RIGOROUS VERIFICATION AND EXPLANATION OF ML MODELS

A. Ignatiev, J. Marques-Silva, K. Meel & N. Narodytska

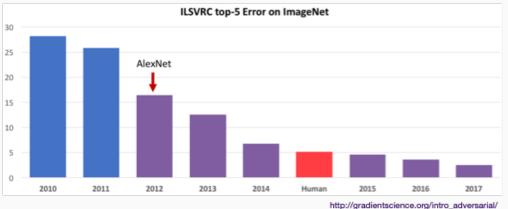
Monash Univ, NU Singapore, VMWare Research & ANITI@Univ. Toulouse

February 08, 2020 | AAAI Tutorial SP1

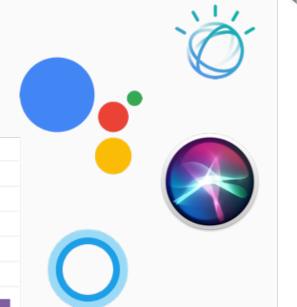
Many ML successes

https://en.wikipedia.org/wiki/Waymo

Image & Speech Recognition

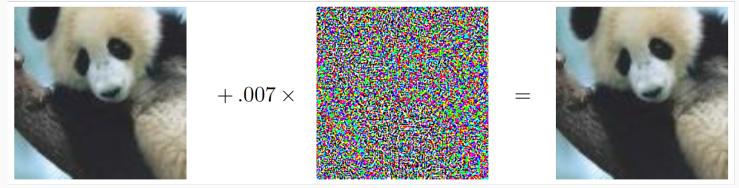


AlphaGo Zero & Alpha Zero



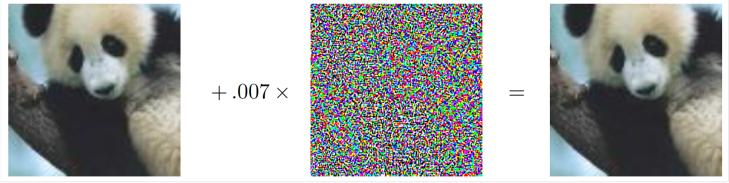
https://fr.wikipedia.org/wiki/Pepper_(robot)

Problem: ML models are brittle



Goodfellow et al., ICLR'15

Problem: ML models are brittle

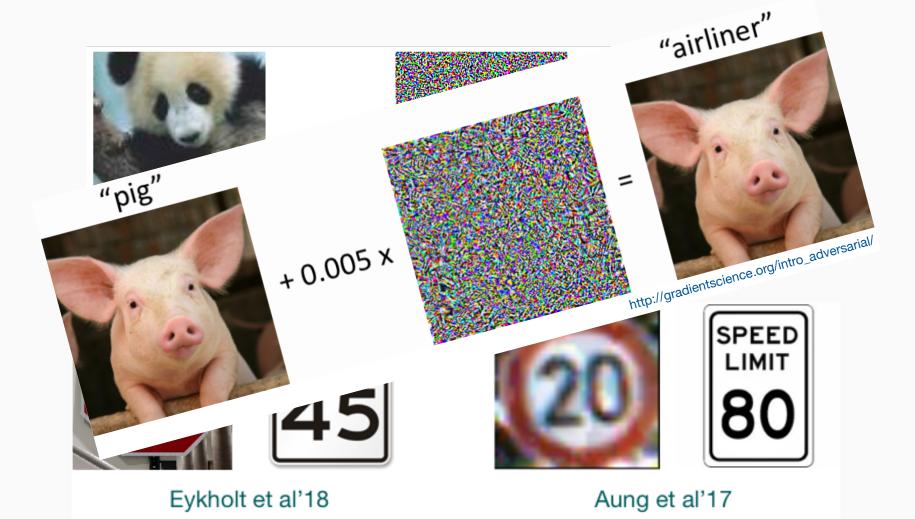


Goodfellow et al., ICLR'15

Aung et al'17

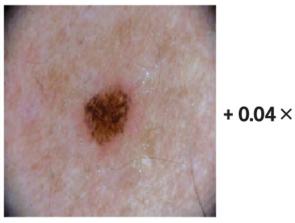
Eykholt et al'18

Problem: ML models are brittle



Adversarial examples can be very unsettling

Original image

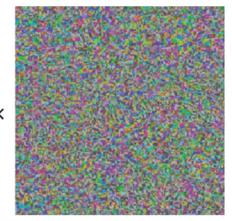


Dermatoscopic image of a benign melanocytic nevus, along with the diagnostic probability computed by a deep neural network.

Benign Malignant

Model confidence

Adversarial noise



Perturbation computed by a common adversarial attack technique.

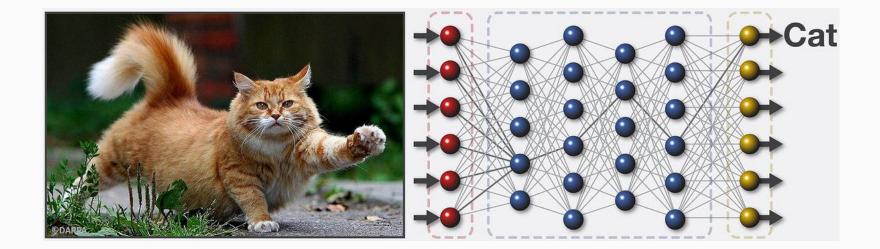
Adversarial example

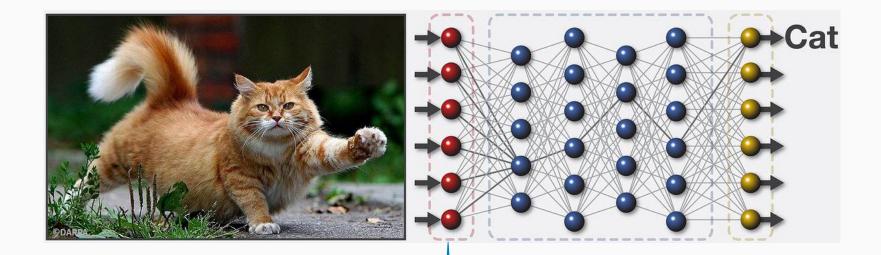
Combined image of nevus and attack perturbation and the diagnostic probabilities from the same deep neural network.

=

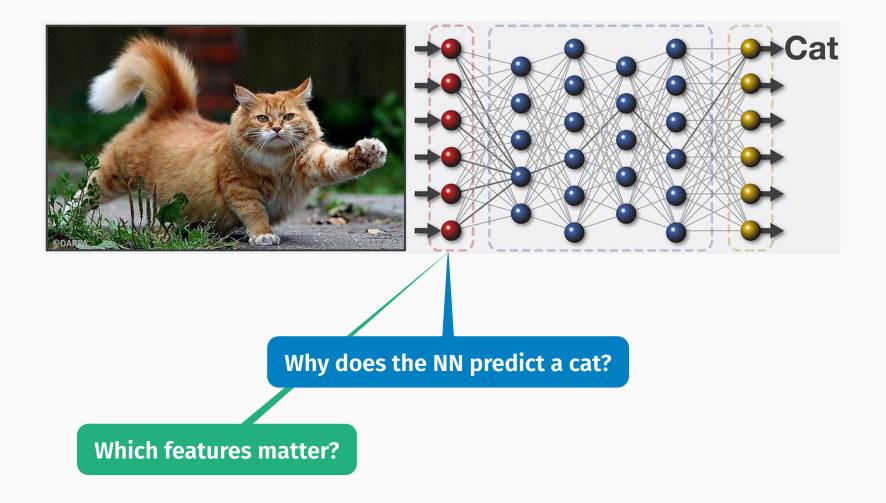
Benign Malignant

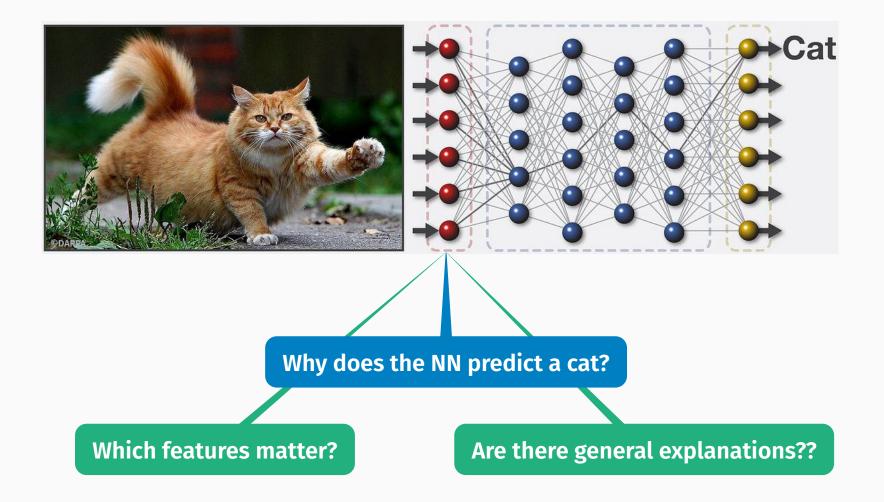
Model confidence Finlayson et al., Nature 2019





Why does the NN predict a cat?





of 27 April 2016

on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation)

(Text with EEA relevance)

of 27 April 2016

on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation)

(Text with EEA relevance)

European Union regulations on algorithmic decision-making and a "right to explanation"

Bryce Goodman,^{1*} Seth Flaxman,²

of 27 April 2016

on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation)

(Text with EEA relevance)

European Union regulations on algorithmic decision-making and a "right to explanation"

Bryce Goodman, 1* Seth Flaxman, 2

■ We summarize the potential impact that the European Union's new General Data Protection Regulation will have on the routine use of machine-learning algorithms. Slated to take effect as law across the European Union in 2018, it will place restrictions on automated individual decision making (that is, algorithms that make decisions based on user-level predictors) that "significantly affect" users. When put into practice, the law may also effectively create a right to explanation, whereby a user can ask for an explanation of an algorithmic decision that significantly affects them. We argue that while this law may pose large challenges for industry, it highlights opportunities for computer scientists to take the lead in designing algorithms and evaluation frameworks that avoid discrimination and enable explanation.

of 27 April 2016

on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation)

(Text with EEA relevance)

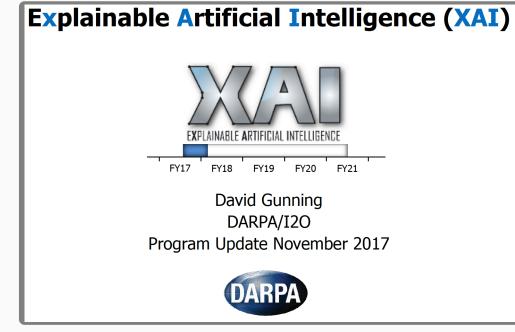
European Union regulations on algorithmic decision-making and a "right to explanation" POLICY VIS & WORLD VIECH

TheVerge.com

A new bill would force companies to check their algorithms for bias

Bryce Goodman,^{1*} Seth Flaxman,²

■ We summarize the potential impact that the European Union's new General Data Protection Regulation will have on the routine use of machine-learning algorithms. Slated to take effect as law across the European Union in 2018, it will place restrictions on automated individual decision making (that is, algorithms that make decisions based on user-level predictors) that "significantly affect" users. When put into practice, the law may also effectively create a right to explanation, whereby a user can ask for an explanation of an algorithmic decision that significantly affects them. We argue that while this law may pose large challenges for industry, it highlights opportunities for computer scientists to take the lead in designing algorithms and evaluation frameworks that avoid discrimination and enable explanation.



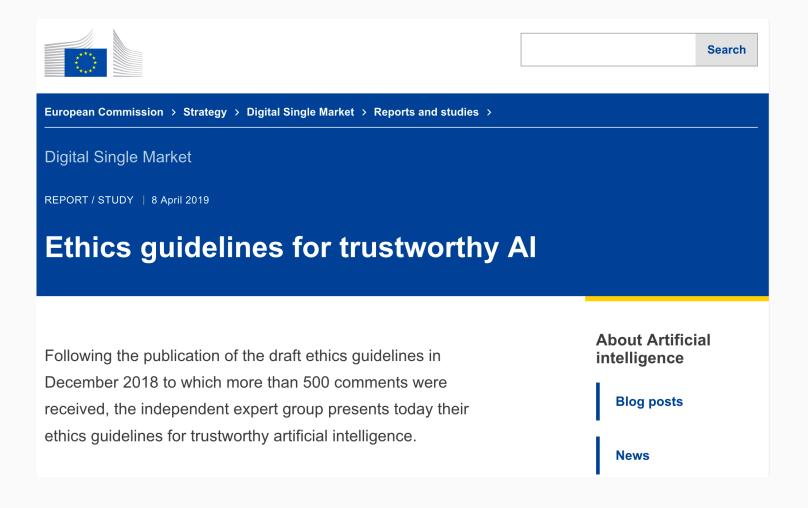
© DARPA

Why XAI?

on the In order to trust deployed AI systems, on the I III OF UCE TO THE COUNCIL mover we must not only improve their robustness,⁵ but also develop ways to make European Union regulation their reasoning intelligible. Intelligible makes and a "righ bility will help us spot AI that makes Bryce Good mistakes due to distributional drift or We summarize the potential impercent incomplete representations of goals mpanies to check their bata Protection Regulation will have the routing the r Data Protection Regulation will have the routine use of machine-learni, and features. Intelligibility will also algorithms. Slated to take effect as learning and features. ine routine use of machine-learni, and features. International in increase ence (XAI) algorithms. Slated to take effect as la across the European Union in 2018, facilitate control by humans in increase will place restrictions on automate will place restrictions on automatec individual decision making (that is, ingly common collaborative human/AI algorithms that make decisions based on user-level predictors) teams. Furthermore, intelligibility will help humans learn from AI. Finally, there are legal reasons to want intelligible AI, including the European GDPR cantly affect" users. When put into practice, the law may also effectively creand a growing need to assign liability ate a right to explanation, whereby a user can ask for an explanation of an algorithmic decision that significantly affects them. We argue that while this law may pose large challenges for industry, it highlights opportunities for comwhen AI errs. puter scientists to take the lead in designing algorithms and evaluation **DARP** frameworks that avoid discrimination and enable explanation.

© DARPA

XAI & EU guidelines



XAI & the principle of explicability



Heuristic explanation approaches unsettling

			Explanations							
Dataset	(# unique)	incorrect		redundant		minimal				
		LIME	Anchor	SHAP	LIME	Anchor	SHAP	LIME	Anchor	SHAP
adult	(5579)	61.3%	80.5%	70.7%	7.9%	1.6%	10.2%	30.8%	17.9%	19.1%
lending	(4414)	24.0%	3.0%	17.0%	0.4%	0.0%	2.5%	75.6%	97.0%	80.5%
rcdv	(3696)	94.1%	99.4%	85.9%	4.6%	0.4%	7.9%	1.3%	0.2%	6.2%
compas	(778)	71.9%	84.4%	60.4%	20.6%	1.7 %	27.8%	7.5%	13.9%	11.8%
german	(1000)	85.3%	99.7%	63.0%	14.6%	0.2%	37.0%	0.1%	0.1%	0.0%

Heuristic explanation approaches unsettling

			Explanations							
Dataset	(# unique)	e) incorrect		redundant			minimal			
		LIME	Anchor	SHAP	LIME	Anchor	SHAP	LIME	Anchor	SHAP
adult	(5579)	61.3%	80.5%	70.7%	7.9%	1.6%	10.2%	30.8%	17.9%	19.1%
lending	(4414)	24.0%	3.0%	17.0%	0.4%	0.0%	2.5%	75.6%	97.0%	80.5%
rcdv	(3696)	94.1%	99.4%	85.9%	4.6%	0.4%	7.9%	1.3%	0.2%	6.2%
compas	(778)	71.9%	84.4%	60.4%	20.6%	1.7 %	27.8%	7.5%	13.9%	11.8%
german	(1000)	85.3%	99.7%	63.0%	14.6%	0.2%	37.0%	0.1%	0.1%	0.0%

Assess robustness

• Learn interpretable models

• Explain black-box models

• How about heuristic approaches?

- Assess robustness
 - How easy it is to fool and ML model?
- Learn interpretable models

• Explain black-box models

How about heuristic approaches?

- Assess robustness
 - How easy it is to fool and ML model?
- Learn interpretable models
 - Decision trees; decision sets; decision lists; etc.
- Explain black-box models

• How about heuristic approaches?

- Assess robustness
 - How easy it is to fool and ML model?
- Learn interpretable models
 - Decision trees; decision sets; decision lists; etc.
- Explain black-box models
 - By using some accepted definition of explanation
- How about heuristic approaches?

- Assess robustness
 - How easy it is to fool and ML model?
- Learn interpretable models
 - Decision trees; decision sets; decision lists; etc.
- Explain black-box models
 - By using some accepted definition of explanation
- How about heuristic approaches?
 - No formal guarantees provided

• Problem complexity **not** necessarily an hopeless obstacle

- Problem complexity **not** necessarily an hopeless obstacle
- Efficient reasoners
 - SAT, SMT, CP, ILP, etc.

- Problem complexity **not** necessarily an hopeless obstacle
- Efficient reasoners
 - SAT, SMT, CP, ILP, etc.
- Effective problem encodings

- Problem complexity **not** necessarily an hopeless obstacle
- Efficient reasoners
 - SAT, SMT, CP, ILP, etc.
- Effective problem encodings
- Exploit known solutions
 - Exploit reasoners for efficient problem solving

(more latter)

 Part 01: first contact with formal reasoning tools 	Joao
 Part 02: learning interpretable models 	Kuldeep
 Part 03: assessing robustness of ML models 	Nina
 Part 04: rigorous explanations of ML models 	Alexey
 Part 05: duality in explanations & wrap-up 	Joao

Ex.	Vacation (V)	Concert (C)	Meeting (M)	Expo (E)	Hike (H)
e ₁	0	0	1	0	0
e ₂	1	0	0	0	1
e ₃	0	0	1	1	0
e ₄	1	0	0	1	1
e 5	0	1	1	0	0
e ₆	0	1	1	1	0
e ₇	1	1	0	1	1

• Training data (or **examples**): $\mathcal{E} = \{e_1, \dots, e_M\}$

Ex.	Vacation (V)	Concert (C)	Meeting (M)	Expo (E)	Hike (H)
e ₁	0	0	1	0	0
e ₂	1	0	0	0	1
e ₃	0	0	1	1	0
e ₄	1	0	0	1	1
e 5	0	1	1	0	0
e ₆	0	1	1	1	0
e ₇	1	1	0	1	1

- Training data (or **examples**): $\mathcal{E} = \{e_1, \dots, e_M\}$
- **Features**: $F = \{f_1, ..., f_K\}$
 - For binary features: f_r and $\neg f_r$
 - Otherwise, literals $f_r = v_{ri}$

Ex.	Vacation (V)	Concert (C)	Meeting (M)	Expo (E)	Hike (H)
e ₁	0	0	1	0	0
e ₂	1	0	0	0	1
e ₃	0	0	1	1	0
e ₄	1	0	0	1	1
e 5	0	1	1	0	0
e ₆	0	1	1	1	0
e ₇	1	1	0	1	1

- Training data (or **examples**): $\mathcal{E} = \{e_1, \dots, e_M\}$
- **Features**: $F = \{f_1, ..., f_K\}$
 - For binary features: f_r and $\neg f_r$
 - Otherwise, literals $f_r = v_{ri}$
- Feature space: $\mathcal{U} \triangleq \prod_{r=1}^{K} \{f_r = \mathbf{v}_{r1}, \dots, f_r = \mathbf{v}_{rk_r}\}$

Ex.	Vacation (V)	Concert (C)	Meeting (M)	Expo (E)	Hike (H)
e ₁	0	0	1	0	0
e ₂	1	0	0	0	1
e ₃	0	0	1	1	0
e ₄	1	0	0	1	1
e 5	0	1	1	0	0
e ₆	0	1	1	1	0
e ₇	1	1	0	1	1

- Training data (or **examples**): $\mathcal{E} = \{e_1, \dots, e_M\}$
- **Features**: $F = \{f_1, ..., f_K\}$
 - For binary features: f_r and $\neg f_r$
 - Otherwise, literals $f_r = v_{ri}$
- Feature space: $\mathcal{U} \triangleq \prod_{r=1}^{K} \{f_r = v_{r1}, \dots, f_r = v_{rk_r}\}$
- Classification: $C = \{c_0, c_1, \dots, c_M\}$

Ex.	Vacation (V)	Concert (C)	Meeting (M)	Expo (E)	Hike (H)
e ₁	0	0	1	0	0
e ₂	1	0	0	0	1
e ₃	0	0	1	1	0
e ₄	1	0	0	1	1
e 5	0	1	1	0	0
e ₆	0	1	1	1	0
e ₇	1	1	0	1	1

- Training data (or **examples**): $\mathcal{E} = \{e_1, \dots, e_M\}$
- **Features**: $F = \{f_1, ..., f_K\}$
 - For binary features: f_r and $\neg f_r$
 - Otherwise, literals $f_r = v_{ri}$
- Feature space: $\mathcal{U} \triangleq \prod_{r=1}^{K} \{f_r = v_{r1}, \dots, f_r = v_{rk_r}\}$
- Classification: $C = \{c_0, c_1, \dots, c_M\}$
- ML models: NNs, BTs, DTs, DSs, etc.

The SAT problem

- SAT is the decision problem for propositional logic
 - Well-formed propositional formulas, with variables, logical connectives: $\neg, \land, \lor, \rightarrow, \leftrightarrow$, and parenthesis: (,)
 - Often restricted to Conjunctive Normal Form (CNF)

- SAT is the decision problem for propositional logic
 - Well-formed propositional formulas, with variables, logical connectives: $\neg, \land, \lor, \rightarrow, \leftrightarrow$, and parenthesis: (,)
 - Often restricted to Conjunctive Normal Form (CNF)
 - Goal:

Decide whether formula has a satisfying assignment

• SAT is the decision problem for propositional logic

- Well-formed propositional formulas, with variables, logical connectives: ¬, ∧, ∨, →, ↔, and parenthesis: (,)
- Often restricted to Conjunctive Normal Form (CNF)
- Goal: Decide whether formula has a satisfying assignment
- Example:

 $\mathcal{F} \triangleq (\mathbf{r}) \land (\bar{\mathbf{r}} \lor \mathbf{s}) \land (\neg \mathbf{w} \lor \mathbf{a}) \land (\neg \mathbf{x} \lor \mathbf{b}) \land (\neg \mathbf{y} \lor \neg \mathbf{z} \lor \mathbf{c}) \land (\neg \mathbf{b} \lor \neg \mathbf{c} \lor \mathbf{d})$

• Example models:

• SAT is the decision problem for propositional logic

- Well-formed propositional formulas, with variables, logical connectives: $\neg, \land, \lor, \rightarrow, \leftrightarrow$, and parenthesis: (,)
- Often restricted to Conjunctive Normal Form (CNF)
- Goal: Decide whether formula has a satisfying assignment
- Example:

 $\mathcal{F} \triangleq (\mathbf{r}) \land (\bar{\mathbf{r}} \lor \mathbf{s}) \land (\neg \mathbf{w} \lor \mathbf{a}) \land (\neg \mathbf{x} \lor \mathbf{b}) \land (\neg \mathbf{y} \lor \neg \mathbf{z} \lor \mathbf{c}) \land (\neg \mathbf{b} \lor \neg \mathbf{c} \lor \mathbf{d})$

- Example models:
 - {*r*, *s*, *a*, *b*, *c*, *d*}

• SAT is the decision problem for propositional logic

- Well-formed propositional formulas, with variables, logical connectives: $\neg, \land, \lor, \rightarrow, \leftrightarrow$, and parenthesis: (,)
- Often restricted to Conjunctive Normal Form (CNF)
- Goal: Decide whether formula has a satisfying assignment
- Example:

 $\mathcal{F} \triangleq (\mathbf{r}) \land (\bar{\mathbf{r}} \lor \mathbf{s}) \land (\neg \mathbf{w} \lor \mathbf{a}) \land (\neg \mathbf{x} \lor \mathbf{b}) \land (\neg \mathbf{y} \lor \neg \mathbf{z} \lor \mathbf{c}) \land (\neg \mathbf{b} \lor \neg \mathbf{c} \lor \mathbf{d})$

- Example models:
 - {*r*,*s*,*a*,*b*,*c*,*d*}
 - {r, s, $\neg x$, y, $\neg w$, z, $\neg a$, b, c, d}

• SAT is the decision problem for propositional logic

- Well-formed propositional formulas, with variables, logical connectives: ¬, ∧, ∨, →, ↔, and parenthesis: (,)
- Often restricted to Conjunctive Normal Form (CNF)
- Goal: Decide whether formula has a satisfying assignment
- Example:

 $\mathcal{F} \triangleq (\mathbf{r}) \land (\bar{\mathbf{r}} \lor \mathbf{s}) \land (\neg \mathbf{w} \lor \mathbf{a}) \land (\neg \mathbf{x} \lor \mathbf{b}) \land (\neg \mathbf{y} \lor \neg \mathbf{z} \lor \mathbf{c}) \land (\neg \mathbf{b} \lor \neg \mathbf{c} \lor \mathbf{d})$

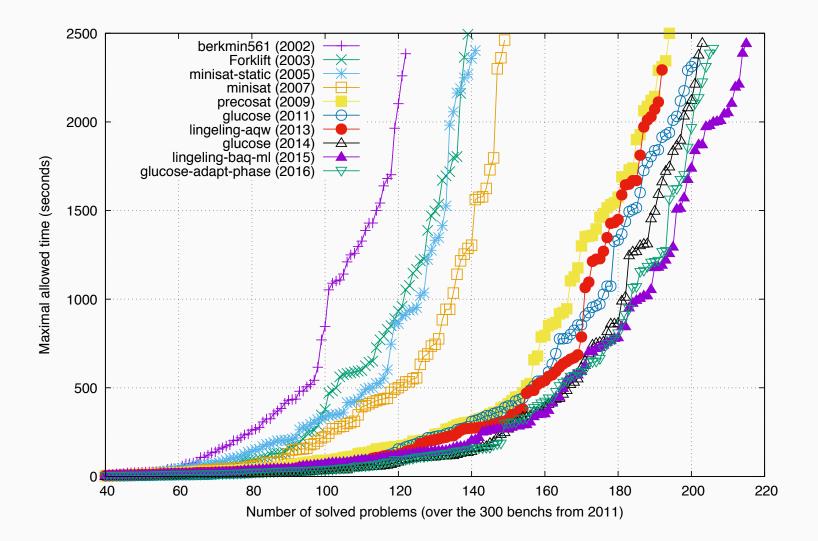
- Example models:
 - {*r*, *s*, *a*, *b*, *c*, *d*}
 - {r, s, $\neg x$, y, $\neg w$, z, $\neg a$, b, c, d}
- SAT is NP-complete

[Coo71]

• CDCL SAT solving is a success story of Computer Science

- CDCL SAT solving is a success story of Computer Science
 - Conflict-Driven Clause Learning (CDCL)
 - (CDCL) SAT has impacted many different fields
 - Hundreds (thousands?) of practical applications

[Source: Simon 2015]



How good are SAT solvers? - an example

- Cooperative pathfinding (CPF)
 - *N* agents on some grid/graph
 - Start positions
 - Goal positions
 - Minimize makespan
 - Restricted planning problem

How good are SAT solvers? - an example

- Cooperative pathfinding (CPF)
 - *N* agents on some grid/graph
 - Start positions
 - Goal positions
 - Minimize makespan
 - Restricted planning problem
- Concrete example
 - Gaming grid
 - 1039 vertices
 - 1928 edges
 - 100 agents

How good are SAT solvers? – an example

Cooperative pathfinding (CPF)

- N agents on some grid/graph
- Start positions
- Goal positions
- Minimize makespan
- Restricted planning problem

Concrete example

- Gaming grid
- 1039 vertices
- 1928 edges
- 100 agents

*** tracker: a pathfinding tool ***

Initialization ... CPU Time: 0.004711 Number of variables: 113315 Tentative makespan 1 Number of variables: 226630 Number of assumptions: 1 c Running SAT solver ... CPU Time: 0.718112 c Done running SAT solver ... CPU Time: 0.830099 No solution for makespan 1 Elapsed CPU Time: 0.830112 Tentative makespan 2 Number of variables: 339945 Number of assumptions: 1 c Running SAT solver ... CPU Time: 1.27113 c Done running SAT solver ... CPU Time: 1.27114 No solution for makespan 2 Elapsed CPU Time: 1.27114 . . . Tentative makespan 24 Number of variables: 2832875 Number of assumptions: 1 c Running SAT solver ... CPU Time: 11.8653 c Done running SAT solver ... CPU Time: 11.8653 No solution for makespan 24 Elapsed CPU Time: 11.8653 Tentative makespan 25 Number of variables: 2946190 Number of assumptions: 1 c Running SAT solver ... CPU Time: 12.3491 c Done running SAT solver ... CPU Time: 16.6882 Solution found for makespan 25 Elapsed CPU Time: 16.6995

How good are SAT solvers? – an example

• Cooperative pathfinding (CPF)

- N agents on some grid/graph
- Start positions
- Goal positions
- Minimize makespan
- Restricted planning problem

• Concrete example

- Gaming grid
- 1039 vertices
- 1928 edges
- 100 agents
- Formula w/ 2832875 variables!
- Formula w/ 2946190 variables!

*** tracker: a pathfinding tool ***

Initialization ... CPU Time: 0.004711 Number of variables: 113315 Tentative makespan 1 Number of variables: 226630 Number of assumptions: 1 c Running SAT solver ... CPU Time: 0.718112 c Done running SAT solver ... CPU Time: 0.830099 No solution for makespan 1 Elapsed CPU Time: 0.830112 Tentative makespan 2 Number of variables: 339945 Number of assumptions: 1 c Running SAT solver ... CPU Time: 1.27113 c Done running SAT solver ... CPU Time: 1.27114 No solution for makespan 2 Elapsed CPU Time: 1.27114 . . . Tentative makespan 24 Number of variables: 2832875 Number of assumptions: 1 c Running SAT solver ... CPU Time: 11.8653 c Done running SAT solver ... CPU Time: 11.8653 No solution for makespan 24 Elapsed CPU Time: 11.8653 Tentative makespan 25 Number of variables: 2946190 Number of assumptions: 1 c Running SAT solver ... CPU Time: 12.3491 c Done running SAT solver ... CPU Time: 16.6882 Solution found for makespan 25 Elapsed CPU Time: 16.6995

How good are SAT solvers? – an example

Cooperative pathfinding (CPF)

- N agents on some grid/graph
- Start positions
- Goal positions
- Minimize makespan
- Restricted planning problem

• Concrete example

- Gaming grid
- 1039 vertices
- 1928 edges
- 100 agents
- Formula w/ 2832875 variables!
- Formula w/ 2946190 variables!

• Note: In the early 90s, SAT solvers could solve formulas with a few hundred variables!

*** tracker: a pathfinding tool ***

Initialization ... CPU Time: 0.004711 Number of variables: 113315 Tentative makespan 1 Number of variables: 226630 Number of assumptions: 1 c Running SAT solver ... CPU Time: 0.718112 c Done running SAT solver ... CPU Time: 0.830099 No solution for makespan 1 Elapsed CPU Time: 0.830112 Tentative makespan 2 Number of variables: 339945 Number of assumptions: 1 c Running SAT solver ... CPU Time: 1.27113 c Done running SAT solver ... CPU Time: 1.27114 No solution for makespan 2 Elapsed CPU Time: 1.27114 . . . Tentative makespan 24 Number of variables: 2832875 Number of assumptions: 1 c Running SAT solver ... CPU Time: 11.8653 c Done running SAT solver ... CPU Time: 11.8653 No solution for makespan 24 Elapsed CPU Time: 11.8653 Tentative makespan 25 Number of variables: 2946190 Number of assumptions: 1 c Running SAT solver ... CPU Time: 12.3491 c Done running SAT solver ... CPU Time: 16.6882 Solution found for makespan 25 Elapsed CPU Time: 16.6995

- Number of seconds since the Big Bang: $\approx 10^{17}$

- Number of seconds since the Big Bang: $\approx 10^{17}$

- Number of fundamental particles in observable universe: $pprox 10^{80}$ (or $pprox 10^{85}$)

- Number of seconds since the Big Bang: $\approx 10^{17}$

- Number of fundamental particles in observable universe: $pprox 10^{80}$ (or $pprox 10^{85}$)

• Search space with 2832875 propositional variables (worst case):

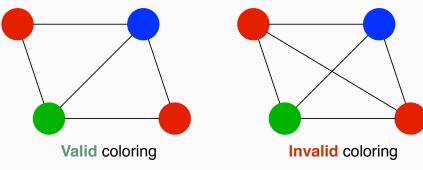
- Number of seconds since the Big Bang: $pprox 10^{17}$

• Number of fundamental particles in observable universe: $pprox 10^{80}$ (or $pprox 10^{85}$)

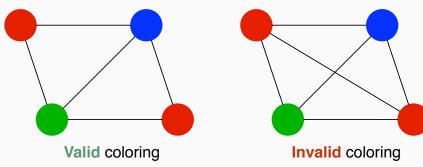
- Search space with 2832875 propositional variables (worst case):
 - # of assignments to $> 2.8 \times 10^6$ variables: $\gg 10^{840000}$!!
 - **Obs:** SAT solvers at present (but formula dependent)

- Given undirected graph G = (V, E) and k colors:
 - Can we assign colors to vertices of *G* s.t. any pair of adjacent vertices are assigned different colors?

- Given undirected graph G = (V, E) and k colors:
 - Can we assign colors to vertices of *G* s.t. any pair of adjacent vertices are assigned different colors?

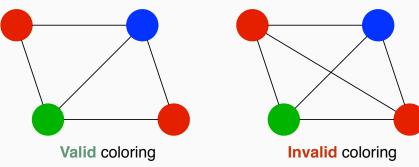


- Given undirected graph G = (V, E) and k colors:
 - Can we assign colors to vertices of *G* s.t. any pair of adjacent vertices are assigned different colors?



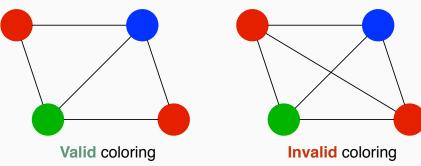
• How to model color assignments to vertices?

- Given undirected graph G = (V, E) and k colors:
 - Can we assign colors to vertices of *G* s.t. any pair of adjacent vertices are assigned different colors?



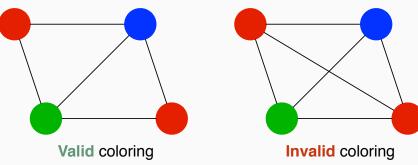
- How to model color assignments to vertices?
 - $x_{i,j} = 1$ iff vertex $v_i \in V$ is assigned color $j \in \{1, \ldots, k\}$

- Given undirected graph G = (V, E) and k colors:
 - Can we assign colors to vertices of *G* s.t. any pair of adjacent vertices are assigned different colors?



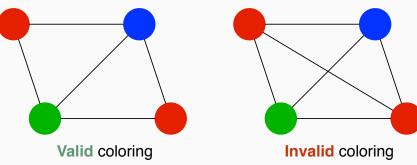
- How to model color assignments to vertices?
 - $x_{i,j} = 1$ iff vertex $v_i \in V$ is assigned color $j \in \{1, \ldots, k\}$
- How to model adjacent vertices with different colors?

- Given undirected graph G = (V, E) and k colors:
 - Can we assign colors to vertices of *G* s.t. any pair of adjacent vertices are assigned different colors?



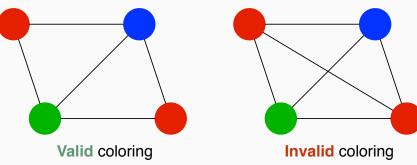
- How to model color assignments to vertices?
 - $x_{i,j} = 1$ iff vertex $v_i \in V$ is assigned color $j \in \{1, \ldots, k\}$
- How to model adjacent vertices with different colors?
 - $(\neg x_{i,j} \lor \neg x_{l,j})$ if $(v_i, v_l) \in E$, with $j \in \{1, \ldots, k\}$

- Given undirected graph G = (V, E) and k colors:
 - Can we assign colors to vertices of *G* s.t. any pair of adjacent vertices are assigned different colors?



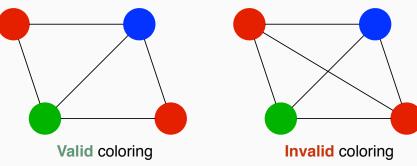
- How to model color assignments to vertices?
 - $x_{i,j} = 1$ iff vertex $v_i \in V$ is assigned color $j \in \{1, \ldots, k\}$
- How to model adjacent vertices with different colors?
 - $(\neg x_{i,j} \lor \neg x_{l,j})$ if $(v_i, v_l) \in E$, with $j \in \{1, \ldots, k\}$
- How to model vertices get some color?

- Given undirected graph G = (V, E) and k colors:
 - Can we assign colors to vertices of *G* s.t. any pair of adjacent vertices are assigned different colors?



- How to model color assignments to vertices?
 - $x_{i,j} = 1$ iff vertex $v_i \in V$ is assigned color $j \in \{1, \ldots, k\}$
- How to model adjacent vertices with different colors?
 - $(\neg x_{i,j} \lor \neg x_{l,j})$ if $(v_i, v_l) \in E$, with $j \in \{1, \ldots, k\}$
- How to model vertices get some color?
 - $\sum_{j \in \{1,\dots,k\}} x_{i,j} = 1$, for $v_i \in V$

- Given undirected graph G = (V, E) and k colors:
 - Can we assign colors to vertices of *G* s.t. any pair of adjacent vertices are assigned different colors?

