan Szeider, and342

Armin Biere. IPASIR-UP: user propagators for CDCL. In SAT, volume 271 of LIPIcs, pages343

8:1–8:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.344

16 Katalin Fazekas, Aina Niemetz, Mathias Preiner, Markus Kirchweger, Stefan Szeider, and345

Armin Biere. Satisfiability modulo user propagators. Journal of Artificial Intelligence Research,346

81:989–1017, 2024.347

17 T. Feydy and P.J. Stuckey. Lazy clause generation reengineered. In I. Gent, editor, Proceedings348

of the 15th International Conference on Principles and Practice of Constraint Programming,349

volume 5732 of LNCS, pages 352–366. Springer-Verlag, 2009.350

18 Thibaut Feydy, Andreas Schutt, and Peter J Stuckey. Global difference constraint propagation351

for finite domain solvers. In Proceedings of the 10th International ACM SIGPLAN Conference352

on Principles and Practice of Declarative Programming, pages 226–235, 2008.353

19 Johannes K. Fichte, Daniel Le Berre, Markus Hecher, and Stefan Szeider. The silent (r)evolution354

of sat. Communication of the ACM, 66(6):64–72, May 2023. doi:10.1145/3560469.355

20 Maarten Flippo, Konstantin Sidorov, Imko Marijnissen, Jeff Smits, and Emir Demirovic. A356

multi-stage proof logging framework to certify the correctness of CP solvers. In Paul Shaw,357

editor, 30th International Conference on Principles and Practice of Constraint Programming,358

CP 2024, September 2-6, 2024, Girona, Spain, volume 307 of LIPIcs, pages 11:1–11:20. Schloss359

Dagstuhl - Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.CP.2024.11.360

21 Graeme Gange, Jeremias Berg, Emir Demirović, and Peter J Stuckey. Core-guided and361

core-boosted search for CP. In Integration of Constraint Programming, Artificial Intelligence,362

and Operations Research: 17th International Conference, CPAIOR 2020, Vienna, Austria,363

September 21–24, 2020, Proceedings 17, pages 205–221. Springer, 2020.364

22 Graeme Gange, Daniel Harabor, and Peter J. Stuckey. Lazy CBS: Implicit conflict-based search365

using lazy clause generation. In Nir Lipovetzky, Eva Onaindia, and David Smith, editors,366

Proceedings of the 29th International Conference on Automated Planning and Scheduling, pages367

155–162. AAAI Press, 2019. URL: https://www.aaai.org/ojs/index.php/ICAPS/article/368

view/3471.369

23 Alexey Ignatiev, Zi Li Tan, and Christos Karamanos. Towards universally accessible sat370

technology. In 27th International Conference on Theory and Applications of Satisfiability371

Testing (SAT 2024), pages 16–1. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2024.372

24 Matti Järvisalo, Marijn JH Heule, and Armin Biere. Inprocessing rules. In International Joint373

Conference on Automated Reasoning, pages 355–370. Springer, 2012.374

25 Benjamin Kiesl, Marijn J. H. Heule, and Armin Biere. Truth assignments as conditional375

autarkies. In Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza, editors, Automated376

Technology for Verification and Analysis - 17th International Symposium, ATVA 2019, Taipei,377

Taiwan, October 28-31, 2019, Proceedings, volume 11781 of Lecture Notes in Computer Science,378

pages 48–64. Springer, 2019. doi:10.1007/978-3-030-31784-3_3.379

https://doi.org/10.5281/zenodo.15591853
https://github.com/ConSol-Lab/Pumpkin
https://doi.org/10.1145/3560469
https://doi.org/10.4230/LIPICS.CP.2024.11
https://www.aaai.org/ojs/index.php/ICAPS/article/view/3471
https://www.aaai.org/ojs/index.php/ICAPS/article/view/3471
https://www.aaai.org/ojs/index.php/ICAPS/article/view/3471
https://doi.org/10.1007/978-3-030-31784-3_3

J.J. Dekker et al. 37:11

26 Inês Lynce and Joao Marques-Silva. Probing-based preprocessing techniques for propositional380

satisfiability. In Proceedings. 15th IEEE International Conference on Tools with Artificial381

Intelligence, pages 105–110. IEEE, 2003.382

27 Joao Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning SAT solvers.383

In Handbook of Satisfiability, volume 336 of Frontiers in Artificial Intelligence and Applications,384

pages 133–182. IOS Press, 2021.385

28 Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.386

Chaff: Engineering an efficient SAT solver. In DAC, pages 530–535. ACM, 2001.387

29 Alexander Nadel and Vadim Ryvchin. Chronological backtracking. In Olaf Beyersdorff and388

Christoph M. Wintersteiger, editors, Theory and Applications of Satisfiability Testing – SAT389

2018, pages 111–121, Cham, 2018. Springer International Publishing.390

30 O. Ohrimenko, P.J. Stuckey, and M. Codish. Propagation = lazy clause generation. In391

C. Bessiere, editor, Proceedings of the 13th International Conference on Principles and392

Practice of Constraint Programming, volume 4741 of LNCS, pages 544–558. Springer-Verlag,393

