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Abstract. Description Logics (DLs) are knowledge representation and reason-
ing formalisms used in many settings. Among them, the EL family of DLs stands
out due to the availability of polynomial-time inference algorithms and its ability
to represent knowledge from domains such as medical informatics. However, the
construction of an ontology is an error-prone process which often leads to unin-
tended inferences. This paper presents the BEACON tool for debugging EL+ on-
tologies. BEACON builds on earlier work relating minimal justifications (MinAs)
of EL+ ontologies and MUSes of a Horn formula, and integrates state-of-the-art
algorithms for solving different function problems in the SAT domain.

1 Introduction
The importance of Description Logics (DLs) cannot be overstated, and impact a

growing number of fields. The EL-family of tractable DLs in particular has been used
to build large ontologies from the life sciences [34, 35]. Ontology development is an
error-prone task, with potentially critical consequences in the life sciences; thus it is
important to develop automated tools to help debugging large ontologies. Axiom pin-
pointing refers to the task of finding the precise axioms in an ontology that cause a
(potentially unwanted) consequence to follow [25]. Recent years have witnessed re-
markable improvements in axiom pinpointing technologies, including for the case of
the EL family of DLs [1, 2, 5–7, 20, 21, 30, 31]. Among these, the use of SAT-based
methods [1, 2, 30] was shown to outperform other alternative approaches very signifi-
cantly. This is achieved by reducing the problem to a propositional Horn formula, which
is then analyzed with a dedicated decision engine for Horn formulae.

This paper describes a tool, BEACON, that builds on recent work on efficient enu-
meration of Minimal Unsatisfiable Subsets (MUSes) of group Horn formulae, which
finds immediate application in axiom pinpointing of EL ontologies [2]. In contrast to
earlier work [2], which used EL+SAT [30, 31] as front-end, this paper proposes an in-
tegrated tool to perform analysis on ontologies, offering a number of new features.

The rest of the paper is organized as follows: Section 2 introduces some preliminar-
ies. Section 3 describes the organization of BEACON. Experimental results are given
in Section 4. Finally, Section 5 concludes the paper.



2 Preliminaries
2.1 The Lightweight Description Logic EL+

EL+ [4] is a light-weight DL that has been successfully used to build large ontolo-
gies, most notably from the bio-medical domains. As with all DLs, the main elements
in EL+ are concepts. EL+ concepts are built from two disjoint sets NC and NR of con-
cept names and role names through the grammar rule C ::= A | > | C u C | ∃r.C,
where A ∈ NC and r ∈ NR. The knowledge of the domain is stored in a TBox (on-
tology), which is a finite set of general concept inclusions (GCIs) C v D, where C
and D are EL+ concepts, and role inclusions (RIs) r1 ◦ · · · ◦ rn v s, where n ≥ 1
and ri, s ∈ NR. We will often use the term axiom to refer to both GCIs and RIs. As an
example, Appendix v ∃partOf.Intestine represents a GCI.

The semantics of this logic is based on interpretations, which are pairs of the form
I = (∆I , ·I) where∆I is a non-empty set called the domain and ·I is the interpretation
function that maps every A ∈ NC to a set AI ⊆ ∆I and every r ∈ NR to a binary
relation rI ⊆ ∆I ×∆I . The interpretation I satisfies the GCI C v D iff CI ⊆ DI ; it
satisfies the RI r1 ◦ · · · ◦ rn v s iff rI1 ◦ · · · ◦ rIn ⊆ sI , with ◦ denoting composition of
binary relations. I is a model of T iff I satisfies all its GCIs and RIs.

The main reasoning problem in EL+ is to decide subsumption between concepts.
A concept C is subsumed by D w.r.t. T (denoted C vT D) if for every model I of T
it holds that CI ⊆ DI . Classification refers to the task of deciding all the subsumption
relations between concept names appearing in T . Rather than merely deciding whether
a subsumption relation follows from a TBox, we are interested in understanding the
causes of this consequence, and repairing it if necessary.

Definition 1 (MinA, diagnosis). A MinA for C v D w.r.t. the TBox T is a minimal
subset (w.r.t. set inclusion)M ⊆ T such that C vM D. A diagnosis for C v D w.r.t.
T is a minimal subset (w.r.t. set inclusion) D ⊆ T such that C 6vT \D D.