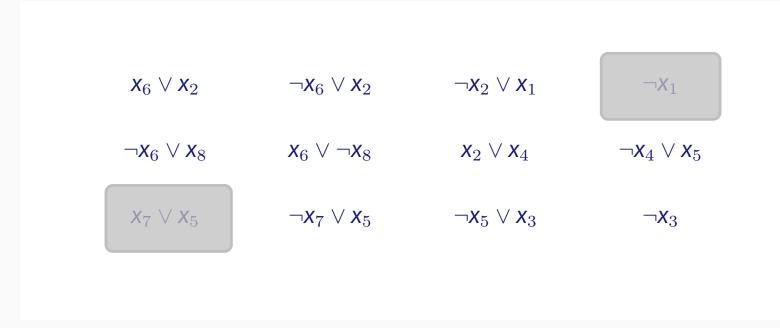


- How to model color assignments to vertices?
 - $x_{i,j} = 1$ iff vertex $v_i \in V$ is assigned color $j \in \{1, \ldots, k\}$
- · How to model adjacent vertices with different colors?
 - $(\neg x_{i,j} \lor \neg x_{l,j})$ if $(v_i, v_l) \in E$, with $j \in \{1, \ldots, k\}$
- How to model vertices get some color?
 - $\sum_{j \in \{1,...,k\}} x_{i,j} = 1$, for $v_i \in V$
 - Note: it suffices to use $\left(\bigvee_{j \in \{1,...,k\}} x_{i,j}\right)$

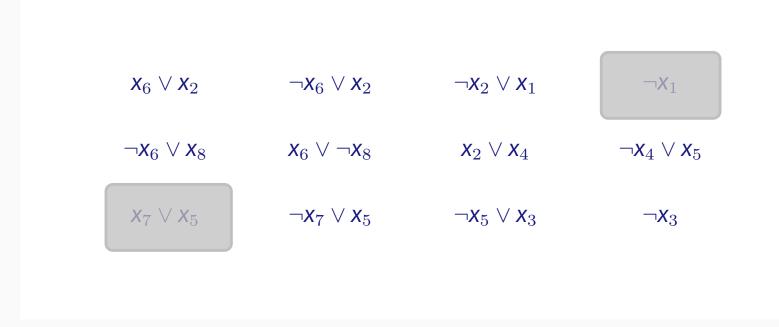
$\mathbf{x}_6 \lor \mathbf{x}_2$	$\neg \mathbf{x}_6 \lor \mathbf{x}_2$	$ eg \mathbf{x}_2 \lor \mathbf{x}_1$	$\neg x_1$
$\neg \mathbf{x}_6 \lor \mathbf{x}_8$	$\mathbf{x}_6 \lor \neg \mathbf{x}_8$	$\mathbf{x}_2 ee \mathbf{x}_4$	$ eg \mathbf{x}_4 \lor \mathbf{x}_5$
$x_7 \lor x_5$	$ eg x_7 \lor x_5$	$\neg x_5 \lor x_3$	$\neg x_3$

• Unsatisfiable formula

- Unsatisfiable formula
- Find largest subset of clauses that is satisfiable



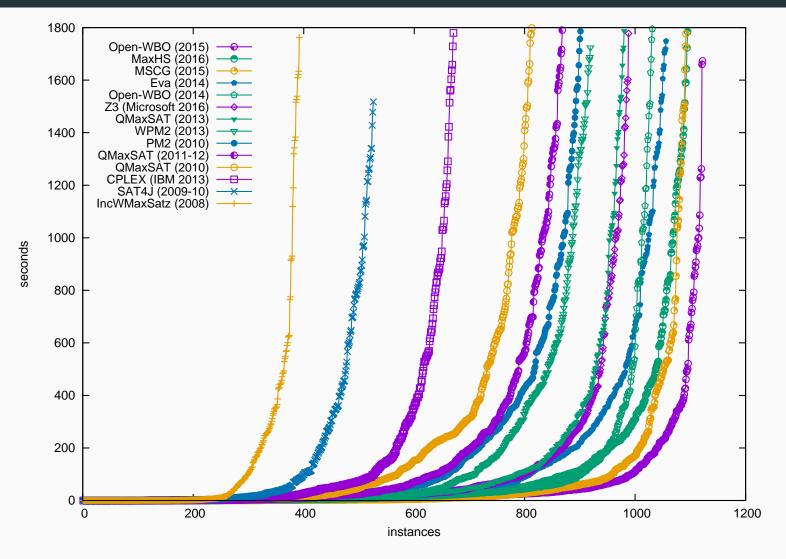
- Unsatisfiable formula
- Find largest subset of clauses that is satisfiable
- A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula



- Unsatisfiable formula
- Find largest subset of clauses that is satisfiable
- A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula
- The MaxSAT solution is one of the smallest (cost) MCSes

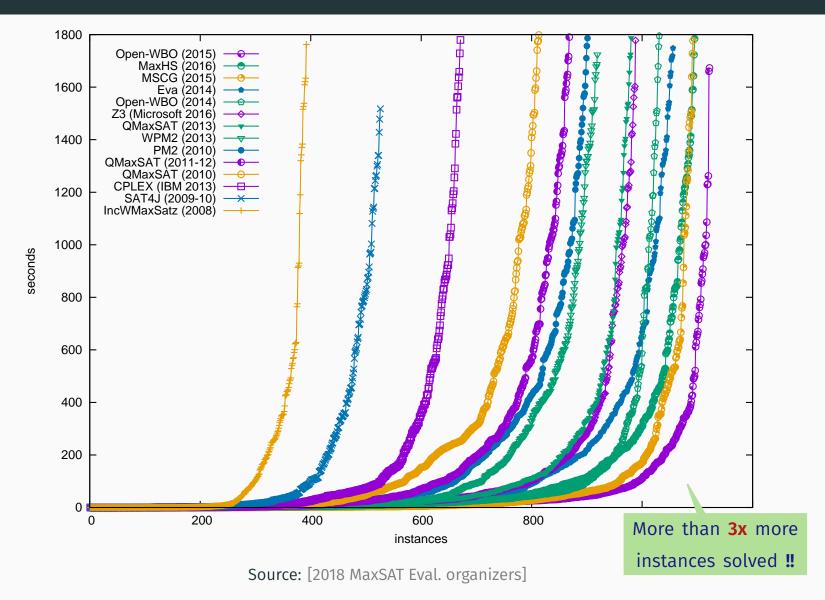
The MaxSAT (r)evolution

The MaxSAT (r)evolution – partial MaxSAT

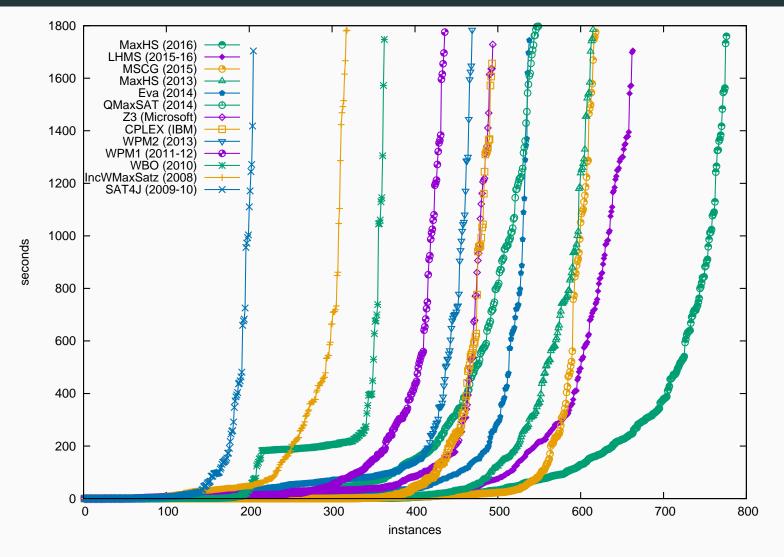


Source: [2018 MaxSAT Eval. organizers]

The MaxSAT (r)evolution – partial MaxSAT

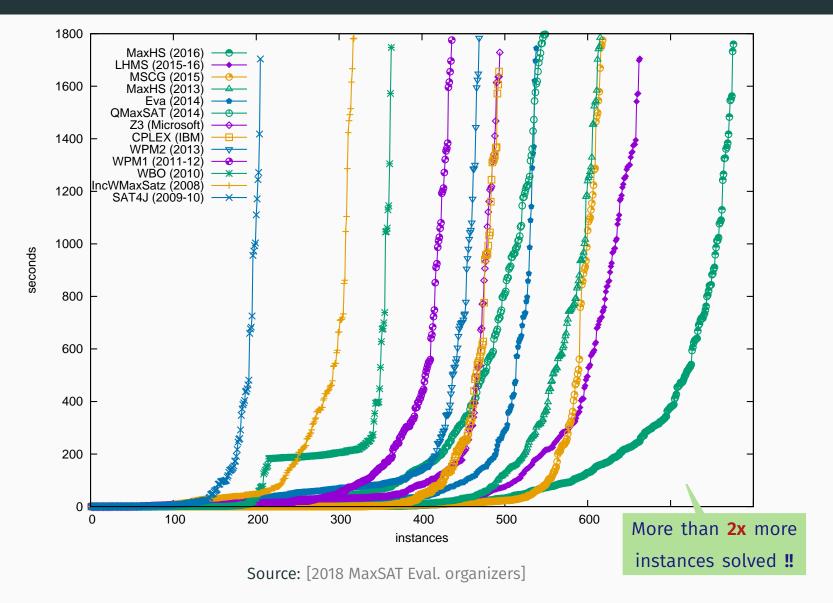


The MaxSAT (r)evolution – weighted MaxSAT



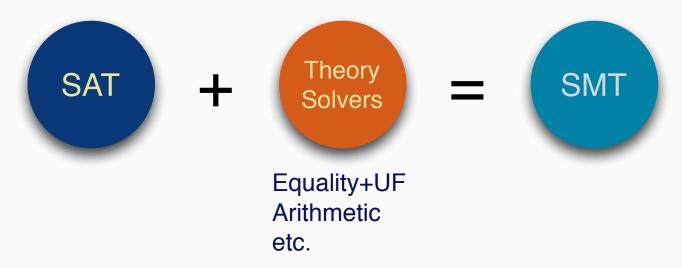
Source: [2018 MaxSAT Eval. organizers]

The MaxSAT (r)evolution – weighted MaxSAT



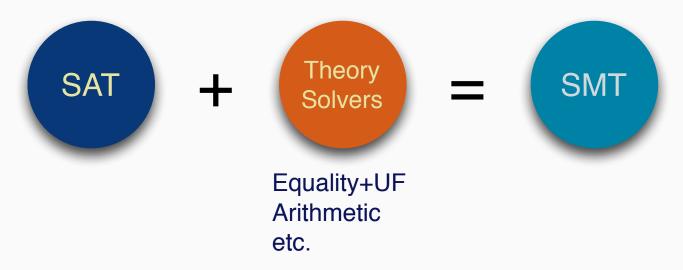
Satisfiability Modulo Theories (SMT)

• Automate reasoning in (fragments of) first-order logic (FOL)



Satisfiability Modulo Theories (SMT)

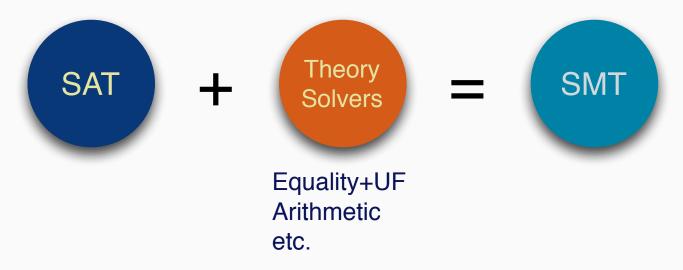
• Automate reasoning in (fragments of) first-order logic (FOL)



- Problem representation in propositional logic (PL):
 - Positive: Efficient (in practice) SAT algorithms
 - Negative: Expresiveness via CNF encodings

Satisfiability Modulo Theories (SMT)

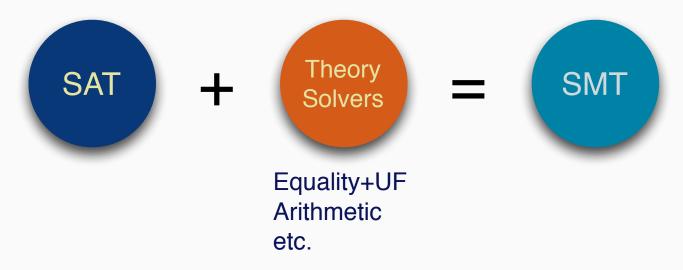
• Automate reasoning in (fragments of) first-order logic (FOL)



- Problem representation in propositional logic (PL):
 - Positive: Efficient (in practice) SAT algorithms
 - Negative: Expresiveness via CNF encodings
- PL + domain-specific reasoning
 - Positive: Improved expressiveness
 - Negative: Can be (far) less efficient than SAT

Satisfiability Modulo Theories (SMT)

• Automate reasoning in (fragments of) first-order logic (FOL)



- Problem representation in propositional logic (PL):
 - Positive: Efficient (in practice) SAT algorithms
 - Negative: Expresiveness via CNF encodings
- PL + domain-specific reasoning
 - Positive: Improved expressiveness
 - Negative: Can be (far) less efficient than SAT
- Note: Standard definitions of FOL apply

• All x_i variables integer

- All x_i variables integer
- Solve:

$$((\mathbf{x}_4 - \mathbf{x}_2 \le 3) \lor (\mathbf{x}_4 - \mathbf{x}_3 \ge 5)) \land (\mathbf{x}_4 - \mathbf{x}_3 \le 6) \land (\mathbf{x}_1 - \mathbf{x}_2 \le -1) \land (\mathbf{x}_1 - \mathbf{x}_3 \le -2) \land (\mathbf{x}_1 - \mathbf{x}_4 \le -1) \land (\mathbf{x}_2 - \mathbf{x}_1 \le 2) \land (\mathbf{x}_3 - \mathbf{x}_2 \le -1) \land ((\mathbf{x}_3 - \mathbf{x}_4 \le -2) \lor (\mathbf{x}_4 - \mathbf{x}_3 \ge 2))$$

- All x_i variables integer
- Solve:

$$\begin{array}{l} ((\mathbf{x}_4 - \mathbf{x}_2 \le 3) \lor (\mathbf{x}_4 - \mathbf{x}_3 \ge 5)) \land (\mathbf{x}_4 - \mathbf{x}_3 \le 6) \land \\ (\mathbf{x}_1 - \mathbf{x}_2 \le -1) \land (\mathbf{x}_1 - \mathbf{x}_3 \le -2) \land (\mathbf{x}_1 - \mathbf{x}_4 \le -1) \land (\mathbf{x}_2 - \mathbf{x}_1 \le 2) \land \\ (\mathbf{x}_3 - \mathbf{x}_2 \le -1) \land ((\mathbf{x}_3 - \mathbf{x}_4 \le -2) \lor (\mathbf{x}_4 - \mathbf{x}_3 \ge 2)) \end{array}$$

• Integer difference logic (with Boolean structure)

- All *x_i* variables integer
- Solve:

$$\begin{array}{l} ((\mathbf{x}_4 - \mathbf{x}_2 \le 3) \lor (\mathbf{x}_4 - \mathbf{x}_3 \ge 5)) \land (\mathbf{x}_4 - \mathbf{x}_3 \le 6) \land \\ (\mathbf{x}_1 - \mathbf{x}_2 \le -1) \land (\mathbf{x}_1 - \mathbf{x}_3 \le -2) \land (\mathbf{x}_1 - \mathbf{x}_4 \le -1) \land (\mathbf{x}_2 - \mathbf{x}_1 \le 2) \land \\ (\mathbf{x}_3 - \mathbf{x}_2 \le -1) \land ((\mathbf{x}_3 - \mathbf{x}_4 \le -2) \lor (\mathbf{x}_4 - \mathbf{x}_3 \ge 2)) \end{array}$$

- Integer difference logic (with Boolean structure)
- Unsatisfiable (Why?)

Another example

• All $t_{i,j}$ variables integer

- All *t_{i,j}* variables integer
- Solve:

$$\begin{split} (t_{1,1} \geq 0) \land (t_{1,2} \geq t_{1,1} + 2) \land (t_{1,2} + 1 \leq 8) \land \\ (t_{2,1} \geq 0) \land (t_{2,2} \geq t_{1,1} + 3) \land (t_{2,2} + 1 \leq 8) \land \\ (t_{3,1} \geq 0) \land (t_{3,2} \geq t_{1,1} + 2) \land (t_{3,2} + 3 \leq 8) \land \\ ((t_{1,1} \geq t_{2,1} + 3) \lor (t_{2,1} \geq t_{1,1} + 2)) \land \\ ((t_{1,1} \geq t_{3,1} + 2) \lor (t_{3,1} \geq t_{1,1} + 2)) \land \\ ((t_{2,1} \geq t_{3,1} + 2) \lor (t_{3,1} \geq t_{2,1} + 3)) \land \\ ((t_{1,2} \geq t_{2,2} + 1) \lor (t_{2,2} \geq t_{1,2} + 1)) \land \\ ((t_{1,2} \geq t_{3,2} + 3) \lor (t_{3,2} \geq t_{1,2} + 1)) \land \\ ((t_{2,2} \geq t_{3,2} + 3) \lor (t_{3,2} \geq t_{2,2} + 1)) \land \end{split}$$

- All *t_{i,j}* variables integer
- Solve:

$$\begin{split} (t_{1,1} \geq 0) \land (t_{1,2} \geq t_{1,1} + 2) \land (t_{1,2} + 1 \leq 8) \land \\ (t_{2,1} \geq 0) \land (t_{2,2} \geq t_{1,1} + 3) \land (t_{2,2} + 1 \leq 8) \land \\ (t_{3,1} \geq 0) \land (t_{3,2} \geq t_{1,1} + 2) \land (t_{3,2} + 3 \leq 8) \land \\ ((t_{1,1} \geq t_{2,1} + 3) \lor (t_{2,1} \geq t_{1,1} + 2)) \land \\ ((t_{1,1} \geq t_{3,1} + 2) \lor (t_{3,1} \geq t_{1,1} + 2)) \land \\ ((t_{2,1} \geq t_{3,1} + 2) \lor (t_{3,1} \geq t_{2,1} + 3)) \land \\ ((t_{1,2} \geq t_{2,2} + 1) \lor (t_{2,2} \geq t_{1,2} + 1)) \land \\ ((t_{1,2} \geq t_{3,2} + 3) \lor (t_{3,2} \geq t_{1,2} + 1)) \land \\ ((t_{2,2} \geq t_{3,2} + 3) \lor (t_{3,2} \geq t_{2,2} + 1)) \land \end{split}$$

• Another example of integer difference logic (with Boolean structure)

- All *t_{i,j}* variables integer
- Solve:

$$\begin{split} (t_{1,1} \geq 0) \land (t_{1,2} \geq t_{1,1} + 2) \land (t_{1,2} + 1 \leq 8) \land \\ (t_{2,1} \geq 0) \land (t_{2,2} \geq t_{1,1} + 3) \land (t_{2,2} + 1 \leq 8) \land \\ (t_{3,1} \geq 0) \land (t_{3,2} \geq t_{1,1} + 2) \land (t_{3,2} + 3 \leq 8) \land \\ ((t_{1,1} \geq t_{2,1} + 3) \lor (t_{2,1} \geq t_{1,1} + 2)) \land \\ ((t_{1,1} \geq t_{3,1} + 2) \lor (t_{3,1} \geq t_{1,1} + 2)) \land \\ ((t_{2,1} \geq t_{3,1} + 2) \lor (t_{3,1} \geq t_{2,1} + 3)) \land \\ ((t_{1,2} \geq t_{2,2} + 1) \lor (t_{2,2} \geq t_{1,2} + 1)) \land \\ ((t_{1,2} \geq t_{3,2} + 3) \lor (t_{3,2} \geq t_{1,2} + 1)) \land \\ ((t_{2,2} \geq t_{3,2} + 3) \lor (t_{3,2} \geq t_{2,2} + 1)) \land \end{split}$$

- Another example of integer difference logic (with Boolean structure)
- Satisfiable, with model: $t_{1,1} = 5$; $t_{1,2} = 7$; $t_{2,1} = 2$; $t_{2,2} = 6$; $t_{3,1} = 0$; $t_{3,2} = 7$;

Additional formalisms & reasoners

• (Mixed) integer linear programming (MILP)

$$\begin{array}{ll} \min & \sum c_j x_j \\ \text{st} & \sum a_{ij} x_j \leq b_i \quad i = 1, \dots, M \\ & x_j \in \mathbb{Z} \qquad \qquad j = 1, \dots, N \end{array}$$

• Significant performance gains since the 90s

Additional formalisms & reasoners

• (Mixed) integer linear programming (MILP)

$$\begin{array}{ll} \min & \sum c_j x_j \\ st & \sum a_{ij} x_j \le b_i \quad i = 1, \dots, M \\ & x_j \in \mathbb{Z} \qquad \qquad j = 1, \dots, N \end{array}$$

- Significant performance gains since the 90s
- Constraint programming (CP)
 - Significant performance gains since the late 90s
- Answer set programming (ASP)
 - Significant performance gains since the late 90s

Additional formalisms & reasoners

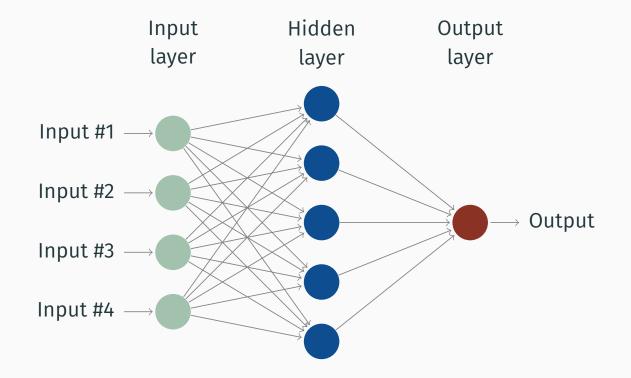
• (Mixed) integer linear programming (MILP)

$$\begin{array}{ll} \min & \sum c_j x_j \\ st & \sum a_{ij} x_j \le b_i \quad i = 1, \dots, M \\ & x_j \in \mathbb{Z} \qquad \qquad j = 1, \dots, N \end{array}$$

- Significant performance gains since the 90s
- Constraint programming (CP)
 - Significant performance gains since the late 90s
- Answer set programming (ASP)
 - Significant performance gains since the late 90s
- Quantified boolean formulas (QBF)
 - Significant performance gains over the last decade

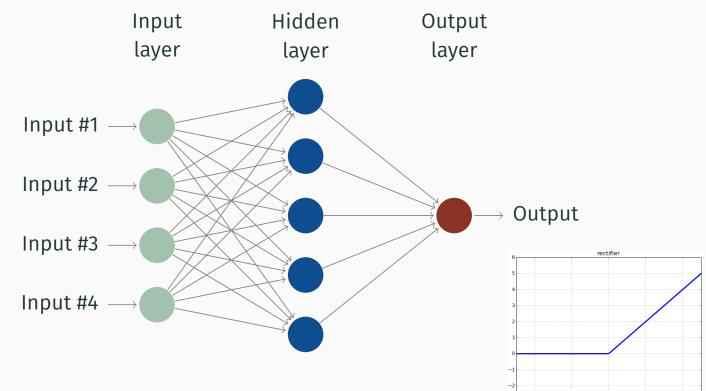
2 Modeling Examples

How to encode a neural network?



- Each layer (except first) viewed as a **block**
 - Compute \mathbf{x}' given input \mathbf{x} , weights matrix \mathbf{A} , and bias vector \mathbf{b}
 - Compute output $\mathbf y$ given $\mathbf x'$ and activation function
- Each unit uses a ReLU activation function

[NH10]



• Each layer (except first) viewed as a **block**

- Compute \mathbf{x}' given input \mathbf{x} , weights matrix \mathbf{A} , and bias vector \mathbf{b}
- Compute output $\mathbf y$ given $\mathbf x'$ and activation function
- Each unit uses a ReLU activation function

[NH10]

Computation for a NN ReLU **block**:

 $\mathbf{x}' = \mathbf{A} \cdot \mathbf{x} + \mathbf{b}$ $\mathbf{y} = \max(\mathbf{x}', \mathbf{0})$

Computation for a NN ReLU **block**:

 $\mathbf{x}' = \mathbf{A} \cdot \mathbf{x} + \mathbf{b}$ $\mathbf{y} = \max(\mathbf{x}', \mathbf{0})$

Encoding each **block**:

$$\sum_{j=1}^{n} a_{i,j} x_j + b_i = y_i - s_i$$
$$Z_i = 1 \rightarrow y_i \le 0$$
$$Z_i = 0 \rightarrow s_i \le 0$$
$$y_i \ge 0, s_i \ge 0, z_i \in \{0, 1\}$$

Simpler encodings exist, but **not** as effective

[KBD+17]

[FJ18]

26/40

• General form: $\sum_{j=1}^{n} x_j \leq k$

- General form: $\sum_{j=1}^{n} x_j \leq k$
- Any combination of k + 1 true variables is **disallowed**

- General form: $\sum_{j=1}^{n} x_j \leq k$
- Any combination of k + 1 true variables is **disallowed**
- E.g. encode to propositional logic: $a + b + c + d + e \le 2$

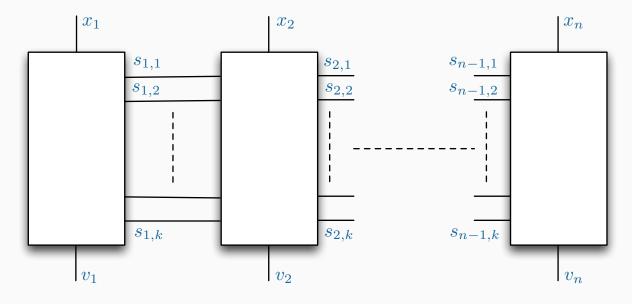
- General form: $\sum_{j=1}^{n} x_j \leq k$
- Any combination of k + 1 true variables is **disallowed**
- E.g. encode to propositional logic: $a + b + c + d + e \le 2$
- Resulting constraints:

$$\begin{array}{lll} a \wedge b \rightarrow \bar{c} & \Longrightarrow & (\bar{a} \vee \bar{b} \vee \bar{c}) \\ a \wedge b \rightarrow \bar{d} & \Longrightarrow & (\bar{a} \vee \bar{b} \vee \bar{d}) \\ a \wedge b \rightarrow \bar{e} & \Longrightarrow & (\bar{a} \vee \bar{b} \vee \bar{e}) \\ a \wedge c \rightarrow \bar{d} & \Longrightarrow & (\bar{a} \vee \bar{c} \vee \bar{d}) \\ a \wedge c \rightarrow \bar{e} & \Longrightarrow & (\bar{a} \vee \bar{c} \vee \bar{c}) \\ a \wedge d \rightarrow \bar{e} & \Longrightarrow & (\bar{a} \vee \bar{d} \vee \bar{e}) \\ b \wedge c \rightarrow \bar{d} & \Longrightarrow & (\bar{b} \vee \bar{c} \vee \bar{d}) \\ b \wedge c \rightarrow \bar{e} & \Longrightarrow & (\bar{b} \vee \bar{c} \vee \bar{e}) \\ b \wedge d \rightarrow \bar{e} & \Longrightarrow & (\bar{b} \vee \bar{d} \vee \bar{e}) \\ c \wedge d \rightarrow \bar{e} & \Longrightarrow & (\bar{c} \vee \bar{d} \vee \bar{e}) \end{array}$$

Redundant constraints not shown

In practice, use auxiliary variables, e.g. sequential counter

• Encode $\sum_{j=1}^{n} x_j \leq k$ with sequential counter:



• Equations for each block 1 < i < n, 1 < j < k:

 $s_i = \sum_{j=1}^i x_j$ s_i represented in unary

$$S_{i,1} = S_{i-1,1} \lor X_i$$

$$S_{i,j} = S_{i-1,j} \lor S_{i-1,j-1} \land X_i$$

$$V_i = (S_{i-1,k} \land X_i) = 0$$

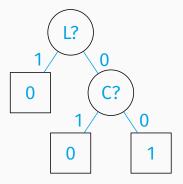
Resulting constraints

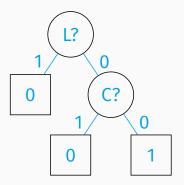
- CNF formula for $\sum_{j=1}^{n} x_j \leq k$:
 - Assume: $k > 0 \land n > 1$
 - Indeces: 1 < i < n, $1 < j \le k$

 $(\neg x_{1} \lor x_{1,1})$ $(\neg s_{1,j})$ $(\neg x_{i} \lor s_{i,1})$ $(\neg s_{i-1,1} \lor s_{i,1})$ $(\neg x_{i} \lor \neg s_{i-1,j-1} \lor s_{i,j})$ $(\neg s_{i-1,j} \lor s_{i,j})$ $(\neg x_{i} \lor \neg s_{i-1,k})$ $(\neg x_{n} \lor \neg s_{n-1,k})$

- $\mathcal{O}(n k)$ clauses & variables
- Many more encodings
- Can do pseudo-boolean constraints

How to guess a decision tree?

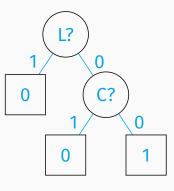






Var Description

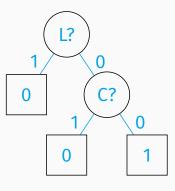
- $v_i \mid 1$ iff node *i* is a leaf node, $i = 1, \ldots, N$
- l_{ij} 1 iff node *i* has node *j* as the left child, with $j \in LR(i)$, where LR(i) = even([i + 1, min(2i, N 1)]), i = 1, ..., N
- r_{ij} 1 iff node *i* has node *j* as the right child, with $j \in RR(i)$, where RR(i) = odd([i + 2, min(2i + 1, N)]), i = 1, ..., N
- p_{ji} 1 iff the parent of node j is node i, j = 2, ..., N, i = 1, ..., N-1



Var Description

- v_i 1 iff node *i* is a leaf node, $i = 1, \ldots, N$
- l_{ij} 1 iff node *i* has node *j* as the left child, with $j \in LR(i)$, where LR(i) = even([i + 1, min(2i, N 1)]), i = 1, ..., N
- r_{ij} 1 iff node *i* has node *j* as the right child, with $j \in RR(i)$, where RR(i) = odd([i + 2, min(2i + 1, N)]), i = 1, ..., N
- p_{ji} 1 iff the parent of node j is node i, j = 2, ..., N, i = 1, ..., N 1

Constraints:



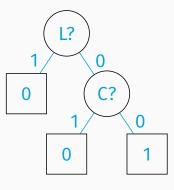
Var Description

- v_i 1 iff node *i* is a leaf node, $i = 1, \ldots, N$
- l_{ij} 1 iff node *i* has node *j* as the left child, with $j \in LR(i)$, where LR(i) = even([i + 1, min(2i, N 1)]), i = 1, ..., N
- r_{ij} 1 iff node *i* has node *j* as the right child, with $j \in RR(i)$, where RR(i) = odd([i + 2, min(2i + 1, N)]), i = 1, ..., N
- p_{ji} 1 iff the parent of node j is node i, j = 2, ..., N, i = 1, ..., N 1

Constraints:

 $(\neg v_1)$

Root node is not a leaf



Var Description

 v_i 1 iff node *i* is a leaf node, $i = 1, \ldots, N$

- l_{ij} 1 iff node *i* has node *j* as the left child, with $j \in LR(i)$, where LR(i) = even([i + 1, min(2i, N 1)]), i = 1, ..., N
- r_{ii} 1 iff node *i* has node *j* as the right child, with $j \in RR(i)$, where RR(i) = odd([i + 2, min(2i + 1, N)]), i = 1, ..., N
- p_{ji} 1 iff the parent of node j is node i, j = 2, ..., N, i = 1, ..., N 1

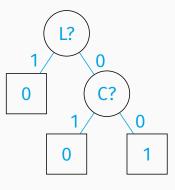
Constraints:

 $(\neg v_1)$

 $v_i \rightarrow \neg l_{ij}, \qquad j \in lr(i)$

Root node is not a leaf

Leaf nodes have no children



Var Description

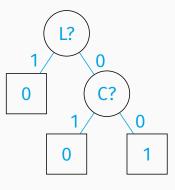
- v_i 1 iff node *i* is a leaf node, $i = 1, \ldots, N$
- l_{ij} 1 iff node *i* has node *j* as the left child, with $j \in LR(i)$, where LR(i) = even([i + 1, min(2i, N 1)]), i = 1, ..., N
- r_{ii} 1 iff node *i* has node *j* as the right child, with $j \in RR(i)$, where RR(i) = odd([i + 2, min(2i + 1, N)]), i = 1, ..., N
- p_{ji} 1 iff the parent of node j is node i, j = 2, ..., N, i = 1, ..., N 1

Constraints:

- $(\neg v_1)$
- $v_i \rightarrow \neg l_{ij}, \qquad j \in lr(i)$
- $l_{ij} \leftrightarrow r_{ij+1}, \qquad j \in LR(i)$

- Root node is not a leaf
- Leaf nodes have no children

Left and right children of *i*th node are numbered consecutively



Var Description

- $v_i \mid 1$ iff node *i* is a leaf node, $i = 1, \ldots, N$
- l_{ij} 1 iff node *i* has node *j* as the left child, with $j \in LR(i)$, where LR(i) = even([i + 1, min(2i, N 1)]), i = 1, ..., N
- r_{ii} 1 iff node *i* has node *j* as the right child, with $j \in RR(i)$, where RR(i) = odd([i + 2, min(2i + 1, N)]), i = 1, ..., N
- p_{ji} 1 iff the parent of node j is node i, j = 2, ..., N, i = 1, ..., N 1

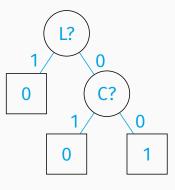
Constraints:

 $(\neg v_{1})$ $v_{i} \rightarrow \neg l_{ij}, \qquad j \in LR(i)$ $l_{ij} \leftrightarrow r_{ij+1}, \qquad j \in LR(i)$ $\neg v_{i} \rightarrow \left(\sum_{j \in LR(i)} l_{ij} = 1\right)$

- Root node is not a leaf
- Leaf nodes have no children

Left and right children of ith node are numbered consecutively

Non-leaf nodes must have a child



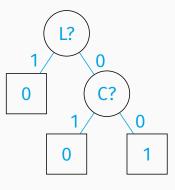
Var Description

- $v_i \mid 1$ iff node *i* is a leaf node, $i = 1, \ldots, N$
- l_{ij} 1 iff node *i* has node *j* as the left child, with $j \in LR(i)$, where LR(i) = even([i + 1, min(2i, N 1)]), i = 1, ..., N
- r_{ij} 1 iff node *i* has node *j* as the right child, with $j \in RR(i)$, where RR(i) = odd([i + 2, min(2i + 1, N)]), i = 1, ..., N
- p_{ji} 1 iff the parent of node j is node i, j = 2, ..., N, i = 1, ..., N 1

Constraints:

$(\neg v_1)$			Root node is no
$v_i \rightarrow \neg l_{ij},$	$j \in lr(i)$		Leaf nodes have
$l_{ij} \leftrightarrow r_{ij+1}$	$, j \in lr(i)$		Left and right ch
$\neg v_i \rightarrow \left(\sum_{j \in LR(i)} \mathfrak{l}_{ij} = 1\right)$			Non-leaf nodes
$p_{ji} \leftrightarrow l_{ij},$	$j \in LR(i); p_{ji} \leftrightarrow r_{ij},$	$j \in \mathrm{rr}(i)$	A parent node <i>i</i> t

Root node is not a leaf Leaf nodes have no children Left and right children of *i*th node are numbered consecutively Non-leaf nodes must have a child A parent node *i*th must have a child



Var Description

- $v_i \mid 1$ iff node *i* is a leaf node, $i = 1, \ldots, N$
- l_{ij} 1 iff node *i* has node *j* as the left child, with $j \in LR(i)$, where LR(i) = even([i + 1, min(2i, N 1)]), i = 1, ..., N
- r_{ij} 1 iff node *i* has node *j* as the right child, with $j \in RR(i)$, where RR(i) = odd([i + 2, min(2i + 1, N)]), i = 1, ..., N
- p_{ji} 1 iff the parent of node j is node i, j = 2, ..., N, i = 1, ..., N 1

Constraints:

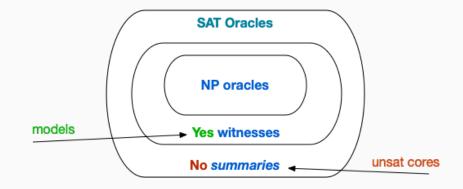
$(\neg \mathbf{v}_1)$	ROOL HOUE IS HOL & LEAT
$v_i \rightarrow \neg l_{ij}, \qquad j \in lr(i)$	Leaf nodes have no children
$l_{ij} \leftrightarrow r_{ij+1}, \qquad j \in lr(i)$	Left and right children of <i>i</i> th node are numbered consecutively
$\nabla \mathbf{v}_i ightarrow \left(\sum_{j \in LR(i)} l_{ij} = 1 \right)$	Non-leaf nodes must have a child
$p_{ji} \leftrightarrow l_{ij}, j \in \text{LR}(i); p_{ji} \leftrightarrow r_{ij}, j \in \text{RR}(i)$	A parent node <i>i</i> th must have a child
$\begin{pmatrix} \min(j-1,N) \\ \sum_{i=\lfloor \frac{j}{2} \rfloor} p_{ji} = 1 \end{pmatrix} \text{with } j = 2, \dots, N$	A binary tree must be a tree, i.e. non-root nodes must have a parent 30/40

Doot node is not a loaf

Basic Formal Toolbox

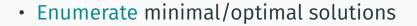
• Many problems are **not** decision problems

- Many problems are **not** decision problems
- Use decision procedures as oracles for
 - Optimize some cost function

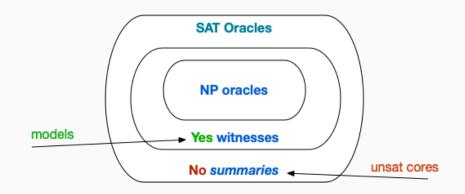


- Find one minimal set
- Enumerate minimal/optimal solutions
- Other problems

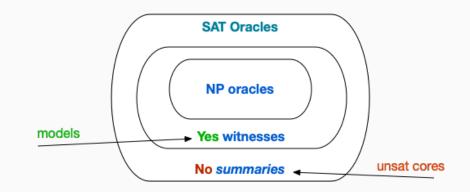
- Many problems are not decision problems
- Use decision procedures as oracles for
 - Optimize some cost function
 - Maximum satisfiability (MaxSAT), pseudo-boolean optimization (PBO)
 - But also MaxSMT, etc.
 - Find one minimal set



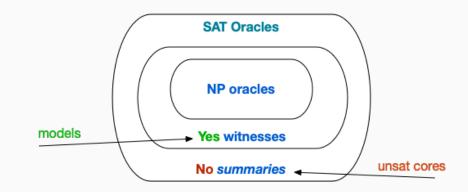
• Other problems



- Many problems are not decision problems
- Use decision procedures as oracles for
 - Optimize some cost function
 - Maximum satisfiability (MaxSAT), pseudo-boolean optimization (PBO)
 - But also MaxSMT, etc.
 - Find one minimal set
 - Reason about inconsistency: MUSes/MCSes
 - Compile knowledge: prime implicants/implicates
 - Enumerate minimal/optimal solutions
 - Other problems



- Many problems are not decision problems
- Use decision procedures as oracles for
 - Optimize some cost function
 - Maximum satisfiability (MaxSAT), pseudo-boolean optimization (PBO)
 - But also MaxSMT, etc.
 - Find one minimal set
 - Reason about inconsistency: MUSes/MCSes
 - Compile knowledge: prime implicants/implicates
 - Enumerate minimal/optimal solutions
 - Enumerate MaxSAT solutions
 - Enumerate primes, MUSes, MCSes
 - Other problems
 - Propositional abduction
 - Etc.



