
Rigorous Verification and Explanation of ML Models

A. Ignatiev, J. Marques-Silva, K. Meel & N. Narodytska

Monash Univ, NU Singapore, VMWare Research & ANITI@Univ. Toulouse

February 08, 2020 | AAAI Tutorial SP1

Many ML successes

2 / 40

Problem: ML models are brittle

3 / 40

Problem: ML models are brittle

3 / 40

Problem: ML models are brittle

http://g
radien

tscienc
e.org/i

ntro_a
dversa

rial/

3 / 40

Adversarial examples can be very unsettling

Finlayson et al., Nature 2019

4 / 40

Problem: ML models are opaque

©DARPA

Which features matter? Are there general explanations??

Why does the NN predict a cat?

5 / 40

Problem: ML models are opaque

©DARPA

Which features matter? Are there general explanations??

Why does the NN predict a cat?

5 / 40

Problem: ML models are opaque

©DARPA

Which features matter?

Are there general explanations??

Why does the NN predict a cat?

5 / 40

Problem: ML models are opaque

©DARPA

Which features matter? Are there general explanations??

Why does the NN predict a cat?

5 / 40

Why XAI?

6 / 40

Why XAI?

6 / 40

Why XAI?

6 / 40

Why XAI?

©DARPA
6 / 40

Why XAI?

©DARPA
6 / 40

XAI & EU guidelines

6 / 40

XAI & the principle of explicability

6 / 40

Heuristic explanation approaches unsettling

Explanations
Dataset (# unique) incorrect redundant minimal

LIME Anchor SHAP LIME Anchor SHAP LIME Anchor SHAP
adult (5579) 61.3% 80.5% 70.7% 7.9% 1.6% 10.2% 30.8% 17.9% 19.1%
lending (4414) 24.0% 3.0% 17.0% 0.4% 0.0% 2.5% 75.6% 97.0% 80.5%
rcdv (3696) 94.1% 99.4% 85.9% 4.6% 0.4% 7.9% 1.3% 0.2% 6.2%

compas (778) 71.9% 84.4% 60.4% 20.6% 1.7% 27.8% 7.5% 13.9% 11.8%
german (1000) 85.3% 99.7% 63.0% 14.6% 0.2% 37.0% 0.1% 0.1% 0.0%

7 / 40

Heuristic explanation approaches unsettling

Explanations
Dataset (# unique) incorrect redundant minimal

LIME Anchor SHAP LIME Anchor SHAP LIME Anchor SHAP
adult (5579) 61.3% 80.5% 70.7% 7.9% 1.6% 10.2% 30.8% 17.9% 19.1%
lending (4414) 24.0% 3.0% 17.0% 0.4% 0.0% 2.5% 75.6% 97.0% 80.5%
rcdv (3696) 94.1% 99.4% 85.9% 4.6% 0.4% 7.9% 1.3% 0.2% 6.2%

compas (778) 71.9% 84.4% 60.4% 20.6% 1.7% 27.8% 7.5% 13.9% 11.8%
german (1000) 85.3% 99.7% 63.0% 14.6% 0.2% 37.0% 0.1% 0.1% 0.0%

Similar results for
Google’s XAI service??

7 / 40

Solutions to problems?

• Assess robustness

• How easy it is to fool and ML model?

• Learn interpretable models

• Decision trees; decision sets; decision lists; etc.

• Explain black-box models

• By using some accepted definition of explanation

• How about heuristic approaches?

• No formal guarantees provided

8 / 40

Solutions to problems?

• Assess robustness
• How easy it is to fool and ML model?

• Learn interpretable models

• Decision trees; decision sets; decision lists; etc.

• Explain black-box models

• By using some accepted definition of explanation

• How about heuristic approaches?

• No formal guarantees provided

8 / 40

Solutions to problems?

• Assess robustness
• How easy it is to fool and ML model?

• Learn interpretable models
• Decision trees; decision sets; decision lists; etc.

• Explain black-box models

• By using some accepted definition of explanation

• How about heuristic approaches?

• No formal guarantees provided

8 / 40

Solutions to problems?

• Assess robustness
• How easy it is to fool and ML model?

• Learn interpretable models
• Decision trees; decision sets; decision lists; etc.

• Explain black-box models
• By using some accepted definition of explanation

• How about heuristic approaches?

• No formal guarantees provided

8 / 40

Solutions to problems?

• Assess robustness
• How easy it is to fool and ML model?

• Learn interpretable models
• Decision trees; decision sets; decision lists; etc.

• Explain black-box models
• By using some accepted definition of explanation

• How about heuristic approaches?
• No formal guarantees provided

8 / 40

How/Why to reason about ML models, with formal guarantees?

• Problem complexity not necessarily an hopeless obstacle

• Efficient reasoners
• SAT, SMT, CP, ILP, etc.

• Effective problem encodings

• Exploit known solutions (more latter)
• Exploit reasoners for efficient problem solving

9 / 40

How/Why to reason about ML models, with formal guarantees?

• Problem complexity not necessarily an hopeless obstacle

• Efficient reasoners
• SAT, SMT, CP, ILP, etc.

• Effective problem encodings

• Exploit known solutions (more latter)
• Exploit reasoners for efficient problem solving

9 / 40

How/Why to reason about ML models, with formal guarantees?

• Problem complexity not necessarily an hopeless obstacle

• Efficient reasoners
• SAT, SMT, CP, ILP, etc.

• Effective problem encodings

• Exploit known solutions (more latter)
• Exploit reasoners for efficient problem solving

9 / 40

How/Why to reason about ML models, with formal guarantees?

• Problem complexity not necessarily an hopeless obstacle

• Efficient reasoners
• SAT, SMT, CP, ILP, etc.

• Effective problem encodings

• Exploit known solutions (more latter)
• Exploit reasoners for efficient problem solving

9 / 40

This tutorial – formal reasoning in ML

• Part 01: first contact with formal reasoning tools Joao

• Part 02: learning interpretable models Kuldeep

• Part 03: assessing robustness of ML models Nina

• Part 04: rigorous explanations of ML models Alexey

• Part 05: duality in explanations & wrap-up Joao

10 / 40

1 Preliminaries

Classification problems

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• Training data (or examples): E = {e1, . . . , eM}

• Features: F = {f1, . . . , fK}
• For binary features: fr and ¬fr
• Otherwise, literals fr = vri

• Feature space: U ≜
∏K

r=1{fr = vr1, . . . , fr = vrkr}

• Classification: C = {c0, c1, . . . , cM}

• ML models: NNs, BTs, DTs, DSs, etc.

11 / 40

Classification problems

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• Training data (or examples): E = {e1, . . . , eM}

• Features: F = {f1, . . . , fK}
• For binary features: fr and ¬fr
• Otherwise, literals fr = vri

• Feature space: U ≜
∏K

r=1{fr = vr1, . . . , fr = vrkr}

• Classification: C = {c0, c1, . . . , cM}

• ML models: NNs, BTs, DTs, DSs, etc.

11 / 40

Classification problems

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• Training data (or examples): E = {e1, . . . , eM}

• Features: F = {f1, . . . , fK}
• For binary features: fr and ¬fr
• Otherwise, literals fr = vri

• Feature space: U ≜
∏K

r=1{fr = vr1, . . . , fr = vrkr}

• Classification: C = {c0, c1, . . . , cM}

• ML models: NNs, BTs, DTs, DSs, etc.

11 / 40

Classification problems

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• Training data (or examples): E = {e1, . . . , eM}

• Features: F = {f1, . . . , fK}
• For binary features: fr and ¬fr
• Otherwise, literals fr = vri

• Feature space: U ≜
∏K

r=1{fr = vr1, . . . , fr = vrkr}

• Classification: C = {c0, c1, . . . , cM}

• ML models: NNs, BTs, DTs, DSs, etc.

11 / 40

Classification problems

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• Training data (or examples): E = {e1, . . . , eM}

• Features: F = {f1, . . . , fK}
• For binary features: fr and ¬fr
• Otherwise, literals fr = vri

• Feature space: U ≜
∏K

r=1{fr = vr1, . . . , fr = vrkr}

• Classification: C = {c0, c1, . . . , cM}

• ML models: NNs, BTs, DTs, DSs, etc.
11 / 40

The SAT problem

• SAT is the decision problem for propositional logic
• Well-formed propositional formulas, with variables, logical connectives: ¬,∧,∨,→,↔, and
parenthesis: (,)

• Often restricted to Conjunctive Normal Form (CNF)

• Goal:
Decide whether formula has a satisfying assignment

• Example:

F ≜ (r) ∧ (̄r ∨ s) ∧ (¬w ∨ a) ∧ (¬x ∨ b) ∧ (¬y ∨ ¬z ∨ c) ∧ (¬b ∨ ¬c ∨ d)

• Example models:

• {r, s, a, b, c, d}
• {r, s,¬x, y,¬w, z,¬a, b, c, d}

• SAT is NP-complete [Coo71]

12 / 40

The SAT problem

• SAT is the decision problem for propositional logic
• Well-formed propositional formulas, with variables, logical connectives: ¬,∧,∨,→,↔, and
parenthesis: (,)

• Often restricted to Conjunctive Normal Form (CNF)
• Goal:
Decide whether formula has a satisfying assignment

• Example:

F ≜ (r) ∧ (̄r ∨ s) ∧ (¬w ∨ a) ∧ (¬x ∨ b) ∧ (¬y ∨ ¬z ∨ c) ∧ (¬b ∨ ¬c ∨ d)

• Example models:

• {r, s, a, b, c, d}
• {r, s,¬x, y,¬w, z,¬a, b, c, d}

• SAT is NP-complete [Coo71]

12 / 40

The SAT problem

• SAT is the decision problem for propositional logic
• Well-formed propositional formulas, with variables, logical connectives: ¬,∧,∨,→,↔, and
parenthesis: (,)

• Often restricted to Conjunctive Normal Form (CNF)
• Goal:
Decide whether formula has a satisfying assignment

• Example:

F ≜ (r) ∧ (̄r ∨ s) ∧ (¬w ∨ a) ∧ (¬x ∨ b) ∧ (¬y ∨ ¬z ∨ c) ∧ (¬b ∨ ¬c ∨ d)

• Example models:

• {r, s, a, b, c, d}
• {r, s,¬x, y,¬w, z,¬a, b, c, d}

• SAT is NP-complete [Coo71]

12 / 40

The SAT problem

• SAT is the decision problem for propositional logic
• Well-formed propositional formulas, with variables, logical connectives: ¬,∧,∨,→,↔, and
parenthesis: (,)

• Often restricted to Conjunctive Normal Form (CNF)
• Goal:
Decide whether formula has a satisfying assignment

• Example:

F ≜ (r) ∧ (̄r ∨ s) ∧ (¬w ∨ a) ∧ (¬x ∨ b) ∧ (¬y ∨ ¬z ∨ c) ∧ (¬b ∨ ¬c ∨ d)

• Example models:
• {r, s, a, b, c, d}

• {r, s,¬x, y,¬w, z,¬a, b, c, d}

• SAT is NP-complete [Coo71]

12 / 40

The SAT problem

• SAT is the decision problem for propositional logic
• Well-formed propositional formulas, with variables, logical connectives: ¬,∧,∨,→,↔, and
parenthesis: (,)

• Often restricted to Conjunctive Normal Form (CNF)
• Goal:
Decide whether formula has a satisfying assignment

• Example:

F ≜ (r) ∧ (̄r ∨ s) ∧ (¬w ∨ a) ∧ (¬x ∨ b) ∧ (¬y ∨ ¬z ∨ c) ∧ (¬b ∨ ¬c ∨ d)

• Example models:
• {r, s, a, b, c, d}
• {r, s,¬x, y,¬w, z,¬a, b, c, d}

• SAT is NP-complete [Coo71]

12 / 40

The SAT problem

• SAT is the decision problem for propositional logic
• Well-formed propositional formulas, with variables, logical connectives: ¬,∧,∨,→,↔, and
parenthesis: (,)

• Often restricted to Conjunctive Normal Form (CNF)
• Goal:
Decide whether formula has a satisfying assignment

• Example:

F ≜ (r) ∧ (̄r ∨ s) ∧ (¬w ∨ a) ∧ (¬x ∨ b) ∧ (¬y ∨ ¬z ∨ c) ∧ (¬b ∨ ¬c ∨ d)

• Example models:
• {r, s, a, b, c, d}
• {r, s,¬x, y,¬w, z,¬a, b, c, d}

• SAT is NP-complete [Coo71]

12 / 40

The CDCL SAT disruption

• CDCL SAT solving is a success story of Computer Science

• Conflict-Driven Clause Learning (CDCL)
• (CDCL) SAT has impacted many different fields
• Hundreds (thousands?) of practical applications

13 / 40

The CDCL SAT disruption

• CDCL SAT solving is a success story of Computer Science
• Conflict-Driven Clause Learning (CDCL)
• (CDCL) SAT has impacted many different fields
• Hundreds (thousands?) of practical applications

13 / 40

CDCL SAT solver (continued) improvement
[Source: Simon 2015]

��

����

�����

�����

�����

�����

��� ��� ��� ���� ���� ���� ���� ���� ���� ����

�
�
�
��
�
��
�
���
�
�
�

�
���

�
�
��
�
�
�
�
�
�
�

���

�����������������
���������������

���������������������
��������������

���������������
��������������

��������������������
��������������

�����������������������
��������������������������

14 / 40

How good are SAT solvers? – an example

• Cooperative pathfinding (CPF)
• N agents on some grid/graph
• Start positions
• Goal positions
• Minimize makespan
• Restricted planning problem

• Concrete example
• Gaming grid
• 1039 vertices
• 1928 edges
• 100 agents

• Formula w/ 2832875 variables!
• Formula w/ 2946190 variables!

• Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!

15 / 40

How good are SAT solvers? – an example

• Cooperative pathfinding (CPF)
• N agents on some grid/graph
• Start positions
• Goal positions
• Minimize makespan
• Restricted planning problem

• Concrete example
• Gaming grid
• 1039 vertices
• 1928 edges
• 100 agents

• Formula w/ 2832875 variables!
• Formula w/ 2946190 variables!

• Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!

15 / 40

How good are SAT solvers? – an example

• Cooperative pathfinding (CPF)
• N agents on some grid/graph
• Start positions
• Goal positions
• Minimize makespan
• Restricted planning problem

• Concrete example
• Gaming grid
• 1039 vertices
• 1928 edges
• 100 agents

• Formula w/ 2832875 variables!
• Formula w/ 2946190 variables!

• Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!

*** t r a c ke r : a pathf inding tool ***
I n i t i a l i z a t i o n . . . CPU Time: 0 .004711
Number of va r i ab l e s : 113315
Tentat ive makespan 1
Number of va r i ab l e s : 226630
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 0 . 7 18 1 12
c Done running SAT solver . . . CPU Time: 0.830099
No solut ion for makespan 1
Elapsed CPU Time: 0 .830112
Tentat ive makespan 2
Number of va r i ab l e s : 339945
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 1 . 2 7 1 1 3
c Done running SAT solver . . . CPU Time: 1 . 2 7 1 1 4
No solut ion for makespan 2
Elapsed CPU Time: 1 . 2 7 1 1 4
. . .
. . .
Tentat ive makespan 24
Number of va r i ab l e s : 2832875
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 1 1 .8653
c Done running SAT solver . . . CPU Time: 1 1 .8653
No solut ion for makespan 24
Elapsed CPU Time: 1 1 .8653
Tentat ive makespan 25
Number of va r i ab l e s : 2946190
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 12 . 3491
c Done running SAT solver . . . CPU Time: 16 .6882
Solut ion found for makespan 25
Elapsed CPU Time: 16 .6995

15 / 40

How good are SAT solvers? – an example

• Cooperative pathfinding (CPF)
• N agents on some grid/graph
• Start positions
• Goal positions
• Minimize makespan
• Restricted planning problem

• Concrete example
• Gaming grid
• 1039 vertices
• 1928 edges
• 100 agents
• Formula w/ 2832875 variables!
• Formula w/ 2946190 variables!

• Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!

*** t r a c ke r : a pathf inding tool ***
I n i t i a l i z a t i o n . . . CPU Time: 0 .004711
Number of va r i ab l e s : 113315
Tentat ive makespan 1
Number of va r i ab l e s : 226630
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 0 . 7 18 1 12
c Done running SAT solver . . . CPU Time: 0.830099
No solut ion for makespan 1
Elapsed CPU Time: 0 .830112
Tentat ive makespan 2
Number of va r i ab l e s : 339945
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 1 . 2 7 1 1 3
c Done running SAT solver . . . CPU Time: 1 . 2 7 1 1 4
No solut ion for makespan 2
Elapsed CPU Time: 1 . 2 7 1 1 4
. . .
. . .
Tentat ive makespan 24
Number of va r i ab l e s : 2832875
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 1 1 .8653
c Done running SAT solver . . . CPU Time: 1 1 .8653
No solut ion for makespan 24
Elapsed CPU Time: 1 1 .8653
Tentat ive makespan 25
Number of va r i ab l e s : 2946190
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 12 . 3491
c Done running SAT solver . . . CPU Time: 16 .6882
Solut ion found for makespan 25
Elapsed CPU Time: 16 .6995

15 / 40

How good are SAT solvers? – an example

• Cooperative pathfinding (CPF)
• N agents on some grid/graph
• Start positions
• Goal positions
• Minimize makespan
• Restricted planning problem

• Concrete example
• Gaming grid
• 1039 vertices
• 1928 edges
• 100 agents
• Formula w/ 2832875 variables!
• Formula w/ 2946190 variables!

• Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!

*** t r a c ke r : a pathf inding tool ***
I n i t i a l i z a t i o n . . . CPU Time: 0 .004711
Number of va r i ab l e s : 113315
Tentat ive makespan 1
Number of va r i ab l e s : 226630
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 0 . 7 18 1 12
c Done running SAT solver . . . CPU Time: 0.830099
No solut ion for makespan 1
Elapsed CPU Time: 0 .830112
Tentat ive makespan 2
Number of va r i ab l e s : 339945
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 1 . 2 7 1 1 3
c Done running SAT solver . . . CPU Time: 1 . 2 7 1 1 4
No solut ion for makespan 2
Elapsed CPU Time: 1 . 2 7 1 1 4
. . .
. . .
Tentat ive makespan 24
Number of va r i ab l e s : 2832875
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 1 1 .8653
c Done running SAT solver . . . CPU Time: 1 1 .8653
No solut ion for makespan 24
Elapsed CPU Time: 1 1 .8653
Tentat ive makespan 25
Number of va r i ab l e s : 2946190
Number of assumptions: 1
c Running SAT solver . . . CPU Time: 12 . 3491
c Done running SAT solver . . . CPU Time: 16 .6882
Solut ion found for makespan 25
Elapsed CPU Time: 16 .6995

15 / 40

Grasping the search space ...

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080 (or ≈ 1085)

• Search space with 2832875 propositional variables (worst case):

• # of assignments to > 2.8× 106 variables: ≫ 10840000 !!
• Obs: SAT solvers at present (but formula dependent)

16 / 40

Grasping the search space ...

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080 (or ≈ 1085)

• Search space with 2832875 propositional variables (worst case):

• # of assignments to > 2.8× 106 variables: ≫ 10840000 !!
• Obs: SAT solvers at present (but formula dependent)

16 / 40

Grasping the search space ...

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080 (or ≈ 1085)

• Search space with 2832875 propositional variables (worst case):

• # of assignments to > 2.8× 106 variables: ≫ 10840000 !!
• Obs: SAT solvers at present (but formula dependent)

16 / 40

Grasping the search space ...

• Number of seconds since the Big Bang: ≈ 1017

• Number of fundamental particles in observable universe: ≈ 1080 (or ≈ 1085)

• Search space with 2832875 propositional variables (worst case):
• # of assignments to > 2.8× 106 variables: ≫ 10840000 !!
• Obs: SAT solvers at present (but formula dependent)

16 / 40

Simple modeling example – graph coloring

• Given undirected graph G = (V, E) and k colors:
• Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different
colors?

• How to model color assignments to vertices?

• xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}

• How to model adjacent vertices with different colors?

• (¬xi,j ∨ ¬xl,j) if (vi, vl) ∈ E, with j ∈ {1, . . . , k}

• How to model vertices get some color?

•
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

• Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

17 / 40

Simple modeling example – graph coloring

• Given undirected graph G = (V, E) and k colors:
• Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different
colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?

• xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}

• How to model adjacent vertices with different colors?

• (¬xi,j ∨ ¬xl,j) if (vi, vl) ∈ E, with j ∈ {1, . . . , k}

• How to model vertices get some color?

•
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

• Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

17 / 40

Simple modeling example – graph coloring

• Given undirected graph G = (V, E) and k colors:
• Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different
colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?

• xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}
• How to model adjacent vertices with different colors?

• (¬xi,j ∨ ¬xl,j) if (vi, vl) ∈ E, with j ∈ {1, . . . , k}

• How to model vertices get some color?

•
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

• Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

17 / 40

Simple modeling example – graph coloring

• Given undirected graph G = (V, E) and k colors:
• Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different
colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?
• xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}

• How to model adjacent vertices with different colors?

• (¬xi,j ∨ ¬xl,j) if (vi, vl) ∈ E, with j ∈ {1, . . . , k}

• How to model vertices get some color?

•
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

• Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

17 / 40

Simple modeling example – graph coloring

• Given undirected graph G = (V, E) and k colors:
• Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different
colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?
• xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}

• How to model adjacent vertices with different colors?

• (¬xi,j ∨ ¬xl,j) if (vi, vl) ∈ E, with j ∈ {1, . . . , k}
• How to model vertices get some color?

•
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

• Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

17 / 40

Simple modeling example – graph coloring

• Given undirected graph G = (V, E) and k colors:
• Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different
colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?
• xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}

• How to model adjacent vertices with different colors?
• (¬xi,j ∨ ¬xl,j) if (vi, vl) ∈ E, with j ∈ {1, . . . , k}

• How to model vertices get some color?

•
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

• Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

17 / 40

Simple modeling example – graph coloring

• Given undirected graph G = (V, E) and k colors:
• Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different
colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?
• xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}

• How to model adjacent vertices with different colors?
• (¬xi,j ∨ ¬xl,j) if (vi, vl) ∈ E, with j ∈ {1, . . . , k}

• How to model vertices get some color?

•
∑

j∈{1,...,k} xi,j = 1, for vi ∈ V

• Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

17 / 40

Simple modeling example – graph coloring

• Given undirected graph G = (V, E) and k colors:
• Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different
colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?
• xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}

• How to model adjacent vertices with different colors?
• (¬xi,j ∨ ¬xl,j) if (vi, vl) ∈ E, with j ∈ {1, . . . , k}

• How to model vertices get some color?
•

∑
j∈{1,...,k} xi,j = 1, for vi ∈ V

• Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

17 / 40

Simple modeling example – graph coloring

• Given undirected graph G = (V, E) and k colors:
• Can we assign colors to vertices of G s.t. any pair of adjacent vertices are assigned different
colors?