2007.394

31 O. Ohrimenko, P.J. Stuckey, and M. Codish. Propagation via lazy clause generation. Con-395

straints, 14(3):357–391, 2009.396

32 Laurent Perron and Frédéric Didier. CP-SAT. URL: https://developers.google.com/397

optimization/cp/cp_solver/.398

33 Christian Schulte and Peter J. Stuckey. Efficient constraint propagation engines. ACM Trans.399

Program. Lang. Syst., 31(1):2:1–2:43, 2008. doi:10.1145/1452044.1452046.400

34 Andreas Schutt, Thibaut Feydy, Peter J Stuckey, and Mark G Wallace. Explaining the401

cumulative propagator. Constraints, 16:250–282, 2011.402

35 Peter J Stuckey, Ralph Becket, and Julien Fischer. Philosophy of the MiniZinc challenge.403

Constraints, 15:307–316, 2010.404

CP 2025

https://developers.google.com/optimization/cp/cp_solver/
https://developers.google.com/optimization/cp/cp_solver/
https://developers.google.com/optimization/cp/cp_solver/
https://doi.org/10.1145/1452044.1452046

37:12 Towards Modern and Modular SAT for LCG

A Additional Results for Solver Comparison405

Table 5 compares the PAR2 scores for different solver configurations on individuals problems406

from the MiniZinc Challenge 2024.407

Problem SAT Fixed

CP-SAT Chuffed Huub CP-SAT Chuffed Huub

accap 4382.25 8452.66 7559.29 18002.19 18005.07 18003.38
aircraft-disassembly 10830.06 14419.04 11061.13 10827.55 10837.57 11050.72
cable-tree-wiring 8103.01 4317.21 858.01 18010.37 18011.34 18009.67
community-detection 346.26 1920.21 10950.04 7350.97 7827.96 11702.54
compression 4328.04 7213.36 3719.28 4042.27 7202.23 4741.58
concert-hall-cap 14487.89 14504.51 14761.80 18006.69 18009.45 18008.94
fox-geese-corn 14694.75 11625.72 3843.77 18001.89 18002.43 18001.61
graph-clear 7349.13 7841.57 7316.19 7250.30 7224.61 7337.01
harmony 7265.72 3796.52 1048.57 11143.52 7497.17 7795.56
hoist-benchmark 7619.59 4435.85 4054.75 18013.18 18017.04 18014.37
monitor-placement 5601.80 5582.54 5649.02 5601.50 11014.31 11003.24
neighbours 11802.65 11068.51 11781.09 14402.04 11638.80 14403.29
network_50_cstr 182.20 18017.16 424.07 177.71 7379.87 577.85
peacable_queens 14507.04 14412.62 14229.03 14476.76 14411.15 14484.60
portal 7542.36 8384.32 7585.00 14427.55 8089.08 8623.93
tiny-cvrp 11024.93 11259.59 14406.99 14406.67 14725.86 18003.81
train-scheduling 4713.67 4241.32 5377.87 14412.48 10910.69 14414.13
triangular 14431.54 14487.15 14614.11 14438.36 14440.20 14603.16
word-equations 3642.49 3639.17 274.30 3771.83 10813.68 3943.58
yumi-dynamic 10977.15 14875.93 18098.88 14646.59 18016.73 18101.33

Table 5 Breakdown of PAR2 scores, with the smallest PAR2 score for each row highlighted.

B Additional Results for Adaptive Propagation408

Table 6 presents a comparison of solving times for different adaptive propagation mechan-409

isms across instances from the cable-tree-wiring, community-detection, and train-scheduling410

problems. Only instances solved by at least one configuration are included. The entry “t.o.”411

denotes cases where the instance exceeded the time limit.412

J.J. Dekker et al. 37:13

Problem Instance With All Adaptive
Engine T = 10−2 T = 10−4 T = 10−6

cable-tree-
wiring A022 100.59 t.o. 65.83 53.17 47.88

A033 181.37 t.o. 188.59 240.81 150.98
A041 11.56 t.o. 13.25 7.21 7.98
A046 60.05 t.o. 56.81 51.47 35.90
R193 451.48 t.o. 385.63 258.37 579.40

community-
detection

adjourn.s200.k3 65.24 t.o. 55.67 50.53 51.24
Polblogs.s2480.k2 77.45 t.o. 41.91 37.56 37.78
Zakhary.s12.k3 806.09 t.o. 1071.65 1036.39 903.26

train-
scheduling trains09 932.35 t.o. 865.73 547.81 893.91

trains12 29.83 21.37 24.31 13.34 20.44
trains15 7.02 57.23 9.79 7.33 7.39
trains18 665.75 t.o. 541.34 622.26 569.59

Table 6 Solving times for instances in cable-tree-wiring, community-detection, and train-scheduling.

CP 2025

	1 Introduction
	2 Background and Related Work
	3 LCG Architecture with a Modular SAT Engine
	4 Experimental Evaluation
	4.1 Comparison with State-of-the-art Solvers
	4.2 Inprocessing in Modern SAT Solvers
	4.3 Revisit Explanation Mechanisms
	4.4 Disabling High-Level Propagation

	5 Conclusion
	A Additional Results for Solver Comparison
	B Additional Results for Adaptive Propagation