Subject	Day	Time	Room		
Intro Prog	Mon	9:00-10:00	6.2.46		
Intro Al	Tue	10:00-11:00	8.2.37		
Databases	Tue	11:00-12:00	8.2.37		
(hundreds of consistent constraints)					
Linear Alg	Mon	9:00-10:00	6.2.46		
Calculus	Tue	10:00-11:00	8.2.37		
Adv Calculus	Mon	9:00-10:00	8.2.06		
(hundreds of consistent constraints)					

• Set of constraints consistent / satisfiable?

Subject	Day	Time	Room		
Intro Prog	Mon	9:00-10:00	6.2.46		
Intro Al	Tue	10:00-11:00	8.2.37		
Databases	Tue	11:00-12:00	8.2.37		
(hundreds of consistent constraints)					
Linear Alg	Mon	9:00-10:00	6.2.46		
Calculus	Tue	10:00-11:00	8.2.37		
Adv Calculus	Mon	9:00-10:00	8.2.06		
(hundreds of consistent constraints)					

• Set of constraints consistent / satisfiable? No

Subject	Day	Time	Room		
Intro Prog	Mon	9:00-10:00	6.2.46		
Intro Al	Tue	10:00-11:00	8.2.37		
Databases	Tue	11:00-12:00	8.2.37		
(hundreds	of con	sistent constra	aints)		
Linear Alg	Mon	9:00-10:00	6.2.46		
Calculus	Tue	10:00-11:00	8.2.37		
Adv Calculus	Mon	9:00-10:00	8.2.06		
(hundreds of consistent constraints)					

- Set of constraints consistent / satisfiable? No
- Minimal subset of constraints that is inconsistent / unsatisfiable?

Subject	Day	Time	Room			
Intro Prog	Mon	9:00-10:00	6.2.46			
Intro Al	Tue	10:00-11:00	8.2.37			
Databases	Tue	11:00-12:00	8.2.37			
(hundreds	s of con	sistent constr	aints)			
Linear Alg	Mon	9:00-10:00	6.2.46			
Calculus	Tue	10:00-11:00	8.2.37			
Adv Calculus	Mon	9:00-10:00	8.2.06			
(hundreds of consistent constraints)						

- Set of constraints consistent / satisfiable? No
- Minimal subset of constraints that is inconsistent / unsatisfiable?

Subject	Day	Time	Room		
Intro Prog	Mon	9:00-10:00	6.2.46		
Intro Al	Tue	10:00-11:00	8.2.37		
Databases	Tue	11:00-12:00	8.2.37		
(hundreds	of con	sistent constra	aints)		
Linear Alg	Mon	9:00-10:00	6.2.46		
Calculus	Tue	10:00-11:00	8.2.37		
Adv Calculus	Mon	9:00-10:00	8.2.06		
(hundreds of consistent constraints)					

- Set of constraints consistent / satisfiable? No
- Minimal subset of constraints that is inconsistent / unsatisfiable?
- Minimal subset of constraints whose removal makes remaining constraints consistent?

Subject	Day	Time	Room		
Intro Prog	Mon	9:00-10:00	6.2.46		
Intro Al	Tue	10:00-11:00	8.2.37		
Databases	Tue	11:00-12:00	8.2.37		
(hundreds	of con	sistent constr	aints)		
Linear Alg	Mon	9:00-10:00	6.2.46		
Calculus	Tue	10:00-11:00	8.2.37		
Adv Calculus	Mon	9:00-10:00	8.2.06		
(hundreds of consistent constraints)					

- Set of constraints consistent / satisfiable? No
- Minimal subset of constraints that is inconsistent / unsatisfiable?
- Minimal subset of constraints whose removal makes remaining constraints consistent?

Subject	Day	Time	Room		
Intro Prog	Mon	9:00-10:00	6.2.46		
Intro Al	Tue	10:00-11:00	8.2.37		
Databases	Tue	11:00-12:00	8.2.37		
(hundreds	of con	sistent constr	aints)		
Linear Alg	Mon	9:00-10:00	6.2.46		
Calculus	Tue	10:00-11:00	8.2.37		
Adv Calculus	Mon	9:00-10:00	8.2.06		
(hundreds of consistent constraints)					

- Set of constraints consistent / satisfiable? No
- Minimal subset of constraints that is inconsistent / unsatisfiable?
- Minimal subset of constraints whose removal makes remaining constraints consistent?

Inconsistent formulas – MUSes & MCSes

• Given $\mathcal{F} \ (\models \bot)$, $\mathcal{M} \subseteq \mathcal{F}$ is a Minimal Unsatisfiable Subset (MUS) iff $\mathcal{M} \models \bot$ and $\forall_{\mathcal{M}' \subsetneq \mathcal{M}}, \mathcal{M}' \nvDash \bot$

 $(\neg x_1 \lor \neg x_2) \land (x_1) \land (x_2) \land (\neg x_3 \lor \neg x_4) \land (x_3) \land (x_4) \land (x_5 \lor x_6)$

Inconsistent formulas – MUSes & MCSes

• Given $\mathcal{F} (\models \bot)$, $\mathcal{M} \subseteq \mathcal{F}$ is a Minimal Unsatisfiable Subset (MUS) iff $\mathcal{M} \models \bot$ and $\forall_{\mathcal{M}' \subsetneq \mathcal{M}}, \mathcal{M}' \nvDash \bot$

 $(\neg x_1 \lor \neg x_2) \land (x_1) \land (x_2) \land (\neg x_3 \lor \neg x_4) \land (x_3) \land (x_4) \land (x_5 \lor x_6)$

• Given $\mathcal{F} (\models \bot)$, $\mathcal{M} \subseteq \mathcal{F}$ is a Minimal Unsatisfiable Subset (MUS) iff $\mathcal{M} \models \bot$ and $\forall_{\mathcal{M}' \subsetneq \mathcal{M}}, \mathcal{M}' \nvDash \bot$

 $(\neg \mathbf{X}_1 \lor \neg \mathbf{X}_2) \land (\mathbf{X}_1) \land (\mathbf{X}_2) \land (\neg \mathbf{X}_3 \lor \neg \mathbf{X}_4) \land (\mathbf{X}_3) \land (\mathbf{X}_4) \land (\mathbf{X}_5 \lor \mathbf{X}_6)$

• Given $\mathcal{F} (\models \bot)$, $\mathcal{C} \subseteq \mathcal{F}$ is a Minimal Correction Subset (MCS) iff $\mathcal{F} \setminus \mathcal{C} \nvDash \bot$ and $\forall_{\mathcal{C}' \subseteq \mathcal{C}}, \mathcal{F} \setminus \mathcal{C}' \vDash \bot$. $\mathcal{S} = \mathcal{F} \setminus \mathcal{C}$ is MSS

 $(\neg \mathbf{x}_1 \lor \neg \mathbf{x}_2) \land (\mathbf{x}_1) \land (\mathbf{x}_2) \land (\neg \mathbf{x}_3 \lor \neg \mathbf{x}_4) \land (\mathbf{x}_3) \land (\mathbf{x}_4) \land (\mathbf{x}_5 \lor \mathbf{x}_6)$

• Given $\mathcal{F} (\models \bot)$, $\mathcal{M} \subseteq \mathcal{F}$ is a Minimal Unsatisfiable Subset (MUS) iff $\mathcal{M} \models \bot$ and $\forall_{\mathcal{M}' \subsetneq \mathcal{M}}, \mathcal{M}' \nvDash \bot$

 $(\neg \mathbf{X}_1 \lor \neg \mathbf{X}_2) \land (\mathbf{X}_1) \land (\mathbf{X}_2) \land (\neg \mathbf{X}_3 \lor \neg \mathbf{X}_4) \land (\mathbf{X}_3) \land (\mathbf{X}_4) \land (\mathbf{X}_5 \lor \mathbf{X}_6)$

• Given $\mathcal{F} (\models \bot)$, $\mathcal{C} \subseteq \mathcal{F}$ is a Minimal Correction Subset (MCS) iff $\mathcal{F} \setminus \mathcal{C} \nvDash \bot$ and $\forall_{\mathcal{C}' \subseteq \mathcal{C}}, \mathcal{F} \setminus \mathcal{C}' \vDash \bot$. $\mathcal{S} = \mathcal{F} \setminus \mathcal{C}$ is MSS

 $(\neg x_1 \lor \neg x_2) \land (\mathbf{x_1}) \land (\mathbf{x_2}) \land (\neg x_3 \lor \neg x_4) \land (\mathbf{x_3}) \land (\mathbf{x_4}) \land (\mathbf{x_5} \lor \mathbf{x_6})$

• Given $\mathcal{F} (\models \bot)$, $\mathcal{M} \subseteq \mathcal{F}$ is a Minimal Unsatisfiable Subset (MUS) iff $\mathcal{M} \models \bot$ and $\forall_{\mathcal{M}' \subsetneq \mathcal{M}}, \mathcal{M}' \nvDash \bot$

 $(\neg \mathbf{X}_1 \lor \neg \mathbf{X}_2) \land (\mathbf{X}_1) \land (\mathbf{X}_2) \land (\neg \mathbf{X}_3 \lor \neg \mathbf{X}_4) \land (\mathbf{X}_3) \land (\mathbf{X}_4) \land (\mathbf{X}_5 \lor \mathbf{X}_6)$

• Given $\mathcal{F} (\models \bot)$, $\mathcal{C} \subseteq \mathcal{F}$ is a Minimal Correction Subset (MCS) iff $\mathcal{F} \setminus \mathcal{C} \nvDash \bot$ and $\forall_{\mathcal{C}' \subseteq \mathcal{C}}, \mathcal{F} \setminus \mathcal{C}' \vDash \bot$. $\mathcal{S} = \mathcal{F} \setminus \mathcal{C}$ is MSS

 $(\neg x_1 \lor \neg x_2) \land (\mathbf{x_1}) \land (\mathbf{x_2}) \land (\neg x_3 \lor \neg x_4) \land (\mathbf{x_3}) \land (\mathbf{x_4}) \land (\mathbf{x_5} \lor \mathbf{x_6})$

- MUSes and MCSes are (subset-)minimal sets
- MUSes and minimal hitting sets of MCSes and vice-versa

[Rei87, BS05]

Basic MUS extraction

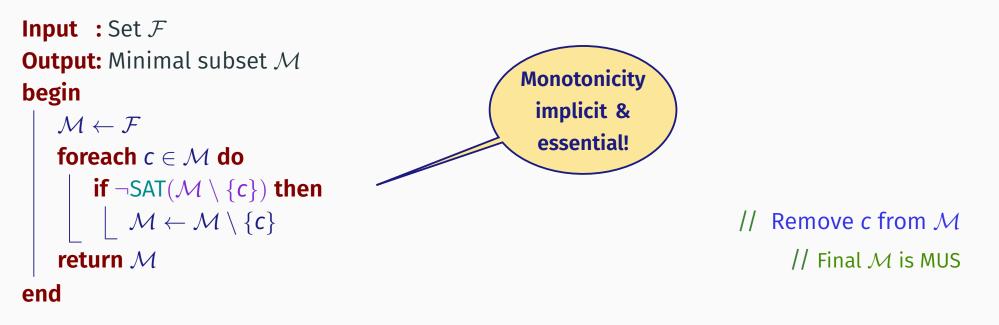
```
Input : Set \mathcal{F}
Output: Minimal subset \mathcal{M}
begin
\mathcal{M} \leftarrow \mathcal{F}
foreach c \in \mathcal{M} do
\begin{bmatrix} \text{if } \neg \text{SAT}(\mathcal{M} \setminus \{c\}) \text{ then} \\ \\ \mathcal{M} \leftarrow \mathcal{M} \setminus \{c\} \end{bmatrix}
return \mathcal{M}
end
```

• Number of oracles calls: $\mathcal{O}(m)$

// If \neg SAT $(\mathcal{M} \setminus \{c\})$, then $c \notin$ MUS // Final \mathcal{M} is MUS

[CD91, BDTW93]

Basic MUS extraction



• Number of oracles calls: $\mathcal{O}(m)$

[CD91, BDTW93]

C 1	L	C_2	C_3	C 4	C_5	C ₆	C ₇
$(\neg x_1 \lor$	$(\neg \mathbf{X}_2)$	(\mathbf{X}_1)	(\mathbf{X}_2)	$(\neg \mathbf{X}_3 \lor \neg \mathbf{X}_4)$	(\mathbf{X}_3)	(\mathbf{X}_4)	$(\mathbf{X}_5 \lor \mathbf{X}_6)$
	${\mathcal M}$	\mathcal{M}	$\setminus \{C\}$	$ egSAT(\mathcal{M}\setminus\{$	c })	Outcon	ne
·	C ₁ C ₇	C ₂	C ₇	1		Drop o	21

C ₁	L	C_2	C 3	C 4	C_5	C ₆	C ₇
$(\neg x_1 \lor$	$(\neg \mathbf{x}_2)$	(\mathbf{X}_1)	(\mathbf{X}_2)	$(\neg \mathbf{X}_3 \lor \neg \mathbf{X}_4)$	(\mathbf{X}_3)	(\mathbf{X}_4)	$(\mathbf{X}_5 \lor \mathbf{X}_6)$
	${\mathcal M}$	\mathcal{M}	$\setminus \{C\}$	$ egSAT(\mathcal{M}\setminus\{$	c })	Outcom	е
	C ₁ C ₇	C ₂	C ₇	1		Drop c ₁	-
	C ₂ C ₇	C 3	C 7	1		Drop c ₂	2

С	1	C_2	C 3	C 4	C_5	C ₆	C ₇
$(\neg X_1 \land$	$/ \neg \mathbf{X}_2 \big)$	(\mathbf{X}_1)	(\mathbf{X}_2)	$(\neg \mathbf{X}_3 \lor \neg \mathbf{X}_4)$	(\mathbf{X}_3)	(\mathbf{X}_4)	$(\mathbf{x}_5 \lor \mathbf{x}_6)$
	\mathcal{M}	\mathcal{M}	\ { c }	$\neg SAT(\mathcal{M} \setminus \{$	c })	Outcon	ne
	C_1C_7	C ₂	. C ₇	1		Drop c	1
	C 2 C 7	C ₃	. C 7	1		Drop c	2
	C 3 C 7	C 4	. C 7	1		Drop c	3

C ₁	C_2	C 3	c_4	C 5	C ₆	C ₇
$(\neg x_1 \lor \neg x_2)$	(\mathbf{X}_1)	(\mathbf{X}_2)	$(\neg x_3 \lor \neg x_4)$	(X_3)	(\mathbf{X}_4)	$(\mathbf{x}_5 \lor \mathbf{x}_6)$

\mathcal{M}	$\mathcal{M} \setminus \{{\sf C}\}$	$\neg SAT(\mathcal{M} \setminus \{c\})$	Outcome
C ₁ C ₇	C ₂ C ₇	1	Drop c ₁
C ₂ C ₇	C ₃ C ₇	1	Drop c_2
C ₃ C ₇	C ₄ C ₇	1	Drop c ₃
C ₄ C ₇	C ₅ C ₇	0	Keep c_4

C ₁	C_2	C_3	C_4	C_5	C ₆	C ₇
$(\neg x_1 \lor \neg x_2)$	(\mathbf{X}_1)	(\mathbf{X}_2)	$(\neg \mathbf{X}_3 \lor \neg \mathbf{X}_4)$	(X_3)	(X_4)	$(\mathbf{x}_5 \lor \mathbf{x}_6)$

\mathcal{M}	$\mathcal{M} \setminus \{{\sf C}\}$	$\neg SAT(\mathcal{M} \setminus \{c\})$	Outcome
C ₁ C ₇	C ₂ C ₇	1	Drop c ₁
C 2 C 7	C ₃ C ₇	1	Drop c ₂
C ₃ C ₇	C ₄ C ₇	1	Drop c ₃
C_4C_7	C 5 C 7	0	Keep c ₄
c_4c_7	$C_4C_6C_7$	0	Keep c_5

C ₁	C_2	C_3	C_4	C 5	C ₆	C 7
$(\neg x_1 \lor \neg x_2)$	(\mathbf{X}_1)	(\mathbf{X}_2)	$(\neg \mathbf{X}_3 \lor \neg \mathbf{X}_4)$	(X_3)	(X_4)	$(\mathbf{X}_5 \lor \mathbf{X}_6)$

\mathcal{M}	$\mathcal{M} \setminus \{c\}$	$\neg SAT(\mathcal{M} \setminus \{c\})$	Outcome
C ₁ C ₇	C ₂ C ₇	1	Drop c ₁
C ₂ C ₇	C ₃ C ₇	1	Drop c ₂
C ₃ C ₇	C ₄ C ₇	1	Drop c ₃
C_4C_7	C ₅ C ₇	0	Keep c ₄
C_4C_7	$C_4C_6C_7$	0	Keep c ₅
C_4C_7	$c_4c_5c_7$	0	Keep c ₆

C ₁	C_2	C_3	c_4	C 5	C ₆	C ₇
$(\neg \mathbf{X}_1 \lor \neg \mathbf{X}_2)$	(\mathbf{X}_1)	(\mathbf{X}_2)	$(\neg \mathbf{X}_3 \lor \neg \mathbf{X}_4)$	(\mathbf{X}_3)	(\mathbf{X}_4)	$(\mathbf{x}_5 \lor \mathbf{x}_6)$

\mathcal{M}	$\mathcal{M} \setminus \{{\sf C}\}$	$\neg SAT(\mathcal{M} \setminus \{c\})$	Outcome
C ₁ C ₇	C ₂ C ₇	1	Drop c ₁
C ₂ C ₇	C ₃ C ₇	1	Drop c ₂
C ₃ C ₇	C ₄ C ₇	1	Drop c ₃
C_4C_7	C 5 C 7	0	Keep c ₄
C_4C_7	$c_4c_6c_7$	0	Keep c ₅
c_4c_7	$c_4c_5c_7$	0	Keep c ₆
C ₄ C ₇	C ₄ C ₆	1	Drop c ₇

C ₁	C_2	C_3	C_4	C_5	C ₆	C ₇
$(\neg \mathbf{X}_1 \lor \neg \mathbf{X}_2)$	(\mathbf{X}_1)	(\mathbf{X}_2)	$(\neg \mathbf{X}_3 \lor \neg \mathbf{X}_4)$	(\mathbf{X}_3)	(\mathbf{X}_4)	$(\mathbf{x}_5 \lor \mathbf{x}_6)$

\mathcal{M}	$\mathcal{M} \setminus \{{\sf C}\}$	$\neg SAT(\mathcal{M} \setminus \{c\})$	Outcome
C ₁ C ₇	C ₂ C ₇	1	Drop c ₁
C ₂ C ₇	C ₃ C ₇	1	Drop c ₂
C ₃ C ₇	C ₄ C ₇	1	Drop c ₃
C_4C_7	C ₅ C ₇	0	Keep c ₄
C_4C_7	$c_4c_6c_7$	0	Keep c_5
C_4C_7	$c_4c_5c_7$	0	Keep c ₆
C_4C_7	c_4c_6	1	Drop c ₇

• MUS: $\{c_4, c_5, c_6\}$

- Boolean function: $\boldsymbol{\mathcal{F}}$
- Set of literals of \mathcal{F} : $\mathbb{L}(\mathcal{F}) \triangleq \{x, \neg x | x \in var(\mathcal{F})\}$

- Boolean function: $\boldsymbol{\mathcal{F}}$
- Set of literals of \mathcal{F} : $\mathbb{L}(\mathcal{F}) \triangleq \{x, \neg x | x \in var(\mathcal{F})\}$
- Implicant: $\tau \subseteq \mathbb{L}(\mathcal{F})$ s.t.
 - $\tau \nvDash \bot$ τ is consistent
 - $\tau \models \mathcal{F}$ τ entails \mathcal{F}

- Boolean function: $\boldsymbol{\mathcal{F}}$
- Set of literals of \mathcal{F} : $\mathbb{L}(\mathcal{F}) \triangleq \{x, \neg x | x \in var(\mathcal{F})\}$
- Implicant: $\tau \subseteq \mathbb{L}(\mathcal{F})$ s.t.
 - $\tau \nvDash \bot$ τ is consistent
 - $\tau \models \mathcal{F}$ τ entails \mathcal{F}
- Prime implicant: $\tau \subseteq \mathbb{L}(\mathcal{F})$ s.t.
 - + τ is an implicant of ${\cal F}$
 - No $\tau' \subseteq \tau$ is an implicant of $\mathcal F$

- Boolean function: $\boldsymbol{\mathcal{F}}$
- Set of literals of \mathcal{F} : $\mathbb{L}(\mathcal{F}) \triangleq \{x, \neg x | x \in var(\mathcal{F})\}$
- Implicant: $\tau \subseteq \mathbb{L}(\mathcal{F})$ s.t.
 - $\tau \nvDash \bot$ τ is consistent
 - $\tau \models \mathcal{F}$ τ entails \mathcal{F}
- Prime implicant: $\tau \subseteq \mathbb{L}(\mathcal{F})$ s.t.
 - + τ is an implicant of ${\cal F}$
 - No $\tau' \subseteq \tau$ is an implicant of $\mathcal F$
- To extract a prime implicant τ given some implicant ρ of \mathcal{F} :
 - $\rho \land \neg \mathcal{F} \vDash \bot$
 - Find minimal subset τ of ρ such that $\tau \land \neg \mathcal{F} \vDash \bot$
 - I.e., extract an MUS of $ho \wedge \neg \mathcal{F}$

- Boolean function: $\boldsymbol{\mathcal{F}}$
- Set of literals of \mathcal{F} : $\mathbb{L}(\mathcal{F}) \triangleq \{x, \neg x | x \in var(\mathcal{F})\}$
- Implicant: $\tau \subseteq \mathbb{L}(\mathcal{F})$ s.t.
 - $\tau \nvDash \bot$ τ is consistent
 - $\tau \models \mathcal{F}$ τ entails \mathcal{F}
- Prime implicant: $\tau \subseteq \mathbb{L}(\mathcal{F})$ s.t.
 - + τ is an implicant of ${\cal F}$
 - No $\tau' \subseteq \tau$ is an implicant of $\mathcal F$
- To extract a prime implicant τ given some implicant ρ of \mathcal{F} :
 - $\rho \land \neg \mathcal{F} \vDash \bot$
 - Find minimal subset τ of ρ such that $\tau \land \neg \mathcal{F} \vDash \bot$
 - I.e., extract an MUS of $ho \wedge \neg \mathcal{F}$
- Prime enumeration:
 - Dedicated algorithm
 - MUS enumerator

[PIMM15]

[LS08, LPMM16]

$\mathcal{F} \triangleq a \land \neg c \land \neg d \lor \neg a \land b \land \neg d \lor b \land c \land d$

- Model/implicant: $\rho = \{a, b, \neg c, \neg d\}$
- Extracting a prime implicant:

$\mathcal{F} \triangleq a \land \neg c \land \neg d \lor \neg a \land b \land \neg d \lor b \land c \land d$

- Model/implicant: $\rho = \{a, b, \neg c, \neg d\}$
- Extracting a prime implicant:

au	Literal <i>l</i>	$ au \setminus \{l\} \vDash \mathcal{F}$	Action
$\{a, b, \neg c, \neg d\}$	а	Yes	Drop a

- Model/implicant: $\rho = \{a, b, \neg c, \neg d\}$
- Extracting a prime implicant:

au	Literal <i>l</i>	$ au \setminus \{l\} \vDash \mathcal{F}$	Action
$\{a, b, \neg c, \neg d\}$	а	Yes	Drop a
$\{b, \neg c, \neg d\}$	b	No	Keep <i>b</i>

- Model/implicant: $\rho = \{a, b, \neg c, \neg d\}$
- Extracting a prime implicant:

au	Literal <i>l</i>	$ au \setminus \{l\} \vDash \mathcal{F}$	Action
$\{a, b, \neg c, \neg d\}$	а	Yes	Drop a
$\{b, \neg c, \neg d\}$	b	No	Keep b
$\{b, \neg c, \neg d\}$	¬ C	No	Кеер ¬с

- Model/implicant: $\rho = \{a, b, \neg c, \neg d\}$
- Extracting a prime implicant:

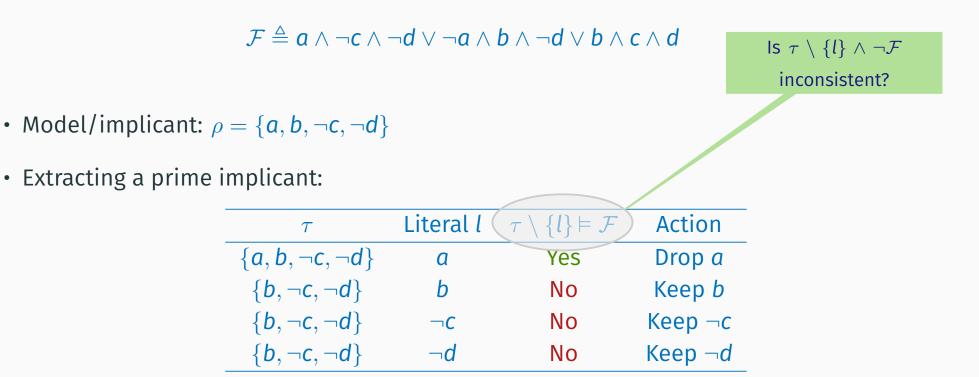
au	Literal <i>l</i>	$ au \setminus \{l\} \vDash \mathcal{F}$	Action
$\{a, b, \neg c, \neg d\}$	а	Yes	Drop a
$\{b, \neg c, \neg d\}$	b	No	Keep b
$\{b, \neg c, \neg d\}$	¬C	No	Кеер ¬с
$\{b, \neg c, \neg d\}$	$\neg d$	No	Кеер <i>¬d</i>

- Model/implicant: $\rho = \{a, b, \neg c, \neg d\}$
- Extracting a prime implicant:

au	Literal <i>l</i>	$\tau \setminus \{l\} \vDash \mathcal{F}$	Action
$\overline{\{a,b,\neg c,\neg d\}}$	а	Yes	Drop a
$\{b, \neg c, \neg d\}$	b	No	Keep <i>b</i>
$\{b, \neg c, \neg d\}$	¬ <i>C</i>	No	Кеер ¬с
$\{b, \neg c, \neg d\}$	$\neg d$	No	Кеер ¬ <i>d</i>

• Prime implicant: $\{b, \neg c, \neg d\}$

An example



• Prime implicant: $\{b, \neg c, \neg d\}$

• Example propositional background theory *T*:

 $T = \{ (\neg \mathbf{x}_1 \lor \mathbf{x}_4), (\neg \mathbf{x}_2 \lor \neg \mathbf{x}_3 \lor \mathbf{x}_4) \}$

• Example propositional background theory *T*:

$$\mathbf{T} = \{ (\neg \mathbf{x}_1 \lor \mathbf{x}_4), (\neg \mathbf{x}_2 \lor \neg \mathbf{x}_3 \lor \mathbf{x}_4) \}$$

A set of manifestations M:

 $\mathsf{M} = \{(\mathsf{X}_4)\}$

• Example propositional background theory *T*:

$$T = \{ (\neg x_1 \lor x_4), (\neg x_2 \lor \neg x_3 \lor x_4) \}$$

A set of manifestations M:

 $\mathsf{M} = \{(\mathsf{X}_4)\}$

A set of hypotheses *H* that can explain *M* given *T*:

 $H = \{(x_1), (x_2), (x_3)\}$

• Example propositional background theory T:

$$T = \{ (\neg \mathbf{x}_1 \lor \mathbf{x}_4), (\neg \mathbf{x}_2 \lor \neg \mathbf{x}_3 \lor \mathbf{x}_4) \}$$

A set of manifestations M:

 $\mathbf{M} = \{(\mathbf{X}_4)\}$

A set of hypotheses *H* that can explain *M* given *T*:

 $H = \{(X_1), (X_2), (X_3)\}$

• Find a smallest subset $S \subseteq H$ that together with T explains M, e.g.

• Example propositional background theory *T*:

$$T = \{ (\neg \mathbf{x}_1 \lor \mathbf{x}_4), (\neg \mathbf{x}_2 \lor \neg \mathbf{x}_3 \lor \mathbf{x}_4) \}$$

A set of manifestations M:

 $M = \{(x_4)\}$

A set of hypotheses *H* that can explain *M* given *T*:

 $H = \{(X_1), (X_2), (X_3)\}$

• Find a smallest subset $S \subseteq H$ that together with T explains M, e.g.

 $\mathsf{S} = \{(\mathsf{X}_1)\}$

Defining propositional abduction

- A Propositional Abduction Problem (PAP) is a 5-tuple P = (V, H, M, T, c) where:
 - V finite set of boolean variables
 - *H* CNF formula representing the set of hypotheses
 - *M* CNF formula representing the set of manifestations
 - *T* CNF formula representing the background theory
 - $c: H \to \mathbb{R}^+$ cost function, associates a cost to each clause in H

Defining propositional abduction

A Propositional Abduction Problem (PAP) is a 5-tuple P = (V, H, M, T, c) where:

- V finite set of boolean variables
- *H* CNF formula representing the set of hypotheses
- *M* CNF formula representing the set of manifestations
- *T* CNF formula representing the background theory
- $c: H \to \mathbb{R}^+$ cost function, associates a cost to each clause in H

The set of explanations of a PAP P = (V, H, M, T, c) is:

 $\mathsf{Expl}(P) = \{ \mathsf{S} \subseteq H \mid \mathsf{T} \land \mathsf{S} \nvDash \bot, \mathsf{T} \land \mathsf{S} \vDash \mathsf{M} \}$

The minimum-cost solutions of P are:

PAP is hard for the Σ_2^{P} !

 $\operatorname{Expl}_{c}(P) = \operatorname{argmin}_{E \in \operatorname{Expl}(P)}(c(E))$

Questions?

References i

[BDTW93] R. R. Bakker, F. Dikker, F. Tempelman, and P. M. Wognum. Diagnosing and solving over-determined constraint satisfaction problems. In IJCAI, pages 276–281, 1993.

- [BS05] James Bailey and Peter J. Stuckey.
 Discovery of minimal unsatisfiable subsets of constraints using hitting set dualization. In PADL, pages 174–186, 2005.
- [CD91] John W. Chinneck and Erik W. Dravnieks.
 Locating minimal infeasible constraint sets in linear programs.
 INFORMS Journal on Computing, 3(2):157–168, 1991.
- [Coo71] Stephen A. Cook.
 The complexity of theorem-proving procedures.
 In STOC, pages 151–158. ACM, 1971.
- [FJ18] Matteo Fischetti and Jason Jo.
 Deep neural networks and mixed integer linear optimization.
 Constraints, 23(3):296–309, 2018.
- [KBD⁺17] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.
 Reluplex: An efficient SMT solver for verifying deep neural networks.
 In CAV, pages 97–117, 2017.

References ii

[LPMM16] Mark H. Liffiton, Alessandro Previti, Ammar Malik, and Joao Marques-Silva. **Fast, flexible MUS enumeration.**

Constraints, 21(2):223–250, 2016.

- [LS08] Mark H. Liffiton and Karem A. Sakallah.
 Algorithms for computing minimal unsatisfiable subsets of constraints.
 J. Autom. Reasoning, 40(1):1–33, 2008.
- [NH10] Vinod Nair and Geoffrey E. Hinton.
 Rectified linear units improve restricted boltzmann machines.
 In *ICML*, pages 807–814, 2010.
- [PIMM15] Alessandro Previti, Alexey Ignatiev, António Morgado, and Joao Marques-Silva. Prime compilation of non-clausal formulae.
 In UCAL pages 1080, 1088, 2015

In IJCAI, pages 1980–1988, 2015.

[Rei87] Raymond Reiter.A theory of diagnosis from first principles.Artif. Intell., 32(1):57–95, 1987.

Given training data, learn function that correctly classifies that data, performs suitably well on unseen data, and offers human-interpretable functions for the predictions made

Given training data, learn function that correctly classifies that data, performs suitably well on unseen data, and offers humaninterpretable functions for the predictions made

Given training data, learn **decision sets/decision trees** that correctly classify that data, perform suitably well on unseen data, and offer human-interpretable functions for the predictions made

Step 1 Discretization of the training and test dataset

Step 1 Discretization of the training and test datasetStep 2 Define the grammar of the classifier

Step 1 Discretization of the training and test dataset Step 2 Define the grammar of the classifier Step 3 Hard Constraints to capture structure of the rules

- Step 1 Discretization of the training and test dataset
- Step 2 Define the grammar of the classifier
- Step 3 Hard Constraints to capture structure of the rules
- Step 4 Hard Constraints to capture evaluation of rules: A rule must
 - return True on positive example and False on negative example

- Step 1 Discretization of the training and test dataset
- Step 2 Define the grammar of the classifier
- Step 3 Hard Constraints to capture structure of the rules
- Step 4 Hard Constraints to capture evaluation of rules: A rule must
 - return True on positive example and False on negative example
- Step 5 Soft Constraints
 - Minimize the size of rules

- Step 1 Discretization of the training and test dataset
- Step 2 Define the grammar of the classifier
- Step 3 Hard Constraints to capture structure of the rules
- Step 4 Hard Constraints to capture evaluation of rules: A rule must
 - return True on positive example and False on negative example
- Step 5 Soft Constraints
 - Minimize the size of rules
- Step 6 Rely on progress in SAT and MaxSAT solving over the past decade

Outline

Discretization

Classification via Decision Sets

Decision Sets via MaxSAT

Incremental learning

Ex.	Height (H)	Weight (W)	Risk (R)
e_1	160	210	0
e ₂	175	210	0
e ₃	170	190	1
e ₄	166	190	0
<i>e</i> 5	172	170	1

Ex.	Height (H)	Weight (W)	Risk (R)
e_1	160	210	0
<i>e</i> ₂	175	210	0
e ₃	170	190	1
e ₄	166	190	0
<i>e</i> 5	172	170	1

- Suppose Height can range between 50 and 250 cm and weight ranges between 100 and 300.
- Do we need variable for every value of H and W?