Valid coloring Invalid coloring

• How to model color assignments to vertices?
• xi,j = 1 iff vertex vi ∈ V is assigned color j ∈ {1, . . . , k}

• How to model adjacent vertices with different colors?
• (¬xi,j ∨ ¬xl,j) if (vi, vl) ∈ E, with j ∈ {1, . . . , k}

• How to model vertices get some color?
•

∑
j∈{1,...,k} xi,j = 1, for vi ∈ V

• Note: it suffices to use
(∨

j∈{1,...,k} xi,j
)

17 / 40

Optimization with maximum satisfiability (MaxSAT)

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Unsatisfiable formula

• Find largest subset of clauses that is satisfiable
• A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula
• The MaxSAT solution is one of the smallest (cost) MCSes

18 / 40

Optimization with maximum satisfiability (MaxSAT)

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Unsatisfiable formula
• Find largest subset of clauses that is satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula
• The MaxSAT solution is one of the smallest (cost) MCSes

18 / 40

Optimization with maximum satisfiability (MaxSAT)

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Unsatisfiable formula
• Find largest subset of clauses that is satisfiable
• A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula

• The MaxSAT solution is one of the smallest (cost) MCSes

18 / 40

Optimization with maximum satisfiability (MaxSAT)

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Unsatisfiable formula
• Find largest subset of clauses that is satisfiable
• A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula
• The MaxSAT solution is one of the smallest (cost) MCSes

18 / 40

The MaxSAT (r)evolution

More than 3x more
instances solved !!

19 / 40

The MaxSAT (r)evolution – partial MaxSAT

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 200 400 600 800 1000 1200

se
co

nd
s

instances

Open-WBO (2015)
MaxHS (2016)
MSCG (2015)

Eva (2014)
Open-WBO (2014)

Z3 (Microsoft 2016)
QMaxSAT (2013)

WPM2 (2013)
PM2 (2010)

QMaxSAT (2011-12)
QMaxSAT (2010)

CPLEX (IBM 2013)
SAT4J (2009-10)

IncWMaxSatz (2008)

Source: [2018 MaxSAT Eval. organizers]

More than 3x more
instances solved !!

19 / 40

The MaxSAT (r)evolution – partial MaxSAT

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 200 400 600 800 1000 1200

se
co

nd
s

instances

Open-WBO (2015)
MaxHS (2016)
MSCG (2015)

Eva (2014)
Open-WBO (2014)

Z3 (Microsoft 2016)
QMaxSAT (2013)

WPM2 (2013)
PM2 (2010)

QMaxSAT (2011-12)
QMaxSAT (2010)

CPLEX (IBM 2013)
SAT4J (2009-10)

IncWMaxSatz (2008)

Source: [2018 MaxSAT Eval. organizers]

More than 3x more
instances solved !!

19 / 40

The MaxSAT (r)evolution – weighted MaxSAT

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700 800

se
co

nd
s

instances

MaxHS (2016)
LHMS (2015-16)

MSCG (2015)
MaxHS (2013)

Eva (2014)
QMaxSAT (2014)

Z3 (Microsoft)
CPLEX (IBM)
WPM2 (2013)

WPM1 (2011-12)
WBO (2010)

IncWMaxSatz (2008)
SAT4J (2009-10)

Source: [2018 MaxSAT Eval. organizers]

More than 2x more
instances solved !!

20 / 40

The MaxSAT (r)evolution – weighted MaxSAT

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700 800

se
co

nd
s

instances

MaxHS (2016)
LHMS (2015-16)

MSCG (2015)
MaxHS (2013)

Eva (2014)
QMaxSAT (2014)

Z3 (Microsoft)
CPLEX (IBM)
WPM2 (2013)

WPM1 (2011-12)
WBO (2010)

IncWMaxSatz (2008)
SAT4J (2009-10)

Source: [2018 MaxSAT Eval. organizers]

More than 2x more
instances solved !!

20 / 40

Satisfiability Modulo Theories (SMT)

• Automate reasoning in (fragments of) first-order logic (FOL)

SAT Theory
Solvers SMT+ =

Equality+UF
Arithmetic
etc.

• Problem representation in propositional logic (PL):
• Positive: Efficient (in practice) SAT algorithms
• Negative: Expresiveness via CNF encodings

• PL + domain-specific reasoning
• Positive: Improved expressiveness
• Negative: Can be (far) less efficient than SAT

• Note: Standard definitions of FOL apply

21 / 40

Satisfiability Modulo Theories (SMT)

• Automate reasoning in (fragments of) first-order logic (FOL)

SAT Theory
Solvers SMT+ =

Equality+UF
Arithmetic
etc.

• Problem representation in propositional logic (PL):
• Positive: Efficient (in practice) SAT algorithms
• Negative: Expresiveness via CNF encodings

• PL + domain-specific reasoning
• Positive: Improved expressiveness
• Negative: Can be (far) less efficient than SAT

• Note: Standard definitions of FOL apply

21 / 40

Satisfiability Modulo Theories (SMT)

• Automate reasoning in (fragments of) first-order logic (FOL)

SAT Theory
Solvers SMT+ =

Equality+UF
Arithmetic
etc.

• Problem representation in propositional logic (PL):
• Positive: Efficient (in practice) SAT algorithms
• Negative: Expresiveness via CNF encodings

• PL + domain-specific reasoning
• Positive: Improved expressiveness
• Negative: Can be (far) less efficient than SAT

• Note: Standard definitions of FOL apply

21 / 40

Satisfiability Modulo Theories (SMT)

• Automate reasoning in (fragments of) first-order logic (FOL)

SAT Theory
Solvers SMT+ =

Equality+UF
Arithmetic
etc.

• Problem representation in propositional logic (PL):
• Positive: Efficient (in practice) SAT algorithms
• Negative: Expresiveness via CNF encodings

• PL + domain-specific reasoning
• Positive: Improved expressiveness
• Negative: Can be (far) less efficient than SAT

• Note: Standard definitions of FOL apply
21 / 40

An example

• All xi variables integer

• Solve:

((x4 − x2 ≤ 3) ∨ (x4 − x3 ≥ 5)) ∧ (x4 − x3 ≤ 6)∧
(x1 − x2 ≤ −1) ∧ (x1 − x3 ≤ −2) ∧ (x1 − x4 ≤ −1) ∧ (x2 − x1 ≤ 2)∧
(x3 − x2 ≤ −1) ∧ ((x3 − x4 ≤ −2) ∨ (x4 − x3 ≥ 2))

• Integer difference logic (with Boolean structure)

• Unsatisfiable (Why?)

22 / 40

An example

• All xi variables integer

• Solve:

((x4 − x2 ≤ 3) ∨ (x4 − x3 ≥ 5)) ∧ (x4 − x3 ≤ 6)∧
(x1 − x2 ≤ −1) ∧ (x1 − x3 ≤ −2) ∧ (x1 − x4 ≤ −1) ∧ (x2 − x1 ≤ 2)∧
(x3 − x2 ≤ −1) ∧ ((x3 − x4 ≤ −2) ∨ (x4 − x3 ≥ 2))

• Integer difference logic (with Boolean structure)

• Unsatisfiable (Why?)

22 / 40

An example

• All xi variables integer

• Solve:

((x4 − x2 ≤ 3) ∨ (x4 − x3 ≥ 5)) ∧ (x4 − x3 ≤ 6)∧
(x1 − x2 ≤ −1) ∧ (x1 − x3 ≤ −2) ∧ (x1 − x4 ≤ −1) ∧ (x2 − x1 ≤ 2)∧
(x3 − x2 ≤ −1) ∧ ((x3 − x4 ≤ −2) ∨ (x4 − x3 ≥ 2))

• Integer difference logic (with Boolean structure)

• Unsatisfiable (Why?)

22 / 40

An example

• All xi variables integer

• Solve:

((x4 − x2 ≤ 3) ∨ (x4 − x3 ≥ 5)) ∧ (x4 − x3 ≤ 6)∧
(x1 − x2 ≤ −1) ∧ (x1 − x3 ≤ −2) ∧ (x1 − x4 ≤ −1) ∧ (x2 − x1 ≤ 2)∧
(x3 − x2 ≤ −1) ∧ ((x3 − x4 ≤ −2) ∨ (x4 − x3 ≥ 2))

• Integer difference logic (with Boolean structure)

• Unsatisfiable (Why?)

22 / 40

Another example

• All ti,j variables integer

• Solve:

(t1,1 ≥ 0) ∧ (t1,2 ≥ t1,1 + 2) ∧ (t1,2 + 1 ≤ 8)∧
(t2,1 ≥ 0) ∧ (t2,2 ≥ t1,1 + 3) ∧ (t2,2 + 1 ≤ 8)∧
(t3,1 ≥ 0) ∧ (t3,2 ≥ t1,1 + 2) ∧ (t3,2 + 3 ≤ 8)∧
((t1,1 ≥ t2,1 + 3) ∨ (t2,1 ≥ t1,1 + 2))∧
((t1,1 ≥ t3,1 + 2) ∨ (t3,1 ≥ t1,1 + 2))∧
((t2,1 ≥ t3,1 + 2) ∨ (t3,1 ≥ t2,1 + 3))∧
((t1,2 ≥ t2,2 + 1) ∨ (t2,2 ≥ t1,2 + 1))∧
((t1,2 ≥ t3,2 + 3) ∨ (t3,2 ≥ t1,2 + 1))∧
((t2,2 ≥ t3,2 + 3) ∨ (t3,2 ≥ t2,2 + 1))

• Another example of integer difference logic (with Boolean structure)
• Satisfiable, with model: t1,1 = 5; t1,2 = 7; t2,1 = 2; t2,2 = 6; t3,1 = 0; t3,2 = 7;

23 / 40

Another example

• All ti,j variables integer
• Solve:

(t1,1 ≥ 0) ∧ (t1,2 ≥ t1,1 + 2) ∧ (t1,2 + 1 ≤ 8)∧
(t2,1 ≥ 0) ∧ (t2,2 ≥ t1,1 + 3) ∧ (t2,2 + 1 ≤ 8)∧
(t3,1 ≥ 0) ∧ (t3,2 ≥ t1,1 + 2) ∧ (t3,2 + 3 ≤ 8)∧
((t1,1 ≥ t2,1 + 3) ∨ (t2,1 ≥ t1,1 + 2))∧
((t1,1 ≥ t3,1 + 2) ∨ (t3,1 ≥ t1,1 + 2))∧
((t2,1 ≥ t3,1 + 2) ∨ (t3,1 ≥ t2,1 + 3))∧
((t1,2 ≥ t2,2 + 1) ∨ (t2,2 ≥ t1,2 + 1))∧
((t1,2 ≥ t3,2 + 3) ∨ (t3,2 ≥ t1,2 + 1))∧
((t2,2 ≥ t3,2 + 3) ∨ (t3,2 ≥ t2,2 + 1))

• Another example of integer difference logic (with Boolean structure)
• Satisfiable, with model: t1,1 = 5; t1,2 = 7; t2,1 = 2; t2,2 = 6; t3,1 = 0; t3,2 = 7;

23 / 40

Another example

• All ti,j variables integer
• Solve:

(t1,1 ≥ 0) ∧ (t1,2 ≥ t1,1 + 2) ∧ (t1,2 + 1 ≤ 8)∧
(t2,1 ≥ 0) ∧ (t2,2 ≥ t1,1 + 3) ∧ (t2,2 + 1 ≤ 8)∧
(t3,1 ≥ 0) ∧ (t3,2 ≥ t1,1 + 2) ∧ (t3,2 + 3 ≤ 8)∧
((t1,1 ≥ t2,1 + 3) ∨ (t2,1 ≥ t1,1 + 2))∧
((t1,1 ≥ t3,1 + 2) ∨ (t3,1 ≥ t1,1 + 2))∧
((t2,1 ≥ t3,1 + 2) ∨ (t3,1 ≥ t2,1 + 3))∧
((t1,2 ≥ t2,2 + 1) ∨ (t2,2 ≥ t1,2 + 1))∧
((t1,2 ≥ t3,2 + 3) ∨ (t3,2 ≥ t1,2 + 1))∧
((t2,2 ≥ t3,2 + 3) ∨ (t3,2 ≥ t2,2 + 1))

• Another example of integer difference logic (with Boolean structure)

• Satisfiable, with model: t1,1 = 5; t1,2 = 7; t2,1 = 2; t2,2 = 6; t3,1 = 0; t3,2 = 7;

23 / 40

Another example

• All ti,j variables integer
• Solve:

(t1,1 ≥ 0) ∧ (t1,2 ≥ t1,1 + 2) ∧ (t1,2 + 1 ≤ 8)∧
(t2,1 ≥ 0) ∧ (t2,2 ≥ t1,1 + 3) ∧ (t2,2 + 1 ≤ 8)∧
(t3,1 ≥ 0) ∧ (t3,2 ≥ t1,1 + 2) ∧ (t3,2 + 3 ≤ 8)∧
((t1,1 ≥ t2,1 + 3) ∨ (t2,1 ≥ t1,1 + 2))∧
((t1,1 ≥ t3,1 + 2) ∨ (t3,1 ≥ t1,1 + 2))∧
((t2,1 ≥ t3,1 + 2) ∨ (t3,1 ≥ t2,1 + 3))∧
((t1,2 ≥ t2,2 + 1) ∨ (t2,2 ≥ t1,2 + 1))∧
((t1,2 ≥ t3,2 + 3) ∨ (t3,2 ≥ t1,2 + 1))∧
((t2,2 ≥ t3,2 + 3) ∨ (t3,2 ≥ t2,2 + 1))

• Another example of integer difference logic (with Boolean structure)
• Satisfiable, with model: t1,1 = 5; t1,2 = 7; t2,1 = 2; t2,2 = 6; t3,1 = 0; t3,2 = 7;

23 / 40

Additional formalisms & reasoners

• (Mixed) integer linear programming (MILP)

min
∑
cjxj

st
∑
aijxj ≤ bi i = 1, . . . ,M

xj ∈ Z j = 1, . . . ,N

• Significant performance gains since the 90s

• Constraint programming (CP)
• Significant performance gains since the late 90s

• Answer set programming (ASP)
• Significant performance gains since the late 90s

• Quantified boolean formulas (QBF)
• Significant performance gains over the last decade

24 / 40

Additional formalisms & reasoners

• (Mixed) integer linear programming (MILP)

min
∑
cjxj

st
∑
aijxj ≤ bi i = 1, . . . ,M

xj ∈ Z j = 1, . . . ,N

• Significant performance gains since the 90s

• Constraint programming (CP)
• Significant performance gains since the late 90s

• Answer set programming (ASP)
• Significant performance gains since the late 90s

• Quantified boolean formulas (QBF)
• Significant performance gains over the last decade

24 / 40

Additional formalisms & reasoners

• (Mixed) integer linear programming (MILP)

min
∑
cjxj

st
∑
aijxj ≤ bi i = 1, . . . ,M

xj ∈ Z j = 1, . . . ,N

• Significant performance gains since the 90s

• Constraint programming (CP)
• Significant performance gains since the late 90s

• Answer set programming (ASP)
• Significant performance gains since the late 90s

• Quantified boolean formulas (QBF)
• Significant performance gains over the last decade

24 / 40

2 Modeling Examples

How to encode a neural network?

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

• Each layer (except first) viewed as a block
• Compute x′ given input x, weights matrix A, and bias vector b
• Compute output y given x′ and activation function

• Each unit uses a ReLU activation function [NH10]

25 / 40

How to encode a neural network, with SMT/(M)ILP?

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

• Each layer (except first) viewed as a block
• Compute x′ given input x, weights matrix A, and bias vector b
• Compute output y given x′ and activation function

• Each unit uses a ReLU activation function [NH10]
25 / 40

How to encode a neural network, with SMT/(M)ILP?

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

• Each layer (except first) viewed as a block
• Compute x′ given input x, weights matrix A, and bias vector b
• Compute output y given x′ and activation function

• Each unit uses a ReLU activation function [NH10]
25 / 40

How to encode a neural network, with SMT/(M)ILP?

Computation for a NN ReLU block:

x′ = A · x + b
y = max(x′,0)

Encoding each block: [FJ18]

n∑
j=1

ai,jxj + bi = yi − si

zi = 1→ yi ≤ 0

zi = 0→ si ≤ 0

yi ≥ 0, si ≥ 0, zi ∈ {0, 1}

Simpler encodings exist, but not as effective [KBD+17]

26 / 40

How to encode a neural network, with SMT/(M)ILP?

Computation for a NN ReLU block:

x′ = A · x + b
y = max(x′,0)

Encoding each block: [FJ18]

n∑
j=1

ai,jxj + bi = yi − si

zi = 1→ yi ≤ 0

zi = 0→ si ≤ 0

yi ≥ 0, si ≥ 0, zi ∈ {0, 1}

Simpler encodings exist, but not as effective [KBD+17]

26 / 40

How to encode cardinality constraints, with prop. logic?

• General form:
∑n

j=1 xj ≤ k

• Any combination of k+ 1 true variables is disallowed
• E.g. encode to propositional logic: a+ b+ c+ d+ e ≤ 2

• Resulting constraints:
a ∧ b→ c̄ =⇒ (ā ∨ b̄ ∨ c̄)
a ∧ b→ d̄ =⇒ (ā ∨ b̄ ∨ d̄)
a ∧ b→ ē =⇒ (ā ∨ b̄ ∨ ē)
a ∧ c→ d̄ =⇒ (ā ∨ c̄ ∨ d̄)
a ∧ c→ ē =⇒ (ā ∨ c̄ ∨ ē)
a ∧ d→ ē =⇒ (ā ∨ d̄ ∨ ē)
b ∧ c→ d̄ =⇒ (b̄ ∨ c̄ ∨ d̄)
b ∧ c→ ē =⇒ (b̄ ∨ c̄ ∨ ē)
b ∧ d→ ē =⇒ (b̄ ∨ d̄ ∨ ē)
c ∧ d→ ē =⇒ (c̄ ∨ d̄ ∨ ē)

• Redundant constraints not shown

27 / 40

How to encode cardinality constraints, with prop. logic?

• General form:
∑n

j=1 xj ≤ k

• Any combination of k+ 1 true variables is disallowed

• E.g. encode to propositional logic: a+ b+ c+ d+ e ≤ 2

• Resulting constraints:
a ∧ b→ c̄ =⇒ (ā ∨ b̄ ∨ c̄)
a ∧ b→ d̄ =⇒ (ā ∨ b̄ ∨ d̄)
a ∧ b→ ē =⇒ (ā ∨ b̄ ∨ ē)
a ∧ c→ d̄ =⇒ (ā ∨ c̄ ∨ d̄)
a ∧ c→ ē =⇒ (ā ∨ c̄ ∨ ē)
a ∧ d→ ē =⇒ (ā ∨ d̄ ∨ ē)
b ∧ c→ d̄ =⇒ (b̄ ∨ c̄ ∨ d̄)
b ∧ c→ ē =⇒ (b̄ ∨ c̄ ∨ ē)
b ∧ d→ ē =⇒ (b̄ ∨ d̄ ∨ ē)
c ∧ d→ ē =⇒ (c̄ ∨ d̄ ∨ ē)

• Redundant constraints not shown

27 / 40

How to encode cardinality constraints, with prop. logic?

• General form:
∑n

j=1 xj ≤ k

• Any combination of k+ 1 true variables is disallowed
• E.g. encode to propositional logic: a+ b+ c+ d+ e ≤ 2

• Resulting constraints:
a ∧ b→ c̄ =⇒ (ā ∨ b̄ ∨ c̄)
a ∧ b→ d̄ =⇒ (ā ∨ b̄ ∨ d̄)
a ∧ b→ ē =⇒ (ā ∨ b̄ ∨ ē)
a ∧ c→ d̄ =⇒ (ā ∨ c̄ ∨ d̄)
a ∧ c→ ē =⇒ (ā ∨ c̄ ∨ ē)
a ∧ d→ ē =⇒ (ā ∨ d̄ ∨ ē)
b ∧ c→ d̄ =⇒ (b̄ ∨ c̄ ∨ d̄)
b ∧ c→ ē =⇒ (b̄ ∨ c̄ ∨ ē)
b ∧ d→ ē =⇒ (b̄ ∨ d̄ ∨ ē)
c ∧ d→ ē =⇒ (c̄ ∨ d̄ ∨ ē)

• Redundant constraints not shown

27 / 40

How to encode cardinality constraints, with prop. logic?

• General form:
∑n

j=1 xj ≤ k

• Any combination of k+ 1 true variables is disallowed
• E.g. encode to propositional logic: a+ b+ c+ d+ e ≤ 2

• Resulting constraints:
a ∧ b→ c̄ =⇒ (ā ∨ b̄ ∨ c̄)
a ∧ b→ d̄ =⇒ (ā ∨ b̄ ∨ d̄)
a ∧ b→ ē =⇒ (ā ∨ b̄ ∨ ē)
a ∧ c→ d̄ =⇒ (ā ∨ c̄ ∨ d̄)
a ∧ c→ ē =⇒ (ā ∨ c̄ ∨ ē)
a ∧ d→ ē =⇒ (ā ∨ d̄ ∨ ē)
b ∧ c→ d̄ =⇒ (b̄ ∨ c̄ ∨ d̄)
b ∧ c→ ē =⇒ (b̄ ∨ c̄ ∨ ē)
b ∧ d→ ē =⇒ (b̄ ∨ d̄ ∨ ē)
c ∧ d→ ē =⇒ (c̄ ∨ d̄ ∨ ē)

• Redundant constraints not shown
27 / 40

In practice, use auxiliary variables, e.g. sequential counter

• Encode
∑n

j=1 xj ≤ k with sequential counter:
x1 x2 xn

v1 v2 vn

s1,1

s1,2

s1,k s2,k

s2,2

s2,1

sn�1,k

sn�1,2

sn�1,1

• Equations for each block 1 < i < n , 1 < j < k:

si =
∑i

j=1 xj

si represented in unary

si,1 = si−1,1 ∨ xi
si,j = si−1,j ∨ si−1,j−1 ∧ xi
vi = (si−1,k ∧ xi) = 0

28 / 40

Resulting constraints

• CNF formula for
∑n

j=1 xj ≤ k:

• Assume: k > 0 ∧ n > 1

• Indeces: 1 < i < n , 1 < j ≤ k
(¬x1 ∨ x1,1)
(¬s1,j)
(¬xi ∨ si,1)
(¬si−1,1 ∨ si,1)
(¬xi ∨ ¬si−1,j−1 ∨ si,j)
(¬si−1,j ∨ si,j)
(¬xi ∨ ¬si−1,k)

(¬xn ∨ ¬sn−1,k)

• O(n k) clauses & variables

• Many more encodings

• Can do pseudo-boolean constraints

29 / 40

How to guess a decision tree?