MinAs and diagnoses are closely related by minimal hitting set duality [19, 29].

Example 2. Consider the TBox Texa = {A v ∃r.A,A v Y,∃r.Y v B, Y v B}.
There are two MinAs for A v B w.r.t. Texa, namely M1 = {A v Y, Y v B}, and
M2 = {A v ∃r.A,A v Y,∃r.Y v B}. The diagnoses for this subsumption relation
are {A v Y }, {A v ∃r.A, Y v B}, and {∃r.Y v B, Y v B}.
2.2 Propositional Satisfiability

We assume familiarity with propositional logic [9]. A CNF formula F is defined
over a set of Boolean variables X as a finite conjunction of clauses, where a clause is a
finite disjunction of literals and a literal is a variable or its negation. A truth assignment
is a mapping µ: X → {0, 1}. If µ satisfies F , µ is referred to as a model of F . Horn
formulae are those composed of clauses with at most one positive literal. Satisfiability
of Horn formulae is decidable in polynomial time [12, 15, 24]. Given an unsatisfiable
formula F , the following subsets are of interest [19, 22]:

Definition 3 (MUS, MCS). M ⊆ F is a Minimally Unsatisfiable Subset (MUS) of
F iff M is unsatisfiable and ∀c ∈M,M \ {c} is satisfiable. C ⊆ F is a Minimal
Correction Subset (MCS) iffF\C is satisfiable and ∀c ∈ C,F\(C\{c}) is unsatisfiable.
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Fig. 1: BEACON organization
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MUSes and MCSes are related by hitting set duality [8, 10, 28, 33]. Besides, these con-
cepts have been extended to formulae where clauses are partitioned into groups [19].

Definition 4 (Group-MUS). Given an explicitly partitioned unsatisfiable CNF for-
mula F = G0 ∪ ... ∪ Gk, a group-MUS of F is a set of groups G ⊆ {G1, ...,Gk},
such that G0 ∪ G is unsatisfiable, and for every Gi ∈ G, G0 ∪ (G \ Gi) is satisfiable.

3 The BEACON Tool
The main problem BEACON is aimed at is the enumeration of the MinAs and di-

agnoses for a given subsumption relation w.r.t. an EL+ TBox T . BEACON consists
of three main components: The first one classifies T and encodes this process into a
set of Horn clauses. Given a subsumption to be analyzed, the second component cre-
ates and simplifies an unsatisfiable group Horn formula. Finally, the third one computes
group-MUSes and group-MCSes, corresponding to MinAs and diagnoses resp. Figure 1
depicts the main organization of BEACON. Each of its components is explained below.

3.1 Classification and Horn Encoding
During the classification of T , a Horn formulaH is created according to the method

introduced in EL+SAT [30, 31]. To this end, each axiom ai ∈ T is initially assigned a
unique selector variable s[ai]. The classification of T is done in two phases [4, 6].

First, T is normalized so that each of its axioms are of the form i) (A1u ...uAk) v
B (k ≥ 1), ii) A v ∃r.B, iii) ∃r.A v B, or iv) r1 ◦ ... ◦ rn v s (n ≥ 1), where
A,Ai, B ∈ NC and r, ri, s ∈ NR. This process results in a TBox T N where each axiom
ai ∈ T is substituted by a set of axioms in normal form {ai1, ..., aimi

}. At this point,
the clauses s[ai] → s[aik], with 1 ≤ k ≤ mi, are added toH.

Second, T N is saturated through the exhaustive application of the completion rules
shown in Table 1, resulting in the extended TBox T ′. Each of the rows in Table 1
constitute a completion rule. Their application is sound and complete for inferring sub-
sumptions [4]. Whenever a rule r can be applied (with antecedents ant(r)) leading to
inferring an axiom ai, the Horn clause (

∧
{aj∈ant(r)} s[aj ])→ s[ai] is added toH.

As a result, H will eventually encode all possible derivations of completion rules
inferring any axiom such that X vT Y , with X,Y ∈ NC.