Ex.	Height (H)	Weight (W)	Risk (R)
e_1	160	210	0
<i>e</i> ₂	175	210	0
e ₃	170	190	1
e ₄	166	190	0
<i>e</i> 5	172	170	1

- Suppose Height can range between 50 and 250 cm and weight ranges between 100 and 300.
- Do we need variable for every value of H and W?
- One-hot encoding: Only introduce variables to differentiate two distinct data points.
 - Variables corresponding to $H \ge 170$, $H \ge 165$, $H \ge 172$, $H \ge 175$ suffice
 - Variables corresponding to $W \ge 200$ and $W \ge 180$

Ex.	Height (H)	Weight (W)	Risk (R)
e_1	160	210	0
e ₂	175	210	0
e ₃	170	190	1
e ₄	166	190	0
<i>e</i> ₅	172	170	1

Ex.	$H \ge 170$	$H \ge 165$	$H \ge 172$	$H \ge 175$	W > 200	W > 180	Risk (R)
e_1	0	0	0	0	1	0	0
<i>e</i> ₂	1	0	1	1	1	0	0
e ₃	1	1	0	0	0	1	1
e ₄	0	1	0	0	0	1	0
<i>e</i> ₅	1	1	1	0	0	0	1

Outline

Discretization

Classification via Decision Sets

Decision Sets via MaxSAT

Incremental learning

Ex.	Vacation (V)	Concert (C)	Meeting (M)	Expo (E)	Hike (H)
e_1	0	0	1	0	0
e ₂	1	0	0	0	1
e ₃	0	0	1	1	0
e4	1	0	0	1	1
<i>e</i> ₅	0	1	1	0	0
e ₆	0	1	1	1	0
<i>e</i> ₇	1	1	0	1	1

• Training data (or examples): $\mathcal{E} = \{e_1, \ldots, e_M\}$

Ex.	Vacation (V)	Concert (C)	Meeting(M)	Expo (E)	Hike (H)
e_1	0	0	1	0	0
e ₂	1	0	0	0	1
e ₃	0	0	1	1	0
e ₄	1	0	0	1	1
<i>e</i> ₅	0	1	1	0	0
e ₆	0	1	1	1	0
e ₇	1	1	0	1	1

- Training data (or examples): $\mathcal{E} = \{e_1, \ldots, e_M\}$
- Binary **features**: $\mathcal{F} = \{f_1, \ldots, f_K\}$
 - $f_1 \triangleq V$, $f_2 \triangleq C$, $f_3 \triangleq M$, and $f_4 \triangleq E$
 - Literals: f_r and $\neg f_r$

Ex.	Vacation (V)	Concert (C)	Meeting (M)	Expo (E)	Hike (H)
e_1	0	0	1	0	0
e ₂	1	0	0	0	1
e ₃	0	0	1	1	0
e ₄	1	0	0	1	1
<i>e</i> ₅	0	1	1	0	0
e ₆	0	1	1	1	0
<i>e</i> ₇	1	1	0	1	1

- Training data (or examples): $\mathcal{E} = \{e_1, \dots, e_M\}$
- Binary **features**: $\mathcal{F} = \{f_1, \ldots, f_K\}$
 - $f_1 \triangleq V$, $f_2 \triangleq C$, $f_3 \triangleq M$, and $f_4 \triangleq E$
 - Literals: f_r and $\neg f_r$
- Feature space: $\mathcal{U} \triangleq \prod_{r=1}^{K} \{f_r, \neg f_r\}$

Ex.	Vacation (V)	Concert (C)	Meeting (M)	Expo (E)	Hike (H)
e ₁	0	0	1	0	0
<i>e</i> ₂	1	0	0	0	1
e ₃	0	0	1	1	0
e ₄	1	0	0	1	1
<i>e</i> ₅	0	1	1	0	0
<i>e</i> ₆	0	1	1	1	0
<i>e</i> ₇	1	1	0	1	1

- Training data (or examples): $\mathcal{E} = \{e_1, \ldots, e_M\}$
- Binary **features**: $\mathcal{F} = \{f_1, \ldots, f_K\}$
 - $f_1 \triangleq V$, $f_2 \triangleq C$, $f_3 \triangleq M$, and $f_4 \triangleq E$
 - Literals: f_r and $\neg f_r$
- Feature space: $\mathcal{U} \triangleq \prod_{r=1}^{K} \{f_r, \neg f_r\}$
- Binary classification: $C = \{c_0 = 0, c_1 = 1\}$
 - ${\mathcal E}$ partitioned into ${\mathcal E}^-$ and ${\mathcal E}^+$

Example

Ex.	Vacation (V)	Concert (C)	Meeting (M)	Expo (E)	Hike (H)
e_1	0	0	1	0	0
e ₂	1	0	0	0	1
e ₃	0	0	1	1	0
e4	1	0	0	1	1
<i>e</i> ₅	0	1	1	0	0
e ₆	0	1	1	1	0
e ₇	1	1	0	1	1

- Binary features: $\mathcal{F} = \{f_1, f_2, f_3, f_4\}$ - $f_1 \triangleq V, f_2 \triangleq C, f_3 \triangleq M, and f_4 \triangleq E$
- e_1 is represented by the 2-tuple (π_1, ς_1) , $-\pi_1 = (\neg V, \neg C, M, \neg E)$ $-\varsigma_1 = 0$
- $\mathcal{U} = \{V, \neg V\} \times \{C, \neg C\} \times \{M, \neg M\} \times \{E, \neg E\}$

Itemsets & decision sets

• Given \mathcal{F} , an **itemset** π is an element of $\mathcal{I} \triangleq \prod_{r=1}^{K} \{f_r, \neg f_r\}$

Itemsets & decision sets

- Given \mathcal{F} , an **itemset** π is an element of $\mathcal{I} \triangleq \prod_{r=1}^{K} \{f_r, \neg f_r\}$
- A rule is a 2-tuple (π, c), with itemset π ∈ I, and class c ∈ C
 Rule (π, c) interpreted as:

IF all specified literals in π are true, **THEN** pick class *c*

Itemsets & decision sets

- Given \mathcal{F} , an **itemset** π is an element of $\mathcal{I} \triangleq \prod_{r=1}^{K} \{f_r, \neg f_r\}$
- A rule is a 2-tuple (π, c), with itemset π ∈ I, and class c ∈ C
 Rule (π, c) interpreted as:

IF all specified literals in π are true, **THEN** pick class *c*

• A decision set S is a finite set of rules – unordered

Itemsets & decision sets

- Given \mathcal{F} , an **itemset** π is an element of $\mathcal{I} \triangleq \prod_{r=1}^{K} \{f_r, \neg f_r\}$
- A rule is a 2-tuple (π, c), with itemset π ∈ I, and class c ∈ C
 Rule (π, c) interpreted as:

IF all specified literals in π are true, **THEN** pick class *c*

- A decision set S is a finite set of rules unordered
- A rule of the form 𝔅 ≜ (∅, c) denotes the default rule of a decision set 𝔅
 - Default rule is optional and used only when other rules do not apply on some feature space point
 - In this talk, we will seek to learn

Ex.	Vacation (V)	Concert (C)	Meeting (M)	Expo (E)	Hike (H)
e_1	0	0	1	0	0
e ₂	1	0	0	0	1
e ₃	0	0	1	1	0
e ₄	1	0	0	1	1
<i>e</i> ₅	0	1	1	0	0
e ₆	0	1	1	1	0
e ₇	1	1	0	1	1

• Rule 1: $((\neg M, \neg E), c_1)$

– Meaning: if \neg Meeting and \neg Expo then Hike

- Rule 2: $((V, \neg C), c_1)$
 - Meaning: if Vacation and ¬Concert then Hike
- Rule 3: ((¬V, M), *c*₀)

– Meaning: if \neg Vacation and Meeting then \neg Hike

Ex.	Vacation (V)	Concert (C)	Meeting (M)	Expo (E)	Hike (H)
e_1	0	0	1	0	0
e ₂	1	0	0	0	1
e ₃	0	0	1	1	0
e ₄	1	0	0	1	1
<i>e</i> ₅	0	1	1	0	0
e ₆	0	1	1	1	0
e ₇	1	1	0	1	1

• Rule 1: $((\neg M, \neg E), c_1)$

– Meaning: if \neg Meeting and \neg Expo then Hike

- Rule 2: $((V, \neg C), c_1)$
 - Meaning: if Vacation and ¬Concert then Hike
- Rule 3: $((\neg V, M), c_0)$

– Meaning: if \neg Vacation and Meeting then \neg Hike

- Default rule: (Ø, c₀)
 - Meaning: if all other rules do not apply, then pick \neg Hike

Succinct explanations

- If a rule fires, the set of literals represents the **explanation** for the predicted class
 - Explanation is succinct : only the literals in the rule used; independent of example
- For the default class, must pick one falsified literal in every rule that predicts a different class
 - Explanation is not succinct : explanation depends on each example
- **Obs: Uninteresting** to predict c_1 as **negation** of c_0 (and vice-versa)
 - Explanations also **not** succinct

Stating our goals

- Assumptions:
 - Also, let $\mathcal{E}^- \wedge \mathcal{E}^+ \vDash \bot$

Stating our goals

- Assumptions:
 - Also, let $\mathcal{E}^- \wedge \mathcal{E}^+ \vDash \bot$

- **DNF** functions to compute:
 - F^0 for predicting c_0 , while ensuring $\mathcal{E}^- \models F^0$
 - F^1 for predicting c_1 , while ensuring $\mathcal{E}^+ \vDash F^1$

Different Possibilities

• $MinDS_0$:

Find the smallest DNF formulas F^0 and F^1 such that:

- 1. $\mathcal{E}^{-} \vDash \mathcal{F}^{0}$
- 2. $\mathcal{E}^+ \models F^1$
- 3. $F^1 \leftrightarrow F^0 \vDash \bot$
- **Obs:** MinDS₀ ensures **succinct** explanations
 - Computes F^0 and F^1 (i.e. **no** negation) and **no** default rule

Different Possibilities

• MinDS₀:

Find the smallest DNF formulas F^0 and F^1 such that:

- 1. $\mathcal{E}^- \models \mathcal{F}^0$
- 2. $\mathcal{E}^+ \models F^1$
- 3. $F^1 \leftrightarrow F^0 \vDash \bot$
- **Obs:** MinDS₀ ensures **succinct** explanations
 - Computes F^0 and F^1 (i.e. **no** negation) and **no** default rule
- MinDS₃: Minimize F¹ such that
 - 1. $\mathcal{E}^+ \models F^1$
 - 2. $F^1 \wedge \mathcal{E}^- \vDash \bot$
 - No succinct explanations for F^0
- MinDS₄: Minimize *F*⁰ such that
 - 1. $\mathcal{E}^- \models F^0$
 - 2. $F^0 \wedge \mathcal{E}^+ \vDash \bot$
 - No succinct explanations for F^1

[]

Outline

Discretization

Classification via Decision Sets

Decision Sets via MaxSAT Handling Noise Addressing Scalability Challenge Experimental Results

Incremental learning

Boolean Formulation of MinDS₃

- DNF representation for F^1
- Consider *N* terms $- F^{1} := F_{1}^{1} \lor F_{2}^{1} \cdots F_{N}^{1}, \text{ where}$ $F_{i}^{1} = ((b_{i,1} \cdot f_{1} \lor c_{i,1} \cdot \neg f_{1} \lor d_{i,1}) \cdots \land (b_{i,r} \cdot f_{r} \lor c_{i,r} \cdot \neg f_{r} \lor d_{i,r}) \cdots$ $\land ((b_{i,K} \cdot f_{K} \lor c_{i,K} \cdot \neg f_{K} \lor d_{i,K}))$
 - If $b_{i,1}$ is true, then f_1 is in F_i^1 .
 - ▶ If $c_{i,1}$ is true, then $\neg f_1$ is in F_i^1 .
 - ▶ If $d_{i,1}$ is true, then f_1 and $\neg f_1$ do not appear in F_i^1

- F_i^1 is a DNF term if exactly one of $\{b_{i,r}, c_{i,r}, d_{i,r}\}$ is true for each r.

Boolean Formulation of MinDS₃

- DNF representation for F^1
- Consider *N* terms $- F^{1} := F_{1}^{1} \lor F_{2}^{1} \cdots F_{N}^{1}, \text{ where}$ $F_{i}^{1} = ((b_{i,1} \cdot f_{1} \lor c_{i,1} \cdot \neg f_{1} \lor d_{i,1}) \cdots \land (b_{i,r} \cdot f_{r} \lor c_{i,r} \cdot \neg f_{r} \lor d_{i,r}) \cdots$ $\land ((b_{i,K} \cdot f_{K} \lor c_{i,K} \cdot \neg f_{K} \lor d_{i,K}))$
 - If b_{i,1} is true, then f₁ is in F_i¹.
 If c_{i,1} is true, then ¬f₁ is in F_i¹.
 If d_{i,1} is true, then f₁ and ¬f₁ do not appear in F_i¹
 F_i¹ is a DNF term if exactly one of {b_{i,r}, c_{i,r}, d_{i,r}} is true for each r.
- Goal: Find values of $\{b_{i,j}, c_{i,j}, d_{i,j}\}$

MaxSAT Formulation

• Recall

-
$$\sigma(r, q)$$
: value of feature f_r for e_q

$$F_i^1 = ((b_{i,1} \cdot f_1 \vee c_{i,1} \cdot \neg f_1 \vee d_{i,1}) \cdots \wedge (b_{i,r} \cdot f_r \vee c_{i,r} \cdot \neg f_r \vee d_{i,r}) \cdots \wedge ((b_{i,K} \cdot f_K \vee c_{i,K} \cdot \neg f_K \vee d_{i,K}))$$

- Structural Constraints: $\bigwedge_{i,r} ExactlyOne(b_{i,r}, c_{i,r}, d_{i,r})$
- $\mathcal{E}^+ \models F^1$: For $e_q \in \mathcal{E}^+$, $F^1[\bigwedge_r f_r \mapsto \sigma(r,q)] = 1$ (Hard)
- $F^1 \wedge \mathcal{E}^- \vDash \bot$: For $e_q \in \mathcal{E}^-$, $F^1[\bigwedge_r f_r \mapsto \sigma(r,q)] = 0$ (Hard)
- Soft Constraints: $S_{i,r} := (\neg b_{i,r})c_{i,r}$; $W(S_{i,r}) = 1$
 - Minimize the size of each term
 - Can have different objective functions

Ex.	Vacation (V)	Meeting (M)	Expo (E)	Hike (H)
	f_1	f_2	f_3	Label
e_1	0	1	0	1
e ₂	1	0	0	0
e ₃	0	1	1	1

Suppose, we want to learn F^1 of one term ,i.e., N = 1. Remember, $F_1^1 = (b_{1,1} \cdot f_1 \lor c_{1,1} \cdot \neg f_1 \lor d_{1,1}) \lor (b_{1,2} \cdot f_2 \lor c_{1,2} \cdot \neg f_2 \lor d_{1,2}) \land$ $(b_{1,3} \cdot f_3 \lor c_{1,3} \cdot \neg f_3 \lor d_{1,3})$ $F_2^1 = (b_{2,1} \cdot f_1 \lor c_{2,1} \cdot \neg f_1 \lor d_{2,1}) \lor (b_{2,2} \cdot f_2 \lor c_{2,2} \cdot \neg f_2 \lor d_{2,2}) \lor$ $(b_{2,3} \cdot f_3 \lor c_{2,3} \cdot \neg f_3 \lor d_{2,3})$

1. For e_1 , we have $F^1[\bigwedge_r f_r \mapsto \sigma(r, q)] = ((c_{1,1} \lor d_{1,1}) \land (b_{1,2} \lor d_{1,2}) \land (c_{1,3} \lor d_{1,3})) \lor$

Ex.	Vacation (V)	Meeting (M)	Expo (E)	Hike (H)
	f_1	f_2	f_3	Label
e_1	0	1	0	1
e ₂	1	0	0	0
e ₃	0	1	1	1

Suppose, we want to learn F^1 of one term ,i.e., N = 1. Remember, $F_1^1 = (b_{1,1} \cdot f_1 \lor c_{1,1} \cdot \neg f_1 \lor d_{1,1}) \lor (b_{1,2} \cdot f_2 \lor c_{1,2} \cdot \neg f_2 \lor d_{1,2}) \land$ $(b_{1,3} \cdot f_3 \lor c_{1,3} \cdot \neg f_3 \lor d_{1,3})$ $F_2^1 = (b_{2,1} \cdot f_1 \lor c_{2,1} \cdot \neg f_1 \lor d_{2,1}) \lor (b_{2,2} \cdot f_2 \lor c_{2,2} \cdot \neg f_2 \lor d_{2,2}) \lor$ $(b_{2,3} \cdot f_3 \lor c_{2,3} \cdot \neg f_3 \lor d_{2,3})$

1. For e_1 , we have $F^1[\bigwedge_r f_r \mapsto \sigma(r, q)] = ((c_{1,1} \lor d_{1,1}) \land (b_{1,2} \lor d_{1,2}) \land (c_{1,3} \lor d_{1,3})) \lor ((c_{2,1} \lor d_{2,1}) \land (b_{2,2} \lor d_{2,2}) \land (c_{2,3} \lor d_{2,3}))$

Ex.	Vacation (V)	Meeting (M)	Expo (E)	Hike (H)
	f_1	f_2	f_3	Label
e_1	0	1	0	1
e ₂	1	0	0	0
e ₃	0	1	1	1

Suppose, we want to learn F^1 of one term ,i.e., N = 1. Remember, $F_1^1 = (b_{1,1} \cdot f_1 \lor c_{1,1} \cdot \neg f_1 \lor d_{1,1}) \lor (b_{1,2} \cdot f_2 \lor c_{1,2} \cdot \neg f_2 \lor d_{1,2}) \land$ $(b_{1,3} \cdot f_3 \lor c_{1,3} \cdot \neg f_3 \lor d_{1,3})$ $F_2^1 = (b_{2,1} \cdot f_1 \lor c_{2,1} \cdot \neg f_1 \lor d_{2,1}) \lor (b_{2,2} \cdot f_2 \lor c_{2,2} \cdot \neg f_2 \lor d_{2,2}) \lor$ $(b_{2,3} \cdot f_3 \lor c_{2,3} \cdot \neg f_3 \lor d_{2,3})$

1. Suppose, MaxSAT solver returns

 $b_{1,1} = c_{1,2} = d_{1,3} = d_{2,1} = d_{2,3} = b_{2,3} = 1$; then the rule is

Ex.	Vacation (V)	Meeting (M)	Expo (E)	Hike (H)
	f_1	f_2	f_3	Label
e_1	0	1	0	1
e ₂	1	0	0	0
e ₃	0	1	1	1

Suppose, we want to learn F^1 of one term ,i.e., N = 1. Remember, $F_1^1 = (b_{1,1} \cdot f_1 \lor c_{1,1} \cdot \neg f_1 \lor d_{1,1}) \lor (b_{1,2} \cdot f_2 \lor c_{1,2} \cdot \neg f_2 \lor d_{1,2}) \land$ $(b_{1,3} \cdot f_3 \lor c_{1,3} \cdot \neg f_3 \lor d_{1,3})$ $F_2^1 = (b_{2,1} \cdot f_1 \lor c_{2,1} \cdot \neg f_1 \lor d_{2,1}) \lor (b_{2,2} \cdot f_2 \lor c_{2,2} \cdot \neg f_2 \lor d_{2,2}) \lor$ $(b_{2,3} \cdot f_3 \lor c_{2,3} \cdot \neg f_3 \lor d_{2,3})$

1. Suppose, MaxSAT solver returns

 $b_{1,1} = c_{1,2} = d_{1,3} = d_{2,1} = d_{2,3} = b_{2,3} = 1$; then the rule is $F^1 = (f_1 \wedge \neg f_2) \vee (f_2)$

Tools

- The MaxSAT formulation is NP-hard
- Use Local search based approaches
 - Local search-based:
 - git clone git@github.com:jirifilip/pyIDS.git
- Use MaxSAT solvers

[IPNM, IJCAR-18]

[LBS, KDD-16]

- Significant progress in MaxSAT solving over the past decade
- Usage of symmetry breaking predicates
- MaxSAT-based Decision sets

git clone https://github.com/alexeyignatiev/minds

Tools

- The MaxSAT formulation is NP-hard
- Use Local search based approaches
 - Local search-based:
 - git clone git@github.com:jirifilip/pyIDS.git
- Use MaxSAT solvers

[IPNM, IJCAR-18]

[LBS, KDD-16]

- Significant progress in MaxSAT solving over the past decade
- Usage of symmetry breaking predicates
- MaxSAT-based Decision sets
 git clone https://github.com/alexeyignatiev/minds
- Results: Over a set of 49 instances, local-search based approach can handle only 2 instances while MaxSAT based approach can optimal decision sets of 42 instances
 [IPNM, IJCAR-18]

Looking Beyond: Handling Noise

Noisy data sets: collection of data, non-existence of perfect rules
 The optimal decision sets are too large.

- Noisy data sets: collection of data, non-existence of perfect rules
 - The optimal decision sets are too large.
- $MinDS_3$: Minimize F^1 and such that
 - 1. $\mathcal{E}^+ \models F^1$
 - 2. $F^1 \wedge \mathcal{E}^- \vDash \bot$
 - No succinct explanations for F^0
- Noisy $MinDS_3$: Minimize F^1 , such that
 - 1. $\mathbb{1}_q = 1$ if $e_q \not\models F^1$ for $e_q \in \mathcal{E}^+$ or $e_q \models F^1$ for $e_q \in \mathcal{E}^+$
 - 2. Minimize $|F| + \lambda \sum_{q} \mathbb{1}_{q}$

MaxSAT Formulation for Noisy Setting

$$F_i^1 = ((b_{i,1} \cdot f_1 \lor c_{i,1} \cdot \neg f_1 \lor d_{i,1}) \cdots \land (b_{i,r} \cdot f_r \lor c_{i,r} \cdot \neg f_r \lor d_{i,r}) \cdots \land (b_{i,K} \cdot f_K \lor c_{i,K} \cdot \neg f_K \lor d_{i,K}))$$

- Notations
 - Variables: $\{b_{i,r}, c_{i,r}, d_{i,r}, \eta_q\}$
 - e_q : example q
 - $-\sigma(r,q)$: sign of feature f_r for e_q

MaxSAT Formulation for Noisy Setting

[MM, CP-18]

$$F_i^1 = ((b_{i,1} \cdot f_1 \lor c_{i,1} \cdot \neg f_1 \lor d_{i,1}) \cdots \land (b_{i,r} \cdot f_r \lor c_{i,r} \cdot \neg f_r \lor d_{i,r}) \cdots \land (b_{i,K} \cdot f_K \lor c_{i,K} \cdot \neg f_K \lor d_{i,K}))$$

Notations

- Variables: $\{b_{i,r}, c_{i,r}, d_{i,r}, \eta_q\}$
- e_q : example q
- $-\sigma(r,q)$: sign of feature f_r for e_q
- Hard Constraints:
 - Structural Constraints: $\bigwedge_{i,r} ExactlyOne(b_{i,r}, c_{i,r}, d_{i,r})$
 - $\mathcal{E}^+ \vDash \mathcal{F}^1: \text{ For } e_q \in \mathcal{E}^+, \ \mathcal{F}^1[\bigwedge_r f_r \mapsto \sigma(r,q)] = 1 \oplus \eta_q \text{ (Hard)}$
 - $F^{1} \wedge \mathcal{E}^{-} \vDash \bot: \text{ For } e_{q} \in \mathcal{E}^{-}, F^{1}[\bigwedge_{r} f_{r} \mapsto \sigma(r, q)] = 0 \oplus \eta_{q} \text{ (Hard)}$

MaxSAT Formulation for Noisy Setting

$$F_{i}^{1} = ((b_{i,1} \cdot f_{1} \vee c_{i,1} \cdot \neg f_{1} \vee d_{i,1}) \cdots \wedge (b_{i,r} \cdot f_{r} \vee c_{i,r} \cdot \neg f_{r} \vee d_{i,r}) \cdots \wedge (b_{i,K} \cdot f_{K} \vee c_{i,K} \cdot \neg f_{K} \vee d_{i,K}))$$

Notations

- Variables: $\{b_{i,r}, c_{i,r}, d_{i,r}, \eta_q\}$
- e_q : example q
- $\sigma(r, q)$: sign of feature f_r for e_q
- Hard Constraints:
 - Structural Constraints: $\bigwedge_{i,r} ExactlyOne(b_{i,r}, c_{i,r}, d_{i,r})$
 - $\mathcal{E}^+ \vDash \mathcal{F}^1: \text{ For } e_q \in \mathcal{E}^+, \ \mathcal{F}^1[\bigwedge_r f_r \mapsto \sigma(r,q)] = 1 \oplus \eta_q \text{ (Hard)}$
 - $F^{1} \wedge \mathcal{E}^{-} \vDash \bot: \text{ For } e_{q} \in \mathcal{E}^{-}, F^{1}[\bigwedge_{r} f_{r} \mapsto \sigma(r, q)] = 0 \oplus \eta_{q} \text{ (Hard)}$
- Soft Constraints
 - Minimize the size of each term: $S_{i,r} := (d_{i,r}); \quad W(S_{i,r}) = 1$
 - Minimize mis-classification: $\mathcal{T}_q := (\neg \eta_q)$ $W(\mathcal{T}_q) = 1$

- Iris Classification:
- Features: sepal length, sepal width, petal length, and petal width
- MLIC learned $\mathcal{R}=$
 - 1. (sepal length \leq 6.3 \wedge sepal width \leq 3.0 \wedge petal width \geq 1.5) \vee
 - 2. (sepal width \geq 2.7 \wedge petal length \leq 4.0 \wedge petal width \leq 1.2) \vee
 - 3. (petal length > 5.0)

Accuracy

Dataset	Size	# Features	RIPPER	Log Reg	NN	RF	SVM	MLIC
			0.886	0.909	0.926	0.909	0.886	0.889
ionosphere	350	564	(0.1)	(0.1)	(1.2)	(1.3)	(0.1)	(15.04)
			0.868	0.884	0.921	0.895	0.879	0.895
parkinsons	190	392	(0.1)	(0.1)	(1.2)	(1.1)	(1.6)	(245)
			0.70	0.750	0.700	0.700	0.705	0.707
Trans	740	64	0.78 (0.0)	0.759 (0.0)	0.788 (1.2)	0.788 (1.2)	0.765 (372.3)	0.797 (1177)
			. ,	. ,	. ,			
WDBC	560	540	0.961 (0.1)	0.936 (0.0)	0.961 (1.3)	0.943 (1.4)	0.955 (3.0)	0.946 (911)
		0.10	(0.1)	(0.0)	()	()	(0.0)	(322)

Intepretability

Dataset	Examples	# Features	MLIC
ionosphere	350	564	5.5
parkinsons	190	392	6
Trans	740	64	4
WDBC	560	540	3.5

How do we scale to tens of thousands of examples and features?

Primary Bottleneck Size of MaxSAT formula $\mathcal{O}(M \cdot N \cdot K)$ for a formula on M examples, N clauses and K features

Outline

Discretization

Classification via Decision Sets

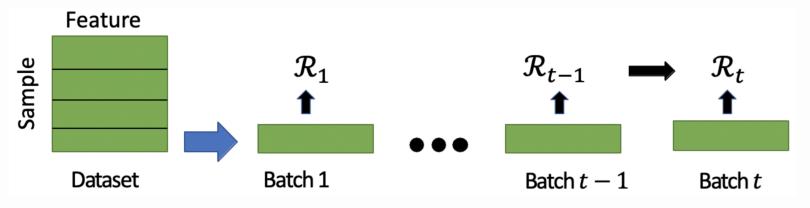
Decision Sets via MaxSAT

Incremental learning

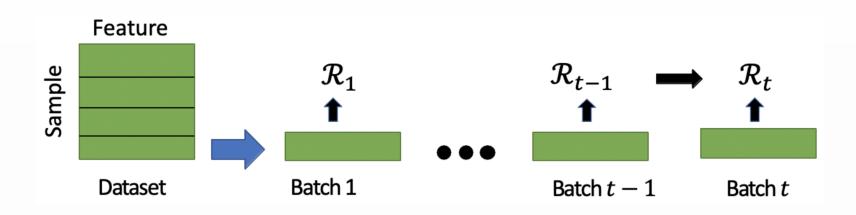
IMLI: Incremental Rule-learning Approach

- The large formula size of the MaxSAT instance for the poor scalability
- The proposal of mini-batch incremental learning

[Ghosh and M., AIES 19]



IMLI: Solution Technique - I



 We propose a mini-batch incremental learning framework with the following objective function on batch t

$$\min \sum_{i,j} (b_{i,j} \cdot I(b_{i,j}) + c_{i,j} \cdot I(c_{i,j}) + d_{i,j} \cdot I(d_{i,j})) + \lambda \sum_{q} \eta_{q}.$$

where indicator function $I(\cdot)$ is defined as follows.

$$I(b_{i,j}) = egin{cases} -1 & ext{if } b_{i,j} \in \mathcal{R}_{t-1} \ 1 & ext{otherwise} \end{cases}$$

Similarly, for $I(c_{i,j})$ and $I(d_{i,j})$

IMLI: Solution Technique - II

$$(t-1)$$
-th batch

we learn assignment

- $b_{1,1} = 0$
- $b_{1,2} = 1$
- $b_{2,1} = 0$

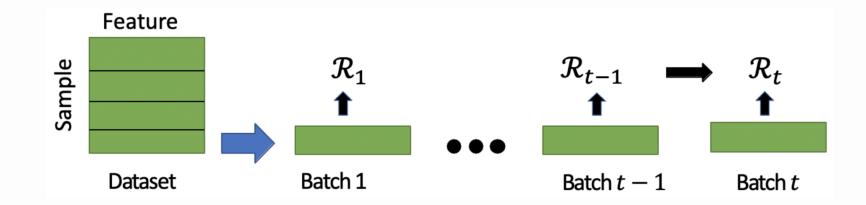
•
$$b_{2,2} = 1$$

t-th batch

we construct soft unit clause

- $\neg b_{1,1}$
- *b*_{1,2}
- ¬b_{2,1}
 b_{2,2}

IMLI: Solution Technique-III



For M examples, N clauses, and K features,

- The number of clauses for each batch is $\mathcal{O}(\frac{M}{t} \cdot N \cdot K)$
 - Significant reduction from $\mathcal{O}(M \cdot N \cdot K)$

Accuracy and training time of different classifiers

Dataset	Size n	Features <i>m</i>	LR	SVC	RIPPER	IMLI
PIMA	768	134	75.32	75.32	75.32	73.38
FINA	100	104	(0.3s)	(0.37s)	(2.58s)	(0.74s)
Credit-default	30000	334	80.81	80.69	80.97	79.41
Credit-default	50000	554	(6.87s)	(847.93s)	(20.37s)	(32.58s)
Twitter	40000	1050	95.67	Timequit	95.56	94.69
	49999	1050	(3.99s)	Timeout	(98.21s)	(59.67s)

Table: Each cell in the last 5 columns refers to test accuracy (%) and training time (s).

MLIC timed out on all the above instances

Size of rules of different rule-based classifiers

Dataset	RIPPER	IMLI
PIMA	8.25	3.5
Twitter	21.6	6
Credit	14.25	3

Table: Average size of the rules of different rule-based models.

IMLI generates shorter rules compared to other rule-based models

Example Rules

Rule for Pima Indians Diabetes Database Tested positive for diabetes if := (Plasma glucose concentration > 125 AND Triceps thickness \leq 35 mm AND Diabetes pedigree function > 0.259 AND Age > 25 years)

Example Rules

```
Rule for Pima Indians Diabetes Database
Tested positive for diabetes if :=
(Plasma glucose concentration > 125 AND Triceps thickness \leq 35 mm
AND Diabetes pedigree function > 0.259 AND Age > 25 years)
```

Rule for Parkinson's Disease Dataset

A person has Parkinson's disease if :=

(minimum vocal fundamental frequency \leq 87.57 Hz OR minimum vocal fundamental frequency > 121.38 Hz OR Shimmer:APQ3 \leq 0.01 OR MDVP:APQ > 0.02 OR D2 \leq 1.93 OR NHR > 0.01 OR HNR > 26.5 OR spread2 > 0.3) AND (Maximum vocal fundamental frequency \leq 200.41 Hz OR HNR \leq 18.8

OR spread2 > 0.18 OR D2 > 2.92)

- Discretization of the training and test dataset
- Hard Constraints to capture structure of the rules
- Hard Constraints to capture evaluation of rules: A rule must
 - EITHER return True on positive example and False on negative example
 - OR the noise variable is set to True
- Soft Constraints
 - Minimize the size of rules
 - Minimize the number of mis-classifications

From Decisions Sets to Decision Trees

[NIPM, IJCAI-18]

- Hard Constraints to capture structure of the rules
 - A leaf node has no children and is either 0 (False) or 1 (True)
 - A non-leaf node must have a child.
 - If the i-th node is a parent then it must have a child
 - All nodes (except root) must have a parent
 - Left edge corresponding to node with label f_r corresponds to $f_r = 0$
 - Right edge corresponding to node with label f_r corresponds to $f_r = 1$
- Evaluation along a path is just conjunction of edges
- Hard constraints to capture evaluation of rules
 - return True on positive example and False on negative example
- Exploitation of domain specific knowledge to improve encoding

Conclusions & research directions

- SAT/MaxSAT-based solutions for computing (explainable) decision sets
 - Minimize the number of terms
 - Allows several different objective functions
- Far better than local search based approach

Conclusions & research directions

- SAT/MaxSAT-based solutions for computing (explainable) decision sets
 - Minimize the number of terms
 - Allows several different objective functions
- Far better than local search based approach
- Formalizations beyond Decisions sets and Decision Trees
 - Checklists
 - The underlying approach can be applied
 - Exploitation of domain specific knowledge
- Scalability and handling very large data sets.

[GMM, ECAI20]

- Local search-based: git clone git@github.com:jirifilip/pyIDS.git
- MaxSAT-based Decision sets git clone https://github.com/alexeyignatiev/minds
- Noisy and Incremental: pip install rulelearning

Questions?

Part 3. Robustness of ML models

Nina Narodytska

Part 3. Robustness of Deep NNs

Nina Narodytska

Motivation

Adversarial attacks

Verification methods

SAT-based verification of Binarized NNs

Motivation

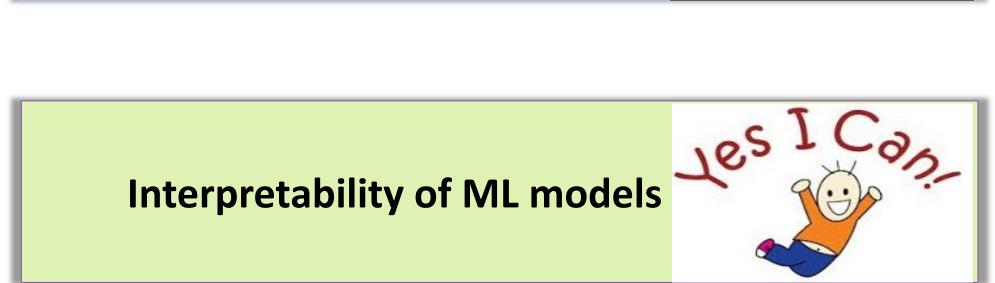
Robustness of ML models

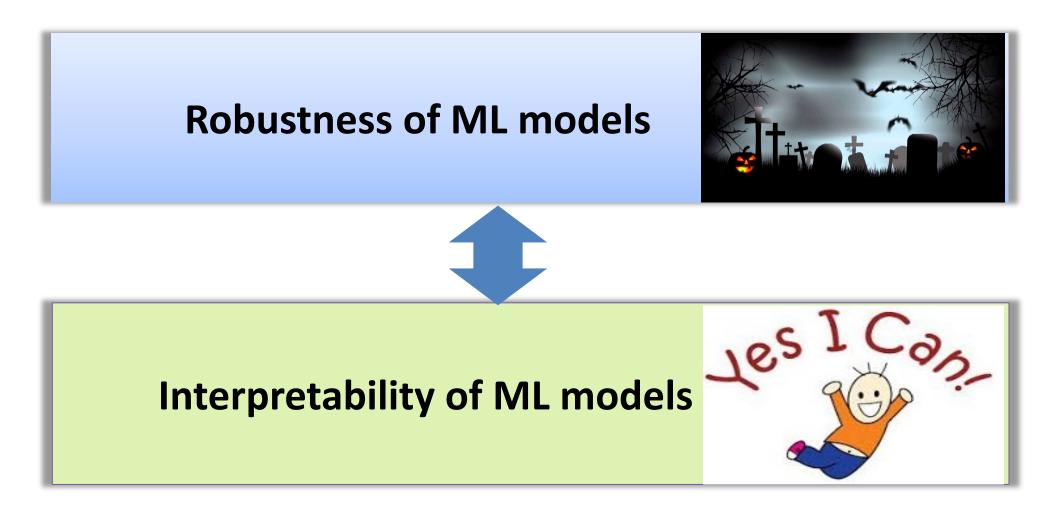
Interpretability of ML models

Robustness of ML models

Interpretability of ML models

Robustness of ML models





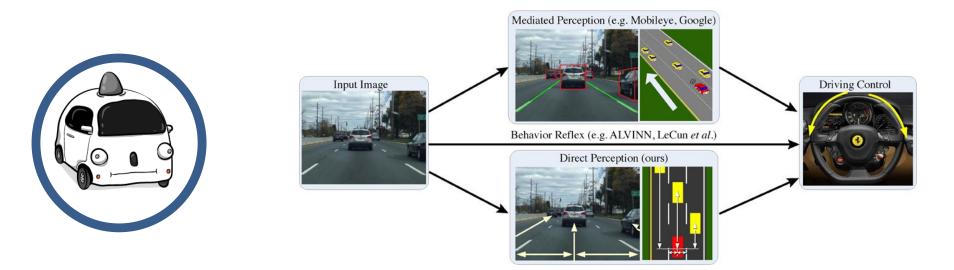
Robustness of ML models

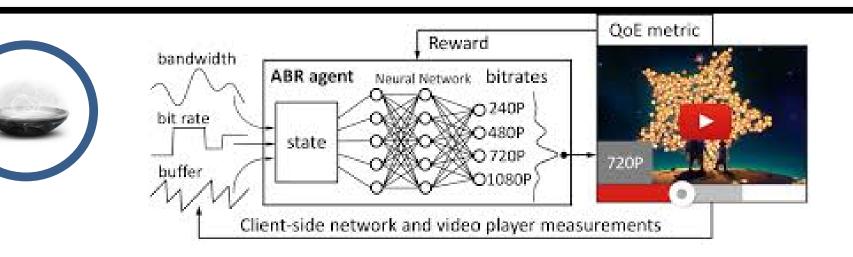
Interpretability of ML models

les 1

Dialogs/chat bots

Control systems

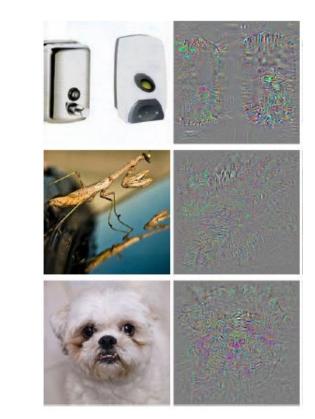


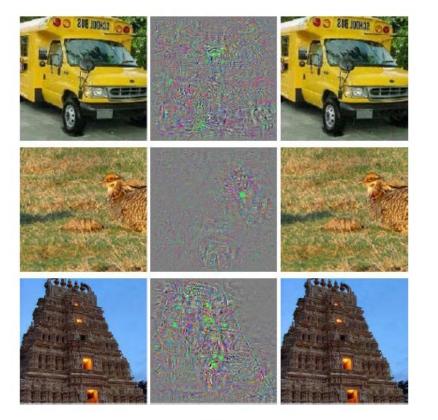


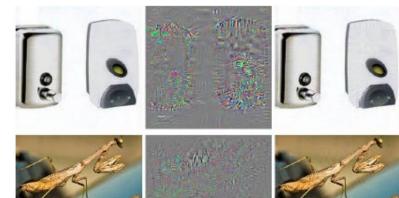
Machine Learning is used on daily basis

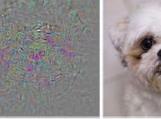
Deep learning-based systems can be fooled

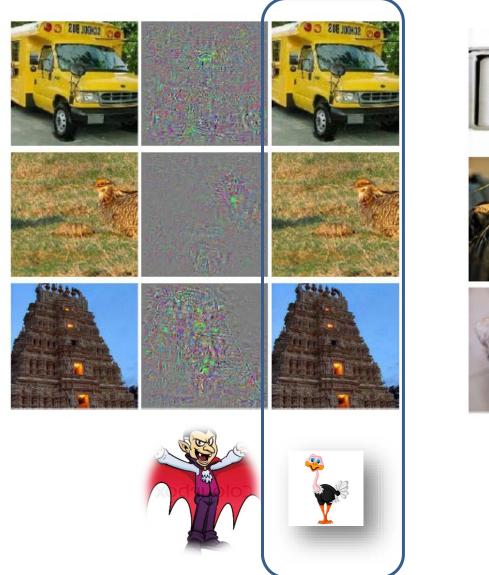
Deep learning-based systems can be fooled Easily

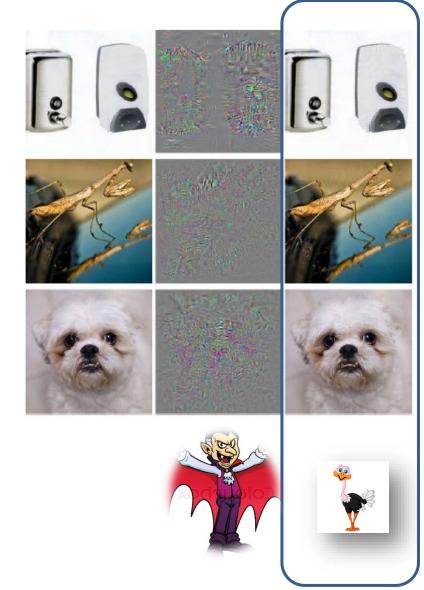












[Szegedy et al.] Intriguing properties of neural networks

Motivation

Adversarial attacks

Adversarial attacks

Given an input (X, C), an input X' = X + P is an untargeted adversarial example iff NN misclassifies X' and P is small according to some metric.