L?

0
1

C?

0
1

1
0

0

Constraints:
(¬v1) Root node is not a leaf

vi→¬lij, j ∈ lr(i) Leaf nodes have no children

lij ↔ rij+1, j ∈ lr(i) Left and right children of ith node are numbered consecutively

¬vi →
(∑

j∈lr(i) lij = 1
)

Non-leaf nodes must have a child

pji ↔ lij, j ∈ lr(i); pji ↔ rij, j ∈ rr(i) A parent node ith must have a childmin(j−1,N)∑
i=⌊ j

2
⌋

pji = 1

 with j = 2, . . . ,N A binary tree must be a tree, i.e. non-root nodes must have a parent

30 / 40

How to guess a decision tree, with propositional logic?

L?

0
1

C?

0
1

1
0

0

Constraints:
(¬v1) Root node is not a leaf

vi→¬lij, j ∈ lr(i) Leaf nodes have no children

lij ↔ rij+1, j ∈ lr(i) Left and right children of ith node are numbered consecutively

¬vi →
(∑

j∈lr(i) lij = 1
)

Non-leaf nodes must have a child

pji ↔ lij, j ∈ lr(i); pji ↔ rij, j ∈ rr(i) A parent node ith must have a childmin(j−1,N)∑
i=⌊ j

2
⌋

pji = 1

 with j = 2, . . . ,N A binary tree must be a tree, i.e. non-root nodes must have a parent

30 / 40

How to guess a decision tree, with propositional logic?

L?

0
1

C?

0
1

1
0

0

Var Description
vi 1 iff node i is a leaf node, i = 1, . . . ,N
lij 1 iff node i has node j as the left child, with j ∈ lr(i), where lr(i) = even([i+ 1,min(2i,N− 1)]), i = 1, . . . ,N
rij 1 iff node i has node j as the right child, with j ∈ rr(i), where rr(i) = odd([i+ 2,min(2i+ 1,N)]), i = 1, . . . ,N
pji 1 iff the parent of node j is node i, j = 2, . . . ,N, i = 1, . . . ,N− 1

Constraints:
(¬v1) Root node is not a leaf

vi→¬lij, j ∈ lr(i) Leaf nodes have no children

lij ↔ rij+1, j ∈ lr(i) Left and right children of ith node are numbered consecutively

¬vi →
(∑

j∈lr(i) lij = 1
)

Non-leaf nodes must have a child

pji ↔ lij, j ∈ lr(i); pji ↔ rij, j ∈ rr(i) A parent node ith must have a childmin(j−1,N)∑
i=⌊ j

2
⌋

pji = 1

 with j = 2, . . . ,N A binary tree must be a tree, i.e. non-root nodes must have a parent

30 / 40

How to guess a decision tree, with propositional logic?

L?

0
1

C?

0
1

1
0

0

Var Description
vi 1 iff node i is a leaf node, i = 1, . . . ,N
lij 1 iff node i has node j as the left child, with j ∈ lr(i), where lr(i) = even([i+ 1,min(2i,N− 1)]), i = 1, . . . ,N
rij 1 iff node i has node j as the right child, with j ∈ rr(i), where rr(i) = odd([i+ 2,min(2i+ 1,N)]), i = 1, . . . ,N
pji 1 iff the parent of node j is node i, j = 2, . . . ,N, i = 1, . . . ,N− 1

Constraints:

(¬v1) Root node is not a leaf

vi→¬lij, j ∈ lr(i) Leaf nodes have no children

lij ↔ rij+1, j ∈ lr(i) Left and right children of ith node are numbered consecutively

¬vi →
(∑

j∈lr(i) lij = 1
)

Non-leaf nodes must have a child

pji ↔ lij, j ∈ lr(i); pji ↔ rij, j ∈ rr(i) A parent node ith must have a childmin(j−1,N)∑
i=⌊ j

2
⌋

pji = 1

 with j = 2, . . . ,N A binary tree must be a tree, i.e. non-root nodes must have a parent

30 / 40

How to guess a decision tree, with propositional logic?

L?

0
1

C?

0
1

1
0

0

Var Description
vi 1 iff node i is a leaf node, i = 1, . . . ,N
lij 1 iff node i has node j as the left child, with j ∈ lr(i), where lr(i) = even([i+ 1,min(2i,N− 1)]), i = 1, . . . ,N
rij 1 iff node i has node j as the right child, with j ∈ rr(i), where rr(i) = odd([i+ 2,min(2i+ 1,N)]), i = 1, . . . ,N
pji 1 iff the parent of node j is node i, j = 2, . . . ,N, i = 1, . . . ,N− 1

Constraints:
(¬v1) Root node is not a leaf

vi→¬lij, j ∈ lr(i) Leaf nodes have no children

lij ↔ rij+1, j ∈ lr(i) Left and right children of ith node are numbered consecutively

¬vi →
(∑

j∈lr(i) lij = 1
)

Non-leaf nodes must have a child

pji ↔ lij, j ∈ lr(i); pji ↔ rij, j ∈ rr(i) A parent node ith must have a childmin(j−1,N)∑
i=⌊ j

2
⌋

pji = 1

 with j = 2, . . . ,N A binary tree must be a tree, i.e. non-root nodes must have a parent

30 / 40

How to guess a decision tree, with propositional logic?

L?

0
1

C?

0
1

1
0

0

Var Description
vi 1 iff node i is a leaf node, i = 1, . . . ,N
lij 1 iff node i has node j as the left child, with j ∈ lr(i), where lr(i) = even([i+ 1,min(2i,N− 1)]), i = 1, . . . ,N
rij 1 iff node i has node j as the right child, with j ∈ rr(i), where rr(i) = odd([i+ 2,min(2i+ 1,N)]), i = 1, . . . ,N
pji 1 iff the parent of node j is node i, j = 2, . . . ,N, i = 1, . . . ,N− 1

Constraints:
(¬v1) Root node is not a leaf

vi→¬lij, j ∈ lr(i) Leaf nodes have no children

lij ↔ rij+1, j ∈ lr(i) Left and right children of ith node are numbered consecutively

¬vi →
(∑

j∈lr(i) lij = 1
)

Non-leaf nodes must have a child

pji ↔ lij, j ∈ lr(i); pji ↔ rij, j ∈ rr(i) A parent node ith must have a childmin(j−1,N)∑
i=⌊ j

2
⌋

pji = 1

 with j = 2, . . . ,N A binary tree must be a tree, i.e. non-root nodes must have a parent

30 / 40

How to guess a decision tree, with propositional logic?

L?

0
1

C?

0
1

1
0

0

Var Description
vi 1 iff node i is a leaf node, i = 1, . . . ,N
lij 1 iff node i has node j as the left child, with j ∈ lr(i), where lr(i) = even([i+ 1,min(2i,N− 1)]), i = 1, . . . ,N
rij 1 iff node i has node j as the right child, with j ∈ rr(i), where rr(i) = odd([i+ 2,min(2i+ 1,N)]), i = 1, . . . ,N
pji 1 iff the parent of node j is node i, j = 2, . . . ,N, i = 1, . . . ,N− 1

Constraints:
(¬v1) Root node is not a leaf

vi→¬lij, j ∈ lr(i) Leaf nodes have no children

lij ↔ rij+1, j ∈ lr(i) Left and right children of ith node are numbered consecutively

¬vi →
(∑

j∈lr(i) lij = 1
)

Non-leaf nodes must have a child

pji ↔ lij, j ∈ lr(i); pji ↔ rij, j ∈ rr(i) A parent node ith must have a childmin(j−1,N)∑
i=⌊ j

2
⌋

pji = 1

 with j = 2, . . . ,N A binary tree must be a tree, i.e. non-root nodes must have a parent

30 / 40

How to guess a decision tree, with propositional logic?

L?

0
1

C?

0
1

1
0

0

Var Description
vi 1 iff node i is a leaf node, i = 1, . . . ,N
lij 1 iff node i has node j as the left child, with j ∈ lr(i), where lr(i) = even([i+ 1,min(2i,N− 1)]), i = 1, . . . ,N
rij 1 iff node i has node j as the right child, with j ∈ rr(i), where rr(i) = odd([i+ 2,min(2i+ 1,N)]), i = 1, . . . ,N
pji 1 iff the parent of node j is node i, j = 2, . . . ,N, i = 1, . . . ,N− 1

Constraints:
(¬v1) Root node is not a leaf

vi→¬lij, j ∈ lr(i) Leaf nodes have no children

lij ↔ rij+1, j ∈ lr(i) Left and right children of ith node are numbered consecutively

¬vi →
(∑

j∈lr(i) lij = 1
)

Non-leaf nodes must have a child

pji ↔ lij, j ∈ lr(i); pji ↔ rij, j ∈ rr(i) A parent node ith must have a childmin(j−1,N)∑
i=⌊ j

2
⌋

pji = 1

 with j = 2, . . . ,N A binary tree must be a tree, i.e. non-root nodes must have a parent

30 / 40

How to guess a decision tree, with propositional logic?

L?

0
1

C?

0
1

1
0

0

Var Description
vi 1 iff node i is a leaf node, i = 1, . . . ,N
lij 1 iff node i has node j as the left child, with j ∈ lr(i), where lr(i) = even([i+ 1,min(2i,N− 1)]), i = 1, . . . ,N
rij 1 iff node i has node j as the right child, with j ∈ rr(i), where rr(i) = odd([i+ 2,min(2i+ 1,N)]), i = 1, . . . ,N
pji 1 iff the parent of node j is node i, j = 2, . . . ,N, i = 1, . . . ,N− 1

Constraints:
(¬v1) Root node is not a leaf

vi→¬lij, j ∈ lr(i) Leaf nodes have no children

lij ↔ rij+1, j ∈ lr(i) Left and right children of ith node are numbered consecutively

¬vi →
(∑

j∈lr(i) lij = 1
)

Non-leaf nodes must have a child

pji ↔ lij, j ∈ lr(i); pji ↔ rij, j ∈ rr(i) A parent node ith must have a child

min(j−1,N)∑
i=⌊ j

2
⌋

pji = 1

 with j = 2, . . . ,N A binary tree must be a tree, i.e. non-root nodes must have a parent

30 / 40

How to guess a decision tree, with propositional logic?

L?

0
1

C?

0
1

1
0

0

Var Description
vi 1 iff node i is a leaf node, i = 1, . . . ,N
lij 1 iff node i has node j as the left child, with j ∈ lr(i), where lr(i) = even([i+ 1,min(2i,N− 1)]), i = 1, . . . ,N
rij 1 iff node i has node j as the right child, with j ∈ rr(i), where rr(i) = odd([i+ 2,min(2i+ 1,N)]), i = 1, . . . ,N
pji 1 iff the parent of node j is node i, j = 2, . . . ,N, i = 1, . . . ,N− 1

Constraints:
(¬v1) Root node is not a leaf

vi→¬lij, j ∈ lr(i) Leaf nodes have no children

lij ↔ rij+1, j ∈ lr(i) Left and right children of ith node are numbered consecutively

¬vi →
(∑

j∈lr(i) lij = 1
)

Non-leaf nodes must have a child

pji ↔ lij, j ∈ lr(i); pji ↔ rij, j ∈ rr(i) A parent node ith must have a childmin(j−1,N)∑
i=⌊ j

2
⌋

pji = 1

 with j = 2, . . . ,N A binary tree must be a tree, i.e. non-root nodes must have a parent
30 / 40

3 Basic Formal Toolbox

Oracle-based problem solving

• Many problems are not decision problems

• Use decision procedures as oracles for
• Optimize some cost function

• Maximum satisfiability (MaxSAT),
pseudo-boolean optimization (PBO)

• But also MaxSMT, etc.

• Find one minimal set

• Reason about inconsistency: MUSes/MCSes
• Compile knowledge: prime implicants/implicates

• Enumerate minimal/optimal solutions

• Enumerate MaxSAT solutions
• Enumerate primes, MUSes, MCSes

• Other problems

• Propositional abduction
• Etc.

31 / 40

Oracle-based problem solving

• Many problems are not decision problems

• Use decision procedures as oracles for
• Optimize some cost function

• Maximum satisfiability (MaxSAT),
pseudo-boolean optimization (PBO)

• But also MaxSMT, etc.

• Find one minimal set

• Reason about inconsistency: MUSes/MCSes
• Compile knowledge: prime implicants/implicates

• Enumerate minimal/optimal solutions

• Enumerate MaxSAT solutions
• Enumerate primes, MUSes, MCSes

• Other problems

• Propositional abduction
• Etc.

31 / 40

Oracle-based problem solving

• Many problems are not decision problems

• Use decision procedures as oracles for
• Optimize some cost function

• Maximum satisfiability (MaxSAT),
pseudo-boolean optimization (PBO)

• But also MaxSMT, etc.

• Find one minimal set

• Reason about inconsistency: MUSes/MCSes
• Compile knowledge: prime implicants/implicates

• Enumerate minimal/optimal solutions

• Enumerate MaxSAT solutions
• Enumerate primes, MUSes, MCSes

• Other problems

• Propositional abduction
• Etc.

31 / 40

Oracle-based problem solving

• Many problems are not decision problems

• Use decision procedures as oracles for
• Optimize some cost function

• Maximum satisfiability (MaxSAT),
pseudo-boolean optimization (PBO)

• But also MaxSMT, etc.

• Find one minimal set
• Reason about inconsistency: MUSes/MCSes
• Compile knowledge: prime implicants/implicates

• Enumerate minimal/optimal solutions

• Enumerate MaxSAT solutions
• Enumerate primes, MUSes, MCSes

• Other problems

• Propositional abduction
• Etc.

31 / 40

Oracle-based problem solving

• Many problems are not decision problems

• Use decision procedures as oracles for
• Optimize some cost function

• Maximum satisfiability (MaxSAT),
pseudo-boolean optimization (PBO)

• But also MaxSMT, etc.

• Find one minimal set
• Reason about inconsistency: MUSes/MCSes
• Compile knowledge: prime implicants/implicates

• Enumerate minimal/optimal solutions
• Enumerate MaxSAT solutions
• Enumerate primes, MUSes, MCSes

• Other problems
• Propositional abduction
• Etc.

31 / 40

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable?

• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining constraints consistent?

32 / 40

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No

• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining constraints consistent?

32 / 40

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No
• Minimal subset of constraints that is inconsistent / unsatisfiable?

• Minimal subset of constraints whose removal makes remaining constraints consistent?

32 / 40

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No
• Minimal subset of constraints that is inconsistent / unsatisfiable?

• Minimal subset of constraints whose removal makes remaining constraints consistent?

32 / 40

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No
• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining constraints consistent?

32 / 40

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No
• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining constraints consistent?

32 / 40

Analyzing inconsistency – timetabling

Subject Day Time Room
Intro Prog Mon 9:00-10:00 6.2.46
Intro AI Tue 10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon 9:00-10:00 6.2.46
Calculus Tue 10:00-11:00 8.2.37

Adv Calculus Mon 9:00-10:00 8.2.06
... (hundreds of consistent constraints)

• Set of constraints consistent / satisfiable? No
• Minimal subset of constraints that is inconsistent / unsatisfiable?
• Minimal subset of constraints whose removal makes remaining constraints consistent?

Minimality
matters!

32 / 40

Inconsistent formulas – MUSes & MCSes

• Given F (⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iffM⊨ ⊥ and
∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff F \ C ⊭ ⊥ and
∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

33 / 40

Inconsistent formulas – MUSes & MCSes

• Given F (⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iffM⊨ ⊥ and
∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff F \ C ⊭ ⊥ and
∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

33 / 40

Inconsistent formulas – MUSes & MCSes

• Given F (⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iffM⊨ ⊥ and
∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff F \ C ⊭ ⊥ and
∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

33 / 40

Inconsistent formulas – MUSes & MCSes

• Given F (⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iffM⊨ ⊥ and
∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff F \ C ⊭ ⊥ and
∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

33 / 40

Inconsistent formulas – MUSes & MCSes

• Given F (⊨ ⊥),M⊆ F is a Minimal Unsatisfiable Subset (MUS) iffM⊨ ⊥ and
∀M′⊊M,M′ ⊭ ⊥

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• Given F (⊨ ⊥), C ⊆ F is a Minimal Correction Subset (MCS) iff F \ C ⊭ ⊥ and
∀C′⊊C ,F \ C′ ⊨ ⊥. S = F \ C is MSS

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

• MUSes and MCSes are (subset-)minimal sets

• MUSes and minimal hitting sets of MCSes and vice-versa [Rei87, BS05]

33 / 40

Basic MUS extraction

Input : Set F
Output: Minimal subsetM
begin
M← F
foreach c ∈M do

if ¬SAT(M\ {c}) then
M←M\ {c} // If ¬SAT(M\ {c}), then c ̸∈ MUS

returnM // FinalM is MUS
end
• Number of oracles calls: O(m) [CD91, BDTW93]

34 / 40

Basic MUS extraction

Input : Set F
Output: Minimal subsetM
begin
M← F
foreach c ∈M do

if ¬SAT(M\ {c}) then
M←M\ {c} // Remove c fromM

returnM // FinalM is MUS
end
• Number of oracles calls: O(m) [CD91, BDTW93]

Monotonicity
implicit &
essential!

34 / 40

An example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome

c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

35 / 40

An example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1

c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

35 / 40

An example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2

c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

35 / 40

An example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3

c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

35 / 40

An example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4

c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

35 / 40

An example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5

c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

35 / 40

An example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6

c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

35 / 40

An example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

35 / 40

An example

c1 c2 c3 c4 c5 c6 c7
(¬x1 ∨ ¬x2) (x1) (x2) (¬x3 ∨ ¬x4) (x3) (x4) (x5 ∨ x6)

M M\ {c} ¬SAT(M\ {c}) Outcome
c1..c7 c2..c7 1 Drop c1
c2..c7 c3..c7 1 Drop c2
c3..c7 c4..c7 1 Drop c3
c4..c7 c5..c7 0 Keep c4
c4..c7 c4c6c7 0 Keep c5
c4..c7 c4c5c7 0 Keep c6
c4..c7 c4..c6 1 Drop c7

• MUS: {c4, c5, c6}

35 / 40

Compilation – extracting & enumerating primes

• Boolean function: F

• Set of literals of F : L(F) ≜ {x,¬x|x ∈ var(F)}

• Implicant: τ ⊆ L(F) s.t.
• τ ⊭ ⊥ τ is consistent
• τ ⊨ F τ entails F

• Prime implicant: τ ⊆ L(F) s.t.
• τ is an implicant of F
• No τ ′ ⊆ τ is an implicant of F

• To extract a prime implicant τ given some implicant ρ of F :
• ρ ∧ ¬F ⊨ ⊥
• Find minimal subset τ of ρ such that τ ∧ ¬F ⊨ ⊥

• I.e., extract an MUS of ρ ∧ ¬F

• Prime enumeration:
• Dedicated algorithm [PIMM15]

• MUS enumerator [LS08, LPMM16]

36 / 40

Compilation – extracting & enumerating primes

• Boolean function: F

• Set of literals of F : L(F) ≜ {x,¬x|x ∈ var(F)}

• Implicant: τ ⊆ L(F) s.t.
• τ ⊭ ⊥ τ is consistent
• τ ⊨ F τ entails F

• Prime implicant: τ ⊆ L(F) s.t.
• τ is an implicant of F
• No τ ′ ⊆ τ is an implicant of F

• To extract a prime implicant τ given some implicant ρ of F :
• ρ ∧ ¬F ⊨ ⊥
• Find minimal subset τ of ρ such that τ ∧ ¬F ⊨ ⊥

• I.e., extract an MUS of ρ ∧ ¬F

• Prime enumeration:
• Dedicated algorithm [PIMM15]

• MUS enumerator [LS08, LPMM16]

36 / 40

Compilation – extracting & enumerating primes

• Boolean function: F

• Set of literals of F : L(F) ≜ {x,¬x|x ∈ var(F)}

• Implicant: τ ⊆ L(F) s.t.
• τ ⊭ ⊥ τ is consistent
• τ ⊨ F τ entails F

• Prime implicant: τ ⊆ L(F) s.t.
• τ is an implicant of F
• No τ ′ ⊆ τ is an implicant of F

• To extract a prime implicant τ given some implicant ρ of F :
• ρ ∧ ¬F ⊨ ⊥
• Find minimal subset τ of ρ such that τ ∧ ¬F ⊨ ⊥

• I.e., extract an MUS of ρ ∧ ¬F

• Prime enumeration:
• Dedicated algorithm [PIMM15]

• MUS enumerator [LS08, LPMM16]

36 / 40

Compilation – extracting & enumerating primes

• Boolean function: F

• Set of literals of F : L(F) ≜ {x,¬x|x ∈ var(F)}

• Implicant: τ ⊆ L(F) s.t.
• τ ⊭ ⊥ τ is consistent
• τ ⊨ F τ entails F

• Prime implicant: τ ⊆ L(F) s.t.
• τ is an implicant of F
• No τ ′ ⊆ τ is an implicant of F

• To extract a prime implicant τ given some implicant ρ of F :
• ρ ∧ ¬F ⊨ ⊥
• Find minimal subset τ of ρ such that τ ∧ ¬F ⊨ ⊥

• I.e., extract an MUS of ρ ∧ ¬F

• Prime enumeration:
• Dedicated algorithm [PIMM15]

• MUS enumerator [LS08, LPMM16]

36 / 40

Compilation – extracting & enumerating primes

• Boolean function: F

• Set of literals of F : L(F) ≜ {x,¬x|x ∈ var(F)}

• Implicant: τ ⊆ L(F) s.t.
• τ ⊭ ⊥ τ is consistent
• τ ⊨ F τ entails F

• Prime implicant: τ ⊆ L(F) s.t.
• τ is an implicant of F
• No τ ′ ⊆ τ is an implicant of F

• To extract a prime implicant τ given some implicant ρ of F :
• ρ ∧ ¬F ⊨ ⊥
• Find minimal subset τ of ρ such that τ ∧ ¬F ⊨ ⊥

• I.e., extract an MUS of ρ ∧ ¬F

• Prime enumeration:
• Dedicated algorithm [PIMM15]

• MUS enumerator [LS08, LPMM16]