3.2 Generation of Group Horn Formulae
After classifying T , some axioms C v D may be included in T ′ for which a jus-

tification or diagnosis may be required. Each of these queries will result in a group
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Table 1: EL+ Completion Rules

Preconditions Inferred axiom
A v Ai, 1 ≤ i ≤ n A1 u .... uAn v B A v B

A v A1 A1 v ∃r.B A v ∃r.B
A v ∃r.B, B v B1 ∃r.B1 v B2 A v B2

Ai−1 v ∃ri.Ai, 1 ≤ i ≤ n r1 ◦ ... ◦ rn v r A0 v ∃r.An

Horn formula defined as: HG = {G0,G1, ...,G| T |}, where G0 = H ∪ {(¬s[CvD])}
and for each axiom ai (i > 0) in the original TBox T , group Gi = {(s[ai])} is defined
with a single unit clause. HG is unsatisfiable and, as shown in [1, 2], its group-MUSes
correspond to the MinAs for C vT D. Equivalently, due to the hitting set duality for
MinAs/diagnoses, which also holds for MUSes/MCSes, group-MCSes of HG corre-
spond to diagnoses for C vT D.

BEACON simplifies HG with the techniques introduced in [30, 31], which often
reduce the formulas to a great extent.

3.3 Computation of Group-MUSes / Group-MCSes
For enumerating group-MUSes and group-MCSes of the formulaHG defined above,

BEACON integrates the state-of-the-art HGMUS enumerator [2]. HGMUS exploits
hitting set dualization between (group) MCSes and (group) MUSes and, hence, it shares
ideas also explored in MaxHS [11], EMUS/MARCO [17,26], among others. As shown
in Algorithm 1, these methods rely on a two (SAT) solvers approach. Formula Q is
defined over a set of selector variables corresponding to clauses in F , and it is used
to enumerate subsets of F . Iteratively, the algorithm computes a maximal model P of
Q and tests whether the subformula F ′ ⊆ F containing the clauses associated to P is
satisfiable. If it is, F \F ′ is an MCS of F . Otherwise, F ′ is reduced to an MUS. MCSes
and MUSes are blocked adding clauses to Q.

HGMUS shares the main organization of Algorithm 1, with F = G0 andQ defined
over selector variables for groups Gi of HG, with i > 0. It also includes some specific
features. First, it uses the Horn satisfiability algorithhm LTUR [24]. Besides, it inte-
grates a dedicated insertion-based MUS extractor as well as an efficient algorithm for
computing maximal models based on a reduction to computing MCSes [23].

3.4 BEACON’s Additional Specific Features
Besides computing MinAs/diagnoses, BEACON offers additional functionalities.

Diagnosing multiple subsumption relations at a time After classifying T , there could
be several unintended subsumption relations Ci vT Di that need to be removed. BEA-
CON allows for diagnosing this multiple unintended inferences at the same time. By
adding the unit clauses (¬s[CivDi]) to G0 in HG, each computed group-MCS corre-
sponds to a diagnosis that would eliminate all the indicated subsumption relations.

Computing smallest MinAs Alternatively to enumerating all the possible MinAs, one
may want to compute only those of the minimum possible size. To enable this func-
tionality, BEACON integrates a state-of-the-art solver for the smallest MUS problem
(SMUS) called FORQES [14]. The decision version of the SMUS problem is known to
be ΣP

2-complete (e.g. see [13, 16]). As HGMUS, FORQES is based on the hitting set
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Algorithm 1: EMUS [26] / MARCO [18]
Input: F a CNF formula
Output: Reports the set of MUSes (and MCSes) of F

1 〈I,Q〉 ← 〈{pi | ci ∈ F}, ∅〉 // Variable pi picks clause ci
2 while true do
3 (st, P )← MaximalModel(Q)
4 if not st then return
5 F ′ ← {ci | pi ∈ P} // Pick selected clauses
6 if not SAT(F ′) then
7 M← ComputeMUS(F ′)
8 ReportMUS(M)
9 b← {¬pi | ci ∈M} // Negative clause blocking the MUS

10 else
11 ReportMCS(F \ F ′)
12 b← {pi | pi ∈ I \ P} // Positive clause blocking the MCS

13 Q ← Q∪ {b}

dualization between (group) MUSes and (group) MCSes. The tool iteratively computes
minimum hitting sets of a set of MCSes of a formula detected so far. While these mini-
mum hitting sets are satisfiable, they are grown into an MSS, whose complement is an
MCS which is added to the set of MCSes. The process terminates when an unsatisfiable
minimum hitting set is identified, representing a smallest MUS of the formula.