Given an input (\mathbf{X}, \mathbf{C}) , an input X' = X + P is an untargeted adversarial example iff NN misclassifies X' and P is small according to some metric.

Given an input (X, C), an input X' = X + P is an untargeted adversarial example iff NN misclassifies X' and P is small according to some metric.

Given an input (X, C), an input X' = X + P is an untargeted adversarial example iff <u>NN misclassifies</u> X' and P is small according to some metric.

Original image

88% tabby cat

[Szegedy *et al.*] *Intriguing properties of neural networks* [Athalye et al.]Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples

Original image

Perturbation

88% tabby cat

[Szegedy *et al.*] *Intriguing properties of neural networks* [Athalye et al.]Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples

Original image

Perturbation

Perturbed image

88% tabby cat

[Szegedy *et al.*] *Intriguing properties of neural networks* [Athalye et al.]Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples

Untargeted adversarial examples

Original image

Perturbation

Perturbed image

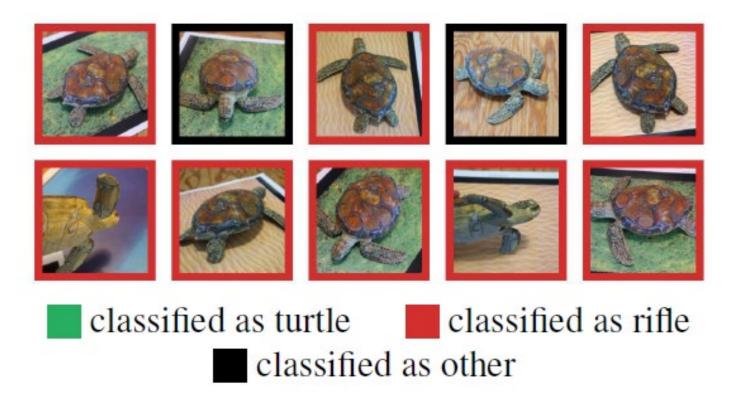
88% tabby cat

99% guacamole

[Szegedy *et al.*] *Intriguing properties of neural networks* [Athalye et al.]Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples

[Eykholt at al.] Robust Physical-World Attacks on Deep Learning Visual Classification

[Athalye at al.] Synthesizing Robust Adversarial Examples



[Athalye at al.] Synthesizing Robust Adversarial Examples

[Eykholt at al.] Robust Physical-World Attacks on Deep Learning Visual Classification

Beyond images

Generating Natural Language Adversarial Examples

Moustafa Alzantot¹⁺, Yash Sharma³⁺, Ahmed Elgohary³, Bo-Jhang Ho³, Mani B. Srivastava³, Kai-Wei Chang³

¹Department of Computer Science, University of California, Los Angeles (UCLA) {malgantot, bojhang, mbs, kwchang}@ucla.edu ²Cooper Union sharma2@cooper.edu ³Computer Science Department, University of Maryland algohary@cs.umd.edu

Adversarial Attacks on Neural Network Policies

Sandy Huang¹, Nicalas Papernori, Jan Goodfellaw¹, Yan Duan¹¹, Pieter Abheel¹¹ ¹ University of California, Backeley, Department of Electrical Engineering and Computer Sciences ¹ Pennsylvania State University, Schoul of Electrical Engineering and Computer Science ¹ OpenAl

Abstract

Machine learning classifiers are known in he vulnerable in inputs maliciously constructed by adversaries to force misclassification. Buch adversarial searchles have been extensively studied in the context of computer vision applications. In this work, we show adversarial attacks are also effective when targeting neural network.

Seq2Sick: Evaluating the Robustness of Sequence-to-Sequence Models with Adversarial Examples

Minhao Cheng', Jinfeng Yi⁷, Huan Zhang', Pin-Ya Chen', Cho-Jui Hsich'

¹Department of Computer Science, University of California, Davis, CA 95616 ²Tencent AI Lab, Bellevue, WA 08004

³IBM Research AI, Yorktown Heights, NY 10598 michengPucdavis.edu, jinfengyi.ustoPgmail.com, edushangPucdavis.edu, put-pauloenglimning, chalastergundavis.edu.

HALLUCINATIONS IN NEURAL MACHINE TRANSLATION

Anonymous authors Paper under double-blind review

ABSTRACT

Neural machine translation (NMT) systems have reached state of the art performance in translating text and are in wide deployment. Yet little is understood about how these systems function or break. Here we show that NMT systems are susceptible to producing highly pathological translations that are completely untethered from the source material, which we term hallacinations. Such pathological translations are problematic because they are are deeply disturbing of user trust and easy to find with a simple search. We describe a method to generate hallucinations and show that many common variations of the NMT architecture constraints of the NMT architecture constraints of the source the formation of the source the formation

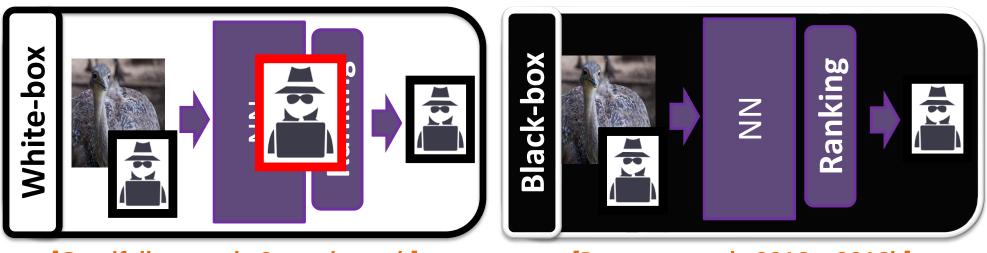
nique SYNTHETIC AND NATURAL NOISE BOTH BREAK nally. NEURAL MACHINE TRANSLATION

Yonatan Belinkov* Computer Science and Artificial Intelligence Laboratory, Massachusens Institute of Technology belinkov#mit.edu Yonatan Bisk* Paul G. Alien School of Computer Science & Engineering, University of Washington ybisk@cs.washington.edu

On the Robustness of Semantic Segmentation Models to Adversarial Attacks

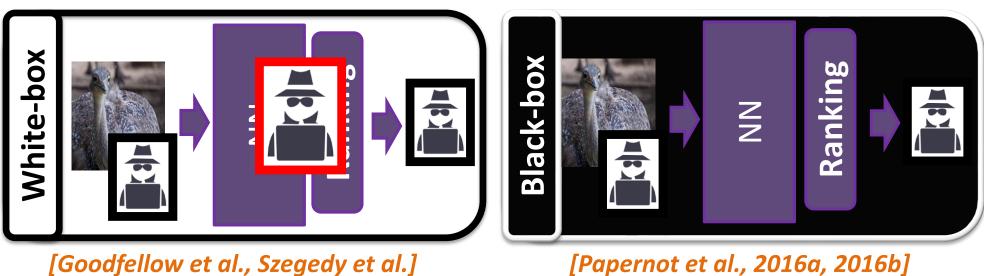
Anurag Arnab Ondrej Miksik Philip H.S. Torr University of Oxford (anurag.arnab, andrej.miksik, philip.torr)@eng.ox.ar.uk

[Nicholas Carlini] On (In-) security of Deep Learning Models



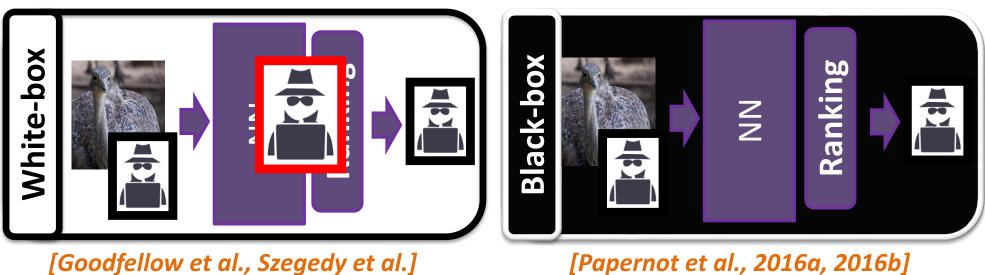
[Goodfellow et al., Szegedy et al.]

[Papernot et al., 2016a, 2016b]



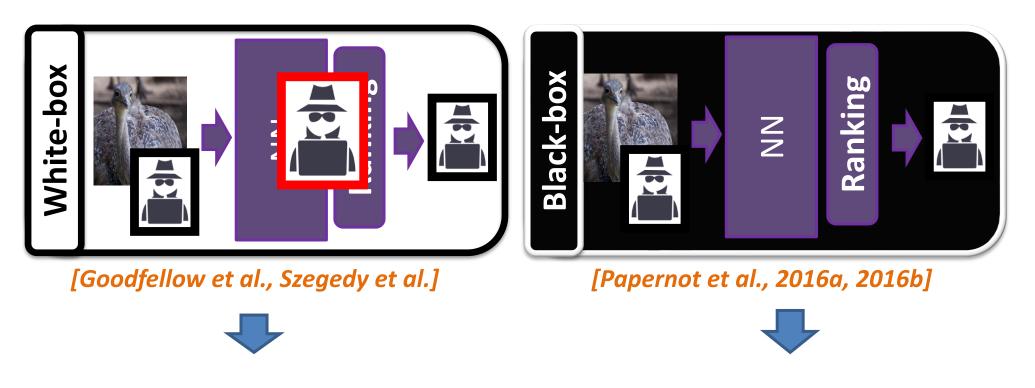
[Papernot et al., 2016a, 2016b]

Gradient-based methods that generate images by perturbing the adversarial gradients of the loss function w.r.t. the input image



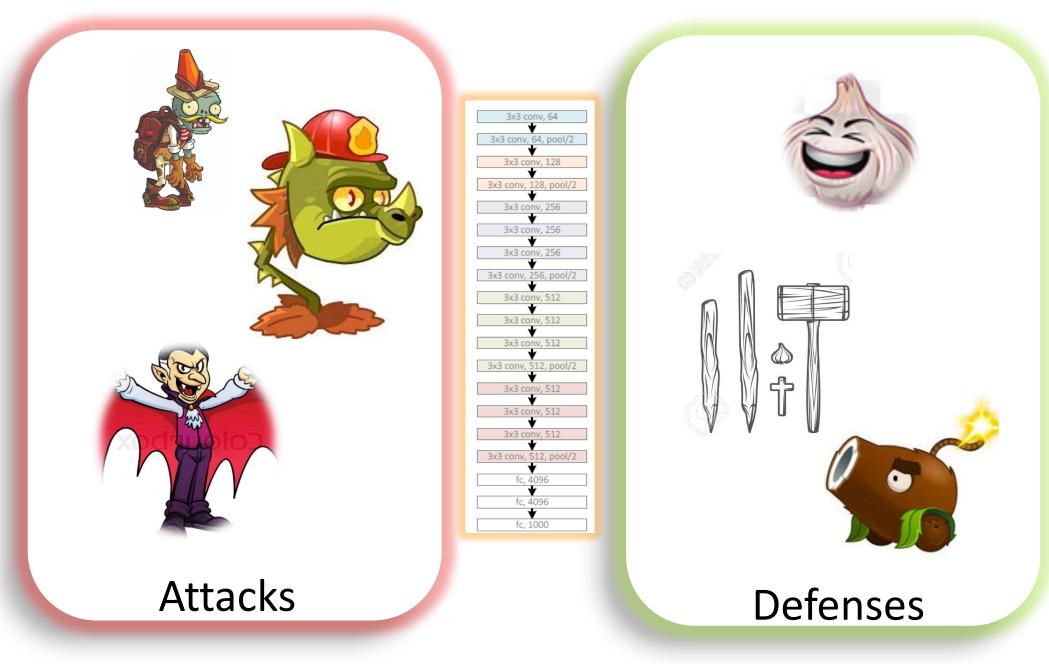
[Papernot et al., 2016a, 2016b]

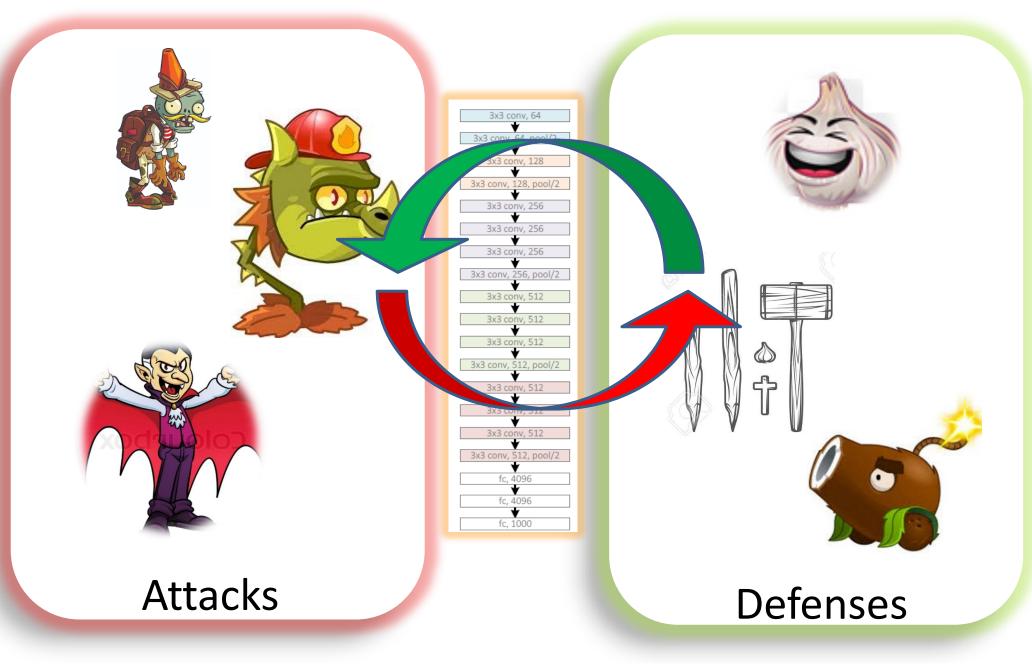
Gradient-based methods that generate images by perturbing the adversarial gradients of the loss function w.r.t. the input image

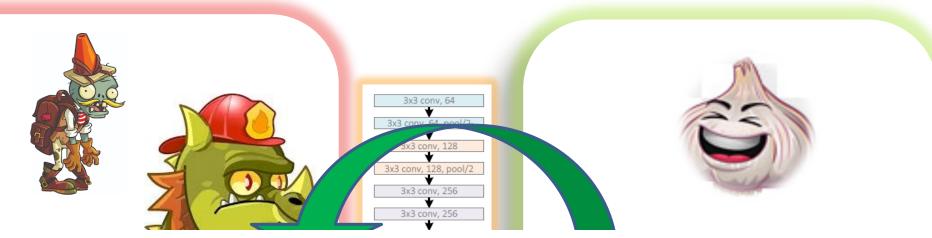


- <u>Gradient-based methods</u> that generate adversarial images by perturbing the gradients of the loss function w.r.t. the input image
- More realistic and applicable model
- Challenging because of weak adversaries: no knowledge of the network architecture
- Previous attacks require 'transferability' assumption on adversarial examples
- GAN based attacks

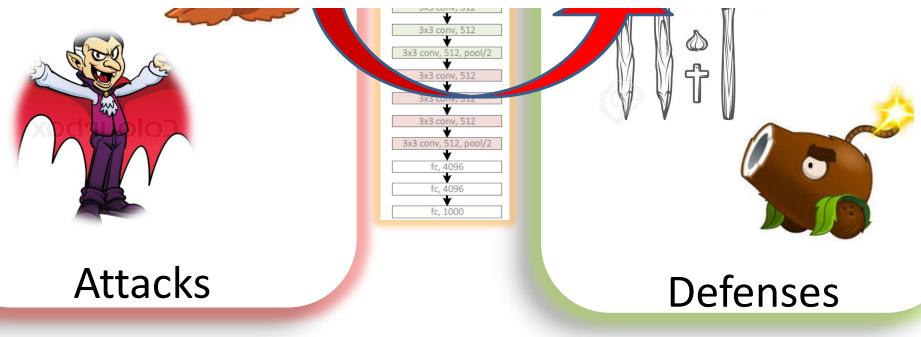


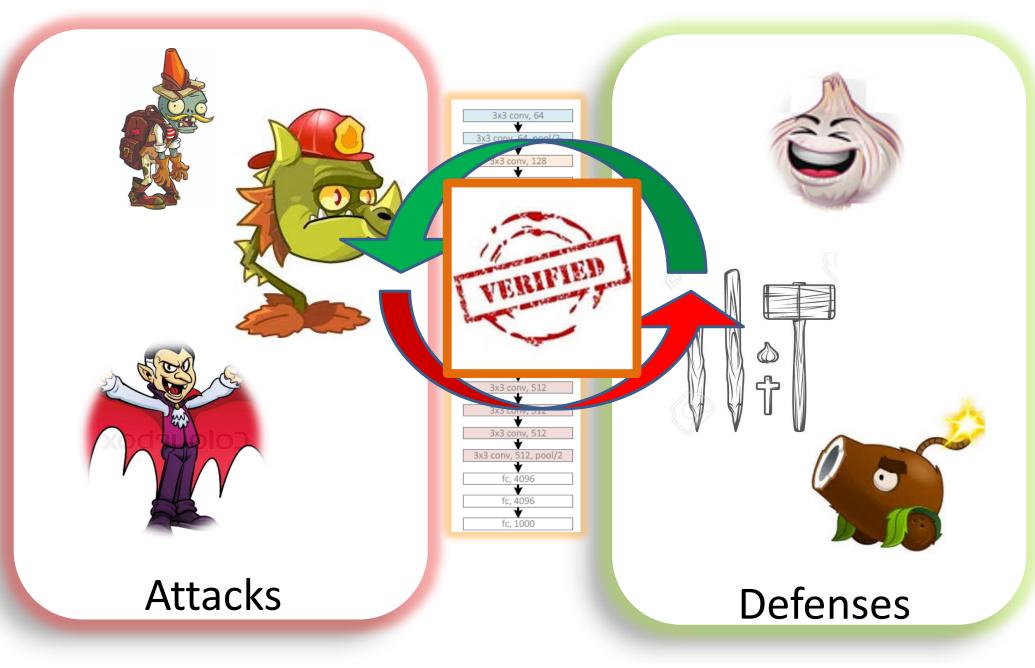






Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. A Athalye, N *Carlini*, D Wagner. ICML 2018, 2018.



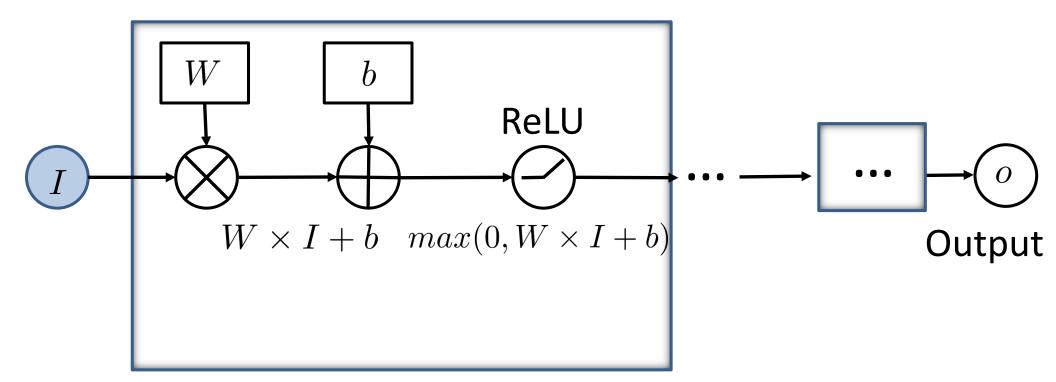


Outline

Motivation

Adversarial attacks

Verification methods



Input

- features
- images

NNs is defined as $I^n \to O^m$ pre(x) and post(y) are logic formulas

pre defines preconditions on the inputs
post defines postconditions on the output

Given conditions *pre* and *post*, a property is:

$$\forall x. \forall y. (pre(x) \land y = NN(x)) \implies post(y)$$

To find a counterexample:

$$pre(x) \land (y = NN(x)) \land \neg post(y)$$

Let x' is a given

classified as 'cat'.

$$pre(x) := |x - x'| \le \epsilon$$

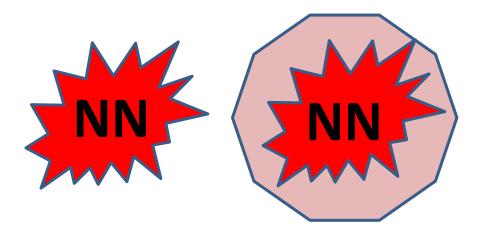
$$post(y) := `cat'$$

$$\forall x. \forall y. (pre(x) \land y = NN(x)) \implies post(y)$$

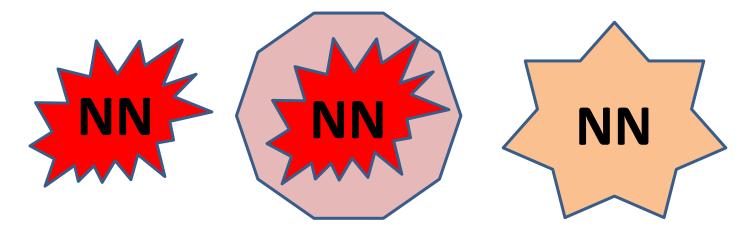
Verification methods

Verification methods

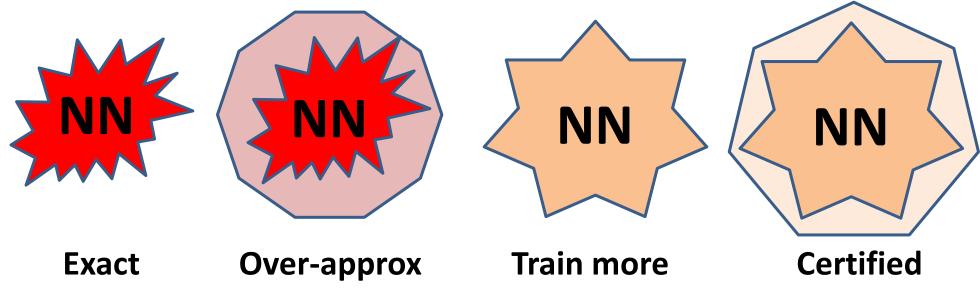
Exact Methods



ExactOver-approxMethodsmethods



Exact Methods Over-approx methods Train more robust networks



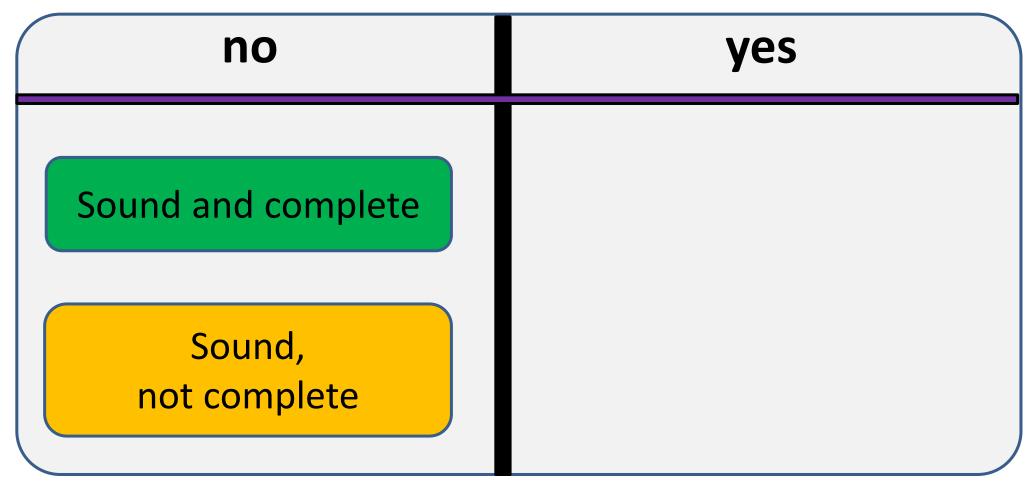
Methods

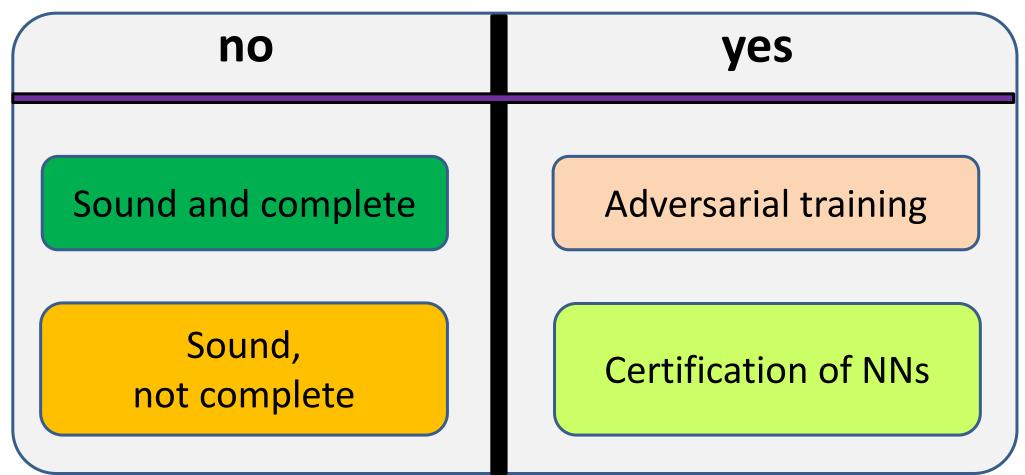
methods

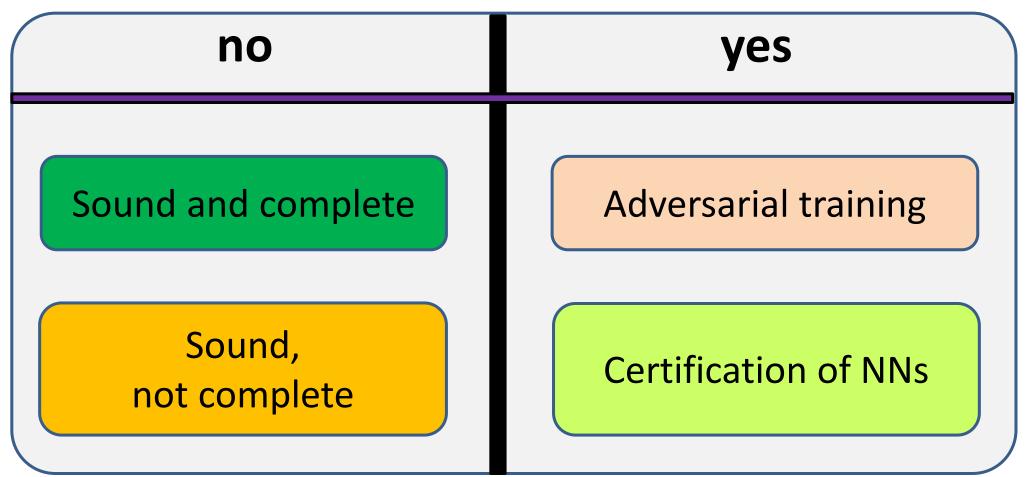
robust networks

networks

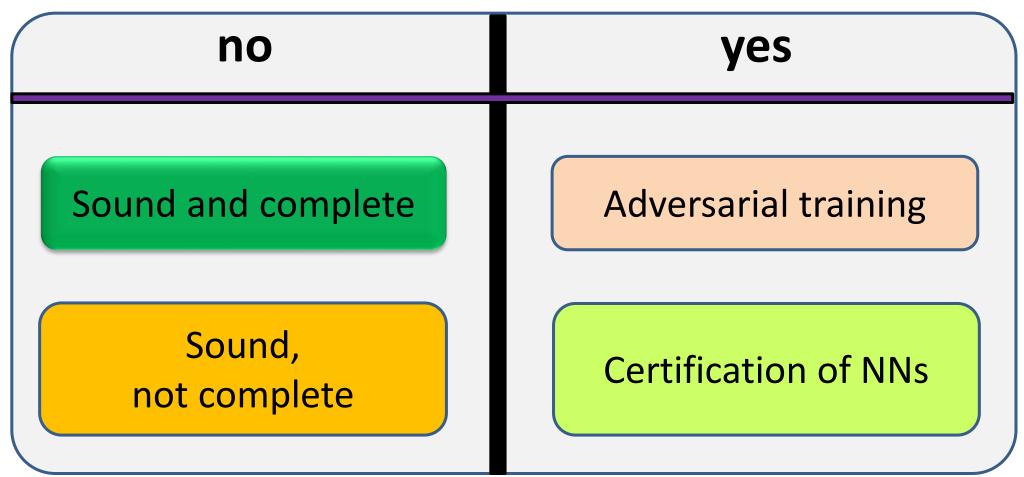
no	yes







Easier-to-verify networks



Easier-to-verify networks

Strength: Prove whether a property holds

- R. Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks, 2017
- R. Bunel, I. Turksaslan, P. Torr, P. Kohli, and P. Kumar. Piecewise Linear Neural Network Verification: A Comparative Study, 2017.
- G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks.2017
- A. Lomuscio and L. Maganti. An Approach to Reachability Analysis for Feed-Forward ReLU Neural Networks, 2017.

$$pre(x) \land (y = NN(x)) \land \neg post(y)$$

 $pre(x) \land (y = NN(x)) \land \neg post(y)$

 $SMT(pre(x)) \land SMT(y = NN(x)) \land SMT(\neg post(y))$

 $pre(x) \land (y = NN(x)) \land \neg post(y)$

 $SMT(pre(x)) \land SMT(y = NN(x)) \land SMT(\neg post(y))$

SMT solver

$$pre(x) \land (y = NN(x)) \land \neg post(y)$$

 $SMT(pre(x)) \land SMT(y = NN(x)) \land SMT(\neg post(y))$

(will discuss for BNNs+SAT)

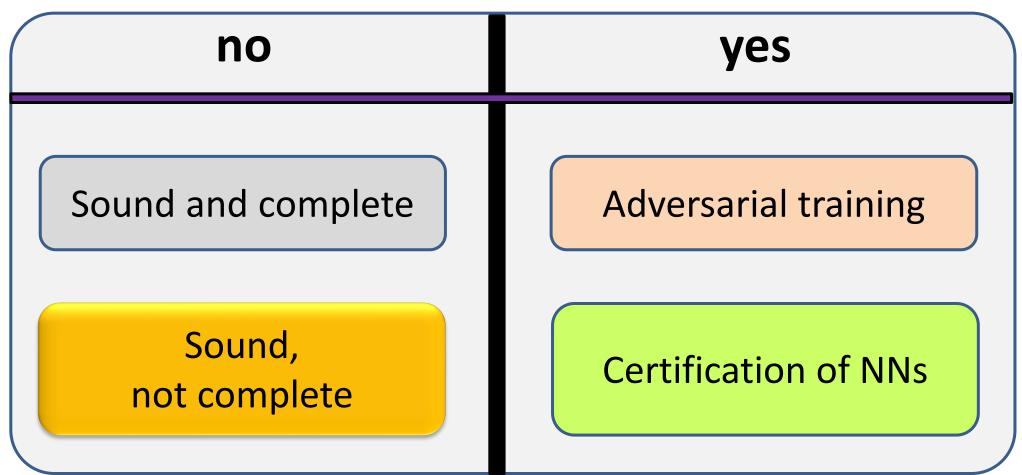
SMT solver

 $pre(x) \land (y = NN(x)) \land \neg post(y)$ $SMT(pre(x)) \land SMT(y = NN(x)) \land SMT(\neg post(y))$

SMT solver (or Reluplex, Planet, etc)

Limitation: scalability (up to 1000 neurons)

Do we augment training?

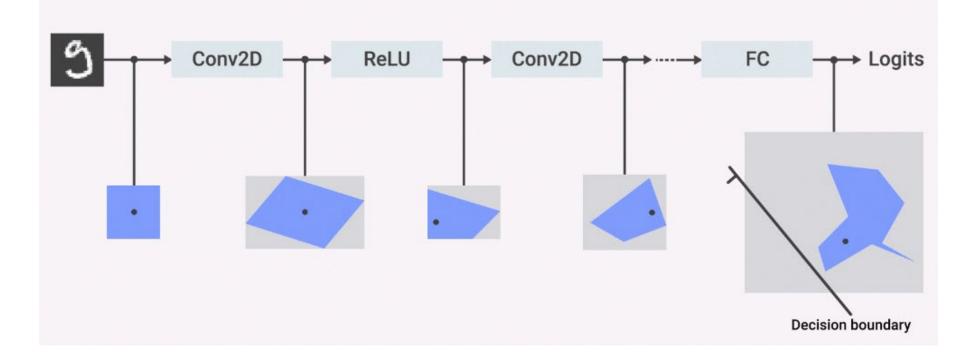


Easier-to-verify networks

Strength: Prove that a property holds (can return `*do not know*')

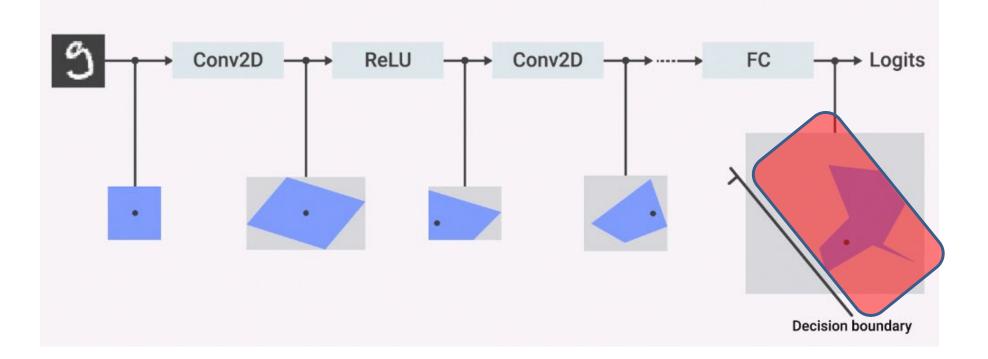
- Singh, G., Gehr, T., Mirman, M., Puschel, M., and Vechev, M. T. Fast and effective robustness certification.
- Zhang, H., Weng, T., Chen, P., Hsieh, C., and Daniel, L. Efficient neural network robustness certification with general activation functions.
- Weng, T., Zhang, H., Chen, H., Song, Z., Hsieh, C., Daniel, L., Boning, D. S., and Dhillon, I. S. Towards fast computation of certified robustness for relu networks
- T. Gehr, M. Mirman, D. Drachsler-Cohen, E. Tsankov, S. Chaudhuri, and M. Vechev. AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation.