36 / 40

An example

F ≜ a ∧ ¬c ∧ ¬d ∨ ¬a ∧ b ∧ ¬d ∨ b ∧ c ∧ d

• Model/implicant: ρ = {a,b,¬c,¬d}

• Extracting a prime implicant:

τ Literal l τ \ {l}⊨ F Action
{a,b,¬c,¬d} a Yes Drop a
{b,¬c,¬d} b No Keep b
{b,¬c,¬d} ¬c No Keep ¬c
{b,¬c,¬d} ¬d No Keep ¬d

• Prime implicant: {b,¬c,¬d}

37 / 40

An example

F ≜ a ∧ ¬c ∧ ¬d ∨ ¬a ∧ b ∧ ¬d ∨ b ∧ c ∧ d

• Model/implicant: ρ = {a,b,¬c,¬d}

• Extracting a prime implicant:

τ Literal l τ \ {l}⊨ F Action
{a,b,¬c,¬d} a Yes Drop a

{b,¬c,¬d} b No Keep b
{b,¬c,¬d} ¬c No Keep ¬c
{b,¬c,¬d} ¬d No Keep ¬d

• Prime implicant: {b,¬c,¬d}

37 / 40

An example

F ≜ a ∧ ¬c ∧ ¬d ∨ ¬a ∧ b ∧ ¬d ∨ b ∧ c ∧ d

• Model/implicant: ρ = {a,b,¬c,¬d}

• Extracting a prime implicant:

τ Literal l τ \ {l}⊨ F Action
{a,b,¬c,¬d} a Yes Drop a
{b,¬c,¬d} b No Keep b

{b,¬c,¬d} ¬c No Keep ¬c
{b,¬c,¬d} ¬d No Keep ¬d

• Prime implicant: {b,¬c,¬d}

37 / 40

An example

F ≜ a ∧ ¬c ∧ ¬d ∨ ¬a ∧ b ∧ ¬d ∨ b ∧ c ∧ d

• Model/implicant: ρ = {a,b,¬c,¬d}

• Extracting a prime implicant:

τ Literal l τ \ {l}⊨ F Action
{a,b,¬c,¬d} a Yes Drop a
{b,¬c,¬d} b No Keep b
{b,¬c,¬d} ¬c No Keep ¬c

{b,¬c,¬d} ¬d No Keep ¬d

• Prime implicant: {b,¬c,¬d}

37 / 40

An example

F ≜ a ∧ ¬c ∧ ¬d ∨ ¬a ∧ b ∧ ¬d ∨ b ∧ c ∧ d

• Model/implicant: ρ = {a,b,¬c,¬d}

• Extracting a prime implicant:

τ Literal l τ \ {l}⊨ F Action
{a,b,¬c,¬d} a Yes Drop a
{b,¬c,¬d} b No Keep b
{b,¬c,¬d} ¬c No Keep ¬c
{b,¬c,¬d} ¬d No Keep ¬d

• Prime implicant: {b,¬c,¬d}

37 / 40

An example

F ≜ a ∧ ¬c ∧ ¬d ∨ ¬a ∧ b ∧ ¬d ∨ b ∧ c ∧ d

• Model/implicant: ρ = {a,b,¬c,¬d}

• Extracting a prime implicant:

τ Literal l τ \ {l}⊨ F Action
{a,b,¬c,¬d} a Yes Drop a
{b,¬c,¬d} b No Keep b
{b,¬c,¬d} ¬c No Keep ¬c
{b,¬c,¬d} ¬d No Keep ¬d

• Prime implicant: {b,¬c,¬d}

37 / 40

An example

F ≜ a ∧ ¬c ∧ ¬d ∨ ¬a ∧ b ∧ ¬d ∨ b ∧ c ∧ d

• Model/implicant: ρ = {a,b,¬c,¬d}

• Extracting a prime implicant:

τ Literal l τ \ {l}⊨ F Action
{a,b,¬c,¬d} a Yes Drop a
{b,¬c,¬d} b No Keep b
{b,¬c,¬d} ¬c No Keep ¬c
{b,¬c,¬d} ¬d No Keep ¬d

• Prime implicant: {b,¬c,¬d}

Is τ \ {l} ∧ ¬F

inconsistent?

37 / 40

Propositional abduction – an example

• Example propositional background theory T:

T = {(¬x1 ∨ x4), (¬x2 ∨ ¬x3 ∨ x4)}

A set of manifestations M:
M = {(x4)}

A set of hypotheses H that can explain M given T:

H = {(x1), (x2), (x3)}

• Find a smallest subset S ⊆ H that together with T explains M, e.g.

S = {(x1)}

38 / 40

Propositional abduction – an example

• Example propositional background theory T:

T = {(¬x1 ∨ x4), (¬x2 ∨ ¬x3 ∨ x4)}

A set of manifestations M:
M = {(x4)}

A set of hypotheses H that can explain M given T:

H = {(x1), (x2), (x3)}

• Find a smallest subset S ⊆ H that together with T explains M, e.g.

S = {(x1)}

38 / 40

Propositional abduction – an example

• Example propositional background theory T:

T = {(¬x1 ∨ x4), (¬x2 ∨ ¬x3 ∨ x4)}

A set of manifestations M:
M = {(x4)}

A set of hypotheses H that can explain M given T:

H = {(x1), (x2), (x3)}

• Find a smallest subset S ⊆ H that together with T explains M, e.g.

S = {(x1)}

38 / 40

Propositional abduction – an example

• Example propositional background theory T:

T = {(¬x1 ∨ x4), (¬x2 ∨ ¬x3 ∨ x4)}

A set of manifestations M:
M = {(x4)}

A set of hypotheses H that can explain M given T:

H = {(x1), (x2), (x3)}

• Find a smallest subset S ⊆ H that together with T explains M, e.g.

S = {(x1)}

38 / 40

Propositional abduction – an example

• Example propositional background theory T:

T = {(¬x1 ∨ x4), (¬x2 ∨ ¬x3 ∨ x4)}

A set of manifestations M:
M = {(x4)}

A set of hypotheses H that can explain M given T:

H = {(x1), (x2), (x3)}

• Find a smallest subset S ⊆ H that together with T explains M, e.g.

S = {(x1)}

38 / 40

Defining propositional abduction

A Propositional Abduction Problem (PAP) is a 5-tuple P = (V,H,M, T, c) where:
• V - finite set of boolean variables
• H - CNF formula representing the set of hypotheses
• M - CNF formula representing the set of manifestations
• T - CNF formula representing the background theory
• c : H→ R+ - cost function, associates a cost to each clause in H

The set of explanations of a PAP P = (V,H,M, T, c) is:

Expl(P) = {S ⊆ H | T ∧ S⊭ ⊥, T ∧ S⊨ M}

The minimum-cost solutions of P are:

Explc(P) = argminE∈Expl(P)(c(E))

PAP is hard
for the ΣP

2 !

39 / 40

Defining propositional abduction

A Propositional Abduction Problem (PAP) is a 5-tuple P = (V,H,M, T, c) where:
• V - finite set of boolean variables
• H - CNF formula representing the set of hypotheses
• M - CNF formula representing the set of manifestations
• T - CNF formula representing the background theory
• c : H→ R+ - cost function, associates a cost to each clause in H

The set of explanations of a PAP P = (V,H,M, T, c) is:

Expl(P) = {S ⊆ H | T ∧ S⊭ ⊥, T ∧ S⊨ M}

The minimum-cost solutions of P are:

Explc(P) = argminE∈Expl(P)(c(E))

PAP is hard
for the ΣP

2 !

39 / 40

Questions?

40 / 40

References i

[BDTW93] R. R. Bakker, F. Dikker, F. Tempelman, and P. M. Wognum.
Diagnosing and solving over-determined constraint satisfaction problems.
In IJCAI, pages 276–281, 1993.

[BS05] James Bailey and Peter J. Stuckey.
Discovery of minimal unsatisfiable subsets of constraints using hitting set dualization.
In PADL, pages 174–186, 2005.

[CD91] John W. Chinneck and Erik W. Dravnieks.
Locating minimal infeasible constraint sets in linear programs.
INFORMS Journal on Computing, 3(2):157–168, 1991.

[Coo71] Stephen A. Cook.
The complexity of theorem-proving procedures.
In STOC, pages 151–158. ACM, 1971.

[FJ18] Matteo Fischetti and Jason Jo.
Deep neural networks and mixed integer linear optimization.
Constraints, 23(3):296–309, 2018.

[KBD+17] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.
Reluplex: An efficient SMT solver for verifying deep neural networks.
In CAV, pages 97–117, 2017.

41 / 40

References ii

[LPMM16] Mark H. Liffiton, Alessandro Previti, Ammar Malik, and Joao Marques-Silva.
Fast, flexible MUS enumeration.
Constraints, 21(2):223–250, 2016.

[LS08] Mark H. Liffiton and Karem A. Sakallah.
Algorithms for computing minimal unsatisfiable subsets of constraints.
J. Autom. Reasoning, 40(1):1–33, 2008.

[NH10] Vinod Nair and Geoffrey E. Hinton.
Rectified linear units improve restricted boltzmann machines.
In ICML, pages 807–814, 2010.

[PIMM15] Alessandro Previti, Alexey Ignatiev, António Morgado, and Joao Marques-Silva.
Prime compilation of non-clausal formulae.
In IJCAI, pages 1980–1988, 2015.

[Rei87] Raymond Reiter.
A theory of diagnosis from first principles.
Artif. Intell., 32(1):57–95, 1987.

42 / 40

Interpretable Classification

Given training data, learn function that correctly classifies that
data, performs suitably well on unseen data, and offers human-
interpretable functions for the predictions made

Given training data, learn decision sets/decision trees that
correctly classify that data, perform suitably well on unseen
data, and offer human-interpretable functions for the predic-
tions made

1 / 38

Interpretable Classification

Given training data, learn function that correctly classifies that
data, performs suitably well on unseen data, and offers human-
interpretable functions for the predictions made

Given training data, learn decision sets/decision trees that
correctly classify that data, perform suitably well on unseen
data, and offer human-interpretable functions for the predic-
tions made

1 / 38

Recipe

Step 1 Discretization of the training and test dataset

Step 2 Define the grammar of the classifier

Step 3 Hard Constraints to capture structure of the rules

Step 4 Hard Constraints to capture evaluation of rules: A rule
must

• return True on positive example and False on
negative example

Step 5 Soft Constraints

• Minimize the size of rules

Step 6 Rely on progress in SAT and MaxSAT solving over the
past decade

2 / 38

Recipe

Step 1 Discretization of the training and test dataset

Step 2 Define the grammar of the classifier

Step 3 Hard Constraints to capture structure of the rules

Step 4 Hard Constraints to capture evaluation of rules: A rule
must

• return True on positive example and False on
negative example

Step 5 Soft Constraints

• Minimize the size of rules

Step 6 Rely on progress in SAT and MaxSAT solving over the
past decade

2 / 38

Recipe

Step 1 Discretization of the training and test dataset

Step 2 Define the grammar of the classifier

Step 3 Hard Constraints to capture structure of the rules

Step 4 Hard Constraints to capture evaluation of rules: A rule
must

• return True on positive example and False on
negative example

Step 5 Soft Constraints

• Minimize the size of rules

Step 6 Rely on progress in SAT and MaxSAT solving over the
past decade

2 / 38

Recipe

Step 1 Discretization of the training and test dataset

Step 2 Define the grammar of the classifier

Step 3 Hard Constraints to capture structure of the rules

Step 4 Hard Constraints to capture evaluation of rules: A rule
must

• return True on positive example and False on
negative example

Step 5 Soft Constraints

• Minimize the size of rules

Step 6 Rely on progress in SAT and MaxSAT solving over the
past decade

2 / 38

Recipe

Step 1 Discretization of the training and test dataset

Step 2 Define the grammar of the classifier

Step 3 Hard Constraints to capture structure of the rules

Step 4 Hard Constraints to capture evaluation of rules: A rule
must

• return True on positive example and False on
negative example

Step 5 Soft Constraints

• Minimize the size of rules

Step 6 Rely on progress in SAT and MaxSAT solving over the
past decade

2 / 38

Recipe

Step 1 Discretization of the training and test dataset

Step 2 Define the grammar of the classifier

Step 3 Hard Constraints to capture structure of the rules

Step 4 Hard Constraints to capture evaluation of rules: A rule
must

• return True on positive example and False on
negative example

Step 5 Soft Constraints

• Minimize the size of rules

Step 6 Rely on progress in SAT and MaxSAT solving over the
past decade

2 / 38

Outline

Discretization

Classification via Decision Sets

Decision Sets via MaxSAT

Incremental learning

3 / 38

Discretization

Ex. Height (H) Weight (W) Risk (R)

e1 160 210 0

e2 175 210 0

e3 170 190 1

e4 166 190 0

e5 172 170 1

• Suppose Height can range between 50 and 250 cm and weight
ranges between 100 and 300.

• Do we need variable for every value of H and W ?
• One-hot encoding: Only introduce variables to differentiate two

distinct data points.

– Variables corresponding to H ≥ 170, H ≥ 165, H ≥ 172, H ≥ 175
suffice

– Variables corresponding to W ≥ 200 and W ≥ 180

4 / 38

Discretization

Ex. Height (H) Weight (W) Risk (R)

e1 160 210 0

e2 175 210 0

e3 170 190 1

e4 166 190 0

e5 172 170 1

• Suppose Height can range between 50 and 250 cm and weight
ranges between 100 and 300.

• Do we need variable for every value of H and W ?

• One-hot encoding: Only introduce variables to differentiate two
distinct data points.

– Variables corresponding to H ≥ 170, H ≥ 165, H ≥ 172, H ≥ 175
suffice

– Variables corresponding to W ≥ 200 and W ≥ 180

4 / 38

Discretization

Ex. Height (H) Weight (W) Risk (R)

e1 160 210 0

e2 175 210 0

e3 170 190 1

e4 166 190 0

e5 172 170 1

• Suppose Height can range between 50 and 250 cm and weight
ranges between 100 and 300.

• Do we need variable for every value of H and W ?
• One-hot encoding: Only introduce variables to differentiate two

distinct data points.

– Variables corresponding to H ≥ 170, H ≥ 165, H ≥ 172, H ≥ 175
suffice

– Variables corresponding to W ≥ 200 and W ≥ 180

4 / 38

Discretization

Ex. Height (H) Weight (W) Risk (R)

e1 160 210 0

e2 175 210 0

e3 170 190 1

e4 166 190 0

e5 172 170 1

Ex. H ≥ 170 H ≥ 165 H ≥ 172 H ≥ 175 W > 200 W > 180 Risk (R)

e1 0 0 0 0 1 0 0

e2 1 0 1 1 1 0 0

e3 1 1 0 0 0 1 1

e4 0 1 0 0 0 1 0

e5 1 1 1 0 0 0 1

5 / 38

Outline

Discretization

Classification via Decision Sets

Decision Sets via MaxSAT

Incremental learning

6 / 38

Classification problems

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0

e2 1 0 0 0 1

e3 0 0 1 1 0

e4 1 0 0 1 1

e5 0 1 1 0 0

e6 0 1 1 1 0

e7 1 1 0 1 1

• Training data (or examples): E = {e1, . . . , eM}

• Binary features: F = {f1, . . . , fK}
– f1 , V, f2 , C, f3 , M, and f4 , E
– Literals: fr and ¬fr

• Feature space: U ,
∏K

r=1{fr ,¬fr}
• Binary classification: C = {c0 = 0, c1 = 1}

– E partitioned into E− and E+

7 / 38

Classification problems

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0

e2 1 0 0 0 1

e3 0 0 1 1 0

e4 1 0 0 1 1

e5 0 1 1 0 0

e6 0 1 1 1 0

e7 1 1 0 1 1

• Training data (or examples): E = {e1, . . . , eM}
• Binary features: F = {f1, . . . , fK}

– f1 , V, f2 , C, f3 , M, and f4 , E
– Literals: fr and ¬fr

• Feature space: U ,
∏K

r=1{fr ,¬fr}
• Binary classification: C = {c0 = 0, c1 = 1}

– E partitioned into E− and E+

7 / 38

Classification problems

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0

e2 1 0 0 0 1

e3 0 0 1 1 0

e4 1 0 0 1 1

e5 0 1 1 0 0

e6 0 1 1 1 0

e7 1 1 0 1 1

• Training data (or examples): E = {e1, . . . , eM}
• Binary features: F = {f1, . . . , fK}

– f1 , V, f2 , C, f3 , M, and f4 , E
– Literals: fr and ¬fr

• Feature space: U ,
∏K

r=1{fr ,¬fr}

• Binary classification: C = {c0 = 0, c1 = 1}
– E partitioned into E− and E+

7 / 38

Classification problems

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0

e2 1 0 0 0 1

e3 0 0 1 1 0

e4 1 0 0 1 1

e5 0 1 1 0 0

e6 0 1 1 1 0

e7 1 1 0 1 1

• Training data (or examples): E = {e1, . . . , eM}
• Binary features: F = {f1, . . . , fK}

– f1 , V, f2 , C, f3 , M, and f4 , E
– Literals: fr and ¬fr

• Feature space: U ,
∏K

r=1{fr ,¬fr}
• Binary classification: C = {c0 = 0, c1 = 1}

– E partitioned into E− and E+

7 / 38

Example

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0

e2 1 0 0 0 1

e3 0 0 1 1 0

e4 1 0 0 1 1

e5 0 1 1 0 0

e6 0 1 1 1 0

e7 1 1 0 1 1

• Binary features: F = {f1, f2, f3, f4}
– f1 , V, f2 , C, f3 , M, and f4 , E

• e1 is represented by the 2-tuple (π1, ς1),

– π1 = (¬V,¬C,M,¬E)
– ς1 = 0

• U = {V,¬V} × {C,¬C} × {M,¬M} × {E,¬E}

8 / 38

Itemsets & decision sets

• Given F , an itemset π is an element of I ,
∏K

r=1{fr ,¬fr}

• A rule is a 2-tuple (π, c), with itemset π ∈ I, and class c ∈ C
Rule (π, c) interpreted as:

IF all specified literals in π are true, THEN pick class c

• A decision set S is a finite set of rules – unordered

• A rule of the form D , (∅, c) denotes the default rule of a
decision set S

– Default rule is optional and used only when other rules do not
apply on some feature space point

– In this talk, we will seek to learn

9 / 38

Itemsets & decision sets

• Given F , an itemset π is an element of I ,
∏K

r=1{fr ,¬fr}

• A rule is a 2-tuple (π, c), with itemset π ∈ I, and class c ∈ C
Rule (π, c) interpreted as:

IF all specified literals in π are true, THEN pick class c

• A decision set S is a finite set of rules – unordered

• A rule of the form D , (∅, c) denotes the default rule of a
decision set S

– Default rule is optional and used only when other rules do not
apply on some feature space point

– In this talk, we will seek to learn

9 / 38

Itemsets & decision sets

• Given F , an itemset π is an element of I ,
∏K

r=1{fr ,¬fr}

• A rule is a 2-tuple (π, c), with itemset π ∈ I, and class c ∈ C
Rule (π, c) interpreted as:

IF all specified literals in π are true, THEN pick class c

• A decision set S is a finite set of rules – unordered

• A rule of the form D , (∅, c) denotes the default rule of a
decision set S

– Default rule is optional and used only when other rules do not
apply on some feature space point

– In this talk, we will seek to learn

9 / 38

Itemsets & decision sets

• Given F , an itemset π is an element of I ,
∏K

r=1{fr ,¬fr}

• A rule is a 2-tuple (π, c), with itemset π ∈ I, and class c ∈ C
Rule (π, c) interpreted as:

IF all specified literals in π are true, THEN pick class c

• A decision set S is a finite set of rules – unordered

• A rule of the form D , (∅, c) denotes the default rule of a
decision set S

– Default rule is optional and used only when other rules do not
apply on some feature space point

– In this talk, we will seek to learn

9 / 38

Example

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0

e2 1 0 0 0 1

e3 0 0 1 1 0

e4 1 0 0 1 1

e5 0 1 1 0 0

e6 0 1 1 1 0

e7 1 1 0 1 1

• Rule 1: ((¬M,¬E), c1)

– Meaning: if ¬Meeting and ¬Expo then Hike

• Rule 2: ((V,¬C), c1)

– Meaning: if Vacation and ¬Concert then Hike

• Rule 3: ((¬V,M), c0)

– Meaning: if ¬Vacation and Meeting then ¬Hike

• Default rule: (∅, c0)

– Meaning: if all other rules do not apply, then pick ¬Hike

10 / 38

Example

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0

e2 1 0 0 0 1

e3 0 0 1 1 0

e4 1 0 0 1 1

e5 0 1 1 0 0

e6 0 1 1 1 0

e7 1 1 0 1 1

• Rule 1: ((¬M,¬E), c1)

– Meaning: if ¬Meeting and ¬Expo then Hike

• Rule 2: ((V,¬C), c1)

– Meaning: if Vacation and ¬Concert then Hike

• Rule 3: ((¬V,M), c0)

– Meaning: if ¬Vacation and Meeting then ¬Hike

• Default rule: (∅, c0)

– Meaning: if all other rules do not apply, then pick ¬Hike
10 / 38

Succinct explanations

• If a rule fires, the set of literals represents the explanation for the
predicted class

– Explanation is succinct : only the literals in the rule used;
independent of example

• For the default class, must pick one falsified literal in every rule
that predicts a different class

– Explanation is not succinct : explanation depends on each
example

• Obs: Uninteresting to predict c1 as negation of c0 (and
vice-versa)

– Explanations also not succinct

11 / 38

Stating our goals

• Assumptions:

– Also, let E− ∧ E+ � ⊥

• DNF functions to compute:

– F 0 for predicting c0, while ensuring E− � F 0

– F 1 for predicting c1, while ensuring E+ � F 1

12 / 38

Stating our goals

• Assumptions:

– Also, let E− ∧ E+ � ⊥

• DNF functions to compute:

– F 0 for predicting c0, while ensuring E− � F 0

– F 1 for predicting c1, while ensuring E+ � F 1

12 / 38

Different Possibilities

• MinDS0:
Find the smallest DNF formulas F 0 and F 1 such that:

1. E− � F 0

2. E+ � F 1

3. F 1↔F 0 � ⊥
– Obs: MinDS0 ensures succinct explanations

I Computes F 0 and F 1 (i.e. no negation) and no default rule

• MinDS3: Minimize F 1 such that

1. E+ � F 1

2. F 1 ∧ E− � ⊥
– No succinct explanations for F 0

• MinDS4: Minimize F 0 such that

1. E− � F 0

2. F 0 ∧ E+ � ⊥
– No succinct explanations for F 1

[]

13 / 38

Different Possibilities

• MinDS0:
Find the smallest DNF formulas F 0 and F 1 such that:

1. E− � F 0

2. E+ � F 1

3. F 1↔F 0 � ⊥
– Obs: MinDS0 ensures succinct explanations

I Computes F 0 and F 1 (i.e. no negation) and no default rule

• MinDS3: Minimize F 1 such that

1. E+ � F 1

2. F 1 ∧ E− � ⊥
– No succinct explanations for F 0

• MinDS4: Minimize F 0 such that

1. E− � F 0

2. F 0 ∧ E+ � ⊥
– No succinct explanations for F 1

[]

13 / 38

Outline

Discretization

Classification via Decision Sets

Decision Sets via MaxSAT
Handling Noise
Addressing Scalability Challenge
Experimental Results

Incremental learning

14 / 38

Boolean Formulation of MinDS3

• DNF representation for F 1

• Consider N terms

– F 1 := F 1
1 ∨ F 1

2 · · ·F 1
N , where

F 1
i = ((bi,1 · f1 ∨ ci,1 · ¬f1 ∨ di,1) · · · ∧ (bi,r · fr ∨ ci,r · ¬fr ∨ di,r) · · ·
∧((bi,K · fK ∨ ci,K · ¬fK ∨ di,K))

I If bi,1 is true, then f1 is in F 1
i .