4 Experimental Results
This section reports a summary of results that illustrates the performance of BEA-

CON1 w.r.t. other EL+ axiom pinpointing tools in the literature. It also provides infor-
mation on its capability of computing diagnoses and enumerating smallest MinAs.

The experiments were run on a Linux cluster (2Ghz) with a limit of 3600s and
4Gbyte, considering 500 subsumption relations from five well-known EL+ bio-medical
ontologies: GALEN [27] (FULL-GALEN and NOT-GALEN), Gene [3], NCI [32] and
SNOMED-CT [34]. The experiments use Horn formulae encoded by EL+SAT [30, 31]
applying the reduction techniques that BEACON incorporates by default. These formu-
lae are fed to BEACON’s engines, namely HGMUS and FORQES.

The results reported focus on HGMUS and FORQES. Due to lack of space, running
times for classifying the ontologies and formula reduction are not reported. Classifica-
tion is done in polynomial time once for each ontology, so it is amortized among all
queries for the ontology. Formula reduction usually takes very short time. Detailed re-
sults are available with the distribution of BEACON, including an analysis on the size
of the Horn formulae and the reductions achieved.

Axiom Pinpointing BEACON shows significant improvements over the existing tools
EL+SAT [30, 31], SATPin [21], EL2MCS [1], CEL [5] and JUST [20]. BEACON often
achieves remarkable reductions in the running times, and exhibits a clear superiority in
enumerating MinAs for 19 very hard instances that cannot be solved by a time limit

1 Available at http://logos.ucd.ie/web/doku.php?id=beacon-tool.
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Fig. 2: Plots comparing BEACON to EL+SAT, SATPin and JUST

0 2000 4000 6000 8000 10000 12000
MinAs

0

500

1000

1500

2000

2500

3000

3500
C

PU
tim

e
(s

)
BEACON
SATPin
EL+SAT

10−2 10−1 100 101 102 103 104

BEACON

10−2

10−1

100

101

102

103

104

JU
ST

3600 sec. timeout

36
00

se
c.

tim
eo

ut

of 3600s. This is illustrated in Figure 2. The cactus plot shows the number of MinAs
reported over time. BEACON computes much more MinAs faster than other tools. The
scatter plot compares BEACON with JUST regarding the running times on a subset
of the instances JUST can cope with. BEACON shows a significant performance gap.
Similar results have been observed for EL2MCS and CEL [2].

Computing diagnoses For all solved instances (481 out of 500), BEACON enumer-
ates all diagnoses, where its number ranges from 2 to 565409. Interestingly, for the 19
aborted instances, the number of reported diagnoses ranges from 1011164 to 1972324.
These numbers illustrate the efficiency of BEACON at computing diagnoses, and ex-
plain the difficulty of these aborted instances. Of the other tools, only EL2MCS reports
diagnoses, which, for hard instances, computes around 33% fewer diagnoses.

Computing smallest MinAs The last experiments consider the 19 instances for which
BEACON is unable to enumerate all MinAs. Notably, BEACON is very efficient at
computing the smallest MinAs using FORQES. In all cases, each set of smallest MinAs
is computed in negligible time (less than 0.1 s). The sizes of the smallest MinAs range
from 5 to 13 axioms, and their number ranges from 1 to 7.

5 Conclusions
This paper describes BEACON, an axiom pinpointing tool for the EL-family of

DLs. BEACON integrates HGMUS [2], a group MUS enumerator for propositional
Horn formulae, with a dedicated front-end, interfacing a target ontology, and generat-
ing group Horn formulae for HGMUS. Besides enumerating MinAs (and associated
diagnoses), BEACON enables the simultaneous diagnosis of multiple inferences, and
the computation of the smallest MinA (or smallest MUS [14]). The experimental re-
sults indicate that the computation of the smallest MinA is very efficient in practice, in
addition to the already known top performance of HGMUS.
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