Based on over-approximation of the output space



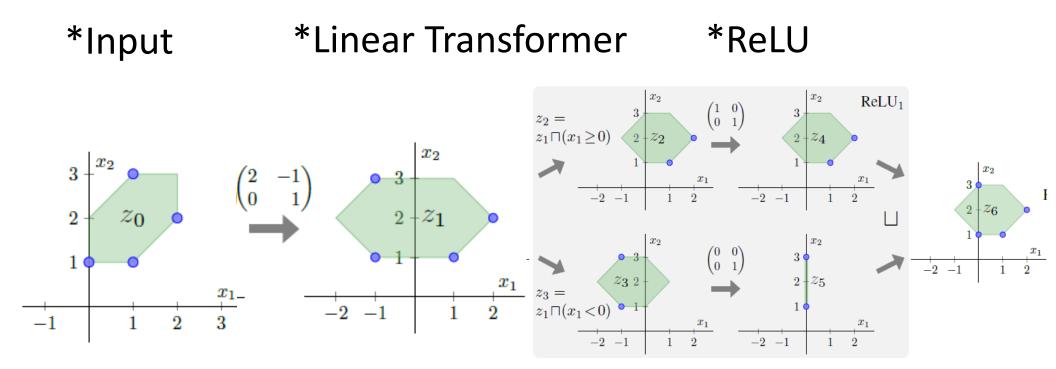
https://medium.com/@deepmindsafetyresearch/towards-robust-and-verified-ai-specification-testing-robust-training-and-formal-verification-69bd1bc48bda

Based on over-approximation of the output space



https://medium.com/@deepmindsafetyresearch/towards-robust-and-verified-ai-specification-testing-robust-training-and-formal-verification-69bd1bc48bda

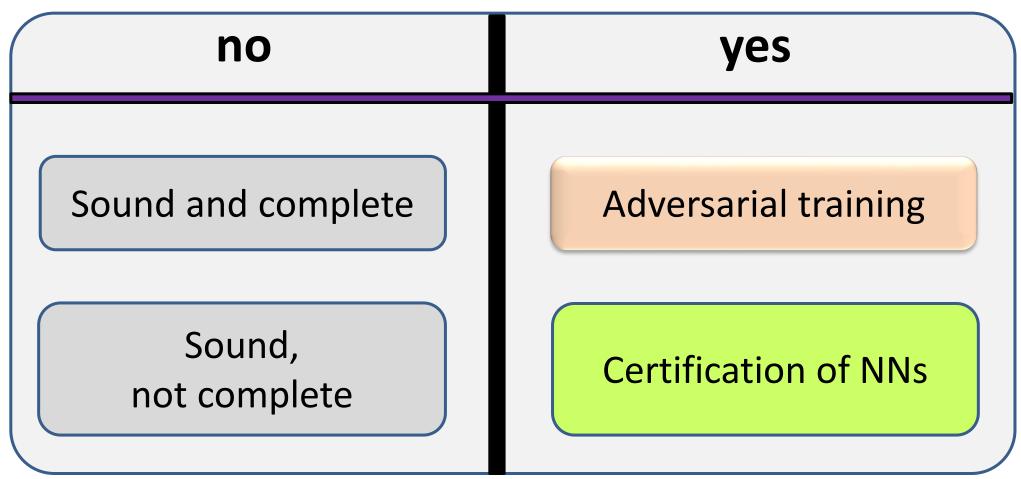
Based on over-approximation of the output space



[Gehr et al.] AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation

Limitation: scalability (up to 10000 neurons)

Do we augment training?



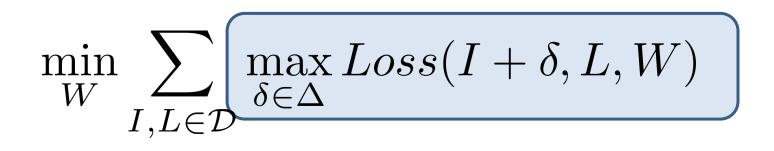
Easier-to-verify networks

Strength: (empirically) improve robustness of NNs

- Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale, 2017.
- Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.2017
- Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks, 2018.

 $\min_{W} \sum_{I,L \in \mathcal{D}} \max_{\delta \in \Delta} Loss(I + \delta, L, W)$

 $\min_{W} \sum_{I,L \in \mathcal{D}} \max_{\delta \in \Delta} Loss(I + \delta, L, W)$



$$\min_{W} \sum_{I,L \in \mathcal{D}} \max_{\delta \in \Delta} Loss(I + \delta, L, W)$$

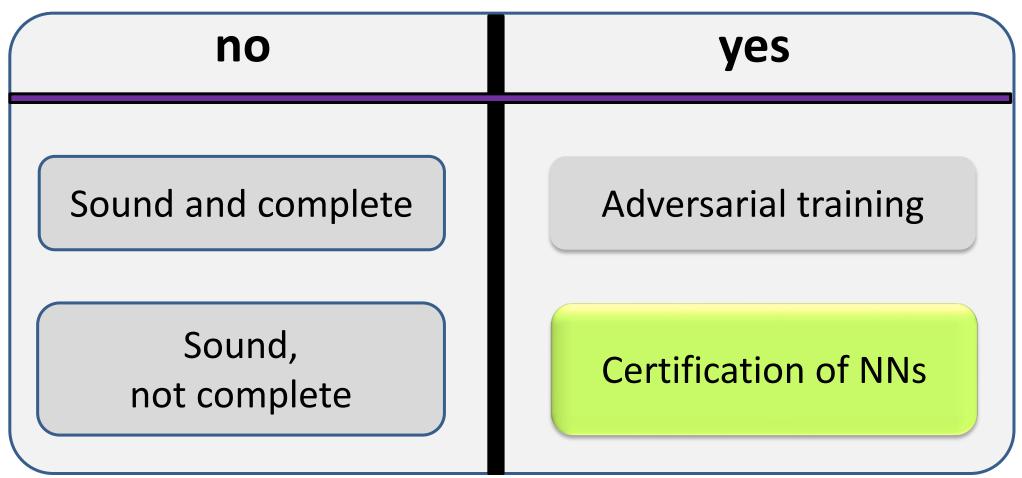
• Use gradient-based search, e.g. PGD, to solve inner optimization

$$\min_{W} \sum_{I,L \in \mathcal{D}} \max_{\delta \in \Delta} Loss(I + \delta, L, W)$$

- 1. Select minibatch B
- 2. For each (I,L) ∈ B compute an adversarial example δ^*
- 3. Update parameters at I+ δ^*

Limitation: no guarantees on robustness

Do we augment training?

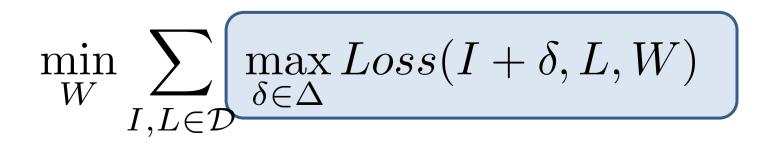


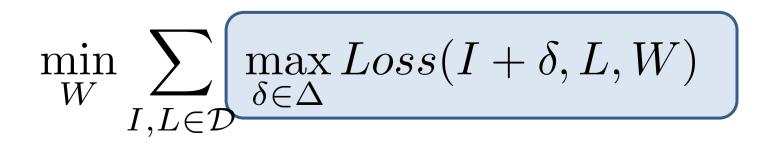
Easier-to-verify networks

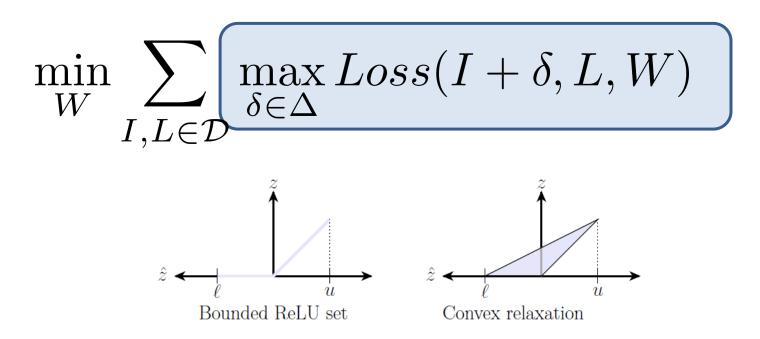
Certified training methods

Strength: prove that a property holds (but can produce false negatives)

- Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex outer adversarial polytope, 2018
- Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial examples. 2018
- Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable abstract interpretation for provably robust neural networks. 2018





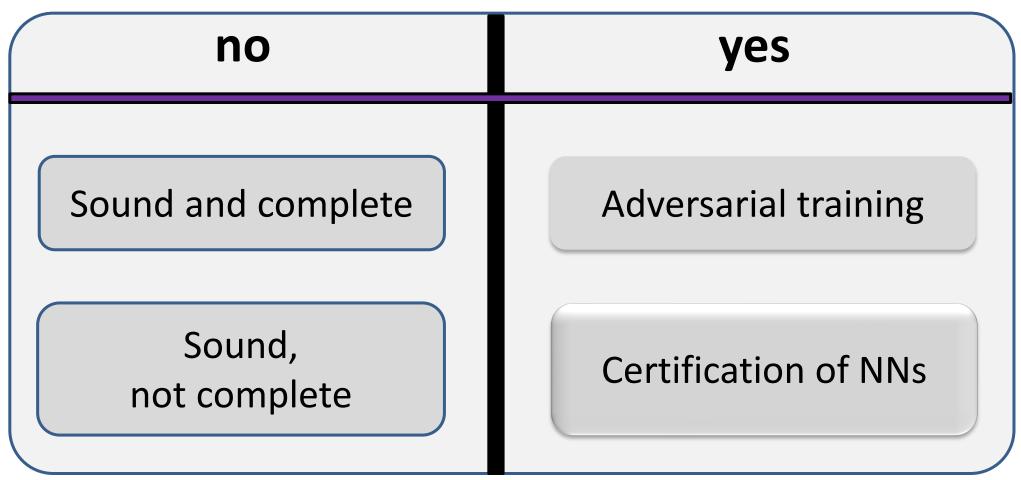


- Use a convex relaxation inner optimization
- Use gradients of this relaxation in the training procedure

Limitation:

- work with relaxation, an upper bound on the can be quite loose
- the loss is much more complex than in a non-adv training (accuracy drops, scalability issues)

Do we augment training?



Easier-to-verify networks

Easier-to-verify networks

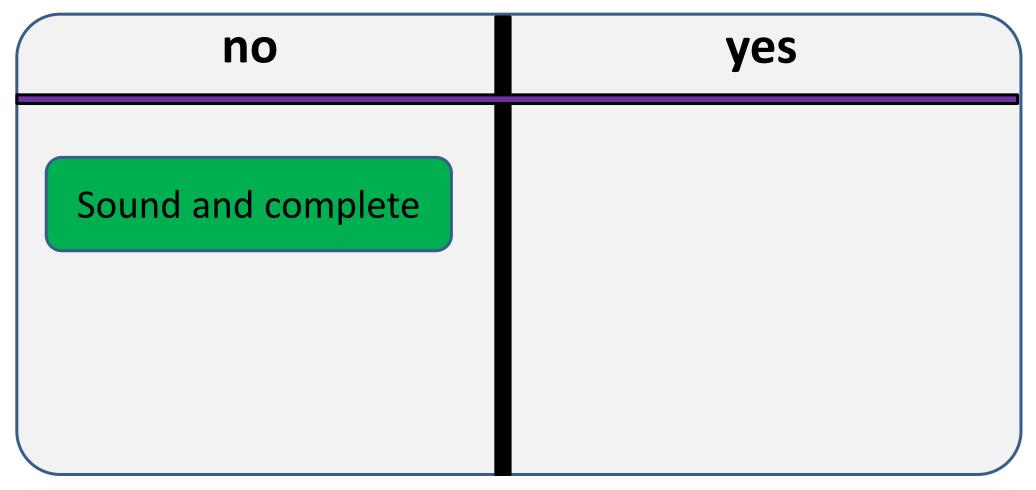
Strength: train a network that is easier to verify for existing decision procedures

- Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability Kai Y. Xiao, Vincent Tjeng, Nur Muhammad (Mahi) Shafiullah, Aleksander Madry, ICLR'19
- In Search for a SAT-friendly Binarized Neural Network Architecture Nina Narodytska, Hongce Zhang, Aarti Gupta, Toby Walsh, ICLR20

Easier-to-verify networks

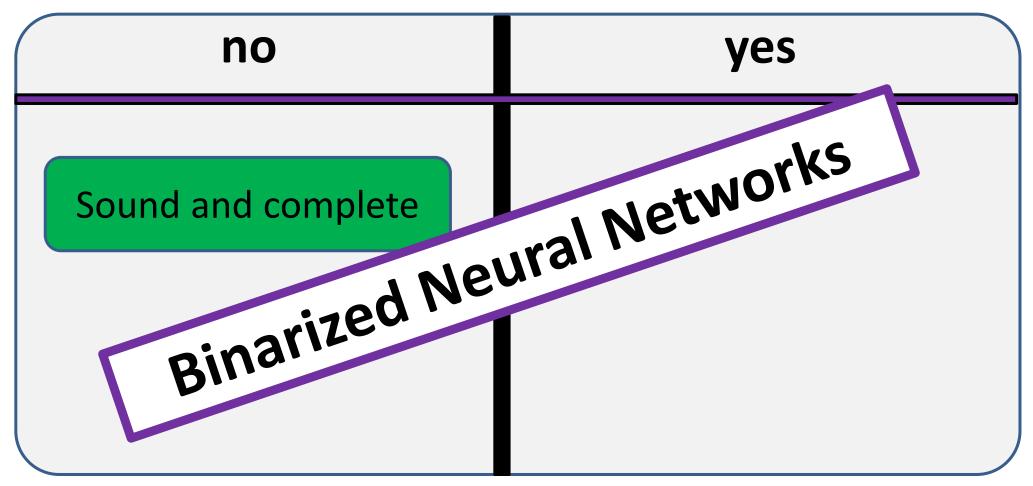
Limitation: no guarantees on robustness

Do we augment training?



Easier-to-verify networks

Do we augment training?



Easier-to-verify networks

Why BNNs?

Binarized neural networks: Training deep **neural networks** with weights and activations constrained to+ 1 or-1

<u>M Courbariaux</u>, <u>I Hubara</u>, <u>D Soudry</u>, <u>R El-Yaniv</u>... - arXiv preprint arXiv ..., 2016 - arxiv.org We introduce a method to train Binarized Neural Networks (BNNs)-neural networks with binary weights and activations at run-time. At training-time the binary weights and activations are used for computing the parameters gradients. During the forward pass, BNNs drastically ... \therefore \mathfrak{DD} Cited by 925 Related articles All 9 versions \gg

Binarized neural networks

<u>I Hubara</u>, <u>M Courbariaux</u>, <u>D Soudry</u>... - Advances in **neural** ..., 2016 - papers.nips.cc We introduce a method to train Binarized Neural Networks (BNNs)-neural networks with binary weights and activations at run-time. At train-time the binary weights and activations are used for computing the parameter gradients. During the forward pass, BNNs drastically ... \therefore 99 Cited by 470 Related articles All 5 versions \gg

Xnor-net: Imagenet classification using binary convolutional neural networks

<u>M Rastegari</u>, <u>V Ordonez</u>, <u>J Redmon</u>... - European Conference on ..., 2016 - Springer ... Because, at inference we only perform forward propagation with the **binarized** weights ... Similar to **binarization** in the forward pass, we can **binarize** \(g^{in}) in the backward pass ... Our **binarization** technique is general, we can use any CNN architecture ...

 $\cancel{2}$ $\cancel{2}$ Cited by 1373 Related articles All 8 versions

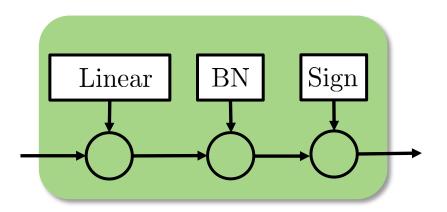
Compactness

- Only 1 bit per weight, {-1,1}
- Can be deployed on embedded devices

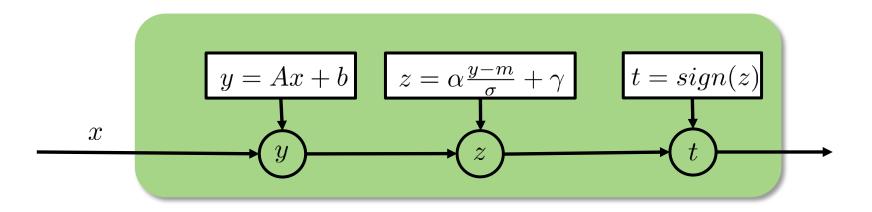
Inference efficiency

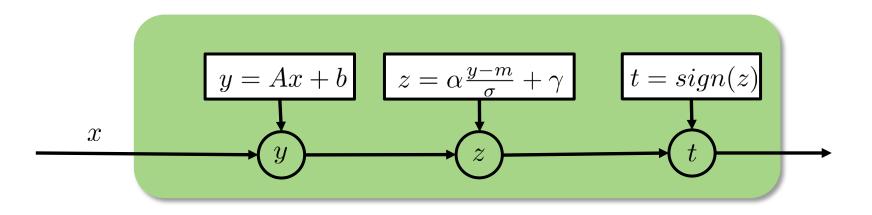
- fast binary matrix multiplication (7X speed up on GPU)
- "Accelerating Binarized Neural Networks: Comparison of FPGA, CPU, GPU, and ASIC" IEEE'2016

Structure of BNNs

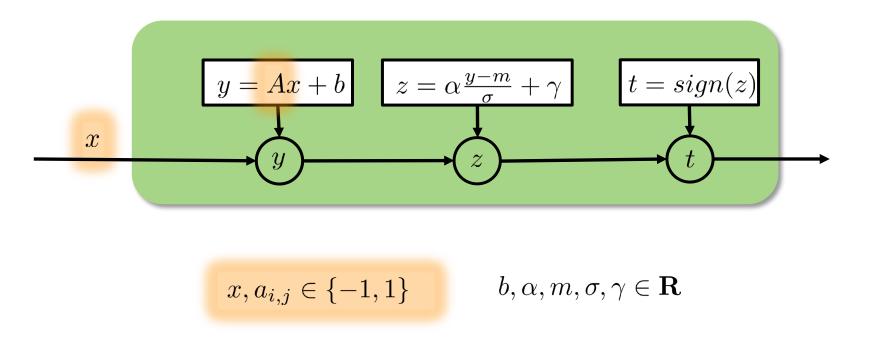


Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1 Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, Yoshua Bengio

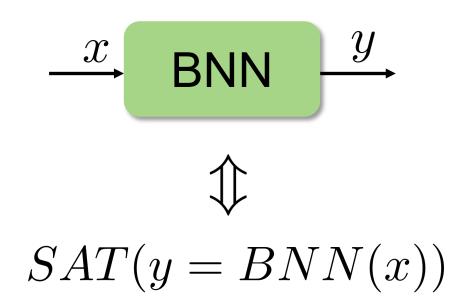


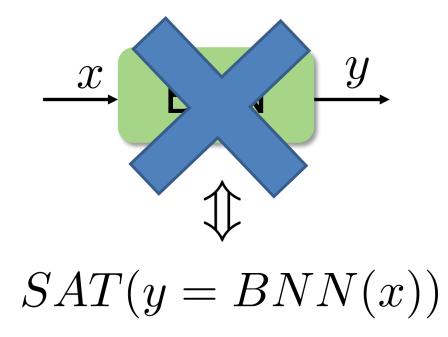


 $x, a_{i,j} \in \{-1, 1\}$ $b, \alpha, m, \sigma, \gamma \in \mathbf{R}$



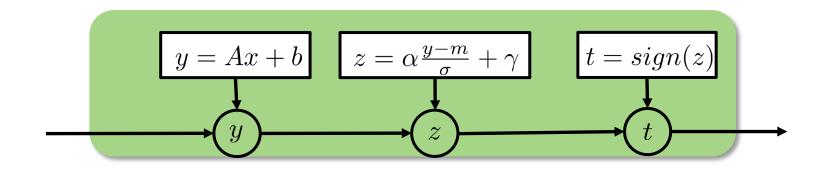
BNNs and logic-based reasoning

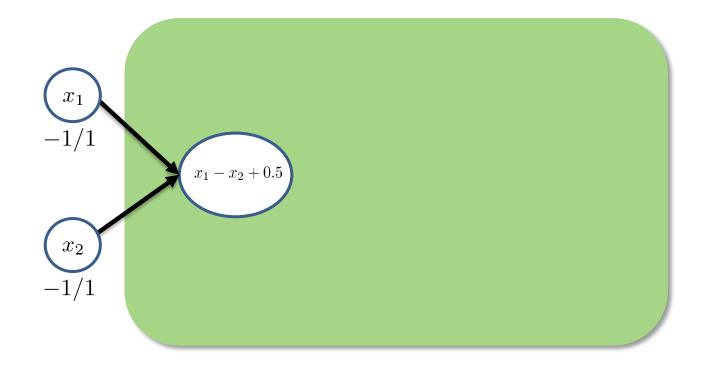


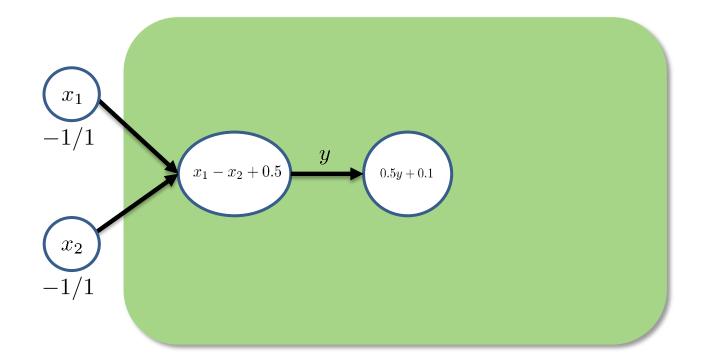


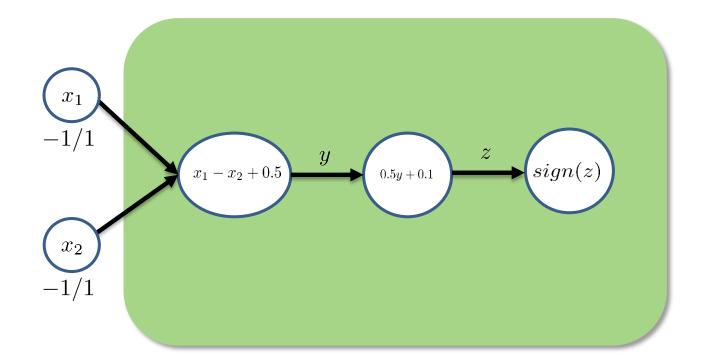
SAT(y = BNN(x))

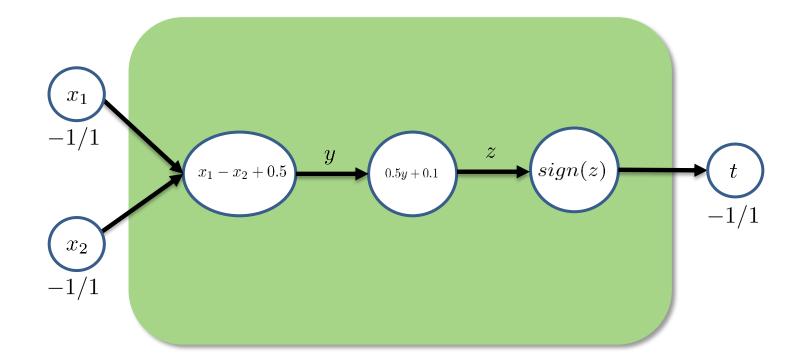
BinBNN(x, y) :=SAT(y = BNN(x))

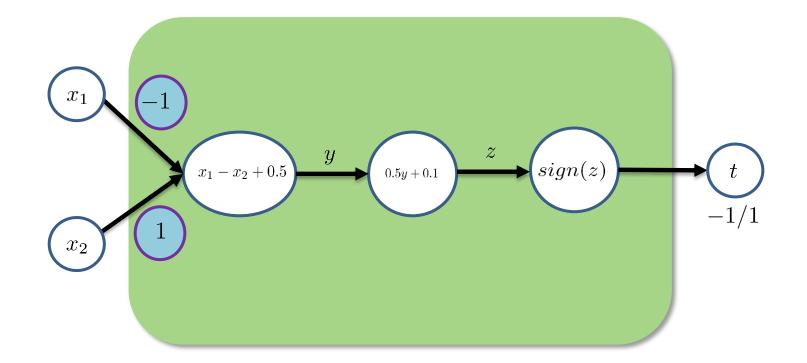


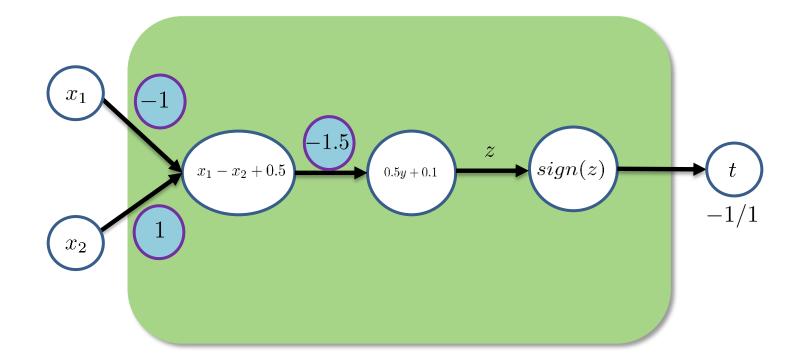


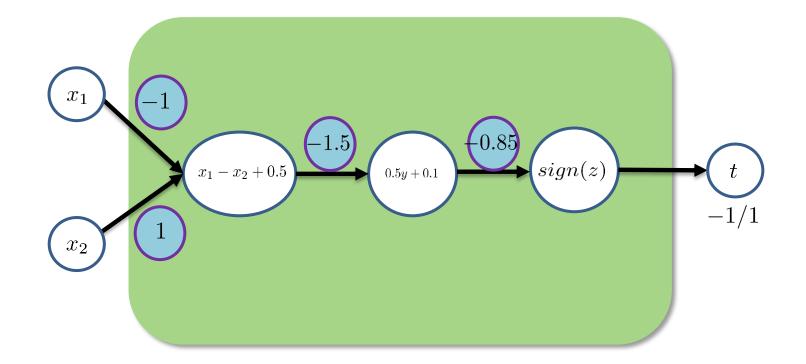


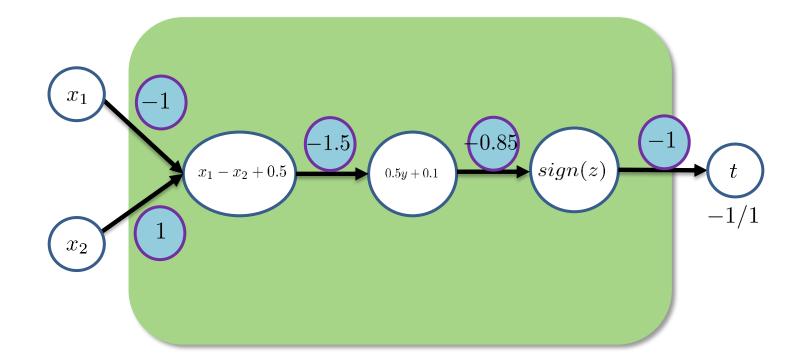


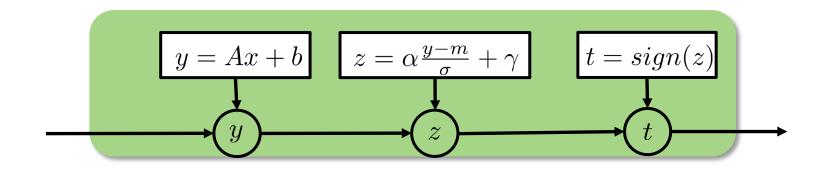


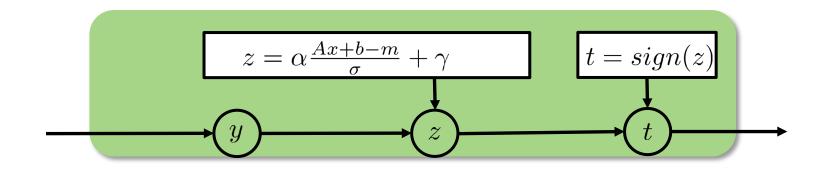


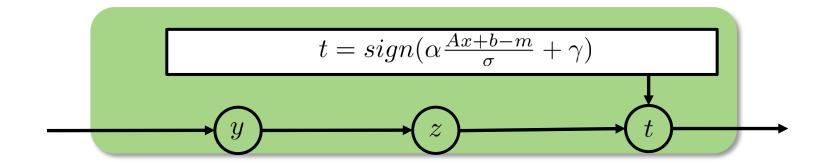


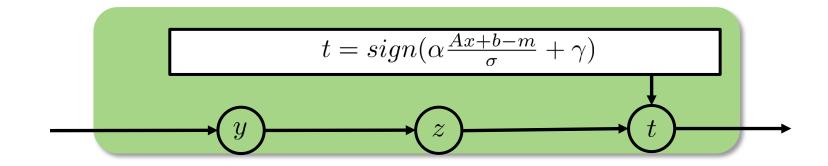












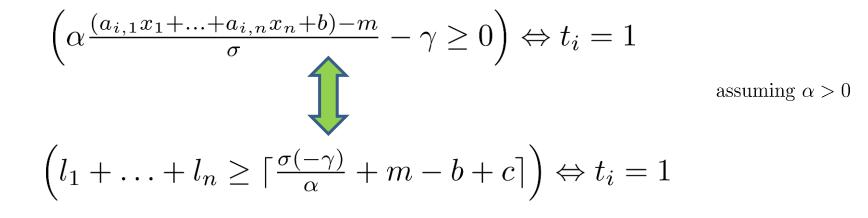
$$t_i = sign\left(\alpha \frac{(a_{i,1}x_1 + \dots + a_{i,n}x_n + b) - m}{\sigma} - \gamma\right)$$

$$t_i = sign\left(\alpha \frac{(a_{i,1}x_1 + \dots + a_{i,n}x_n + b) - m}{\sigma} - \gamma\right)$$

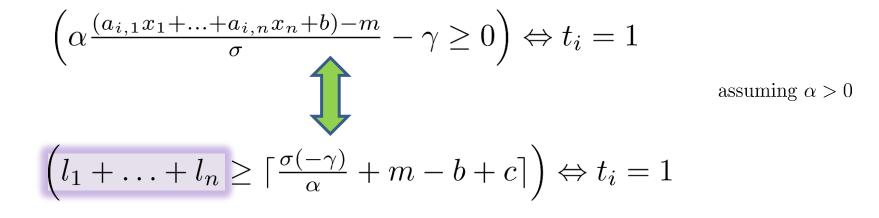
$$\left(\alpha \frac{(a_{i,1}x_1 + \dots + a_{i,n}x_n + b) - m}{\sigma} - \gamma \ge 0\right) \Leftrightarrow t_i = 1$$

$$\left(\alpha \frac{(a_{i,1}x_1 + \dots + a_{i,n}x_n + b) - m}{\sigma} - \gamma \ge 0\right) \Leftrightarrow t_i = 1$$

assuming
$$\alpha > 0$$



where $a_{i,j} = 1 \Rightarrow l_j = x_j,$ $a_{i,j} = -1 \Rightarrow l_j = \bar{x}_j$



where $a_{i,j} = 1 \Rightarrow l_j = x_j,$ $a_{i,j} = -1 \Rightarrow l_j = \bar{x}_j$

$$\left(\alpha \frac{(a_{i,1}x_1 + \ldots + a_{i,n}x_n + b) - m}{\sigma} - \gamma \ge 0 \right) \Leftrightarrow t_i = 1$$

$$\text{assuming } \alpha > 0$$

$$\left(l_1 + \ldots + l_n \ge \left\lceil \frac{\sigma(-\gamma)}{\alpha} + m - b + c \right\rceil \right) \Leftrightarrow t_i = 1$$

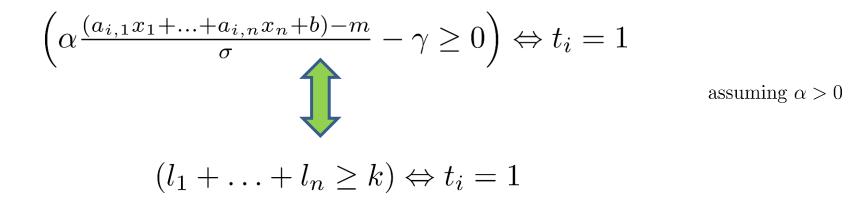
where $a_{i,j} = 1 \Rightarrow l_j = x_j,$ $a_{i,j} = -1 \Rightarrow l_j = \bar{x}_j$

$$\left(\alpha \frac{(a_{i,1}x_1 + \ldots + a_{i,n}x_n + b) - m}{\sigma} - \gamma \ge 0\right) \Leftrightarrow t_i = 1$$

$$\text{assuming } \alpha > \left(l_1 + \ldots + l_n \ge \left\lceil \frac{\sigma(-\gamma)}{\alpha} + m - b + c \right\rceil\right) \Leftrightarrow t_i = 1$$

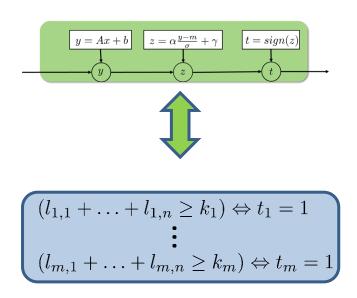
where $a_{i,j} = 1 \Rightarrow l_j = x_j,$ $a_{i,j} = -1 \Rightarrow l_j = \bar{x}_j$

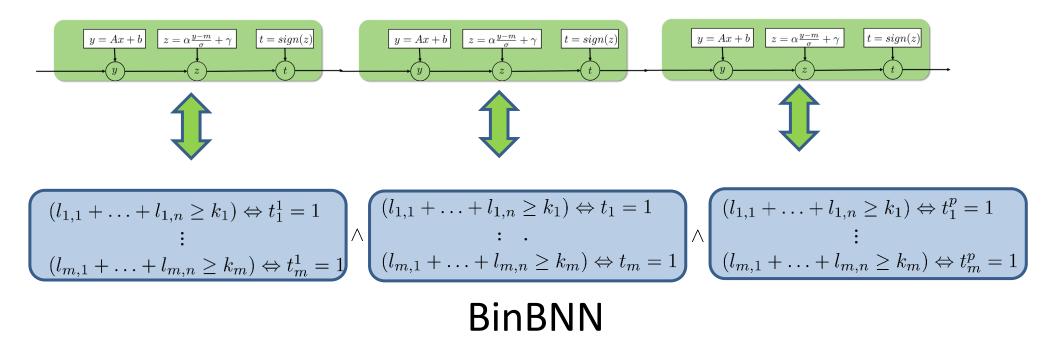
133



where $a_{i,j} = 1 \Rightarrow l_j = x_j,$ $a_{i,j} = -1 \Rightarrow l_j = \bar{x}_j$

 $(l_1 + \ldots + l_n \ge k) \Leftrightarrow t_i = 1$





Logic-based analysis of BNNs

Logic-based analysis of BNNs

Verification

Quantitative reasoning

Compilation

Logic-based analysis of BNNs

Properties verification using SAT solvers

Nina Narodytska, Shiva Prasad Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv, and Toby Walsh. *Verifying properties of binarized deep neural networks AAAI'18* Elias B. Khalil, Amrita Gupta, Bistra Dilkina: *Combinatorial Attacks on Binarized Neural Networks ICLR'19*

Quantitative reasoning using approximate methods

Nina Narodytska, Aditya A. Shrotri, Kuldeep S. Meel, Alexey Ignatiev, João Marques-Silva: *Assessing Heuristic Machine Learning Explanations with Model Counting SAT'19.*

Quantitative Verification of Neural Networks And its Security Applications Teodora Baluta, Shiqi Shen, Shweta Shinde, Kuldeep S. Meel, Prateek Saxena

Reasoning via knowledge compilation

Verifying Binarized Neural Networks by Local Automaton Learning Andy Shih and Adnan Darwiche and Arthur Choi

Work with small networks

Work with small networks

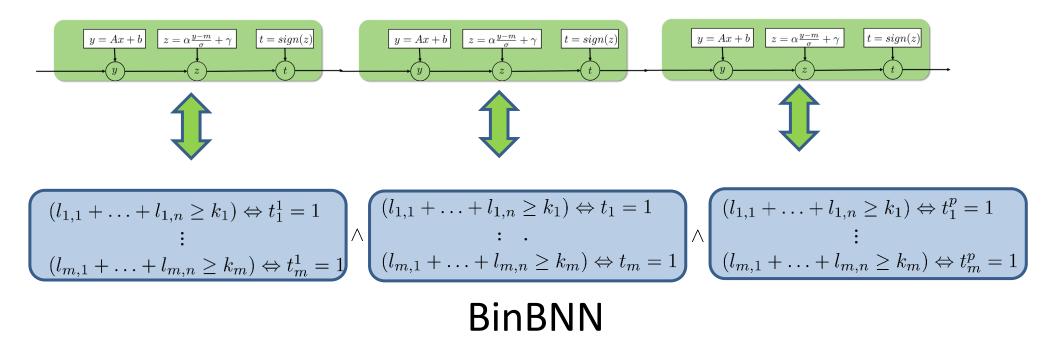
- Properties verification using SAT solvers
 - < 200K (robustness with a very small epsilon)</p>
- Quantitative reasoning using approximate methods
 - <51K
- Knowledge compilation, e.g. BDD, SDD
 - < 10K

Do we augment training?