I If ci,1 is true, then ¬f1 is in F 1
i .

I If di,1 is true, then f1 and ¬f1 do not appear in F 1
i

– F 1
i is a DNF term if exactly one of {bi,r , ci,r , di,r} is true for each r.

• Goal: Find values of {bi ,j , ci ,j , di ,j}

15 / 38

Boolean Formulation of MinDS3

• DNF representation for F 1

• Consider N terms

– F 1 := F 1
1 ∨ F 1

2 · · ·F 1
N , where

F 1
i = ((bi,1 · f1 ∨ ci,1 · ¬f1 ∨ di,1) · · · ∧ (bi,r · fr ∨ ci,r · ¬fr ∨ di,r) · · ·
∧((bi,K · fK ∨ ci,K · ¬fK ∨ di,K))

I If bi,1 is true, then f1 is in F 1
i .

I If ci,1 is true, then ¬f1 is in F 1
i .

I If di,1 is true, then f1 and ¬f1 do not appear in F 1
i

– F 1
i is a DNF term if exactly one of {bi,r , ci,r , di,r} is true for each r.

• Goal: Find values of {bi ,j , ci ,j , di ,j}

15 / 38

MaxSAT Formulation

• Recall

– σ(r , q): value of feature fr for eq

F 1
i = ((bi,1 · f1 ∨ ci,1 · ¬f1 ∨ di,1) · · · ∧ (bi,r · fr ∨ ci,r · ¬fr ∨ di,r) · · ·
∧((bi,K · fK ∨ ci,K · ¬fK ∨ di,K))

• Structural Constraints:
∧

i ,r ExactlyOne(bi ,r , ci ,r , di ,r)

• E+ � F 1: For eq ∈ E+, F 1[
∧

r fr 7→ σ(r , q)] = 1 (Hard)

• F 1 ∧ E− � ⊥: For eq ∈ E−, F 1[
∧

r fr 7→ σ(r , q)] = 0 (Hard)
• Soft Constraints: Si ,r := (¬bi ,r)ci ,r); W (Si ,r) = 1

– Minimize the size of each term
– Can have different objective functions

16 / 38

Example

Ex.
Vacation (V) Meeting (M) Expo (E) Hike (H)

f1 f2 f3 Label

e1 0 1 0 1

e2 1 0 0 0

e3 0 1 1 1

Suppose, we want to learn F 1 of one term ,i.e., N = 1. Remember,
F 1
1 = (b1,1 · f1 ∨ c1,1 · ¬f1 ∨ d1,1) ∨ (b1,2 · f2 ∨ c1,2 · ¬f2 ∨ d1,2) ∧

(b1,3 · f3 ∨ c1,3 · ¬f3 ∨ d1,3)
F 1
2 = (b2,1 · f1 ∨ c2,1 · ¬f1 ∨ d2,1) ∨ (b2,2 · f2 ∨ c2,2 · ¬f2 ∨ d2,2) ∨

(b2,3 · f3 ∨ c2,3 · ¬f3 ∨ d2,3)

1. For e1, we have F 1[
∧

r fr 7→ σ(r , q)] =
((c1,1 ∨ d1,1) ∧ (b1,2 ∨ d1,2) ∧ (c1,3 ∨ d1,3)) ∨

((c2,1 ∨ d2,1) ∧ (b2,2 ∨ d2,2) ∧ (c2,3 ∨ d2,3))

17 / 38

Example

Ex.
Vacation (V) Meeting (M) Expo (E) Hike (H)

f1 f2 f3 Label

e1 0 1 0 1

e2 1 0 0 0

e3 0 1 1 1

Suppose, we want to learn F 1 of one term ,i.e., N = 1. Remember,
F 1
1 = (b1,1 · f1 ∨ c1,1 · ¬f1 ∨ d1,1) ∨ (b1,2 · f2 ∨ c1,2 · ¬f2 ∨ d1,2) ∧

(b1,3 · f3 ∨ c1,3 · ¬f3 ∨ d1,3)
F 1
2 = (b2,1 · f1 ∨ c2,1 · ¬f1 ∨ d2,1) ∨ (b2,2 · f2 ∨ c2,2 · ¬f2 ∨ d2,2) ∨

(b2,3 · f3 ∨ c2,3 · ¬f3 ∨ d2,3)

1. For e1, we have F 1[
∧

r fr 7→ σ(r , q)] =
((c1,1 ∨ d1,1) ∧ (b1,2 ∨ d1,2) ∧ (c1,3 ∨ d1,3)) ∨
((c2,1 ∨ d2,1) ∧ (b2,2 ∨ d2,2) ∧ (c2,3 ∨ d2,3))

17 / 38

Example

Ex.
Vacation (V) Meeting (M) Expo (E) Hike (H)

f1 f2 f3 Label

e1 0 1 0 1

e2 1 0 0 0

e3 0 1 1 1

Suppose, we want to learn F 1 of one term ,i.e., N = 1. Remember,
F 1
1 = (b1,1 · f1 ∨ c1,1 · ¬f1 ∨ d1,1) ∨ (b1,2 · f2 ∨ c1,2 · ¬f2 ∨ d1,2) ∧

(b1,3 · f3 ∨ c1,3 · ¬f3 ∨ d1,3)
F 1
2 = (b2,1 · f1 ∨ c2,1 · ¬f1 ∨ d2,1) ∨ (b2,2 · f2 ∨ c2,2 · ¬f2 ∨ d2,2) ∨

(b2,3 · f3 ∨ c2,3 · ¬f3 ∨ d2,3)

1. Suppose, MaxSAT solver returns
b1,1 = c1,2 = d1,3 = d2,1 = d2,3 = b2,3 = 1; then the rule is

F 1 = (f1 ∧ ¬f2) ∨ (f2)

18 / 38

Example

Ex.
Vacation (V) Meeting (M) Expo (E) Hike (H)

f1 f2 f3 Label

e1 0 1 0 1

e2 1 0 0 0

e3 0 1 1 1

Suppose, we want to learn F 1 of one term ,i.e., N = 1. Remember,
F 1
1 = (b1,1 · f1 ∨ c1,1 · ¬f1 ∨ d1,1) ∨ (b1,2 · f2 ∨ c1,2 · ¬f2 ∨ d1,2) ∧

(b1,3 · f3 ∨ c1,3 · ¬f3 ∨ d1,3)
F 1
2 = (b2,1 · f1 ∨ c2,1 · ¬f1 ∨ d2,1) ∨ (b2,2 · f2 ∨ c2,2 · ¬f2 ∨ d2,2) ∨

(b2,3 · f3 ∨ c2,3 · ¬f3 ∨ d2,3)

1. Suppose, MaxSAT solver returns
b1,1 = c1,2 = d1,3 = d2,1 = d2,3 = b2,3 = 1; then the rule is
F 1 = (f1 ∧ ¬f2) ∨ (f2)

18 / 38

Tools

• The MaxSAT formulation is NP-hard
• Use Local search based approaches [LBS, KDD-16]

– Local search-based:
git clone git@github.com:jirifilip/pyIDS.git

• Use MaxSAT solvers [IPNM, IJCAR-18]

– Significant progress in MaxSAT solving over the past decade
– Usage of symmetry breaking predicates
– MaxSAT-based Decision sets

git clone https://github.com/alexeyignatiev/minds

• Results: Over a set of 49 instances, local-search based approach
can handle only 2 instances while MaxSAT based approach can
optimal decision sets of 42 instances [IPNM, IJCAR-18]

19 / 38

Tools

• The MaxSAT formulation is NP-hard
• Use Local search based approaches [LBS, KDD-16]

– Local search-based:
git clone git@github.com:jirifilip/pyIDS.git

• Use MaxSAT solvers [IPNM, IJCAR-18]

– Significant progress in MaxSAT solving over the past decade
– Usage of symmetry breaking predicates
– MaxSAT-based Decision sets

git clone https://github.com/alexeyignatiev/minds

• Results: Over a set of 49 instances, local-search based approach
can handle only 2 instances while MaxSAT based approach can
optimal decision sets of 42 instances [IPNM, IJCAR-18]

19 / 38

Looking Beyond: Handling Noise

• Noisy data sets: collection of data, non-existence of perfect rules

– The optimal decision sets are too large.

• MinDS3: Minimize F 1 and such that

1. E+ � F 1

2. F 1 ∧ E− � ⊥
– No succinct explanations for F 0

• Noisy MinDS3: Minimize F 1, such that

1. 1q = 1 if eq 6|= F 1 for eq ∈ E+ or eq |= F 1 for eq ∈ E+
2. Minimize |F |+ λ

∑
q 1q

20 / 38

Looking Beyond: Handling Noise

• Noisy data sets: collection of data, non-existence of perfect rules

– The optimal decision sets are too large.

• MinDS3: Minimize F 1 and such that

1. E+ � F 1

2. F 1 ∧ E− � ⊥
– No succinct explanations for F 0

• Noisy MinDS3: Minimize F 1, such that

1. 1q = 1 if eq 6|= F 1 for eq ∈ E+ or eq |= F 1 for eq ∈ E+
2. Minimize |F |+ λ

∑
q 1q

20 / 38

MaxSAT Formulation for Noisy Setting

[MM, CP-18]

F 1
i = ((bi ,1 · f1 ∨ ci ,1 · ¬f1 ∨ di ,1) · · · ∧ (bi ,r · fr ∨ ci ,r · ¬fr ∨ di ,r) · · ·
∧ (bi ,K · fK ∨ ci ,K · ¬fK ∨ di ,K))

• Notations
– Variables: {bi,r , ci,r , di,r , ηq}
– eq: example q
– σ(r , q): sign of feature fr for eq

• Hard Constraints:
– Structural Constraints:

∧
i,r ExactlyOne(bi,r , ci,r , di,r)

– E+ � F 1: For eq ∈ E+, F 1[
∧

r fr 7→ σ(r , q)] = 1⊕ ηq (Hard)
– F 1 ∧ E− � ⊥: For eq ∈ E−, F 1[

∧
r fr 7→ σ(r , q)] = 0⊕ ηq (Hard)

• Soft Constraints
– Minimize the size of each term: Si,r := (di,r); W (Si,r) = 1
– Minimize mis-classification: Tq := (¬ηq) W (Tq) = 1

21 / 38

MaxSAT Formulation for Noisy Setting

[MM, CP-18]

F 1
i = ((bi ,1 · f1 ∨ ci ,1 · ¬f1 ∨ di ,1) · · · ∧ (bi ,r · fr ∨ ci ,r · ¬fr ∨ di ,r) · · ·
∧ (bi ,K · fK ∨ ci ,K · ¬fK ∨ di ,K))

• Notations
– Variables: {bi,r , ci,r , di,r , ηq}
– eq: example q
– σ(r , q): sign of feature fr for eq

• Hard Constraints:
– Structural Constraints:

∧
i,r ExactlyOne(bi,r , ci,r , di,r)

– E+ � F 1: For eq ∈ E+, F 1[
∧

r fr 7→ σ(r , q)] = 1⊕ ηq (Hard)
– F 1 ∧ E− � ⊥: For eq ∈ E−, F 1[

∧
r fr 7→ σ(r , q)] = 0⊕ ηq (Hard)

• Soft Constraints
– Minimize the size of each term: Si,r := (di,r); W (Si,r) = 1
– Minimize mis-classification: Tq := (¬ηq) W (Tq) = 1

21 / 38

MaxSAT Formulation for Noisy Setting

[MM, CP-18]

F 1
i = ((bi ,1 · f1 ∨ ci ,1 · ¬f1 ∨ di ,1) · · · ∧ (bi ,r · fr ∨ ci ,r · ¬fr ∨ di ,r) · · ·
∧ (bi ,K · fK ∨ ci ,K · ¬fK ∨ di ,K))

• Notations
– Variables: {bi,r , ci,r , di,r , ηq}
– eq: example q
– σ(r , q): sign of feature fr for eq

• Hard Constraints:
– Structural Constraints:

∧
i,r ExactlyOne(bi,r , ci,r , di,r)

– E+ � F 1: For eq ∈ E+, F 1[
∧

r fr 7→ σ(r , q)] = 1⊕ ηq (Hard)
– F 1 ∧ E− � ⊥: For eq ∈ E−, F 1[

∧
r fr 7→ σ(r , q)] = 0⊕ ηq (Hard)

• Soft Constraints
– Minimize the size of each term: Si,r := (di,r); W (Si,r) = 1
– Minimize mis-classification: Tq := (¬ηq) W (Tq) = 1

21 / 38

Illustrative Example

• Iris Classification:

• Features: sepal length, sepal width, petal length, and petal width
• MLIC learned R=

1. (sepal length ≤ 6.3 ∧ sepal width ≤ 3.0 ∧ petal width ≥ 1.5) ∨
2. (sepal width ≥ 2.7 ∧ petal length ≤ 4.0 ∧ petal width ≤ 1.2) ∨
3. (petal length > 5.0)

22 / 38

Accuracy

Dataset Size # Features RIPPER Log Reg NN RF SVM MLIC

ionosphere 350 564
0.886
(0.1)

0.909
(0.1)

0.926
(1.2)

0.909
(1.3)

0.886
(0.1)

0.889
(15.04)

parkinsons 190 392
0.868
(0.1)

0.884
(0.1)

0.921
(1.2)

0.895
(1.1)

0.879
(1.6)

0.895
(245)

Trans 740 64
0.78
(0.0)

0.759
(0.0)

0.788
(1.2)

0.788
(1.2)

0.765
(372.3)

0.797
(1177)

WDBC 560 540
0.961
(0.1)

0.936
(0.0)

0.961
(1.3)

0.943
(1.4)

0.955
(3.0)

0.946
(911)

23 / 38

Intepretability

Dataset Examples # Features MLIC

ionosphere 350 564 5.5

parkinsons 190 392 6

Trans 740 64 4

WDBC 560 540 3.5

24 / 38

Scalability

How do we scale to tens of thousands of examples and
features?

Primary Bottleneck Size of MaxSAT formula O(M · N · K) for a
formula on M examples, N clauses and K features

25 / 38

Outline

Discretization

Classification via Decision Sets

Decision Sets via MaxSAT

Incremental learning

26 / 38

IMLI: Incremental Rule-learning Approach

• The large formula size of the MaxSAT instance for the poor
scalability

• The proposal of mini-batch incremental learning [Ghosh and M., AIES 19]

27 / 38

IMLI: Solution Technique - I

• We propose a mini-batch incremental learning framework with the
following objective function on batch t

min
∑
i ,j

(bi ,j · I (bi ,j) + ci ,j · I (ci ,j) + di ,j · I (di ,j)) + λ
∑
q

ηq.

where indicator function I (·) is defined as follows.

I (bi ,j) =

{
−1 if bi ,j ∈ Rt−1

1 otherwise

Similarly, for I (ci ,j) and I (di ,j)
28 / 38

IMLI: Solution Technique - II

(t − 1)-th batch

we learn assignment

• b1,1 = 0

• b1,2 = 1

• b2,1 = 0

• b2,2 = 1

t-th batch

we construct soft unit clause

• ¬b1,1
• b1,2
• ¬b2,1
• b2,2

29 / 38

IMLI: Solution Technique-III

For M examples, N clauses, and K features,
• The number of clauses for each batch is O(Mt · N · K)

– Significant reduction from O(M · N · K)

30 / 38

Accuracy and training time of different classifiers

Dataset Size n Features m LR SVC RIPPER IMLI

PIMA 768 134
75.32 75.32 75.32 73.38
(0.3s) (0.37s) (2.58s) (0.74s)

Credit-default 30000 334
80.81 80.69 80.97 79.41

(6.87s) (847.93s) (20.37s) (32.58s)

Twitter 49999 1050
95.67

Timeout
95.56 94.69

(3.99s) (98.21s) (59.67s)

Table: Each cell in the last 5 columns refers to test accuracy (%) and training
time (s).

MLIC timed out on all the above instances

31 / 38

Size of rules of different rule-based classifiers

Dataset RIPPER IMLI

PIMA 8.25 3.5

Twitter 21.6 6

Credit 14.25 3

Table: Average size of the rules of different rule-based models.

IMLI generates shorter rules compared to other rule-based
models

32 / 38

Example Rules

Rule for Pima Indians Diabetes Database
Tested positive for diabetes if :=
(Plasma glucose concentration > 125 AND Triceps thickness ≤ 35 mm
AND Diabetes pedigree function > 0.259 AND Age > 25 years)

Rule for Parkinson’s Disease Dataset
A person has Parkinson’s disease if :=
(minimum vocal fundamental frequency ≤ 87.57 Hz OR minimum
vocal fundamental frequency > 121.38 Hz OR Shimmer:APQ3 ≤ 0.01
OR MDVP:APQ > 0.02 OR D2 ≤ 1.93 OR NHR > 0.01 OR HNR >
26.5 OR spread2 > 0.3) AND
(Maximum vocal fundamental frequency ≤ 200.41 Hz OR HNR ≤ 18.8
OR spread2 > 0.18 OR D2 > 2.92)

33 / 38

Example Rules

Rule for Pima Indians Diabetes Database
Tested positive for diabetes if :=
(Plasma glucose concentration > 125 AND Triceps thickness ≤ 35 mm
AND Diabetes pedigree function > 0.259 AND Age > 25 years)

Rule for Parkinson’s Disease Dataset
A person has Parkinson’s disease if :=
(minimum vocal fundamental frequency ≤ 87.57 Hz OR minimum
vocal fundamental frequency > 121.38 Hz OR Shimmer:APQ3 ≤ 0.01
OR MDVP:APQ > 0.02 OR D2 ≤ 1.93 OR NHR > 0.01 OR HNR >
26.5 OR spread2 > 0.3) AND
(Maximum vocal fundamental frequency ≤ 200.41 Hz OR HNR ≤ 18.8
OR spread2 > 0.18 OR D2 > 2.92)

33 / 38

Recipe so far

• Discretization of the training and test dataset

• Hard Constraints to capture structure of the rules
• Hard Constraints to capture evaluation of rules: A rule must

– EITHER return True on positive example and False on negative
example

– OR the noise variable is set to True

• Soft Constraints

– Minimize the size of rules
– Minimize the number of mis-classifications

34 / 38

From Decisions Sets to Decision Trees

[NIPM, IJCAI-18]

• Hard Constraints to capture structure of the rules

– A leaf node has no children and is either 0 (False) or 1 (True)
– A non-leaf node must have a child.
– If the i-th node is a parent then it must have a child
– All nodes (except root) must have a parent
– Left edge corresponding to node with label fr corresponds to fr = 0
– Right edge corresponding to node with label fr corresponds to fr = 1

• Evaluation along a path is just conjunction of edges
• Hard constraints to capture evaluation of rules

– return True on positive example and False on negative example

• Exploitation of domain specific knowledge to improve encoding

35 / 38

Conclusions & research directions

• SAT/MaxSAT-based solutions for computing (explainable) decision
sets

– Minimize the number of terms
– Allows several different objective functions

• Far better than local search based approach

• Formalizations beyond Decisions sets and Decision Trees

– Checklists [GMM, ECAI20]

– The underlying approach can be applied
– Exploitation of domain specific knowledge

• Scalability and handling very large data sets.

36 / 38

Conclusions & research directions

• SAT/MaxSAT-based solutions for computing (explainable) decision
sets

– Minimize the number of terms
– Allows several different objective functions

• Far better than local search based approach

• Formalizations beyond Decisions sets and Decision Trees

– Checklists [GMM, ECAI20]

– The underlying approach can be applied
– Exploitation of domain specific knowledge

• Scalability and handling very large data sets.

36 / 38

Tools

• Local search-based:
git clone git@github.com:jirifilip/pyIDS.git

• MaxSAT-based Decision sets
git clone https://github.com/alexeyignatiev/minds

• Noisy and Incremental: pip install rulelearning

37 / 38

Questions?

38 / 38

Part 3. Robustness of ML models

Nina Narodytska

Part 3. Robustness of Deep NNs

Nina Narodytska

Outline

Outline

Motivation

Verification methods

SAT-based verification of Binarized NNs

Adversarial attacks

Outline

Motivation

6

Robustness of ML models

Interpretability of ML models

Why robustness?

7

Robustness of ML models

Interpretability of ML models

Why robustness?

8

Robustness of ML models

Interpretability of ML models

Why robustness?

9

Robustness of ML models

Interpretability of ML models

Why robustness?

10

Robustness of ML models

Interpretability of ML models

Why robustness?

??? Part 5!!!

Dialogs/chat bots

Control systems

Machine Learning is used on
daily basis

13

Deep learning-based systems can
be fooled

14

Deep learning-based systems can
be fooled

15

Fooling DL systems

Fooling DL systems

Fooling DL systems

Fooling DL systems

Fooling DL systems

[Szegedy et al.] Intriguing properties of neural networks

Outline

Motivation

Adversarial attacks

Adversarial attacks

Untargeted adversarial examples

Untargeted adversarial examples

Untargeted adversarial examples

Untargeted adversarial examples

88% tabby cat

Original image

Untargeted adversarial examples

[Szegedy et al.] Intriguing properties of neural networks
[Athalye et al.]Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples

88% tabby cat

Original image Perturbation+
Untargeted adversarial examples

[Szegedy et al.] Intriguing properties of neural networks
[Athalye et al.]Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples

88% tabby cat

Original image Perturbation Perturbed image+
Untargeted adversarial examples

[Szegedy et al.] Intriguing properties of neural networks
[Athalye et al.]Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples

=

88% tabby cat

Original image Perturbation Perturbed image+
Untargeted adversarial examples

[Szegedy et al.] Intriguing properties of neural networks
[Athalye et al.]Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples

=

99% guacamole

Beyond cats and dogs

[Eykholt at al.] Robust Physical-World Attacks on Deep Learning Visual Classification

Beyond cats and dogs

[Athalye at al.] Synthesizing Robust Adversarial Examples

Beyond cats and dogs

[Athalye at al.] Synthesizing Robust Adversarial Examples

Beyond cats and dogs

[Eykholt at al.] Robust Physical-World Attacks on Deep Learning Visual Classification

Beyond images

[Nicholas Carlini] On (In-) security of Deep Learning Models

White-box vs Black-box Attacks

N
N

W
hi

te
-b

ox

Ra
nk

in
g

Bl
ac

k-
bo

x

N
N

Ra
nk

in
g

[Goodfellow et al., Szegedy et al.] [Papernot et al., 2016a, 2016b]

White-box vs Black-box Attacks

N
N

W
hi

te
-b

ox

Ra
nk

in
g

Bl
ac

k-
bo

x

N
N

Ra
nk

in
g

Gradient-based methods that generate
adversarial images by perturbing the
gradients of the loss function w.r.t. the
input image

[Goodfellow et al., Szegedy et al.] [Papernot et al., 2016a, 2016b]

White-box vs Black-box Attacks

N
N

W
hi

te
-b

ox

Ra
nk

in
g

Bl
ac

k-
bo

x

N
N

Ra
nk

in
g

Gradient-based methods that generate
adversarial images by perturbing the
gradients of the loss function w.r.t. the
input image

[Goodfellow et al., Szegedy et al.] [Papernot et al., 2016a, 2016b]

White-box vs Black-box Attacks

N
N

W
hi

te
-b

ox

Ra
nk

in
g

Bl
ac

k-
bo

x

N
N

Ra
nk

in
g

• More realistic and applicable model
• Challenging because of weak adversaries:

no knowledge of the network architecture
• Previous attacks require ‘transferability’

assumption on adversarial examples
• GAN based attacks

Gradient-based methods that generate
adversarial images by perturbing the
gradients of the loss function w.r.t. the
input image

[Goodfellow et al., Szegedy et al.] [Papernot et al., 2016a, 2016b]

New research sub-area

New research sub-area

Attacks

New research sub-area

Attacks Defenses

New research sub-area

Attacks Defenses

New research sub-area

Attacks Defenses

Obfuscated gradients give a false sense of security: Circumventing defenses to
adversarial examples. A Athalye, N Carlini, D Wagner. ICML 2018, 2018.

New research sub-area

Attacks Defenses

Outline

Motivation

Verification methods

Adversarial attacks

Network verification problem

Network verification problem

Input
• features
• images

ReLU
…

Output

…

Network verification problem

Network verification problem

Network verification problem

Network verification problem

Verification methods

Verification methods

Verification roadmap

Verification roadmap

NN

Exact
Methods

Verification roadmap

NN

Exact
Methods

NN

Over-approx
methods

Verification roadmap

NN

Exact
Methods

NN

Train more
robust networks

NN

Over-approx
methods

Verification roadmap

NN

Exact
Methods

NN

Train more
robust networks

NN

Over-approx
methods

NN

Certified
networks

Do we augment training?

Do we augment training?
no yes

Do we augment training?

Sound and complete

Sound,
not complete

no yes

Do we augment training?

Sound and complete

Sound,
not complete

Adversarial training

Certification of NNs

no yes

Do we augment training?

Sound and complete

Sound,
not complete

Adversarial training

Certification of NNs

no yes

Easier-to-verify networks

Do we augment training?

Sound and complete

Sound,
not complete

Adversarial training

Certification of NNs

no yes

Easier-to-verify networks

Sound and complete methods

Strength: Prove whether a property holds

• R. Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks,2017
• R. Bunel, I. Turksaslan, P. Torr, P. Kohli, and P. Kumar. Piecewise Linear Neural Network Verification: A

Comparative Study, 2017.
• G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: An Efficient SMT Solver for

Verifying Deep Neural Networks.2017
• A. Lomuscio and L. Maganti. An Approach to Reachability Analysis for Feed-Forward ReLU Neural

Networks, 2017.

Sound and complete methods

Sound and complete methods

Sound and complete methods

SMT solver

Sound and complete methods

SMT solver

(will discuss for BNNs+SAT)

Sound and complete methods

SMT solver (or Reluplex, Planet, etc)

Sound and complete methods

Limitation: scalability (up to 1000 neurons)

Do we augment training?

Sound and complete

Sound,
not complete

Adversarial training

Certification of NNs

no yes

Easier-to-verify networks

Sound and incomplete methods

Strength: Prove that a property holds
(can return `do not know’)

• Singh, G., Gehr, T., Mirman, M., Puschel, M., and Vechev, M. T. Fast and effective robustness
certification.

• Zhang, H., Weng, T., Chen, P., Hsieh, C., and Daniel, L. Efficient neural network robustness certification
with general activation functions.

• Weng, T., Zhang, H., Chen, H., Song, Z., Hsieh, C., Daniel, L., Boning, D. S., and Dhillon, I. S. Towards
fast computation of certified robustness for relu networks

• T. Gehr, M. Mirman, D. Drachsler-Cohen, E. Tsankov, S. Chaudhuri, and M. Vechev. AI2: Safety and
Robustness Certification of Neural Networks with Abstract Interpretation.

Sound and incomplete methods

Based on over-approximation of the output space

https://medium.com/@deepmindsafetyresearch/towards-robust-and-verified-ai-specification-testing-
robust-training-and-formal-verification-69bd1bc48bda

Sound and incomplete methods

Based on over-approximation of the output space

https://medium.com/@deepmindsafetyresearch/towards-robust-and-verified-ai-specification-testing-
robust-training-and-formal-verification-69bd1bc48bda

Sound and incomplete methods

Based on over-approximation of the output space

*Input *Linear Transformer *ReLU

[Gehr et al.] AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation

Sound and incomplete methods

Limitation: scalability (up to 10000 neurons)

Do we augment training?

Sound and complete

Sound,
not complete

Adversarial training

Certification of NNs

no yes

Easier-to-verify networks

Adversarial training methods

Strength: (empirically) improve robustness of NNs

• Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale,
2017.

• Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples.2017

• Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu.Towards deep learning models resistant to adversarial attacks, 2018.

Adversarial training methods

Adversarial training methods

Adversarial training methods

Adversarial training methods

• Use gradient-based search, e.g. PGD, to solve inner
optimization

Adversarial training methods

1. Select minibatch B
2. For each (I,L) ∈ B compute an adversarial
example δ*
3. Update parameters at I+ δ*

Adversarial training methods

Limitation: no guarantees on robustness

Do we augment training?

Sound and complete

Sound,
not complete

Adversarial training

Certification of NNs

no yes

Easier-to-verify networks

Certified training methods

Strength: prove that a property holds
(but can produce false negatives)

• Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex
outer adversarial polytope, 2018

• Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against
adversarial examples. 2018

• Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable abstract interpretation
for provably robust neural networks. 2018

Certification of NNs

Certification of NNs

Certification of NNs

• Use a convex relaxation inner optimization
• Use gradients of this relaxation in the training procedure

Certification of NNs

Limitation:
• work with relaxation, an upper bound on the can be quite loose
• the loss is much more complex than in a non-adv training
(accuracy drops, scalability issues)

Do we augment training?

Sound and complete

Sound,
not complete

Adversarial training

Certification of NNs

Easier-to-verify networks

no yes

Easier-to-verify networks

Strength: train a network that is easier to
verify for existing decision procedures

• Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability
Kai Y. Xiao, Vincent Tjeng, Nur Muhammad (Mahi) Shafiullah, Aleksander Madry, ICLR’19

• In Search for a SAT-friendly Binarized Neural Network Architecture
Nina Narodytska, Hongce Zhang, Aarti Gupta, Toby Walsh, ICLR20

Easier-to-verify networks

Limitation: no guarantees on robustness

Do we augment training?

Sound and complete

no yes

Easier-to-verify networks

Do we augment training?

Sound and complete

no yes

Easier-to-verify networks

98

Why BNNs?

99

• Only 1 bit per weight, {-1,1}
• Can be deployed on embedded devices

Compactness

100

• fast binary matrix multiplication
(7X speed up on GPU)

• “Accelerating Binarized Neural Networks:
Comparison of FPGA, CPU, GPU, and ASIC”
IEEE’2016

Inference efficiency

101

Structure of BNNs

102

Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1
Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, Yoshua Bengio

Binarized Neural Networks

103

Binarized Neural Networks

104

Binarized Neural Networks

105

Binarized Neural Networks

106

BNNs and logic-based
reasoning

107

BNN

BNNs and Logic

108

BNN

BNNs and Logic

109

BNN

BNNs and Logic

110

BNNs and Logic

111

BNNs and Logic

112

Translation: BNN to SAT

113

Translation: BNN to SAT

114

Translation: BNN to SAT

115

A

Translation: BNN to SAT

116

A

Translation: BNN to SAT

117

A

Translation: BNN to SAT

118

A

Translation: BNN to SAT

119

A

Translation: BNN to SAT

120

A

Translation: BNN to SAT

121

A

Translation: BNN to SAT

122

A

Translation: BNN to SAT

123

Translation: BNN to SAT

124

Translation: BNN to SAT

125

Translation: BNN to SAT

126

Translation: BNN to SAT

127

Translation: BNN to SAT

128

Translation: BNN to SAT

129

Translation: BNN to SAT

130

Translation: BNN to SAT

131

Translation: BNN to SAT

132

Translation: BNN to SAT

133

Translation: BNN to SAT

134

Translation: BNN to SAT

135

Translation: BNN to SAT

136

...

Translation: BNN to SAT

137

..

BinBNN

Translation: BNN to SAT

138

Logic-based analysis of BNNs

139

Verification

Quantitative
reasoning

Compilation

Logic-based analysis of BNNs

140

Properties verification using SAT solvers

Reasoning via knowledge compilation

Nina Narodytska, Shiva Prasad Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv, and Toby Walsh.
Verifying properties of binarized deep neural networks AAAI’18
Elias B. Khalil, Amrita Gupta, Bistra Dilkina:
Combinatorial Attacks on Binarized Neural Networks ICLR’19

Verifying Binarized Neural Networks by Local Automaton Learning
Andy Shih and Adnan Darwiche and Arthur Choi

Nina Narodytska, Aditya A. Shrotri, Kuldeep S. Meel, Alexey Ignatiev, João Marques-Silva:
Assessing Heuristic Machine Learning Explanations with Model Counting SAT’19.

Quantitative Verification of Neural Networks And its Security Applications
Teodora Baluta, Shiqi Shen, Shweta Shinde, Kuldeep S. Meel, Prateek Saxena

Quantitative reasoning using approximate methods

Logic-based analysis of BNNs

141

Work with small networks

142

• Properties verification using SAT solvers
– < 200K (robustness with a very small epsilon)

• Quantitative reasoning using approximate
methods
– < 51K

• Knowledge compilation, e.g. BDD, SDD
– < 10K

Work with small networks

Do we augment training?

Sound and complete

Easier-to-verify
networks

no yes

144

..

BinBNN

Translation: BNN to SAT

145

“Neuron” constraint

146

Number of variables

Reification means no propagation!

“Neuron” constraint

147

Number of variables

Reification means no propagation!

+ reduce #vars + eliminate reifications

“Neuron” constraint

148

We can train a BNN so that

+ reduce #vars + eliminate reifications

149

Binarized Neural Network

150

Binarized Neural Network

151

Ternary quantization

BNN+: Improved Binary Network Training
Sajad Darabi, Mouloud Belbahri, Matthieu Courbariaux, Vahid Partovi Nia

152

Ternary quantization

153

Ternary quantization

154

L1+Ternary quantization

Add L1 regularization

155

1. Train a BNN
2. Build a distribution of absolute values of weights
3. Select a percentile (40%, 60%), t= 0.03
4. Train a ternary BNN with the two-sided threshold t

L1+Ternary quantization

156

Stabilization of SIGN

157

Stabilization of SIGN

158

Stabilization of SIGN

159

Stabilization of SIGN

160

Stabilization of SIGN

161

Stabilization of SIGN

162

Stabilization of SIGN

163

Encourage LB and UB of a neurons to take
the same sign:

Stabilization of SIGN

Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability
Kai Y. Xiao, Vincent Tjeng, Nur Muhammad (Mahi) Shafiullah, Aleksander Madry

164

Encourage LB and UB of a neurons to take
the same sign:

Stabilization of SIGN

Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability
Kai Y. Xiao, Vincent Tjeng, Nur Muhammad (Mahi) Shafiullah, Aleksander Madry

165

Encourage LB and UB of a neurons to take
the same sign:

Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability
Kai Y. Xiao, Vincent Tjeng, Nur Muhammad (Mahi) Shafiullah, Aleksander Madry

Stabilization of SIGN

Stabilization of SIGN

167

Sparse+L1+StableSign

168

Sparse+L1+StableSign

169

Sparse+L1+StableSign

170

Sparse+L1+StableSign

171

Sparse+L1+StableSign

172

Sparse+L1+StableSign

Outline

Motivation

Verification methods

SAT-based verification of Binarized NNs

Adversarial attacks

Where we are

Verification methods Nails

Where we are

Verification methods Nails

Where we are

What is next?

What is next?

What is next?

1. Verification is a very important tool to
analyze NNs

2. Smaller networks are useful in many
practical applications

Thanks!

Rigorous Verification and Explanation of ML Models
Part 4

A. Ignatiev, J. Marques-Silva, K. Meel & N. Narodytska

Monash Univ, ANITI@Univ. Toulouse, NU Singapore & VMWare Research

February 08, 2020 | AAAI Tutorial SP1

Computing Explanations

What do we want to achieve?

©DARPA
2 / 40

A recap: approaches to XAI

interpretable ML models
(decision trees, lists, sets)

explanation of ML models “on the fly”
(post-hoc explanation)

3 / 40

A recap: approaches to XAI

interpretable ML models
(decision trees, lists, sets)

explanation of ML models “on the fly”
(post-hoc explanation)

3 / 40

Why? or Why not? explanations

why? why not?
(why did (not) I get a loan?)

abductive contrastive

4 / 40

Why? or Why not? explanations

why? why not?
(why did (not) I get a loan?)

abductive contrastive
4 / 40

Heuristic approaches exist

State of the art (heuristics)

heuristic approaches exist
(e.g. LIME, Anchor, or SHAP) [RSG16, RSG18, LL17]

• local explanations
• no guarantees

(un-)reliable?

5 / 40

State of the art (heuristics)

heuristic approaches exist
(e.g. LIME, Anchor, or SHAP) [RSG16, RSG18, LL17]

• local explanations

• no guarantees
(un-)reliable?

5 / 40

State of the art (heuristics)

heuristic approaches exist
(e.g. LIME, Anchor, or SHAP) [RSG16, RSG18, LL17]

• local explanations
• no guarantees

(un-)reliable?

5 / 40

State of the art (heuristics)

heuristic approaches exist
(e.g. LIME, Anchor, or SHAP) [RSG16, RSG18, LL17]

• local explanations
• no guarantees

(un-)reliable?

5 / 40

Rigorous approaches

State of the art (rigorous approaches)

alternative is to use logic

(reasoning over formal models)

• search
• compilation

6 / 40

State of the art (rigorous approaches)

alternative is to use logic
(reasoning over formal models)

• search
• compilation

6 / 40

State of the art (rigorous approaches)

alternative is to use logic
(reasoning over formal models)

• search

• compilation

6 / 40

State of the art (rigorous approaches)

alternative is to use logic
(reasoning over formal models)

• search
• compilation

6 / 40

Compilation-based approach

Compiling a classifier

ODD
perform operations on
tractable representation

7 / 40

Compiling a classifier

ODD

perform operations on
tractable representation

7 / 40

Compiling a classifier

ODD
perform operations on
tractable representation

7 / 40

The idea is that

once you have an ODD:

• compute MC explanations [SCD18]

“Which positive features are responsible for a yes decision?”
“Which negative features are responsible for a no decision?”

• compute PI explanations [SCD18]

“Which features (+ or -) make the other features irrelevant?”

• perform verification queries [SDC19]

counting of counterexamples, computing their probabilites and common characteristics

8 / 40

The idea is that

once you have an ODD:

• compute MC explanations [SCD18]

“Which positive features are responsible for a yes decision?”
“Which negative features are responsible for a no decision?”

• compute PI explanations [SCD18]

“Which features (+ or -) make the other features irrelevant?”

• perform verification queries [SDC19]

counting of counterexamples, computing their probabilites and common characteristics

8 / 40

The idea is that

once you have an ODD:

• compute MC explanations [SCD18]

“Which positive features are responsible for a yes decision?”
“Which negative features are responsible for a no decision?”

• compute PI explanations [SCD18]

“Which features (+ or -) make the other features irrelevant?”

• perform verification queries [SDC19]

counting of counterexamples, computing their probabilites and common characteristics

8 / 40

The idea is that

once you have an ODD:

• compute MC explanations [SCD18]

“Which positive features are responsible for a yes decision?”
“Which negative features are responsible for a no decision?”

• compute PI explanations [SCD18]

“Which features (+ or -) make the other features irrelevant?”

• perform verification queries [SDC19]

counting of counterexamples, computing their probabilites and common characteristics

8 / 40

What ML models can we compile?

• Naïve Bayes [CD03]

• Latent Tree [SCD18]

• General BN [SCD19]

• BNN and CNN [SDC19]

9 / 40

What ML models can we compile?

• Naïve Bayes [CD03]

• Latent Tree [SCD18]

• General BN [SCD19]

• BNN and CNN [SDC19]

9 / 40

What ML models can we compile?

• Naïve Bayes [CD03]

• Latent Tree [SCD18]

• General BN [SCD19]

• BNN and CNN [SDC19]

9 / 40

What ML models can we compile?

• Naïve Bayes [CD03]

• Latent Tree [SCD18]

• General BN [SCD19]

• BNN and CNN [SDC19]

9 / 40

Pros and cons of ML model compilation

reasoning about explanations in polynomial time

but

difficult to compute an ODD
ODD can be large

10 / 40

Pros and cons of ML model compilation

reasoning about explanations in polynomial time

but

difficult to compute an ODD
ODD can be large

10 / 40

Pros and cons of ML model compilation

reasoning about explanations in polynomial time

but

difficult to compute an ODD

ODD can be large

10 / 40

Pros and cons of ML model compilation

reasoning about explanations in polynomial time

but

difficult to compute an ODD
ODD can be large

10 / 40

Search-based explanations

From ML model to logic

formula Mcube I literal π

I ∧M⊨ π

11 / 40

From ML model to logic

formula M

cube I literal π

I ∧M⊨ π

11 / 40

From ML model to logic

formula Mcube I

literal π

I ∧M⊨ π

11 / 40

From ML model to logic

formula Mcube I literal π

I ∧M⊨ π

11 / 40

From ML model to logic

formula Mcube I literal π

I ∧M⊨ π
11 / 40

Abductive explanations of ML models

[INMS19]

given a classifier M, a cube I and a prediction π,

compute a (cardinality- or subset-) minimal Em ⊆ I s.t.

Em ∧M ̸ ⊨⊥
and

Em ∧M⊨ π

iterative explanation procedure

12 / 40

Abductive explanations of ML models

[INMS19]

given a classifier M, a cube I and a prediction π,
compute a (cardinality- or subset-) minimal Em ⊆ I s.t.

Em ∧M ̸ ⊨⊥
and

Em ∧M⊨ π

iterative explanation procedure

12 / 40

Abductive explanations of ML models

[INMS19]

given a classifier M, a cube I and a prediction π,
compute a (cardinality- or subset-) minimal Em ⊆ I s.t.

Em ∧M ̸ ⊨⊥
and

Em ∧M⊨ π

iterative explanation procedure

12 / 40

Abductive explanations of ML models

[INMS19]

given a classifier M, a cube I and a prediction π,
compute a (cardinality- or subset-) minimal Em ⊆ I s.t.