no	yes
Sound and complete	

Easier-to-verify networks

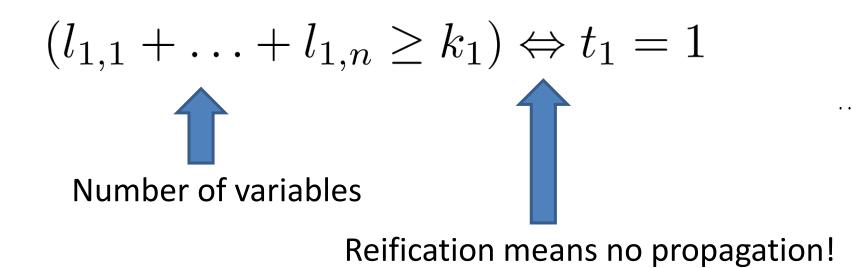
Translation: BNN to SAT



"Neuron" constraint

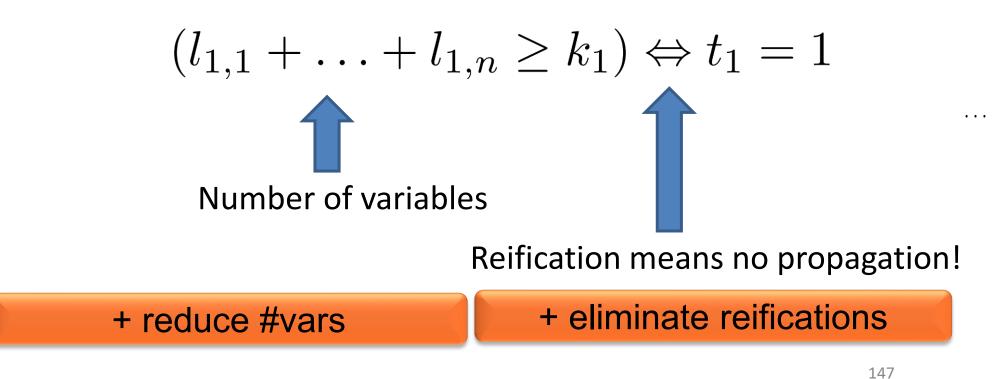
$(l_{1,1} + \ldots + l_{1,n} \ge k_1) \Leftrightarrow t_1 = 1$

"Neuron" constraint



146

"Neuron" constraint

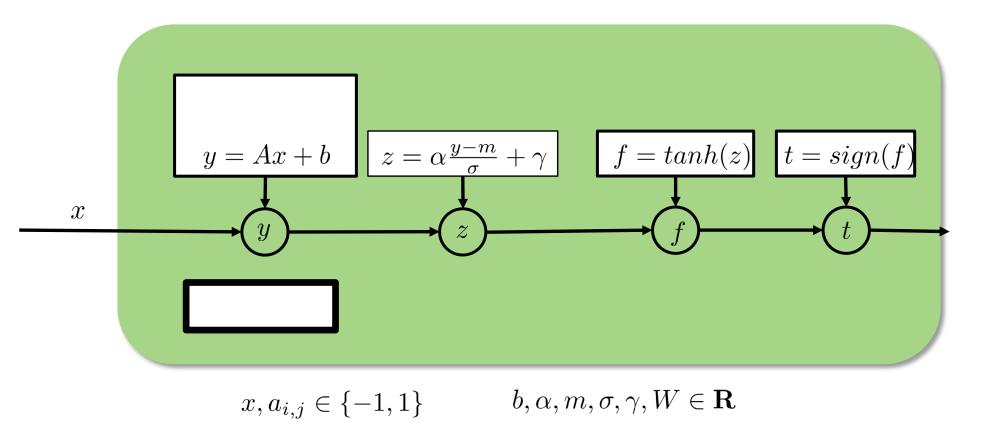


We can train a BNN so that

+ reduce #vars

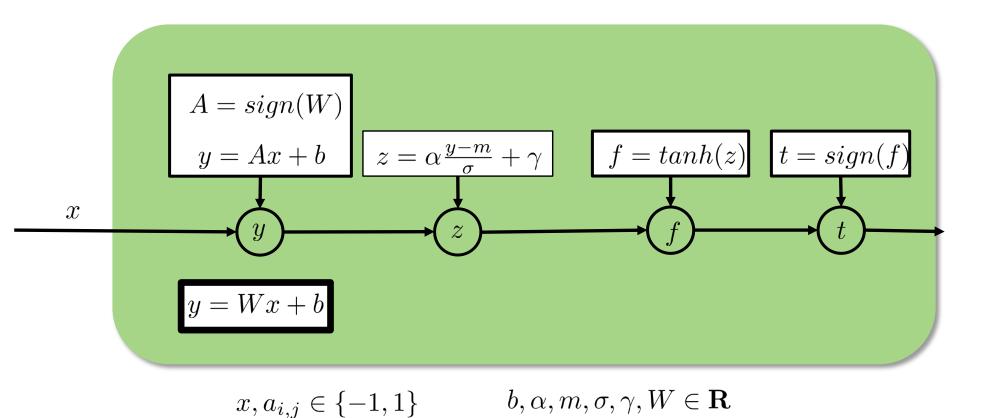
+ eliminate reifications

Binarized Neural Network



149

Binarized Neural Network



150

Ternary quantization

BNN+: Improved Binary Network Training

Sajad Darabi, Mouloud Belbahri, Matthieu Courbariaux, Vahid Partovi Nia

Ternary quantization

$(l_{1,1} + \ldots + l_{1,n} \ge k_1) \Leftrightarrow t_1 = 1$

where

$$a_{i,j} = 1 \Rightarrow l_j = x_j, a_{i,j} = -1 \Rightarrow l_j = \bar{x}_j$$

Ternary quantization

$$(l_{1,1} + \ldots + l_{1,n} \ge k_1) \Leftrightarrow t_1 = 1$$

where

$$a_{i,j} = 1 \Rightarrow l_j = x_j,$$

$$a_{i,j} = 0 \Rightarrow l_j = 0,$$

$$a_{i,j} = -1 \Rightarrow l_j = \bar{x}_j$$

153

L1+Ternary quantization

$$(l_{1,1} + \ldots + l_{1,n} \ge k_1) \Leftrightarrow t_1 = 1$$

where

$$a_{i,j} = 1 \Rightarrow l_j = x_j,$$

$$a_{i,j} = 0 \Rightarrow l_j = 0,$$

$$a_{i,j} = -1 \Rightarrow l_j = \bar{x}_j$$

Add L1 regularization

154

L1+Ternary quantization

- 1. Train a BNN
- 2. Build a distribution of absolute values of weights
- 3. Select a percentile (40%, 60%), t= 0.03
- 4. Train a ternary BNN with the two-sided threshold t

$$a_{i,j} = \begin{cases} 0 & \text{if } |w_{i,j}| \le t\\ sign(w_{i,j}) & \text{otherwise} \end{cases}$$

 $(l_{1,1} + \ldots + l_{1,n} - k_1 \ge 0) \Leftrightarrow t_1 = 1$

$(l_{1,1} + \ldots + l_{1,n} - k_1 \ge 0) \Leftrightarrow t_1 = 1$

 $LB_{(l_{1,1}+\ldots+l_{1,n}-k_1)} \ge 0$

$$(l_{1,1} + \ldots + l_{1,n} - k_1 \ge 0) \Leftrightarrow t_1 = 1$$

 $LB_{(l_{1,1}+\ldots+l_{1,n}-k_1)} \ge 0 \qquad t_1 = 1$

 $(l_{1,1} + \ldots + l_{1,n} - k_1 \ge 0) \Leftrightarrow t_1 = 1$

$(l_{1,1} + \ldots + l_{1,n} - k_1 \ge 0) \Leftrightarrow t_1 = 1$

 $UB_{(l_{1,1}+\ldots+l_{1,n}-k_1)} < 0$

$$(l_{1,1} + \ldots + l_{1,n} - k_1 \ge 0) \Leftrightarrow t_1 = 1$$

 $UB_{(l_{1,1}+\ldots+l_{1,n}-k_1)} < 0 \qquad t_1 = 0$

Encourage LB and UB of a neurons to take the same sign:

$$sign(UB_{i,j}) = sign(LB_{i,j})$$

Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability Kai Y. Xiao, Vincent Tjeng, Nur Muhammad (Mahi) Shafiullah, Aleksander Madry

Encourage LB and UB of a neurons to take the same sign:

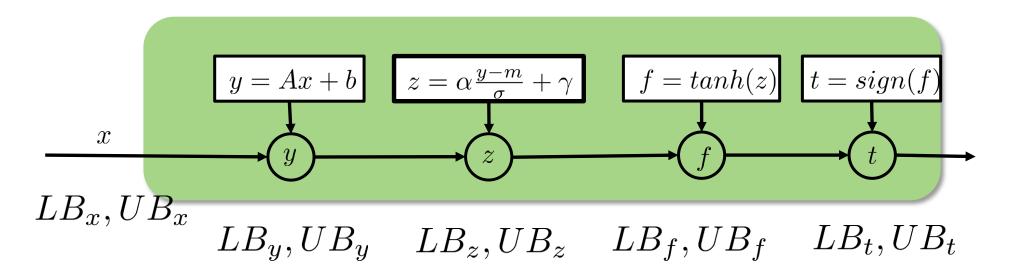
$$-sign(UB_{i,j}) * sign(LB_{i,j})$$

Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability Kai Y. Xiao, Vincent Tjeng, Nur Muhammad (Mahi) Shafiullah, Aleksander Madry

Encourage LB and UB of a neurons to take the same sign:

$$-\frac{sign(UB_{i,j}) * sign(LB_{i,j})}{-tanh(1 + UB_{ij}LB_{ij})}$$

Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability Kai Y. Xiao, Vincent Tjeng, Nur Muhammad (Mahi) Shafiullah, Aleksander Madry



BNNs	MNIST		FASHION		MnistBG	
	%	#prms	%	#prms	%	#prms
Vanilla	96.5	623K	82.1	623K	74.3	623K
Sparse	96.4	32K	84.1	37K	78.2	41K
Sparse+Stable	95.9	32K	83.2	37K	78.3	38K
Sparse+L1	96.0	20K	83.7	35K	78.4	36K
Sparse+L1+Stable	95.2	20K	82.9	37K	80.0	34K

BNNs	MNIST		FASHION		MnistBG	
	%	#prms	%	#prms	%	#prms
Vanilla	96.5	623K	82.1	623K	74.3	623K
Sparse	96.4	32K	84.1	37K	78.2	41K
Sparse+Stable	95.9	32K	83.2	37K	78.3	38K
Sparse+L1	96.0	20K	83.7	35K	78.4	36K
Sparse+L1+Stable	95.2	20K	82.9	37K	80.0	34K

BNNs	MNIST		FASHION		MNISTBG	
	%	#prms	%	#prms	%	#prms
Vanilla	96.5	623K	82.1	623K	74.3	623K
Sparse	96.4	32K	84.1	37K	78.2	41K
Sparse+Stable	95.9	32K	83.2	37K	78.3	38K
Sparse+L1	96.0	20K	83.7	35K	78.4	36K
Sparse+L1+Stable	95.2	20K	82.9	37K	80.0	34K

BNNs	MNIST		FASHION		MnistBG	
	%	#prms	%	#prms	%	#prms
Vanilla	96.5	623K	82.1	623K	74.3	623K
Sparse	96.4	32K	84.1	37K	78.2	41K
Sparse+Stable	95.9	32K	83.2	37K	78.3	38K
Sparse+L1	96.0	20K	83.7	35K	78.4	36K
Sparse+L1+Stable	95.2	20K	82.9	37K	80.0	34K

BNNs	MNIST		FASHION		MnistBG	
	%	#prms	%	#prms	%	#prms
Vanilla	96.5	623K	82.1	623K	74.3	623K
Sparse	96.4	32K	84.1	37K	78.2	41K
Sparse+Stable	95.9	32K	83.2	37K	78.3	38K
Sparse+L1	90.0	20K	83.7	35K	78.4	36K
Sparse+L1+Stable	95.2	20K	82.9	37K	80.0	34K

BNNs	MNIST	FASHION	MNISTBG
	#vars/#cls	#vars/#cls	#vars/#cls
Sparse	63K/224K	34K/116K	24K/80K
Sparse+Stable	42K/146K	19K/58K	12K/36K
Sparse+L1	<u>8к/20к</u>	34K/115K	17K/53K
Sparse+Stable+L1	11К/33К	12K/33K	10K/28K

Outline

Motivation

Adversarial attacks

Verification methods

SAT-based verification of Binarized NNs

Where we are

Verification methods

Nails

Where we are

Verification methods

	DRYWALL NAIL
	FLOORING NAIL
< ()	and the second
	FRAMING NAIL

Where we are

VNN-LIB

Verification of Neural Networks

HOME ABOUT NEWS STANDARD BENCHMARKS SOFTWARE CREDITS Q

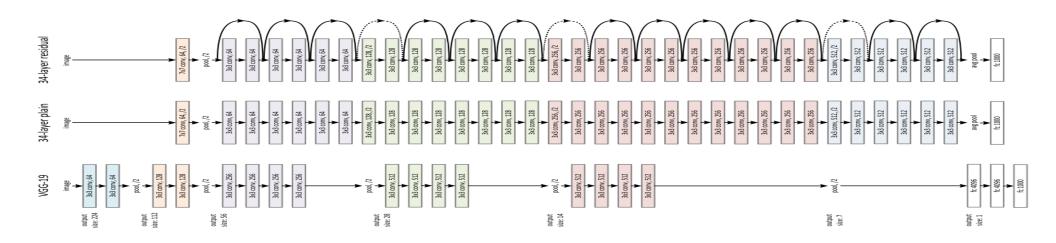
Home

VNN-LIB is an international initiative whose aim is to encourage collaboration and facilitate research and development in Verification of Neural Networks (VNN).

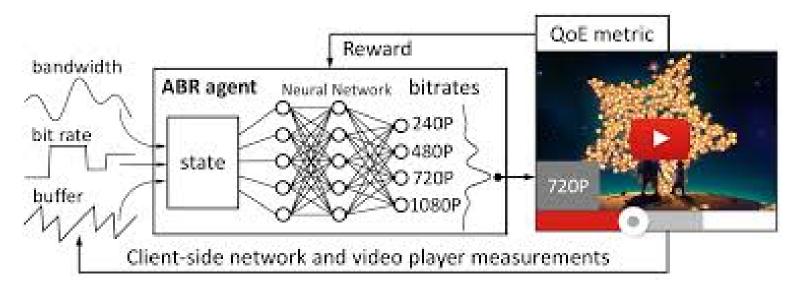
The goals of VNN-LIB are:

- Develop a cohesive community around VNN by connecting developers and researchers working in this domain.
- Establish a common format for the exchange of Neural Networks and their properties.
- Provide the community with a library of established common benchmarks for VNN tools.
- Provide and maintain a common repository for tools and resources useful to the VNN community.

The initiative and this site are still in their embryonal stages: your collaboration is essential to grow and improve VNN-LIB, so do not hesitate to send us feedback, comments and suggestions.



What is next?



What is next?

- 1. Verification is a very important tool to analyze NNs
- 2. Smaller networks are useful in many practical applications

Thanks!

RIGOROUS VERIFICATION AND EXPLANATION OF ML MODELS Part 4

A. Ignatiev, J. Marques-Silva, K. Meel & N. Narodytska

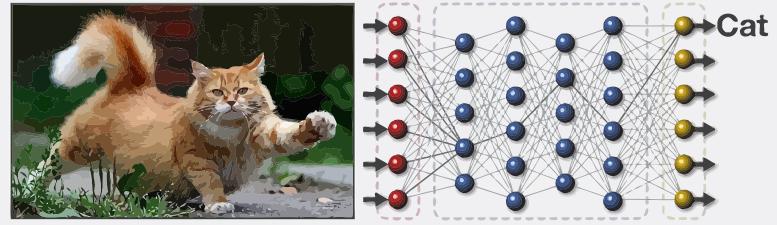
Monash Univ, ANITI@Univ. Toulouse, NU Singapore & VMWare Research

February 08, 2020 | AAAI Tutorial SP1

Computing Explanations

What do we want to achieve?

Machine Learning System



This is a cat.

Current Explanation

This is a cat:

- It has fur, whiskers, and claws.
- It has this feature:

XAI Explanation

©DARPA

A recap: approaches to XAI

interpretable ML models

(decision trees, lists, sets)

A recap: approaches to XAI

interpretable ML models

(decision trees, lists, sets)

explanation of ML models "on the fly" (post-hoc explanation)

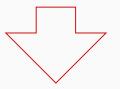
3/40

Why? or Why not? explanations

why? why not? (why did (not) I get a loan?)

Why? or Why not? explanations

why? why not? (why did (not) I get a loan?)



4/40

Heuristic approaches exist

heuristic approaches exist

(e.g. LIME, Anchor, or SHAP)

[RSG16, RSG18, LL17]

heuristic approaches exist

(e.g. LIME, Anchor, or SHAP)

[RSG16, RSG18, LL17]

local explanations

heuristic approaches exist

(e.g. LIME, Anchor, or SHAP)

[RSG16, RSG18, LL17]

- local explanations
- no guarantees

heuristic approaches exist

(e.g. LIME, Anchor, or SHAP)

[RSG16, RSG18, LL17]

- local explanations
- **no** guarantees

Rigorous approaches

alternative is to use logic

alternative is to use logic

(reasoning over formal models)

alternative is to use logic

(reasoning over formal models)

• search

alternative is to use logic

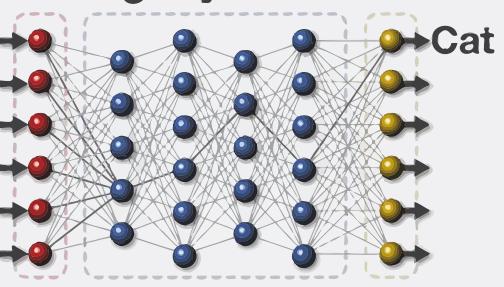
(reasoning over formal models)

- search
- compilation

Compilation-based approach

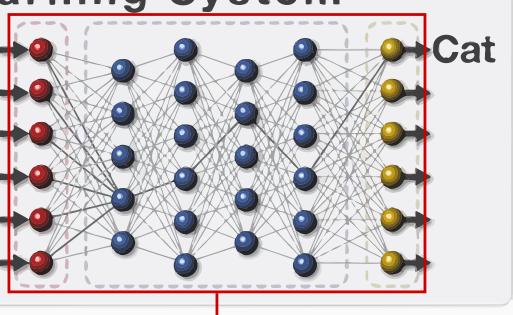
Compiling a classifier

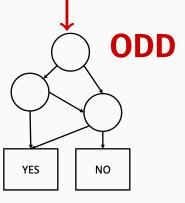
Machine Learning System



Compiling a classifier

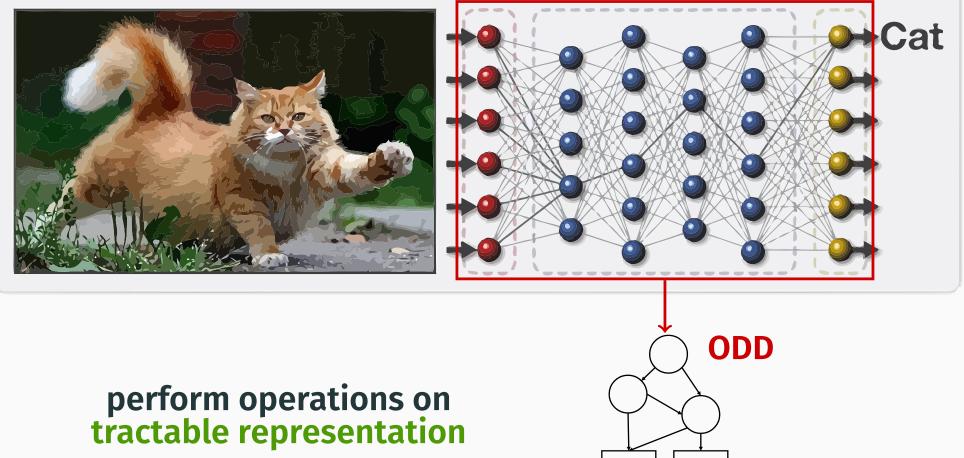
Machine Learning System





Compiling a classifier

Machine Learning System



YES

NO

The idea is that

once you have an ODD:

once you have an ODD:

compute MC explanations

"Which positive features are responsible for a yes decision?" "Which negative features are responsible for a no decision?"

once you have an ODD:

compute MC explanations

"Which positive features are responsible for a yes decision?" "Which negative features are responsible for a no decision?"

compute PI explanations

"Which features (+ or -) make the other features irrelevant?"

[SCD18]

once you have an ODD:

compute MC explanations

"Which positive features are responsible for a yes decision?" "Which negative features are responsible for a no decision?"

compute PI explanations

"Which features (+ or -) make the other features irrelevant?"

perform verification queries

[SDC19]

counting of counterexamples, computing their probabilites and common characteristics

[SCD18]

What ML models can we compile?

• Naïve Bayes

[CD03]

What ML models can we compile?

- Naïve Bayes
- Latent Tree

[CD03]

What ML models can we compile?

•	Naï	ve	Bay	/es
---	-----	----	-----	-----

- Latent Tree
- General BN

[CD03]

[SCD18]

[SCD19]

• Naïve Bayes	[CD03]
• Latent Tree	[SCD18]
• General BN	[SCD19]
• BNN and CNN	[SDC19]

reasoning about explanations in polynomial time

reasoning about explanations in polynomial time

but

reasoning about explanations in polynomial time

but

difficult to compute an ODD

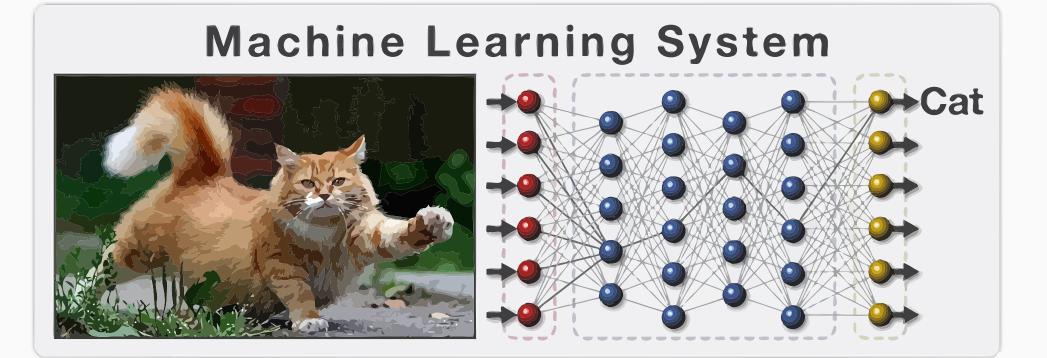
reasoning about explanations in polynomial time

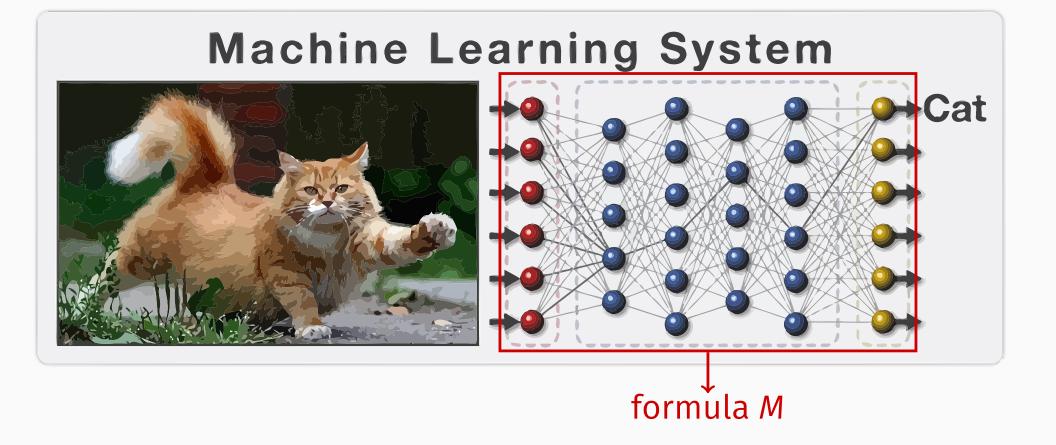
but

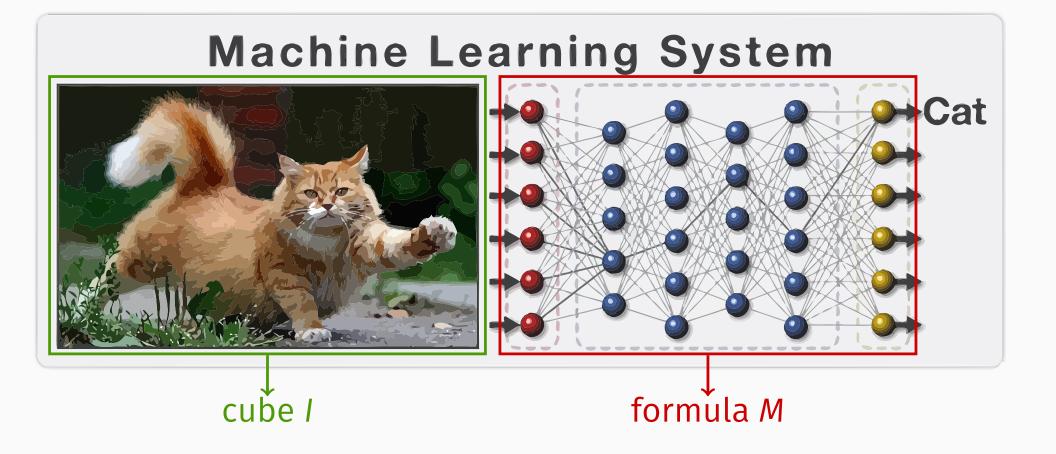
difficult to compute an ODD ODD can be *large*

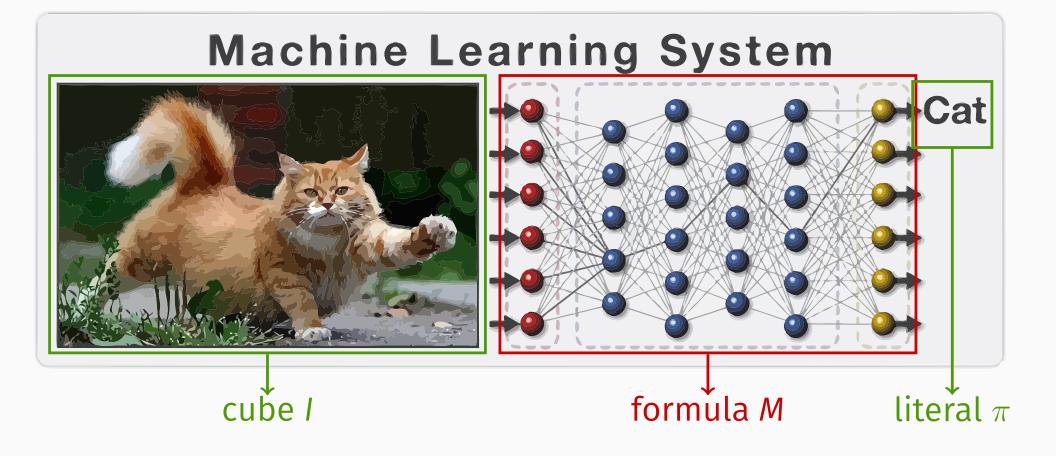
10 / 40

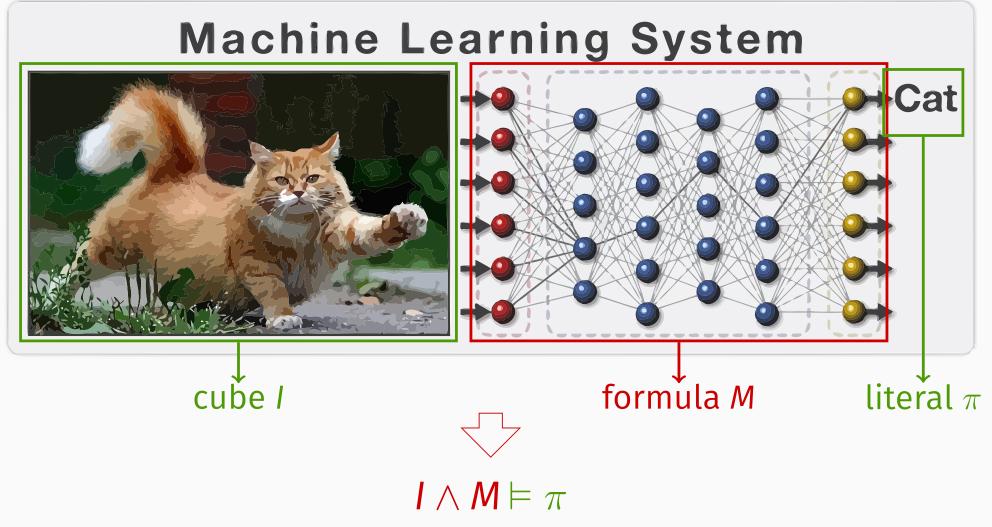
Search-based explanations











11 / 40

Abductive explanations of ML models

[INMS19]

given a *classifier* M, a *cube* I and a *prediction* π ,

given a *classifier M*, a *cube I* and a *prediction* π , compute a (cardinality- or subset-) minimal $E_m \subseteq I$ s.t.

given a *classifier M*, a *cube I* and a *prediction* π , compute a (*cardinality- or subset-*) minimal $E_m \subseteq I$ s.t.

 $E_m \wedge M \not\models \perp$

and

 $E_m \wedge M \vDash \pi$

given a *classifier M*, a *cube I* and a *prediction* π , compute a (*cardinality- or subset-*) minimal $E_m \subseteq I$ s.t.

 $E_m \wedge M \not\models \perp$

and

 $E_m \wedge M \vDash \pi$

iterative explanation procedure

Computing primes

1. $E_m \wedge M \not\models \bot$

Computing primes

1. $E_m \wedge M \not\models \perp - tautology$

1. $E_m \wedge M \not\models \bot - tautology$ **2.** $E_m \wedge M \models \pi$

1. $E_m \wedge M \not\models \bot - tautology$ **2.** $E_m \wedge M \vDash \pi \Leftrightarrow E_m \vDash (M \to \pi)$

1. $E_m \wedge M \not\models \bot - tautology$ **2.** $E_m \wedge M \vDash \pi \Leftrightarrow E_m \vDash (M \to \pi)$

E_m is a *prime implicant* of $M \to \pi$

Input: model *M*, initial cube *I*, prediction π **Output:** Subset-minimal explanation E_m

begin

for
$$l \in I$$
:
if Entails $(I \setminus \{l\}, M \to \pi)$:
 $l \leftarrow I \setminus \{l\}$
return l

make an (entailment) oracle call

end

cardinality-minimal explanations can be computed

cardinality-minimal explanations can be computed (following **implicit-hitting set** based approach)

cardinality-minimal explanations can be computed (following **implicit-hitting set** based approach)

[INMS19]

cardinality-minimal explanations can be computed (following **implicit-hitting set** based approach)

but it is **hard for** Σ_2^P

[INMS19]

(worst-case exponential number of oracle queries)

- implementation in Python
 - supports SMT solvers through PySMT
 - Yices2 used
 - supports CPLEX 12.8.0

- implementation in Python
 - supports SMT solvers through PySMT
 - Yices2 used
 - supports CPLEX 12.8.0
- **ReLU-based** neural networks
 - one *hidden* layer with $i \in \{10, 15, 20\}$ neurons

- implementation in Python
 - supports SMT solvers through PySMT
 - Yices2 used
 - supports CPLEX 12.8.0
- **ReLU-based** neural networks
 - one *hidden* layer with $i \in \{10, 15, 20\}$ neurons
- benchmarks selected from:
 - UCI Machine Learning Repository
 - Penn Machine Learning Benchmarks
 - MNIST Digits Database

[FJ18]

- implementation in Python
 - supports SMT solvers through PySMT
 - Yices2 used
 - supports CPLEX 12.8.0
- ReLU-based neural networks
 - one *hidden* layer with $i \in \{10, 15, 20\}$ neurons
- benchmarks selected from:
 - UCI Machine Learning Repository
 - Penn Machine Learning Benchmarks
 - MNIST Digits Database
- Machine configuration:
 - Intel Core i7 2.8GHz, 8GByte
 - time limit 1800s
 - memory limit 4GByte

Dataset			Min	imal expla	nation	Minimum explanation		
			size	SMT (s)	MILP (s)	size	SMT (s)	MILP (s)
australian	(14)	m a M	1 8.79 14	0.03 1.38 17.00	0.05 0.33 1.43		 	
backache	(32)	m a M	13 19.28 26	0.13 5.08 22.21	0.14 0.85 2.75			
breast-cancer	(9)	m a M	3 5.15 9	0.02 0.65 6.11	0.04 0.20 0.41	3 4.86 9	0.02 2.18 24.80	0.03 0.41 1.81
cleve	(13)	m a M	4 8.62 13	0.05 3.32 60.74	0.07 0.32 0.60	4 7.89 13	 	0.07 5.14 39.06
hepatitis	(19)	m a M	6 11.42 19	0.02 0.07 0.26	0.04 0.06 0.20	4 9.39 19	0.01 4.07 27.05	0.04 2.89 22.23
voting	(16)	m a M	3 4.56 11	0.01 0.04 0.10	0.02 0.13 0.37	3 3.46 11	0.01 0.3 1.25	0.02 0.25 1.77
spect	(22)	m a M	3 7.31 20	0.02 0.13 0.88	0.02 0.07 0.29	3 6.44 20	0.02 1.61 8.97	0.04 0.67 10.73

Dataset			Min	imal expla	nation	Minimum explanation			
			size	SMT (s)	MILP (s)	size	SMT (s)	MILP (s)	
australian	(14)	m a M	1 8.79 14	0.03 1.38 17.00	0.05 0.33 1.43		 		
backache	(32)	m a M	13 19.28 26	0.13 5.08 22.21	0.14 0.85 2.75		 	_ _ _	
breast-cancer	(9)	m a M	3 5.15 9	0.02 0.65 6.11	0.04 0.20 0.41	3 4.86 9	0.02 2.18 24.80	0.03 0.41 1.81	
cleve	(13)	m a M	4 8.62 13	0.05 3.32 60.74	0.07 0.32 0.60	4 7.89 13		0.07 5.14 39.06	
hepatitis	(19)	m a M	6 11.42 19	0.02 0.07 0.26	0.04 0.06 0.20	4 9.39 19	0.01 4.07 27.05	0.04 2.89 22.23	
voting	(16)	m a M	3 4.56 11	0.01 0.04 0.10	0.02 0.13 0.37	3 3.46 11	0.01 0.3 1.25	0.02 0.25 1.77	
spect	(22)	m a M	3 7.31 20	0.02 0.13 0.88	0.02 0.07 0.29	3 6.44 20	0.02 1.61 8.97	0.04 0.67 10.73	

Dataset			Min	imal expla	nation	Minimum explanation			
			size	SMT (s)	MILP (s)	size	SMT (s)	MILP (s)	
australian	(14)	m a M	1 8.79 14	0.03 1.38 17.00	0.05 0.33 1.43				
backache	(32)	m a M	13 19.28 26	0.13 5.08 22.21	0.14 0.85 2.75			_ _ _	
breast-cancer	(9)	m a M	3 5.15 9	0.02 0.65 <mark>6.11</mark>	0.04 0.20 <mark>0.41</mark>	3 4.86 9	0.02 2.18 24.80	0.03 0.41 1.81	
cleve	(13)	m a M	4 8.62 13	0.05 3.32 60.74	0.07 0.32 0.60	4 7.89 13		0.07 5.14 39.06	
hepatitis	(19)	m a M	6 11.42 19	0.02 0.07 0.26	0.04 0.06 0.20	4 9.39 19	0.01 4.07 27.05	0.04 2.89 22.23	
voting	(16)	m a M	3 4.56 11	0.01 0.04 0.10	0.02 0.13 0.37	3 3.46 11	0.01 0.3 1.25	0.02 0.25 1.77	
spect	(22)	m a M	3 7.31 20	0.02 0.13 0.88	0.02 0.07 0.29	3 6.44 20	0.02 1.61 8.97	0.04 0.67 10.73	

Dataset			Min	Minimal explanation			Minimum explanation		
			size	SMT (s)	MILP (s)	size	SMT (s)	MILP (s)	
australian	(14)	m a M	1 8.79 14	0.03 1.38 17.00	0.05 0.33 1.43		 	 	
backache	(32)	m a M	13 19.28 26	0.13 5.08 22.21	0.14 0.85 2.75		 	 	
breast-cancer	(9)	m a M	3 5.15 9	0.02 0.65 6.11	0.04 0.20 0.41	3 4.86 9	0.02 2.18 24.80	0.03 0.41 1.81	
cleve	(13)	m a M	4 8.62 13	0.05 3.32 60.74	0.07 0.32 0.60	4 7.89 13		0.07 5.14 39.06	
hepatitis	(19)	m a M	6 11.42 19	0.02 0.07 0.26	0.04 0.06 0.20	4 9.39 19	0.01 4.07 27.05	0.04 2.89 22.23	
voting	(16)	m a M	3 4.56 11	0.01 0.04 0.10	0.02 0.13 0.37	3 3.46 11	0.01 0.3 1.25	0.02 0.25 1.77	
spect	(22)	m a M	3 7.31 20	0.02 0.13 0.88	0.02 0.07 0.29	3 6.44 20	0.02 1.61 8.97	0.04 0.67 10.73	

Dataset			Min	imal expla	nation	ion Minimum explanation				
			size	SMT (s)	MILP (s)	size	SMT (s)	MILP (s)		
australian	(14)	m a M	1 8.79 14	0.03 1.38 17.00	0.05 0.33 1.43			_ _ _		
backache	(32)	m a M	13 19.28 26	0.13 5.08 22.21	0.14 0.85 2.75		 	 		
breast-cancer	(9)	m a M	3 5.15 9	0.02 0.65 6.11	0.04 0.20 0.41	3 4.86 9	0.02 2.18 24.80	0.03 0.41 1.81		
cleve	(13)	m a M	4 <mark>8.62</mark> 13	0.05 3.32 60.74	0.07 0.32 0.60	4 7.89 13		0.07 5.14 39.06		
hepatitis	(19)	m a M	6 11.42 19	0.02 0.07 0.26	0.04 0.06 0.20	4 9.39 19	0.01 4.07 27.05	0.04 2.89 22.23		
voting	(16)	m a M	3 <mark>4.56</mark> 11	0.01 0.04 0.10	0.02 0.13 0.37	3 3.46 11	0.01 0.3 1.25	0.02 0.25 1.77		
spect	(22)	m a M	3 7.31 20	0.02 0.13 0.88	0.02 0.07 0.29	3 6.44 20	0.02 1.61 8.97	0.04 0.67 10.73		

Comparing quality to compilation-based approach

"Congressional Voting Records" dataset

- "Congressional Voting Records" dataset
- (0 1 0 1 1 1 0 0 0 0 0 0 1 1 0 1) data sample (16 features)

Comparing quality to compilation-based approach

- "Congressional Voting Records" dataset
- (0 1 0 1 1 1 0 0 0 0 0 0 1 1 0 1) data sample (16 features)

smallest size explanations computed by compilation for BN:

[SCD18]

- (011 000 110) 9 literals
- (0111 00 110) 9 literals

Comparing quality to compilation-based approach

"Congressional Voting Records" dataset

• (0 1 0 1 1 1 0 0 0 0 0 0 1 1 0 1) — data sample (16 features)

smallest size explanations computed by compilation for BN:

• (011 000	1 1 0) — 9 literals	
• (0111 00	1 1 0) — 9 literals	

subset-minimal explanations computed by **search for ReLU-NNs**:

[INMS19]

[SCD18]

•					
) — 4 literals	0	0	0	1	• (
) — 3 literals		0	0	1	• (
) — <mark>5 literals</mark>	0	0	0	0 1	• (
1) -5 literals		0	θ	01	• (

What does it mean?

explanations can hint on the classifier quality!