Em ∧M ̸ ⊨⊥
and

Em ∧M⊨ π

iterative explanation procedure
12 / 40

Computing primes

1. Em ∧M ̸ ⊨⊥

— tautology
2. Em ∧M⊨ π ⇔ Em ⊨ (M→ π)

Em is a prime implicant of M→ π

13 / 40

Computing primes

1. Em ∧M ̸ ⊨⊥ — tautology

2. Em ∧M⊨ π ⇔ Em ⊨ (M→ π)

Em is a prime implicant of M→ π

13 / 40

Computing primes

1. Em ∧M ̸ ⊨⊥ — tautology
2. Em ∧M⊨ π

⇔ Em ⊨ (M→ π)

Em is a prime implicant of M→ π

13 / 40

Computing primes

1. Em ∧M ̸ ⊨⊥ — tautology
2. Em ∧M⊨ π ⇔ Em ⊨ (M→ π)

Em is a prime implicant of M→ π

13 / 40

Computing primes

1. Em ∧M ̸ ⊨⊥ — tautology
2. Em ∧M⊨ π ⇔ Em ⊨ (M→ π)

Em is a prime implicant of M→ π

13 / 40

Computing one subset-minimal explanation

Input: model M, initial cube I, prediction π

Output: Subset-minimal explanation Em

begin

for l ∈ I :
if Entails(I \ {l},M→ π) : # make an (entailment) oracle call
I← I \ {l}

return I

end

14 / 40

Computing one cardinality-minimal explanation

cardinality-minimal explanations can be computed

(following implicit-hitting set based approach) [IMM16]

but it is hard for ΣP2 [INMS19]

(worst-case exponential number of oracle queries)

15 / 40

Computing one cardinality-minimal explanation

cardinality-minimal explanations can be computed
(following implicit-hitting set based approach) [IMM16]

but it is hard for ΣP2 [INMS19]

(worst-case exponential number of oracle queries)

15 / 40

Computing one cardinality-minimal explanation

cardinality-minimal explanations can be computed
(following implicit-hitting set based approach) [IMM16]

but it is hard for ΣP2 [INMS19]

(worst-case exponential number of oracle queries)

15 / 40

Computing one cardinality-minimal explanation

cardinality-minimal explanations can be computed
(following implicit-hitting set based approach) [IMM16]

but it is hard for ΣP2 [INMS19]

(worst-case exponential number of oracle queries)

15 / 40

Experimental setup

• implementation in Python
• supports SMT solvers through PySMT

• Yices2 used
• supports CPLEX 12.8.0

• ReLU-based neural networks [FJ18]

• one hidden layer with i ∈ {10, 15, 20} neurons
• benchmarks selected from:

• UCI Machine Learning Repository
• Penn Machine Learning Benchmarks
• MNIST Digits Database

• Machine configuration:
• Intel Core i7 2.8GHz, 8GByte
• time limit — 1800s
• memory limit — 4GByte

16 / 40

Experimental setup

• implementation in Python
• supports SMT solvers through PySMT

• Yices2 used
• supports CPLEX 12.8.0

• ReLU-based neural networks [FJ18]

• one hidden layer with i ∈ {10, 15, 20} neurons

• benchmarks selected from:
• UCI Machine Learning Repository
• Penn Machine Learning Benchmarks
• MNIST Digits Database

• Machine configuration:
• Intel Core i7 2.8GHz, 8GByte
• time limit — 1800s
• memory limit — 4GByte

16 / 40

Experimental setup

• implementation in Python
• supports SMT solvers through PySMT

• Yices2 used
• supports CPLEX 12.8.0

• ReLU-based neural networks [FJ18]

• one hidden layer with i ∈ {10, 15, 20} neurons
• benchmarks selected from:

• UCI Machine Learning Repository
• Penn Machine Learning Benchmarks
• MNIST Digits Database

• Machine configuration:
• Intel Core i7 2.8GHz, 8GByte
• time limit — 1800s
• memory limit — 4GByte

16 / 40

Experimental setup

• implementation in Python
• supports SMT solvers through PySMT

• Yices2 used
• supports CPLEX 12.8.0

• ReLU-based neural networks [FJ18]

• one hidden layer with i ∈ {10, 15, 20} neurons
• benchmarks selected from:

• UCI Machine Learning Repository
• Penn Machine Learning Benchmarks
• MNIST Digits Database

• Machine configuration:
• Intel Core i7 2.8GHz, 8GByte
• time limit — 1800s
• memory limit — 4GByte

16 / 40

Some of the experimental results

Dataset Minimal explanation Minimum explanation
size SMT (s) MILP (s) size SMT (s) MILP (s)

australian (14)
m 1 0.03 0.05 — — —
a 8.79 1.38 0.33 — — —
M 14 17.00 1.43 — — —

backache (32)
m 13 0.13 0.14 — — —
a 19.28 5.08 0.85 — — —
M 26 22.21 2.75 — — —

breast-cancer (9)
m 3 0.02 0.04 3 0.02 0.03
a 5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81

cleve (13)
m 4 0.05 0.07 4 — 0.07
a 8.62 3.32 0.32 7.89 — 5.14
M 13 60.74 0.60 13 — 39.06

hepatitis (19)
m 6 0.02 0.04 4 0.01 0.04
a 11.42 0.07 0.06 9.39 4.07 2.89
M 19 0.26 0.20 19 27.05 22.23

voting (16)
m 3 0.01 0.02 3 0.01 0.02
a 4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 1.25 1.77

spect (22)
m 3 0.02 0.02 3 0.02 0.04
a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73

17 / 40

Some of the experimental results

Dataset Minimal explanation Minimum explanation
size SMT (s) MILP (s) size SMT (s) MILP (s)

australian (14)
m 1 0.03 0.05 — — —
a 8.79 1.38 0.33 — — —
M 14 17.00 1.43 — — —

backache (32)
m 13 0.13 0.14 — — —
a 19.28 5.08 0.85 — — —
M 26 22.21 2.75 — — —

breast-cancer (9)
m 3 0.02 0.04 3 0.02 0.03
a 5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81

cleve (13)
m 4 0.05 0.07 4 — 0.07
a 8.62 3.32 0.32 7.89 — 5.14
M 13 60.74 0.60 13 — 39.06

hepatitis (19)
m 6 0.02 0.04 4 0.01 0.04
a 11.42 0.07 0.06 9.39 4.07 2.89
M 19 0.26 0.20 19 27.05 22.23

voting (16)
m 3 0.01 0.02 3 0.01 0.02
a 4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 1.25 1.77

spect (22)
m 3 0.02 0.02 3 0.02 0.04
a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73

17 / 40

Some of the experimental results

Dataset Minimal explanation Minimum explanation
size SMT (s) MILP (s) size SMT (s) MILP (s)

australian (14)
m 1 0.03 0.05 — — —
a 8.79 1.38 0.33 — — —
M 14 17.00 1.43 — — —

backache (32)
m 13 0.13 0.14 — — —
a 19.28 5.08 0.85 — — —
M 26 22.21 2.75 — — —

breast-cancer (9)
m 3 0.02 0.04 3 0.02 0.03
a 5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81

cleve (13)
m 4 0.05 0.07 4 — 0.07
a 8.62 3.32 0.32 7.89 — 5.14
M 13 60.74 0.60 13 — 39.06

hepatitis (19)
m 6 0.02 0.04 4 0.01 0.04
a 11.42 0.07 0.06 9.39 4.07 2.89
M 19 0.26 0.20 19 27.05 22.23

voting (16)
m 3 0.01 0.02 3 0.01 0.02
a 4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 1.25 1.77

spect (22)
m 3 0.02 0.02 3 0.02 0.04
a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73

17 / 40

Some of the experimental results

Dataset Minimal explanation Minimum explanation
size SMT (s) MILP (s) size SMT (s) MILP (s)

australian (14)
m 1 0.03 0.05 — — —
a 8.79 1.38 0.33 — — —
M 14 17.00 1.43 — — —

backache (32)
m 13 0.13 0.14 — — —
a 19.28 5.08 0.85 — — —
M 26 22.21 2.75 — — —

breast-cancer (9)
m 3 0.02 0.04 3 0.02 0.03
a 5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81

cleve (13)
m 4 0.05 0.07 4 — 0.07
a 8.62 3.32 0.32 7.89 — 5.14
M 13 60.74 0.60 13 — 39.06

hepatitis (19)
m 6 0.02 0.04 4 0.01 0.04
a 11.42 0.07 0.06 9.39 4.07 2.89
M 19 0.26 0.20 19 27.05 22.23

voting (16)
m 3 0.01 0.02 3 0.01 0.02
a 4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 1.25 1.77

spect (22)
m 3 0.02 0.02 3 0.02 0.04
a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73

17 / 40

Some of the experimental results

Dataset Minimal explanation Minimum explanation
size SMT (s) MILP (s) size SMT (s) MILP (s)

australian (14)
m 1 0.03 0.05 — — —
a 8.79 1.38 0.33 — — —
M 14 17.00 1.43 — — —

backache (32)
m 13 0.13 0.14 — — —
a 19.28 5.08 0.85 — — —
M 26 22.21 2.75 — — —

breast-cancer (9)
m 3 0.02 0.04 3 0.02 0.03
a 5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81

cleve (13)
m 4 0.05 0.07 4 — 0.07
a 8.62 3.32 0.32 7.89 — 5.14
M 13 60.74 0.60 13 — 39.06

hepatitis (19)
m 6 0.02 0.04 4 0.01 0.04
a 11.42 0.07 0.06 9.39 4.07 2.89
M 19 0.26 0.20 19 27.05 22.23

voting (16)
m 3 0.01 0.02 3 0.01 0.02
a 4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 1.25 1.77

spect (22)
m 3 0.02 0.02 3 0.02 0.04
a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73

17 / 40

Comparing quality to compilation-based approach

• “Congressional Voting Records” dataset

• (0 1 0 1 1 1 0 0 0 0 0 0 1 1 0 1) — data sample (16 features)

smallest size explanations computed by compilation for BN: [SCD18]

• (0 1 1 0 0 0 1 1 0) — 9 literals
• (0 1 1 1 0 0 1 1 0) — 9 literals

subset-minimal explanations computed by search for ReLU-NNs: [INMS19]

• (1 0 0 0) — 4 literals
• (1 0 0) — 3 literals
• (0 1 0 0 0) — 5 literals
• (0 1 0 0 1) — 5 literals

18 / 40

Comparing quality to compilation-based approach

• “Congressional Voting Records” dataset
• (0 1 0 1 1 1 0 0 0 0 0 0 1 1 0 1) — data sample (16 features)

smallest size explanations computed by compilation for BN: [SCD18]

• (0 1 1 0 0 0 1 1 0) — 9 literals
• (0 1 1 1 0 0 1 1 0) — 9 literals

subset-minimal explanations computed by search for ReLU-NNs: [INMS19]

• (1 0 0 0) — 4 literals
• (1 0 0) — 3 literals
• (0 1 0 0 0) — 5 literals
• (0 1 0 0 1) — 5 literals

18 / 40

Comparing quality to compilation-based approach

• “Congressional Voting Records” dataset
• (0 1 0 1 1 1 0 0 0 0 0 0 1 1 0 1) — data sample (16 features)

smallest size explanations computed by compilation for BN: [SCD18]

• (0 1 1 0 0 0 1 1 0) — 9 literals
• (0 1 1 1 0 0 1 1 0) — 9 literals

subset-minimal explanations computed by search for ReLU-NNs: [INMS19]

• (1 0 0 0) — 4 literals
• (1 0 0) — 3 literals
• (0 1 0 0 0) — 5 literals
• (0 1 0 0 1) — 5 literals

18 / 40

Comparing quality to compilation-based approach

• “Congressional Voting Records” dataset
• (0 1 0 1 1 1 0 0 0 0 0 0 1 1 0 1) — data sample (16 features)

smallest size explanations computed by compilation for BN: [SCD18]

• (0 1 1 0 0 0 1 1 0) — 9 literals
• (0 1 1 1 0 0 1 1 0) — 9 literals

subset-minimal explanations computed by search for ReLU-NNs: [INMS19]

• (1 0 0 0) — 4 literals
• (1 0 0) — 3 literals
• (0 1 0 0 0) — 5 literals
• (0 1 0 0 1) — 5 literals

18 / 40

What does it mean?

explanations can hint on the classifier quality!

19 / 40

MNIST examples

(a) (b) (c) (d)

Figure 1: Possible minimal explanations for digit one.

(a) (b) (c) (d)

Figure 2: Possible minimal explanations for digit three.

20 / 40

And so what?

explanations are not equally good!

21 / 40

Summary on search-based explanations

principled approach to XAI

based on abductive reasoning
applies a reasoning oracle, e.g. SMT or MILP

provides minimality guarantees
global explanations!

22 / 40

Summary on search-based explanations

principled approach to XAI

based on abductive reasoning

applies a reasoning oracle, e.g. SMT or MILP
provides minimality guarantees

global explanations!

22 / 40

Summary on search-based explanations

principled approach to XAI

based on abductive reasoning
applies a reasoning oracle, e.g. SMT or MILP

provides minimality guarantees
global explanations!

22 / 40

Summary on search-based explanations

principled approach to XAI

based on abductive reasoning
applies a reasoning oracle, e.g. SMT or MILP

provides minimality guarantees

global explanations!

22 / 40

Summary on search-based explanations

principled approach to XAI

based on abductive reasoning
applies a reasoning oracle, e.g. SMT or MILP

provides minimality guarantees
global explanations!

22 / 40

What next?

What next?

enumeration of explanations?

preferences over explanations?
assessment of heuristic approaches!

23 / 40

What next?

enumeration of explanations?
preferences over explanations?

assessment of heuristic approaches!

23 / 40

What next?

enumeration of explanations?
preferences over explanations?

assessment of heuristic approaches!

23 / 40

Assessing heuristic approaches

Heuristic approaches – a recap

heuristic approaches
(e.g. LIME, Anchor, SHAP) [RSG16, RSG18, LL17]

local explanations
no minimality guarantees

24 / 40

Heuristic approaches – a recap

heuristic approaches
(e.g. LIME, Anchor, SHAP) [RSG16, RSG18, LL17]

local explanations

no minimality guarantees

24 / 40

Heuristic approaches – a recap

heuristic approaches
(e.g. LIME, Anchor, SHAP) [RSG16, RSG18, LL17]

local explanations
no minimality guarantees

24 / 40

Assessment setup [INM19]

how good are heuristic explanations?

let’s check for boosted trees [CG16]

(easy to encode) [BLM15, LMB17, VZY17, INM19]

25 / 40

Assessment setup [INM19]

how good are heuristic explanations?

let’s check for boosted trees [CG16]

(easy to encode) [BLM15, LMB17, VZY17, INM19]

25 / 40

Assessment setup [INM19]

how good are heuristic explanations?

let’s check for boosted trees [CG16]

(easy to encode) [BLM15, LMB17, VZY17, INM19]

25 / 40

26 / 40

input instance:
IF (animal_name = pitviper) ∧ ¬hair

¬feathers ∧ eggs ∧ ¬milk ∧ ¬airborne∧
¬aquatic ∧ predator ∧ ¬toothed ∧ ¬fins∧
(legs = 0) ∧ tail ∧ ¬domestic ∧ ¬catsize

THEN (class = reptile)

Anchor’s explanation:
IF ¬hair ∧ ¬milk ∧ ¬toothed ∧ ¬fins
THEN (class = reptile)

counterexample!
IF (animal_name = toad) ∧ ¬hair

¬feathers ∧ eggs ∧ ¬milk ∧ ¬airborne∧
¬aquatic ∧ ¬predator ∧ ¬toothed ∧ ¬fins∧
(legs = 4) ∧ ¬tail ∧ ¬domestic ∧ ¬catsize

THEN (class = amphibian)

27 / 40

input instance:
IF (animal_name = pitviper) ∧ ¬hair

¬feathers ∧ eggs ∧ ¬milk ∧ ¬airborne∧
¬aquatic ∧ predator ∧ ¬toothed ∧ ¬fins∧
(legs = 0) ∧ tail ∧ ¬domestic ∧ ¬catsize

THEN (class = reptile)

Anchor’s explanation:
IF ¬hair ∧ ¬milk ∧ ¬toothed ∧ ¬fins
THEN (class = reptile)

counterexample!
IF (animal_name = toad) ∧ ¬hair

¬feathers ∧ eggs ∧ ¬milk ∧ ¬airborne∧
¬aquatic ∧ ¬predator ∧ ¬toothed ∧ ¬fins∧
(legs = 4) ∧ ¬tail ∧ ¬domestic ∧ ¬catsize

THEN (class = amphibian)

27 / 40

input instance:
IF (animal_name = pitviper) ∧ ¬hair

¬feathers ∧ eggs ∧ ¬milk ∧ ¬airborne∧
¬aquatic ∧ predator ∧ ¬toothed ∧ ¬fins∧
(legs = 0) ∧ tail ∧ ¬domestic ∧ ¬catsize

THEN (class = reptile)

Anchor’s explanation:
IF ¬hair ∧ ¬milk ∧ ¬toothed ∧ ¬fins
THEN (class = reptile)

counterexample!
IF (animal_name = toad) ∧ ¬hair

¬feathers ∧ eggs ∧ ¬milk ∧ ¬airborne∧
¬aquatic ∧ ¬predator ∧ ¬toothed ∧ ¬fins∧
(legs = 4) ∧ ¬tail ∧ ¬domestic ∧ ¬catsize

THEN (class = amphibian)

27 / 40

input instance:
IF (animal_name = pitviper) ∧ ¬hair

¬feathers ∧ eggs ∧ ¬milk ∧ ¬airborne∧
¬aquatic ∧ predator ∧ ¬toothed ∧ ¬fins∧
(legs = 0) ∧ tail ∧ ¬domestic ∧ ¬catsize

THEN (class = reptile)

Anchor’s explanation:
IF ¬hair ∧ ¬milk ∧ ¬toothed ∧ ¬fins
THEN (class = reptile)

counterexample!
IF (animal_name = toad) ∧ ¬hair

¬feathers ∧ eggs ∧ ¬milk ∧ ¬airborne∧
¬aquatic ∧ ¬predator ∧ ¬toothed ∧ ¬fins∧
(legs = 4) ∧ ¬tail ∧ ¬domestic ∧ ¬catsize

THEN (class = amphibian)

27 / 40

how?

given Eh, Eh ⊨ (M→ π)

Eh ∧M∧ ¬π — satisfiable
(in fact, this formula can have many models)

28 / 40

how?
given Eh, Eh ⊨ (M→ π)

Eh ∧M∧ ¬π — satisfiable
(in fact, this formula can have many models)

28 / 40

how?
given Eh, Eh ⊨ (M→ π)

Eh ∧M∧ ¬π — satisfiable
(in fact, this formula can have many models)

28 / 40

how?
given Eh, Eh ⊨ (M→ π)

Eh ∧M∧ ¬π — satisfiable

(in fact, this formula can have many models)

28 / 40

how?
given Eh, Eh ⊨ (M→ π)

Eh ∧M∧ ¬π — satisfiable
(in fact, this formula can have many models)

28 / 40

Repairing heuristic explanations

Input: modelM, initial cube I , heuristic explanation Eh, prediction π

Output: Subset-minimal explanation Em

begin

(I1, I2)← (I \ Eh, Eh)

for l ∈ I1 :
if Entails(I1 ∪ I2 \ {l},M→ π) :
I1 ← I1 \ {l}

for l ∈ I2 :
if Entails(I1 ∪ I2 \ {l},M→ π) :
I2 ← I2 \ {l}

return I1 ∪ I2
end

29 / 40

Repairing heuristic explanations

Input: modelM, initial cube I , heuristic explanation Eh, prediction π

Output: Subset-minimal explanation Em

begin

(I1, I2)← (I \ Eh, Eh)

for l ∈ I1 :
if Entails(I1 ∪ I2 \ {l},M→ π) :
I1 ← I1 \ {l}

for l ∈ I2 :
if Entails(I1 ∪ I2 \ {l},M→ π) :
I2 ← I2 \ {l}

return I1 ∪ I2
end

29 / 40

Repairing heuristic explanations

Input: modelM, initial cube I , heuristic explanation Eh, prediction π

Output: Subset-minimal explanation Em

begin

(I1, I2)← (I \ Eh, Eh)

for l ∈ I1 :
if Entails(I1 ∪ I2 \ {l},M→ π) :
I1 ← I1 \ {l}

for l ∈ I2 :
if Entails(I1 ∪ I2 \ {l},M→ π) :
I2 ← I2 \ {l}

return I1 ∪ I2
end

29 / 40

Repairing heuristic explanations

Input: modelM, initial cube I , heuristic explanation Eh, prediction π

Output: Subset-minimal explanation Em

begin

(I1, I2)← (I \ Eh, Eh)

for l ∈ I1 :
if Entails(I1 ∪ I2 \ {l},M→ π) :
I1 ← I1 \ {l}

for l ∈ I2 :
if Entails(I1 ∪ I2 \ {l},M→ π) :
I2 ← I2 \ {l}

return I1 ∪ I2
end

29 / 40

incorrect explanation
IF ¬hair ∧ ¬milk ∧ ¬toothed ∧ ¬fins
THEN (class = reptile)

repaired explanation
IF ¬feathers ∧ ¬milk ∧ backbone∧

¬fins ∧ (legs = 0) ∧ tail
THEN (class = reptile)

30 / 40

incorrect explanation
IF ¬hair ∧ ¬milk ∧ ¬toothed ∧ ¬fins
THEN (class = reptile)

repaired explanation
IF ¬feathers ∧ ¬milk ∧ backbone∧

¬fins ∧ (legs = 0) ∧ tail
THEN (class = reptile)

30 / 40

Refining heuristic explanations

Input: modelM, heuristic explanation Eh, prediction π

Output: Subset-minimal explanation Em

begin

for l ∈ Eh :
if Entails(Eh \ {l},M→ π) :
Eh ← Eh \ {l}

return Eh
end

31 / 40

Assessment experiment

3 datasets from Anchor [RSG18]

2 additional datasets from FairML and ProPublica [Fai16, ALMK16]

[FSV15, FFM+15, FSV+19]

target all data samples

32 / 40

Assessment experiment

3 datasets from Anchor [RSG18]

2 additional datasets from FairML and ProPublica [Fai16, ALMK16]

[FSV15, FFM+15, FSV+19]

target all data samples

32 / 40

Assessment experiment

3 datasets from Anchor [RSG18]

2 additional datasets from FairML and ProPublica [Fai16, ALMK16]

[FSV15, FFM+15, FSV+19]

target all data samples

32 / 40

Assessment experiment

valid?

heuristic
explanation

refinerepair no yes

33 / 40

Assessment experiment

Explanations

Dataset (# unique) optimistic pessimistic realistic

LIME Anchor SHAP LIME Anchor SHAP LIME Anchor SHAP

adult (5579) 61.3% 80.5% 70.7% 7.9% 1.6% 10.2% 30.8% 17.9% 19.1%
lending (4414) 24.0% 3.0% 17.0% 0.4% 0.0% 2.5% 75.6% 97.0% 80.5%
rcdv (3696) 94.1% 99.4% 85.9% 4.6% 0.4% 7.9% 1.3% 0.2% 6.2%

compas (778) 71.9% 84.4% 60.4% 20.6% 1.7% 27.8% 7.5% 13.9% 11.8%
german (1000) 85.3% 99.7% 63.0% 14.6% 0.2% 37.0% 0.1% 0.1% 0.0%

so should we trust heuristic approaches?
or better not?

34 / 40

Assessment experiment

Explanations

Dataset (# unique) optimistic pessimistic realistic

LIME Anchor SHAP LIME Anchor SHAP LIME Anchor SHAP

adult (5579) 61.3% 80.5% 70.7% 7.9% 1.6% 10.2% 30.8% 17.9% 19.1%
lending (4414) 24.0% 3.0% 17.0% 0.4% 0.0% 2.5% 75.6% 97.0% 80.5%
rcdv (3696) 94.1% 99.4% 85.9% 4.6% 0.4% 7.9% 1.3% 0.2% 6.2%

compas (778) 71.9% 84.4% 60.4% 20.6% 1.7% 27.8% 7.5% 13.9% 11.8%
german (1000) 85.3% 99.7% 63.0% 14.6% 0.2% 37.0% 0.1% 0.1% 0.0%

so should we trust heuristic approaches?

or better not?

34 / 40

Assessment experiment

Explanations

Dataset (# unique) optimistic pessimistic realistic

LIME Anchor SHAP LIME Anchor SHAP LIME Anchor SHAP

adult (5579) 61.3% 80.5% 70.7% 7.9% 1.6% 10.2% 30.8% 17.9% 19.1%
lending (4414) 24.0% 3.0% 17.0% 0.4% 0.0% 2.5% 75.6% 97.0% 80.5%
rcdv (3696) 94.1% 99.4% 85.9% 4.6% 0.4% 7.9% 1.3% 0.2% 6.2%

compas (778) 71.9% 84.4% 60.4% 20.6% 1.7% 27.8% 7.5% 13.9% 11.8%
german (1000) 85.3% 99.7% 63.0% 14.6% 0.2% 37.0% 0.1% 0.1% 0.0%

so should we trust heuristic approaches?
or better not?

34 / 40

let’s go further!

what about measuring precision of Anchor’s explanations? [NSM+19]

35 / 40

let’s go further!
what about measuring precision of Anchor’s explanations? [NSM+19]

35 / 40

What about measuring precision of Anchor’s explanations? [NSM+19]

given modelM, input I , prediction π, and explanation E :

prec(E) = ED(I ′⊃E)[M(I ′) = π]

alternatively, do approximate model counting for:
E ∧M∧ ¬π

(in fact, a bit more complicated but the idea is here)

36 / 40

What about measuring precision of Anchor’s explanations? [NSM+19]

given modelM, input I , prediction π, and explanation E :

prec(E) = ED(I ′⊃E)[M(I ′) = π]

alternatively, do approximate model counting for:
E ∧M∧ ¬π

(in fact, a bit more complicated but the idea is here)

36 / 40

What about measuring precision of Anchor’s explanations? [NSM+19]

given modelM, input I , prediction π, and explanation E :

prec(E) = ED(I ′⊃E)[M(I ′) = π]

alternatively, do approximate model counting for:
E ∧M∧ ¬π

(in fact, a bit more complicated but the idea is here)

36 / 40

Assessing heuristic explanations1

unconstrained feature space samples with ≤ 50% difference

37 / 40

Summary

Summary

logic is helpful in XAI!

(for computing explanations but also assessing heuristic appoaches)

rigorous approach
global explanations
minimality guarantees

(if one can encode and check entailment!)

38 / 40

Summary

logic is helpful in XAI!
(for computing explanations but also assessing heuristic appoaches)

rigorous approach
global explanations
minimality guarantees

(if one can encode and check entailment!)

38 / 40

Summary

logic is helpful in XAI!
(for computing explanations but also assessing heuristic appoaches)

rigorous approach

global explanations
minimality guarantees

(if one can encode and check entailment!)

38 / 40

Summary

logic is helpful in XAI!
(for computing explanations but also assessing heuristic appoaches)

rigorous approach
global explanations

minimality guarantees

(if one can encode and check entailment!)

38 / 40

Summary

logic is helpful in XAI!
(for computing explanations but also assessing heuristic appoaches)

rigorous approach
global explanations
minimality guarantees

(if one can encode and check entailment!)

38 / 40

Summary

logic is helpful in XAI!
(for computing explanations but also assessing heuristic appoaches)

rigorous approach
global explanations
minimality guarantees

(if one can encode and check entailment!)

38 / 40

Future

challenges

scalability
(search or compilation?)

other ML models, reasoners, methods?

other types of explanations?

what about other heuristic approaches?
hybrid approaches?

39 / 40

Future

challenges
scalability

(search or compilation?)

other ML models, reasoners, methods?

other types of explanations?

what about other heuristic approaches?
hybrid approaches?

39 / 40

Future

challenges
scalability

(search or compilation?)
other ML models, reasoners, methods?

other types of explanations?

what about other heuristic approaches?
hybrid approaches?

39 / 40

Future

challenges
scalability

(search or compilation?)
other ML models, reasoners, methods?

other types of explanations?

what about other heuristic approaches?
hybrid approaches?

39 / 40

Future

challenges
scalability

(search or compilation?)
other ML models, reasoners, methods?

other types of explanations?

what about other heuristic approaches?

hybrid approaches?

39 / 40

Future

challenges
scalability

(search or compilation?)
other ML models, reasoners, methods?

other types of explanations?

what about other heuristic approaches?
hybrid approaches?

39 / 40

Future

relate XAI and verification?

40 / 40

References i

[ALMK16] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner.
Machine bias.
http://tiny.cc/dd7mjz, 2016.

[BLM15] Alessio Bonfietti, Michele Lombardi, and Michela Milano.
Embedding decision trees and random forests in constraint programming.
In CPAIOR, pages 74–90, 2015.

[CD03] Hei Chan and Adnan Darwiche.
Reasoning about Bayesian network classifiers.
In UAI, pages 107–115, 2003.

[CG16] Tianqi Chen and Carlos Guestrin.
XGBoost: A scalable tree boosting system.
In KDD, pages 785–794, 2016.

[Fai16] Auditing black-box predictive models.
http://tiny.cc/6e7mjz, 2016.

[FFM+15] Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubramanian.
Certifying and removing disparate impact.
In KDD, pages 259–268, 2015.

41 / 40

References ii

[FJ18] Matteo Fischetti and Jason Jo.
Deep neural networks and mixed integer linear optimization.
Constraints, 23(3):296–309, 2018.

[FSV15] Sorelle Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian.
On algorithmic fairness, discrimination and disparate impact.
2015.

[FSV+19] Sorelle A. Friedler, Carlos Scheidegger, Suresh Venkatasubramanian, Sonam Choudhary, Evan P. Hamilton,
and Derek Roth.
A comparative study of fairness-enhancing interventions in machine learning.
In FAT, pages 329–338, 2019.

[IMM16] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva.
Propositional abduction with implicit hitting sets.
In ECAI, pages 1327–1335, 2016.

[INM19] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
On validating, repairing and refining heuristic ML explanations.
CoRR, abs/1907.02509, 2019.

[INMS19] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
Abduction-based explanations for machine learning models.
In AAAI, pages 1511–1519, 2019.

42 / 40

References iii

[LL17] Scott M. Lundberg and Su-In Lee.
A unified approach to interpreting model predictions.
In NIPS, pages 4765–4774, 2017.

[LMB17] Michele Lombardi, Michela Milano, and Andrea Bartolini.
Empirical decision model learning.
Artif. Intell., 244:343–367, 2017.

[NSM+19] Nina Narodytska, Aditya A. Shrotri, Kuldeep S. Meel, Alexey Ignatiev, and Joao Marques-Silva.
Assessing heuristic machine learning explanations with model counting.
In SAT, pages 267–278, 2019.

[RSG16] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin.
”why should I trust you?”: Explaining the predictions of any classifier.
In KDD, pages 1135–1144, 2016.

[RSG18] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin.
Anchors: High-precision model-agnostic explanations.
In AAAI, pages 1527–1535, 2018.

[SCD18] Andy Shih, Arthur Choi, and Adnan Darwiche.
A symbolic approach to explaining Bayesian network classifiers.
In IJCAI, pages 5103–5111, 2018.

43 / 40

References iv

[SCD19] Andy Shih, Arthur Choi, and Adnan Darwiche.
Compiling Bayesian network classifiers into decision graphs.
In AAAI, pages 7966–7974, 2019.

[SDC19] Andy Shih, Adnan Darwiche, and Arthur Choi.
Verifying binarized neural networks by Angluin-style learning.
In SAT, pages 354–370, 2019.

[VZY17] Sicco Verwer, Yingqian Zhang, and Qing Chuan Ye.
Auction optimization using regression trees and linear models as integer programs.
Artif. Intell., 244:368–395, 2017.

44 / 40

Rigorous Verification and Explanation of ML Models
Part 05

A. Ignatiev, J. Marques-Silva, K. Meel& N. Narodytska

Monash Univ, NU Singapore, VMWare Research & ANITI@Univ. Toulouse

February 08, 2020 | AAAI Tutorial SP1

1 Duality in Explanations

Overview

• Vast body of work on computing explanations (XPs)
• Mostly heuristic approaches, with recent rigorous solutions

• Vast body of work on coping with adversarial examples (AEs)
• Both heuristic and rigorous approaches

• Can XPs and AEs be somehow related?

• Recent work observed that some connection existed, but formal connection has been elusive

• Recent proposal of a (first) link between XPs and AEs [INM19]

• Work exploits hitting set duality, first studied in model-based diagnosis [Rei87]

2 / 9

Overview

• Vast body of work on computing explanations (XPs)
• Mostly heuristic approaches, with recent rigorous solutions

• Vast body of work on coping with adversarial examples (AEs)
• Both heuristic and rigorous approaches

• Can XPs and AEs be somehow related?
• Recent work observed that some connection existed, but formal connection has been elusive

• Recent proposal of a (first) link between XPs and AEs [INM19]

• Work exploits hitting set duality, first studied in model-based diagnosis [Rei87]

2 / 9

Overview

• Vast body of work on computing explanations (XPs)
• Mostly heuristic approaches, with recent rigorous solutions

• Vast body of work on coping with adversarial examples (AEs)
• Both heuristic and rigorous approaches

• Can XPs and AEs be somehow related?
• Recent work observed that some connection existed, but formal connection has been elusive

• Recent proposal of a (first) link between XPs and AEs [INM19]

• Work exploits hitting set duality, first studied in model-based diagnosis [Rei87]

2 / 9

A well-known example

[RN10]

Example Input Attributes Goal
Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

x1 Yes No No Yes Some $$$ No Yes French 0–10 y1 = Yes
x2 Yes No No Yes Full $ No No Thai 30–60 y2 = No
x3 No Yes No No Some $ No No Burger 0–10 y3 = Yes
x4 Yes No Yes Yes Full $ Yes No Thai 10–30 y4 = Yes
x5 Yes No Yes No Full $$$ No Yes French >60 y5 = No
x6 No Yes No Yes Some $$ Yes Yes Italian 0–10 y6 = Yes
x7 No Yes No No None $ Yes No Burger 0–10 y7 = No
x8 No No No Yes Some $$ Yes Yes Thai 0–10 y8 = Yes
x9 No Yes Yes No Full $ Yes No Burger >60 y9 = No
x10 Yes Yes Yes Yes Full $$$ No Yes Italian 10–30 y10 = No
x11 No No No No None $ No No Thai 0–10 y11 = No
x12 Yes Yes Yes Yes Full $ No No Burger 30–60 y12 = Yes

3 / 9

A well-known example (Cont.)

• 10 features:

{A(lternate),B(ar),W(eekend),H(ungry),Pa(trons),Pr(ice),Ra(in),Re(serv.), T(ype), E(stim.)}

• Example instance (x1, with outcome y1 = Yes):

{A,¬B,¬W,H, (Pa = Some), (Pr = $$$),¬Ra,Re, (T = French), (E = 0–10)}

• A possible decision set (obtained with some off-the-shelf tool, & function*):

IF (Pa = Some) ∧ ¬(E = >60) THEN (Wait = Yes) (R1)
IF W ∧ ¬(Pr = $$$) ∧ ¬(E = >60) THEN (Wait = Yes) (R2)

IF ¬W ∧ ¬(Pa = Some) THEN (Wait = No) (R3)
IF (E = >60) THEN (Wait = No) (R4)
IF ¬(Pa = Some) ∧ (Pr = $$$) THEN (Wait = No) (R5)

4 / 9

Counterexamples & breaks

• Counterexamples:
A subset-minimal set C of literals is a counterexample (CEx) to a prediction π, if C ⊨(M→ ρ),
with ρ ∈ K ∧ ρ ̸= π

• Breaks:
A literal τi breaks a set of literals S (each denoting a different feature) if S contains a literal
inconsistent with τi

• Back to the example, consider prediction (Wait = Yes):

• Using (R1) (and assuming a consistent instance), an explanation is:

(Pa = Some) ∧ ¬(E = >60)

• Due to (R5), a counterexample is:

¬(Pa = Some) ∧ (Pr = $$$)

• XP S1 = {(Pa = Some),¬(E = >60)} breaks CEx S2 = {¬(Pa = Some), (Pr = $$$)} and
vice-versa

5 / 9

Counterexamples & breaks

• Counterexamples:
A subset-minimal set C of literals is a counterexample (CEx) to a prediction π, if C ⊨(M→ ρ),
with ρ ∈ K ∧ ρ ̸= π

• Breaks:
A literal τi breaks a set of literals S (each denoting a different feature) if S contains a literal
inconsistent with τi

• Back to the example, consider prediction (Wait = Yes):

• Using (R1) (and assuming a consistent instance), an explanation is:

(Pa = Some) ∧ ¬(E = >60)

• Due to (R5), a counterexample is:

¬(Pa = Some) ∧ (Pr = $$$)

• XP S1 = {(Pa = Some),¬(E = >60)} breaks CEx S2 = {¬(Pa = Some), (Pr = $$$)} and
vice-versa

5 / 9

Counterexamples & breaks

• Counterexamples:
A subset-minimal set C of literals is a counterexample (CEx) to a prediction π, if C ⊨(M→ ρ),
with ρ ∈ K ∧ ρ ̸= π

• Breaks:
A literal τi breaks a set of literals S (each denoting a different feature) if S contains a literal
inconsistent with τi

• Back to the example, consider prediction (Wait = Yes):

• Using (R1) (and assuming a consistent instance), an explanation is:

(Pa = Some) ∧ ¬(E = >60)

• Due to (R5), a counterexample is:

¬(Pa = Some) ∧ (Pr = $$$)

• XP S1 = {(Pa = Some),¬(E = >60)} breaks CEx S2 = {¬(Pa = Some), (Pr = $$$)} and
vice-versa

5 / 9

Counterexamples & breaks

• Counterexamples:
A subset-minimal set C of literals is a counterexample (CEx) to a prediction π, if C ⊨(M→ ρ),
with ρ ∈ K ∧ ρ ̸= π

• Breaks:
A literal τi breaks a set of literals S (each denoting a different feature) if S contains a literal
inconsistent with τi

• Back to the example, consider prediction (Wait = Yes):

• Using (R1) (and assuming a consistent instance), an explanation is:

(Pa = Some) ∧ ¬(E = >60)

• Due to (R5), a counterexample is:

¬(Pa = Some) ∧ (Pr = $$$)

• XP S1 = {(Pa = Some),¬(E = >60)} breaks CEx S2 = {¬(Pa = Some), (Pr = $$$)} and
vice-versa

5 / 9

Counterexamples & breaks

• Counterexamples:
A subset-minimal set C of literals is a counterexample (CEx) to a prediction π, if C ⊨(M→ ρ),
with ρ ∈ K ∧ ρ ̸= π

• Breaks:
A literal τi breaks a set of literals S (each denoting a different feature) if S contains a literal
inconsistent with τi

• Back to the example, consider prediction (Wait = Yes):
• Using (R1) (and assuming a consistent instance), an explanation is:

(Pa = Some) ∧ ¬(E = >60)

• Due to (R5), a counterexample is:

¬(Pa = Some) ∧ (Pr = $$$)

• XP S1 = {(Pa = Some),¬(E = >60)} breaks CEx S2 = {¬(Pa = Some), (Pr = $$$)} and
vice-versa

5 / 9

Counterexamples & breaks

• Counterexamples:
A subset-minimal set C of literals is a counterexample (CEx) to a prediction π, if C ⊨(M→ ρ),
with ρ ∈ K ∧ ρ ̸= π

• Breaks:
A literal τi breaks a set of literals S (each denoting a different feature) if S contains a literal
inconsistent with τi

• Back to the example, consider prediction (Wait = Yes):
• Using (R1) (and assuming a consistent instance), an explanation is:

(Pa = Some) ∧ ¬(E = >60)

• Due to (R5), a counterexample is:

¬(Pa = Some) ∧ (Pr = $$$)

• XP S1 = {(Pa = Some),¬(E = >60)} breaks CEx S2 = {¬(Pa = Some), (Pr = $$$)} and
vice-versa

5 / 9

Counterexamples & breaks

• Counterexamples:
A subset-minimal set C of literals is a counterexample (CEx) to a prediction π, if C ⊨(M→ ρ),
with ρ ∈ K ∧ ρ ̸= π

• Breaks:
A literal τi breaks a set of literals S (each denoting a different feature) if S contains a literal
inconsistent with τi

• Back to the example, consider prediction (Wait = Yes):
• Using (R1) (and assuming a consistent instance), an explanation is:

(Pa = Some) ∧ ¬(E = >60)

• Due to (R5), a counterexample is:

¬(Pa = Some) ∧ (Pr = $$$)

• XP S1 = {(Pa = Some),¬(E = >60)} breaks CEx S2 = {¬(Pa = Some), (Pr = $$$)} and
vice-versa

5 / 9

Some preliminary results

1. Relationship between XPs with CEx’s:

• Each XP breaks every CEx

• Each CEx breaks every XP

∴ XPs can be computed from all CEx’s (by HSD) and vice-versa

2. Given instance I , an AE can be computed from closest CEx

6 / 9

Some preliminary results

1. Relationship between XPs with CEx’s:
• Each XP breaks every CEx

• Each CEx breaks every XP

∴ XPs can be computed from all CEx’s (by HSD) and vice-versa

2. Given instance I , an AE can be computed from closest CEx

6 / 9

Some preliminary results

1. Relationship between XPs with CEx’s:
• Each XP breaks every CEx

• Each CEx breaks every XP

∴ XPs can be computed from all CEx’s (by HSD) and vice-versa

2. Given instance I , an AE can be computed from closest CEx

6 / 9

Some preliminary results

1. Relationship between XPs with CEx’s:
• Each XP breaks every CEx

• Each CEx breaks every XP

∴ XPs can be computed from all CEx’s (by HSD) and vice-versa

2. Given instance I , an AE can be computed from closest CEx

6 / 9

Some preliminary results

1. Relationship between XPs with CEx’s:
• Each XP breaks every CEx

• Each CEx breaks every XP

∴ XPs can be computed from all CEx’s (by HSD) and vice-versa

2. Given instance I , an AE can be computed from closest CEx

6 / 9

Revisiting the example

• Restaurant dataset
• ML model is decision set (shown earlier)
• Prediction is (Wait = Yes)

• Global explanations:
1. (Pa = Some) ∧ ¬(E = >60)
2. W ∧ ¬(Pr = $$$) ∧ ¬(E = >60)

• Counterexamples:
1. ¬W ∧ ¬(Pa = Some)
2. (E = >60)
3. ¬(Pa = Some) ∧ (Pr = $$$)

• The XP’s break the CEx’s and vice-versa

7 / 9

2 Wrap-up

Many challenges

• Scalability, scalability, scalability...
• Rigorous methods still lacking in reasoning about NNs

• Q: How to improve performance of sound & complete methods for assessing robustness?
• Q: Alternatives to NNs in some settings?

• More efficient (and still rigorous) alternatives to prime-based explanations?

• Q: Basis for developing safe heuristics?

• Scaling the learning of interpretable models?

• Q: How to target large datasets?
• Q: Mechanisms for avoiding overfitting?

• Exploiting logic in learning black-box models [FBD+19]

8 / 9

Many challenges

• Scalability, scalability, scalability...
• Rigorous methods still lacking in reasoning about NNs

• Q: How to improve performance of sound & complete methods for assessing robustness?
• Q: Alternatives to NNs in some settings?

• More efficient (and still rigorous) alternatives to prime-based explanations?

• Q: Basis for developing safe heuristics?

• Scaling the learning of interpretable models?

• Q: How to target large datasets?
• Q: Mechanisms for avoiding overfitting?

• Exploiting logic in learning black-box models [FBD+19]

8 / 9

Many challenges

• Scalability, scalability, scalability...
• Rigorous methods still lacking in reasoning about NNs
• Q: How to improve performance of sound & complete methods for assessing robustness?
• Q: Alternatives to NNs in some settings?

• More efficient (and still rigorous) alternatives to prime-based explanations?

• Q: Basis for developing safe heuristics?

• Scaling the learning of interpretable models?

• Q: How to target large datasets?
• Q: Mechanisms for avoiding overfitting?

• Exploiting logic in learning black-box models [FBD+19]

8 / 9

Many challenges

• Scalability, scalability, scalability...
• Rigorous methods still lacking in reasoning about NNs
• Q: How to improve performance of sound & complete methods for assessing robustness?
• Q: Alternatives to NNs in some settings?

• More efficient (and still rigorous) alternatives to prime-based explanations?

• Q: Basis for developing safe heuristics?

• Scaling the learning of interpretable models?

• Q: How to target large datasets?
• Q: Mechanisms for avoiding overfitting?

• Exploiting logic in learning black-box models [FBD+19]

8 / 9

Many challenges

• Scalability, scalability, scalability...
• Rigorous methods still lacking in reasoning about NNs
• Q: How to improve performance of sound & complete methods for assessing robustness?
• Q: Alternatives to NNs in some settings?

• More efficient (and still rigorous) alternatives to prime-based explanations?
• Q: Basis for developing safe heuristics?

• Scaling the learning of interpretable models?

• Q: How to target large datasets?
• Q: Mechanisms for avoiding overfitting?

• Exploiting logic in learning black-box models [FBD+19]

8 / 9

Many challenges

• Scalability, scalability, scalability...
• Rigorous methods still lacking in reasoning about NNs
• Q: How to improve performance of sound & complete methods for assessing robustness?
• Q: Alternatives to NNs in some settings?

• More efficient (and still rigorous) alternatives to prime-based explanations?
• Q: Basis for developing safe heuristics?

• Scaling the learning of interpretable models?

• Q: How to target large datasets?
• Q: Mechanisms for avoiding overfitting?

• Exploiting logic in learning black-box models [FBD+19]

8 / 9

Many challenges

• Scalability, scalability, scalability...
• Rigorous methods still lacking in reasoning about NNs
• Q: How to improve performance of sound & complete methods for assessing robustness?
• Q: Alternatives to NNs in some settings?

• More efficient (and still rigorous) alternatives to prime-based explanations?
• Q: Basis for developing safe heuristics?

• Scaling the learning of interpretable models?
• Q: How to target large datasets?
• Q: Mechanisms for avoiding overfitting?

• Exploiting logic in learning black-box models [FBD+19]

8 / 9

Many challenges

• Scalability, scalability, scalability...
• Rigorous methods still lacking in reasoning about NNs
• Q: How to improve performance of sound & complete methods for assessing robustness?
• Q: Alternatives to NNs in some settings?

• More efficient (and still rigorous) alternatives to prime-based explanations?
• Q: Basis for developing safe heuristics?

• Scaling the learning of interpretable models?
• Q: How to target large datasets?
• Q: Mechanisms for avoiding overfitting?

• Exploiting logic in learning black-box models [FBD+19]

8 / 9

Questions?

9 / 9

References i

[FBD+19] Marc Fischer, Mislav Balunovic, Dana Drachsler-Cohen, Timon Gehr, Ce Zhang, and Martin T. Vechev.
DL2: training and querying neural networks with logic.
In ICML, pages 1931–1941, 2019.

[INM19] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
On relating explanations and adversarial examples.
In NeurIPS, pages 15857–15867, 2019.

[Rei87] Raymond Reiter.
A theory of diagnosis from first principles.
Artif. Intell., 32(1):57–95, 1987.

[RN10] Stuart J. Russell and Peter Norvig.
Artificial Intelligence - A Modern Approach.
Pearson Education, 2010.

10 / 9