MNIST examples

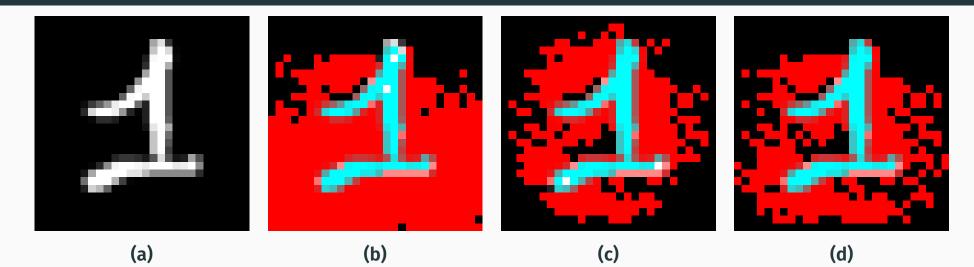
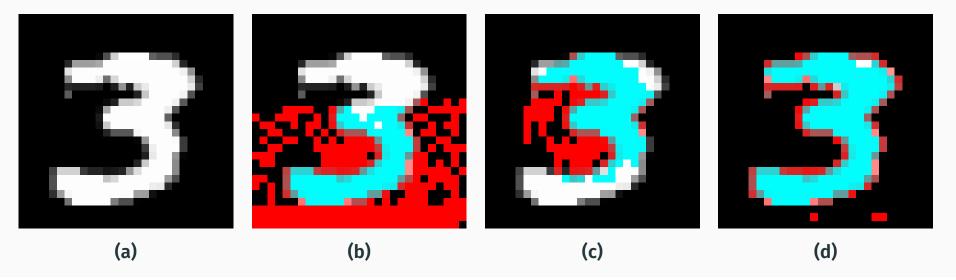


Figure 1: Possible minimal explanations for digit one.



And so what?

explanations are not equally good!

principled approach to XAI

principled approach to XAI

based on abductive reasoning

principled approach to XAI

based on abductive reasoning applies a reasoning oracle, e.g. SMT or MILP

principled approach to XAI

based on abductive reasoning applies a reasoning oracle, e.g. SMT or MILP provides minimality guarantees

principled approach to XAI

based on abductive reasoning applies a reasoning oracle, e.g. SMT or MILP provides minimality guarantees global explanations!

What next?

enumeration of **explanations**?

enumeration of **explanations**? **preferences** over explanations?

enumeration of **explanations**? **preferences** over explanations? **assessment of heuristic approaches!**

Assessing heuristic approaches

Heuristic approaches – a recap

heuristic approaches (e.g. LIME, Anchor, SHAP)

[RSG16, RSG18, LL17]

Heuristic approaches – a recap

heuristic approaches (e.g. LIME, Anchor, SHAP)

[RSG16, RSG18, LL17]

local explanations

Heuristic approaches – a recap

heuristic approaches (e.g. LIME, Anchor, SHAP)

[RSG16, RSG18, LL17]

local explanations no minimality **guarantees** **Assessment setup**

how good are heuristic explanations?

Assessment setup

how good are heuristic explanations?

let's check for boosted trees

[CG16]

Assessment setup

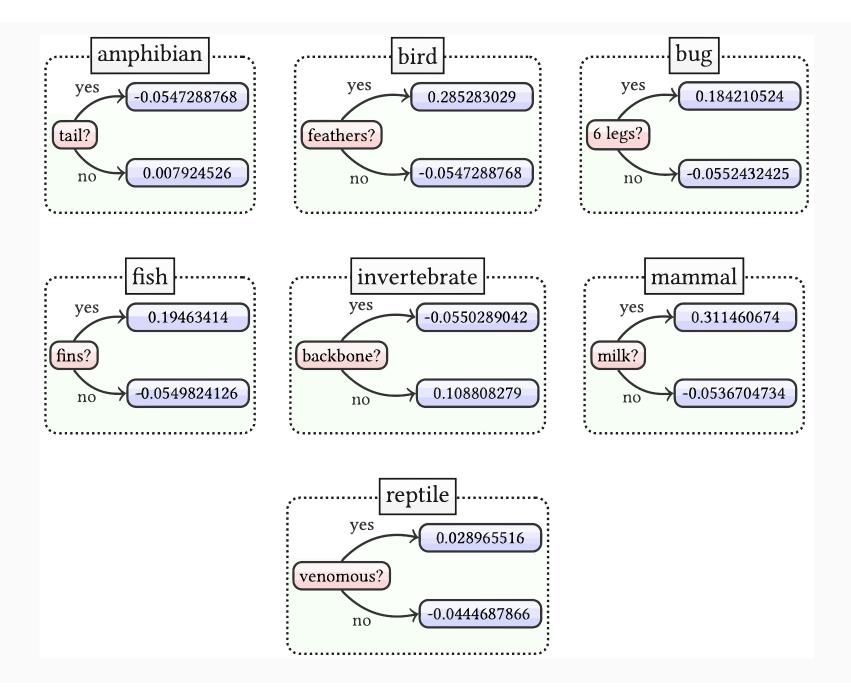
how good are heuristic explanations?

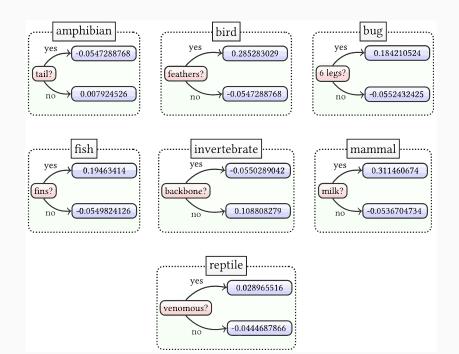
let's check for boosted trees

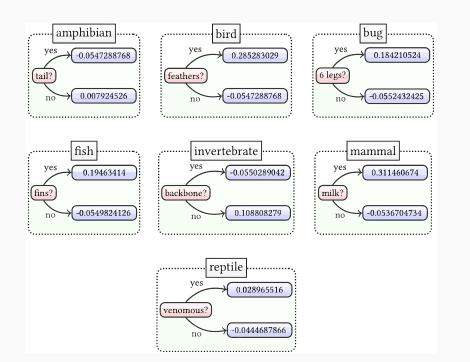
(easy to encode)

[CG16]

[BLM15, LMB17, VZY17, INM19]



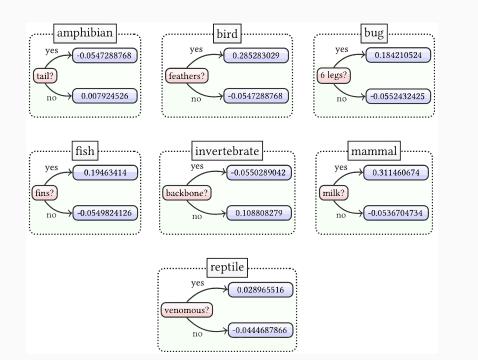




input instance:

- $\begin{array}{l} (animal_name = pitviper) \land \neg hair \\ \neg feathers \land eggs \land \neg milk \land \neg airborne \land \\ \neg aquatic \land predator \land \neg toothed \land \neg fins \land \\ (legs = 0) \land tail \land \neg domestic \land \neg catsize \end{array}$
- **THEN** (class = reptile)

IF



IF

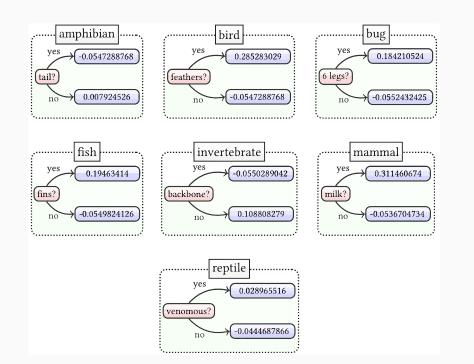
THEN

input instance:

 $\begin{array}{l} (animal_name = pitviper) \land \neg hair \\ \neg feathers \land eggs \land \neg milk \land \neg airborne \land \\ \neg aquatic \land predator \land \neg toothed \land \neg fins \land \\ (legs = 0) \land tail \land \neg domestic \land \neg catsize \\ (class = reptile) \end{array}$

Anchor's explanation:

IF
$$\neg$$
 hair $\land \neg$ milk $\land \neg$ toothed $\land \neg$ fins
THEN (class = reptile)



IF

IF

input instance:

 $(animal_name = pitviper) \land \neg hair$ \neg feathers \land eggs $\land \neg$ milk $\land \neg$ airborne \land \neg aquatic \land predator $\land \neg$ toothed $\land \neg$ fins \land $(legs = 0) \land tail \land \neg domestic \land \neg catsize$ THEN (class = reptile)

Anchor's explanation:

 \neg hair $\land \neg$ milk $\land \neg$ toothed $\land \neg$ fins IF (class = reptile)THEN

counterexample!

 $(animal_name = toad) \land \neg hair$ \neg feathers \land eggs $\land \neg$ milk $\land \neg$ airborne \land \neg aquatic $\land \neg$ predator $\land \neg$ toothed $\land \neg$ fins \land $(legs = 4) \land \neg tail \land \neg domestic \land \neg catsize$

(class = amphibian)THEN

given $\mathcal{E}_h, \mathcal{E}_h \vDash (\mathcal{M} \rightarrow \pi)$

given $\mathcal{E}_h, \mathcal{E}_h \vDash (\mathcal{M} \rightarrow \pi)$

given $\mathcal{E}_h, \mathcal{E}_h \vDash (\mathcal{M} \to \pi)$

 $\mathcal{E}_h \wedge \mathcal{M} \wedge \neg \pi$ – satisfiable

given $\mathcal{E}_h, \mathcal{E}_h \models (\mathcal{M} \rightarrow \pi)$

 $\mathcal{E}_h \wedge \mathcal{M} \wedge \neg \pi - \mathbf{satisfiable}$

(in fact, this formula can have many models)

Input: model \mathcal{M} , initial cube \mathcal{I} , heuristic explanation \mathcal{E}_h , prediction π **Output:** Subset-minimal explanation \mathcal{E}_m

begin

```
\begin{split} (\mathcal{I}_1, \mathcal{I}_2) &\leftarrow (\mathcal{I} \setminus \mathcal{E}_h, \mathcal{E}_h) \\ \textbf{for } l \in \mathcal{I}_1 \textbf{:} \\ \textbf{if Entails}(\mathcal{I}_1 \cup \mathcal{I}_2 \setminus \{l\}, \mathcal{M} \to \pi) \textbf{:} \\ \mathcal{I}_1 \leftarrow \mathcal{I}_1 \setminus \{l\} \\ \\ \textbf{for } l \in \mathcal{I}_2 \textbf{:} \\ \textbf{if Entails}(\mathcal{I}_1 \cup \mathcal{I}_2 \setminus \{l\}, \mathcal{M} \to \pi) \textbf{:} \\ \mathcal{I}_2 \leftarrow \mathcal{I}_2 \setminus \{l\} \\ \\ \textbf{return } \mathcal{I}_1 \cup \mathcal{I}_2 \end{split}
```

Input: model \mathcal{M} , initial cube \mathcal{I} , heuristic explanation \mathcal{E}_h , prediction π **Output:** Subset-minimal explanation \mathcal{E}_m

begin

```
(\mathcal{I}_{1}, \mathcal{I}_{2}) \leftarrow (\mathcal{I} \setminus \mathcal{E}_{h}, \mathcal{E}_{h})
for l \in \mathcal{I}_{1}:
if Entails(\mathcal{I}_{1} \cup \mathcal{I}_{2} \setminus \{l\}, \mathcal{M} \to \pi):
\mathcal{I}_{1} \leftarrow \mathcal{I}_{1} \setminus \{l\}
for l \in \mathcal{I}_{2}:
if Entails(\mathcal{I}_{1} \cup \mathcal{I}_{2} \setminus \{l\}, \mathcal{M} \to \pi):
\mathcal{I}_{2} \leftarrow \mathcal{I}_{2} \setminus \{l\}
return \mathcal{I}_{1} \cup \mathcal{I}_{2}
```

Input: model \mathcal{M} , initial cube \mathcal{I} , heuristic explanation \mathcal{E}_h , prediction π **Output:** Subset-minimal explanation \mathcal{E}_m

begin

```
(\mathcal{I}_{1}, \mathcal{I}_{2}) \leftarrow (\mathcal{I} \setminus \mathcal{E}_{h}, \mathcal{E}_{h})
for l \in \mathcal{I}_{1}:
if Entails(\mathcal{I}_{1} \cup \mathcal{I}_{2} \setminus \{l\}, \mathcal{M} \to \pi):
\mathcal{I}_{1} \leftarrow \mathcal{I}_{1} \setminus \{l\}
for l \in \mathcal{I}_{2}:
if Entails(\mathcal{I}_{1} \cup \mathcal{I}_{2} \setminus \{l\}, \mathcal{M} \to \pi):
\mathcal{I}_{2} \leftarrow \mathcal{I}_{2} \setminus \{l\}
return \mathcal{I}_{1} \cup \mathcal{I}_{2}
```

Input: model \mathcal{M} , initial cube \mathcal{I} , heuristic explanation \mathcal{E}_h , prediction π **Output:** Subset-minimal explanation \mathcal{E}_m

begin

```
\begin{split} (\mathcal{I}_1, \mathcal{I}_2) &\leftarrow (\mathcal{I} \setminus \mathcal{E}_h, \mathcal{E}_h) \\ \textbf{for } l \in \mathcal{I}_1 \textbf{:} \\ \textbf{if Entails}(\mathcal{I}_1 \cup \mathcal{I}_2 \setminus \{l\}, \mathcal{M} \to \pi) \textbf{:} \\ \mathcal{I}_1 \leftarrow \mathcal{I}_1 \setminus \{l\} \\ \\ \textbf{for } l \in \mathcal{I}_2 \textbf{:} \\ \textbf{if Entails}(\mathcal{I}_1 \cup \mathcal{I}_2 \setminus \{l\}, \mathcal{M} \to \pi) \textbf{:} \\ \mathcal{I}_2 \leftarrow \mathcal{I}_2 \setminus \{l\} \\ \\ \textbf{return } \mathcal{I}_1 \cup \mathcal{I}_2 \end{split}
```

incorrect explanation

 $\begin{array}{ll} \mbox{IF} & \neg hair \wedge \neg milk \wedge \neg toothed \wedge \neg fins \\ \mbox{THEN} & (class = reptile) \end{array}$

incorrect explanation

 $\begin{array}{ll} \mbox{IF} & \neg hair \wedge \neg milk \wedge \neg toothed \wedge \neg fins \\ \mbox{THEN} & (class = reptile) \end{array}$

repaired explanation

 $\begin{array}{ll} \mbox{IF} & \neg \mbox{feathers} \land \neg \mbox{milk} \land \mbox{backbone} \land \\ & \neg \mbox{fins} \land (\mbox{legs} = 0) \land \mbox{tail} \\ \mbox{THEN} & (\mbox{class} = \mbox{reptile}) \\ \end{array}$

Input: model \mathcal{M} , heuristic explanation \mathcal{E}_h , prediction π **Output:** Subset-minimal explanation \mathcal{E}_m

begin

```
\begin{array}{l} \textbf{for } l \in \mathcal{E}_h \texttt{:} \\ \textbf{if Entails}(\mathcal{E}_h \setminus \{l\}, \mathcal{M} \to \pi) \texttt{:} \\ \mathcal{E}_h \leftarrow \mathcal{E}_h \setminus \{l\} \end{array}\textbf{return } \mathcal{E}_h
```

end

3 datasets from Anchor

[RSG18]

3 datasets from Anchor

[RSG18]

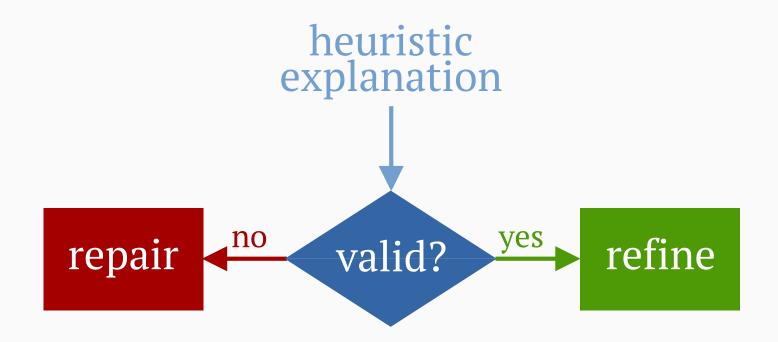
2 additional datasets from FairML and ProPublica [Fai16, ALMK16] [FSV15, FFM+15, FSV+19]

3 datasets from Anchor

[RSG18]

2 additional datasets from FairML and ProPublica [Fai16, ALMK16] [FSV15, FFM+15, FSV+19]

target all data samples



Dataset	(# unique)	Explanations									
		optimistic			pessimistic			realistic			
		LIME	Anchor	SHAP	LIME	Anchor	SHAP	LIME	Anchor	SHAP	
adult	(5579)	61.3%	80.5%	70.7%	7.9%	1.6%	10.2%	30.8%	17.9%	19.1%	
lending	(4414)	24.0%	3.0%	17.0%	0.4%	0.0%	2.5%	75.6%	97.0%	80.5%	
rcdv	(3696)	94.1%	99.4%	85.9%	4.6%	0.4%	7.9%	1.3%	0.2%	6.2%	
compas	(778)	71.9%	84.4%	60.4%	20.6%	1.7%	27.8%	7.5%	13.9%	11.8%	
german	(1000)	85.3%	99.7%	63.0%	14.6%	0.2%	37.0%	0.1%	0.1%	0.0%	

	(# unique)	Explanations								
Dataset		optimistic			pessimistic			realistic		
		LIME	Anchor	SHAP	LIME	Anchor	SHAP	LIME	Anchor	SHAP
adult	(5579)	61.3%	80.5%	70.7%	7.9%	1.6%	10.2%	30.8%	17.9%	19.1%
lending	(4414)	24.0%	3.0%	17.0%	0.4%	0.0%	2.5%	75.6%	97.0%	80.5%
rcdv	(3696)	94.1%	99.4%	85.9%	4.6%	0.4%	7.9%	1.3%	0.2%	6.2%
compas	(778)	71.9%	84.4%	60.4%	20.6%	1.7%	27.8%	7.5%	13.9%	11.8%
german	(1000)	85.3%	99.7%	63.0%	14.6%	0.2%	37.0%	0.1%	0.1%	0.0%

so should we trust heuristic approaches?

Dataset	(# unique)	Explanations									
		optimistic			pessimistic			realistic			
		LIME	Anchor	SHAP	LIME	Anchor	SHAP	LIME	Anchor	SHAP	
adult	(5579)	61.3%	80.5%	70.7%	7.9%	1.6%	10.2%	30.8%	17.9%	19.1%	
lending	(4414)	24.0%	3.0%	17.0%	0.4%	0.0%	2.5%	75.6%	97.0%	80.5%	
rcdv	(3696)	94.1%	99.4%	85.9%	4.6%	0.4%	7.9%	1.3%	0.2%	6.2%	
compas	(778)	71.9%	84.4%	60.4%	20.6%	1.7%	27.8%	7.5%	13.9%	11.8%	
german	(1000)	85.3%	99.7%	63.0%	14.6%	0.2%	37.0%	0.1%	0.1%	0.0%	

so should we trust heuristic approaches?

or better not?

let's go further!

let's go further!

what about measuring precision of Anchor's explanations?

given model \mathcal{M} , input \mathcal{I} , prediction π , and explanation \mathcal{E} : $prec(\mathcal{E}) = \mathbb{E}_{\mathcal{D}(\mathcal{I}' \supset \mathcal{E})}[\mathcal{M}(\mathcal{I}') = \pi]$

given model \mathcal{M} , input \mathcal{I} , prediction π , and explanation \mathcal{E} : $prec(\mathcal{E}) = \mathbb{E}_{\mathcal{D}(\mathcal{I}' \supset \mathcal{E})}[\mathcal{M}(\mathcal{I}') = \pi]$

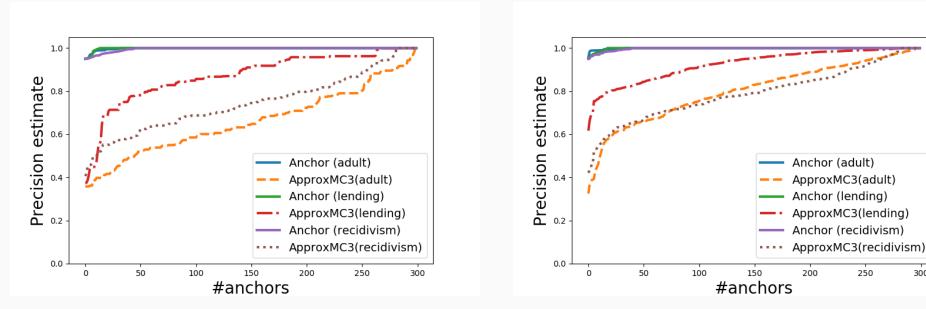
alternatively, do approximate model counting for: $\mathcal{E}\wedge\mathcal{M}\wedge\neg\pi$

given model \mathcal{M} , input \mathcal{I} , prediction π , and explanation \mathcal{E} : $prec(\mathcal{E}) = \mathbb{E}_{\mathcal{D}(\mathcal{I}' \supset \mathcal{E})}[\mathcal{M}(\mathcal{I}') = \pi]$

alternatively, do approximate model counting for:

(in fact, a bit more complicated but the idea is here)

Assessing heuristic explanations¹



unconstrained feature space

samples with \leq 50% difference

300

Summary

(for computing explanations but also assessing heuristic appoaches)

(for computing explanations but also assessing heuristic appoaches)

rigorous approach

(for computing explanations but also assessing heuristic appoaches)

rigorous approach

global explanations

(for computing explanations but also assessing heuristic appoaches)

rigorous approach

global explanations minimality guarantees

(for computing explanations but also assessing heuristic appoaches)

rigorous approach

global explanations minimality guarantees

(if one can encode and check entailment!)

scalability (search or compilation?)

scalability (search or compilation?) other ML models, reasoners, methods?

scalability (search or compilation?) other ML models, reasoners, methods?

other types of explanations?

scalability (search or compilation?) other ML models, reasoners, methods?

other types of explanations?

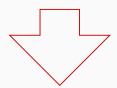
what about **other heuristic approaches?**

scalability (search or compilation?) other ML models, reasoners, methods?

other types of explanations?

what about **other heuristic approaches?** hybrid approaches?

relate XAI and verification?



40 / 40

References i

[ALMK16] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias. http://tiny.cc/dd7mjz, 2016.

- [BLM15] Alessio Bonfietti, Michele Lombardi, and Michela Milano.
 Embedding decision trees and random forests in constraint programming. In CPAIOR, pages 74–90, 2015.
- [CD03] Hei Chan and Adnan Darwiche.Reasoning about Bayesian network classifiers.In UAI, pages 107–115, 2003.
- [CG16] Tianqi Chen and Carlos Guestrin.XGBoost: A scalable tree boosting system.In KDD, pages 785–794, 2016.
- [Fai16] Auditing black-box predictive models. http://tiny.cc/6e7mjz, 2016.

[FFM+15] Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubramanian.
Certifying and removing disparate impact.

In KDD, pages 259–268, 2015.

References ii

- [FJ18] Matteo Fischetti and Jason Jo.
 Deep neural networks and mixed integer linear optimization.
 Constraints, 23(3):296–309, 2018.
- [FSV15] Sorelle Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian.
 On algorithmic fairness, discrimination and disparate impact. 2015.
- [FSV⁺19] Sorelle A. Friedler, Carlos Scheidegger, Suresh Venkatasubramanian, Sonam Choudhary, Evan P. Hamilton, and Derek Roth.

A comparative study of fairness-enhancing interventions in machine learning.

In FAT, pages 329–338, 2019.

- [IMM16] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva.
 Propositional abduction with implicit hitting sets.
 In ECAI, pages 1327–1335, 2016.
- [INM19] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
 On validating, repairing and refining heuristic ML explanations. CoRR, abs/1907.02509, 2019.
- [INMS19] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
 Abduction-based explanations for machine learning models.
 In AAAI, pages 1511–1519, 2019.

References iii

- [LL17] Scott M. Lundberg and Su-In Lee.
 A unified approach to interpreting model predictions. In NIPS, pages 4765–4774, 2017.
- [LMB17] Michele Lombardi, Michela Milano, and Andrea Bartolini. Empirical decision model learning.

Artif. Intell., 244:343–367, 2017.

- [NSM⁺19] Nina Narodytska, Aditya A. Shrotri, Kuldeep S. Meel, Alexey Ignatiev, and Joao Marques-Silva. Assessing heuristic machine learning explanations with model counting. In SAT, pages 267–278, 2019.
- [RSG16] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I trust you?": Explaining the predictions of any classifier. In KDD, pages 1135–1144, 2016.
- [RSG18] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin.
 Anchors: High-precision model-agnostic explanations.
 In AAAI, pages 1527–1535, 2018.
- [SCD18] Andy Shih, Arthur Choi, and Adnan Darwiche.
 A symbolic approach to explaining Bayesian network classifiers. In IJCAI, pages 5103–5111, 2018.

References iv

- [SCD19] Andy Shih, Arthur Choi, and Adnan Darwiche.
 Compiling Bayesian network classifiers into decision graphs. In AAAI, pages 7966–7974, 2019.
- [SDC19] Andy Shih, Adnan Darwiche, and Arthur Choi.
 Verifying binarized neural networks by Angluin-style learning. In SAT, pages 354–370, 2019.
- [VZY17] Sicco Verwer, Yingqian Zhang, and Qing Chuan Ye.
 Auction optimization using regression trees and linear models as integer programs. Artif. Intell., 244:368–395, 2017.

RIGOROUS VERIFICATION AND EXPLANATION OF ML MODELS PART 05

A. Ignatiev, J. Marques-Silva, K. Meel& N. Narodytska

Monash Univ, NU Singapore, VMWare Research & ANITI@Univ. Toulouse

February 08, 2020 | AAAI Tutorial SP1

Duality in Explanations

- Vast body of work on computing explanations (XPs)
 - Mostly heuristic approaches, with recent rigorous solutions
- Vast body of work on coping with adversarial examples (AEs)
 - Both heuristic and rigorous approaches

- Vast body of work on computing explanations (XPs)
 - Mostly heuristic approaches, with recent rigorous solutions
- Vast body of work on coping with adversarial examples (AEs)
 - Both heuristic and rigorous approaches
- Can XPs and AEs be somehow related?
 - Recent work observed that some connection existed, but formal connection has been elusive

- Vast body of work on computing explanations (XPs)
 - Mostly heuristic approaches, with recent rigorous solutions
- Vast body of work on coping with adversarial examples (AEs)
 - Both heuristic and rigorous approaches
- Can XPs and AEs be somehow related?
 - Recent work observed that some connection existed, but formal connection has been elusive
- Recent proposal of a (first) link between XPs and AEs
 Work exploits hitting set duality, first studied in model-based diagnosis

A well-known example

[RN10]

Evampla	Input Attributes										Goal
Example	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	WillWait
X ₁	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	$y_1 = Yes$
X ₂	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_2 = No$
X 3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_3 = Yes$
X 4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4 = Yes$
X 5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$
X 6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	$y_6 = Yes$
X7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_7 = No$
X ₈	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$y_8 = Yes$
X 9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = No$
X ₁₀	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = No$
X ₁₁	No	No	No	No	None	\$	No	No	Thai	0-10	<i>y</i> ₁₁ = No
X ₁₂	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	<i>y</i> ₁₂ = Yes

A well-known example (Cont.)

• 10 features:

{A(lternate), B(ar), W(eekend), H(ungry), Pa(trons), Pr(ice), Ra(in), Re(serv.), T(ype), E(stim.)}

• Example instance (x_1 , with outcome $y_1 =$ Yes):

 $\{A, \neg B, \neg W, H, (Pa = Some), (Pr = \$\$\$), \neg Ra, Re, (T = French), (E = 0-10)\}$

• A possible decision set (obtained with some off-the-shelf tool, & <u>function</u>*):

IF	$(Pa = Some) \land \neg(E = >60)$	THEN	(Wait = Yes)	(R1)
IF	$W \land \neg(Pr = \$\$) \land \neg(E = >60)$	THEN	(Wait = Yes)	(R2)
IF	$\neg W \land \neg (Pa = Some)$	THEN	(Wait = No)	(R3)
IF	(E = >60)	THEN	(Wait = No)	(R4)
IF	$\neg(Pa = Some) \land (Pr = \$\$)$	THEN	(Wait = No)	(R5)

• Counterexamples:

A subset-minimal set C of literals is a counterexample (CEx) to a prediction π , if $C \models (\mathcal{M} \rightarrow \rho)$, with $\rho \in \mathbb{K} \land \rho \neq \pi$

• Counterexamples:

A subset-minimal set C of literals is a counterexample (CEx) to a prediction π , if $C \models (\mathcal{M} \rightarrow \rho)$, with $\rho \in \mathbb{K} \land \rho \neq \pi$

• Breaks:

A literal τ_i breaks a set of literals S (each denoting a different feature) if S contains a literal inconsistent with τ_i

• Counterexamples:

A subset-minimal set C of literals is a counterexample (CEx) to a prediction π , if $C \models (\mathcal{M} \rightarrow \rho)$, with $\rho \in \mathbb{K} \land \rho \neq \pi$

• Breaks:

A literal τ_i breaks a set of literals S (each denoting a different feature) if S contains a literal inconsistent with τ_i

• Back to the example, consider prediction (Wait = Yes):

• Counterexamples:

A subset-minimal set C of literals is a counterexample (CEx) to a prediction π , if $C \vDash (\mathcal{M} \rightarrow \rho)$, with $\rho \in \mathbb{K} \land \rho \neq \pi$

• Breaks:

A literal τ_i breaks a set of literals S (each denoting a different feature) if S contains a literal inconsistent with τ_i

- Back to the example, consider prediction (Wait = Yes):
 - Using (R1) (and assuming a consistent instance), an explanation is:

 $(Pa = Some) \land \neg(E = >60)$

• Counterexamples:

A subset-minimal set C of literals is a counterexample (CEx) to a prediction π , if $C \models (\mathcal{M} \rightarrow \rho)$, with $\rho \in \mathbb{K} \land \rho \neq \pi$

• Breaks:

A literal τ_i breaks a set of literals S (each denoting a different feature) if S contains a literal inconsistent with τ_i

- Back to the example, consider prediction (Wait = Yes):
 - Using (R1) (and assuming a consistent instance), an explanation is:

 $(Pa = Some) \land \neg(E = >60)$

• Due to (R5), a counterexample is:

 $\neg(\mathsf{Pa} = \mathsf{Some}) \land (\mathsf{Pr} = \$\$)$

• Counterexamples:

A subset-minimal set C of literals is a counterexample (CEx) to a prediction π , if $C \vDash (\mathcal{M} \rightarrow \rho)$, with $\rho \in \mathbb{K} \land \rho \neq \pi$

• Breaks:

A literal τ_i breaks a set of literals S (each denoting a different feature) if S contains a literal inconsistent with τ_i

- Back to the example, consider prediction (Wait = Yes):
 - Using (R1) (and assuming a consistent instance), an explanation is:

 $(Pa = Some) \land \neg(E = >60)$

• Due to (R5), a counterexample is:

$$\neg(\mathsf{Pa} = \mathsf{Some}) \land (\mathsf{Pr} = \$\$)$$

• XP $S_1 = \{(Pa = Some), \neg(E = >60)\}$ breaks CEx $S_2 = \{\neg(Pa = Some), (Pr = \$\$)\}$ and vice-versa

1. Relationship between XPs with CEx's:

- 1. Relationship between XPs with CEx's:
 - Each XP breaks every CEx

- 1. Relationship between XPs with CEx's:
 - Each XP breaks every CEx
 - Each CEx breaks every XP

- 1. Relationship between XPs with CEx's:
 - Each XP breaks every CEx
 - Each CEx breaks every XP
 - ... XPs can be computed from all CEx's (by HSD) and vice-versa

- 1. Relationship between XPs with CEx's:
 - Each XP breaks every CEx
 - Each CEx breaks every XP
 - : XPs can be computed from all CEx's (by HSD) and vice-versa

2. Given instance $\mathcal I$, an AE can be computed from closest CEx

Revisiting the example

- Restaurant dataset
- ML model is decision set (shown earlier)
- Prediction is (Wait = Yes)
- Global explanations:
 - **1.** $(Pa = Some) \land \neg(E = >60)$
 - 2. $W \land \neg(Pr = \$\$) \land \neg(E = >60)$
- Counterexamples:
 - 1. $\neg W \land \neg (Pa = Some)$
 - 2. (E = >60)
 - 3. $\neg(\mathsf{Pa} = \mathsf{Some}) \land (\mathsf{Pr} = \$\$)$
- The XP's break the CEx's and vice-versa



Wrap-up

- Scalability, scalability, scalability...
 - Rigorous methods still lacking in reasoning about NNs

• Scalability, scalability, scalability...

- Rigorous methods still lacking in reasoning about NNs
- **Q:** How to improve performance of sound & complete methods for assessing robustness?
- **Q:** Alternatives to NNs in some settings?

- Scalability, scalability, scalability...
 - Rigorous methods still lacking in reasoning about NNs
 - **Q:** How to improve performance of sound & complete methods for assessing robustness?
 - **Q:** Alternatives to NNs in some settings?
- More efficient (and still rigorous) alternatives to prime-based explanations?

• Scalability, scalability, scalability...

- Rigorous methods still lacking in reasoning about NNs
- **Q:** How to improve performance of sound & complete methods for assessing robustness?
- **Q:** Alternatives to NNs in some settings?
- More efficient (and still rigorous) alternatives to prime-based explanations?
 - **Q:** Basis for developing safe heuristics?

- Scalability, scalability, scalability...
 - Rigorous methods still lacking in reasoning about NNs
 - **Q:** How to improve performance of sound & complete methods for assessing robustness?
 - **Q:** Alternatives to NNs in some settings?
- More efficient (and still rigorous) alternatives to prime-based explanations?
 - **Q:** Basis for developing safe heuristics?
- Scaling the learning of interpretable models?

• Scalability, scalability, scalability...

- Rigorous methods still lacking in reasoning about NNs
- **Q:** How to improve performance of sound & complete methods for assessing robustness?
- Q: Alternatives to NNs in some settings?
- More efficient (and still rigorous) alternatives to prime-based explanations?
 - **Q:** Basis for developing safe heuristics?
- Scaling the learning of interpretable models?
 - **Q:** How to target large datasets?
 - **Q:** Mechanisms for avoiding overfitting?

• Scalability, scalability, scalability...

- Rigorous methods still lacking in reasoning about NNs
- **Q:** How to improve performance of sound & complete methods for assessing robustness?
- Q: Alternatives to NNs in some settings?
- More efficient (and still rigorous) alternatives to prime-based explanations?
 - **Q:** Basis for developing safe heuristics?
- Scaling the learning of interpretable models?
 - **Q:** How to target large datasets?
 - **Q:** Mechanisms for avoiding overfitting?
- Exploiting logic in learning black-box models

[FBD+19]

Questions?

References i

- [FBD⁺19] Marc Fischer, Mislav Balunovic, Dana Drachsler-Cohen, Timon Gehr, Ce Zhang, and Martin T. Vechev. DL2: training and querying neural networks with logic. In ICML, pages 1931–1941, 2019.
- [INM19] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
 On relating explanations and adversarial examples.
 In NeurIPS, pages 15857–15867, 2019.
- [Rei87] Raymond Reiter.
 A theory of diagnosis from first principles.
 Artif. Intell., 32(1):57–95, 1987.
- [RN10] Stuart J. Russell and Peter Norvig.
 Artificial Intelligence A Modern Approach.
 Pearson Education, 2010.